You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

2880 lines
85KB

  1. /*
  2. * MPEG Audio decoder
  3. * Copyright (c) 2001, 2002 Fabrice Bellard.
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file mpegaudiodec.c
  23. * MPEG Audio decoder.
  24. */
  25. //#define DEBUG
  26. #include "avcodec.h"
  27. #include "bitstream.h"
  28. #include "dsputil.h"
  29. /*
  30. * TODO:
  31. * - in low precision mode, use more 16 bit multiplies in synth filter
  32. * - test lsf / mpeg25 extensively.
  33. */
  34. /* define USE_HIGHPRECISION to have a bit exact (but slower) mpeg
  35. audio decoder */
  36. #ifdef CONFIG_MPEGAUDIO_HP
  37. # define USE_HIGHPRECISION
  38. #endif
  39. #include "mpegaudio.h"
  40. #include "mathops.h"
  41. #define FRAC_ONE (1 << FRAC_BITS)
  42. #define FIX(a) ((int)((a) * FRAC_ONE))
  43. /* WARNING: only correct for posititive numbers */
  44. #define FIXR(a) ((int)((a) * FRAC_ONE + 0.5))
  45. #define FRAC_RND(a) (((a) + (FRAC_ONE/2)) >> FRAC_BITS)
  46. #define FIXHR(a) ((int)((a) * (1LL<<32) + 0.5))
  47. /****************/
  48. #define HEADER_SIZE 4
  49. #define BACKSTEP_SIZE 512
  50. #define EXTRABYTES 24
  51. struct GranuleDef;
  52. typedef struct MPADecodeContext {
  53. DECLARE_ALIGNED_8(uint8_t, last_buf[2*BACKSTEP_SIZE + EXTRABYTES]);
  54. int last_buf_size;
  55. int frame_size;
  56. /* next header (used in free format parsing) */
  57. uint32_t free_format_next_header;
  58. int error_protection;
  59. int layer;
  60. int sample_rate;
  61. int sample_rate_index; /* between 0 and 8 */
  62. int bit_rate;
  63. GetBitContext gb;
  64. GetBitContext in_gb;
  65. int nb_channels;
  66. int mode;
  67. int mode_ext;
  68. int lsf;
  69. DECLARE_ALIGNED_16(MPA_INT, synth_buf[MPA_MAX_CHANNELS][512 * 2]);
  70. int synth_buf_offset[MPA_MAX_CHANNELS];
  71. DECLARE_ALIGNED_16(int32_t, sb_samples[MPA_MAX_CHANNELS][36][SBLIMIT]);
  72. int32_t mdct_buf[MPA_MAX_CHANNELS][SBLIMIT * 18]; /* previous samples, for layer 3 MDCT */
  73. #ifdef DEBUG
  74. int frame_count;
  75. #endif
  76. void (*compute_antialias)(struct MPADecodeContext *s, struct GranuleDef *g);
  77. int adu_mode; ///< 0 for standard mp3, 1 for adu formatted mp3
  78. int dither_state;
  79. int error_resilience;
  80. AVCodecContext* avctx;
  81. } MPADecodeContext;
  82. /**
  83. * Context for MP3On4 decoder
  84. */
  85. typedef struct MP3On4DecodeContext {
  86. int frames; ///< number of mp3 frames per block (number of mp3 decoder instances)
  87. int chan_cfg; ///< channel config number
  88. MPADecodeContext *mp3decctx[5]; ///< MPADecodeContext for every decoder instance
  89. } MP3On4DecodeContext;
  90. /* layer 3 "granule" */
  91. typedef struct GranuleDef {
  92. uint8_t scfsi;
  93. int part2_3_length;
  94. int big_values;
  95. int global_gain;
  96. int scalefac_compress;
  97. uint8_t block_type;
  98. uint8_t switch_point;
  99. int table_select[3];
  100. int subblock_gain[3];
  101. uint8_t scalefac_scale;
  102. uint8_t count1table_select;
  103. int region_size[3]; /* number of huffman codes in each region */
  104. int preflag;
  105. int short_start, long_end; /* long/short band indexes */
  106. uint8_t scale_factors[40];
  107. int32_t sb_hybrid[SBLIMIT * 18]; /* 576 samples */
  108. } GranuleDef;
  109. #define MODE_EXT_MS_STEREO 2
  110. #define MODE_EXT_I_STEREO 1
  111. /* layer 3 huffman tables */
  112. typedef struct HuffTable {
  113. int xsize;
  114. const uint8_t *bits;
  115. const uint16_t *codes;
  116. } HuffTable;
  117. #include "mpegaudiodata.h"
  118. #include "mpegaudiodectab.h"
  119. static void compute_antialias_integer(MPADecodeContext *s, GranuleDef *g);
  120. static void compute_antialias_float(MPADecodeContext *s, GranuleDef *g);
  121. /* vlc structure for decoding layer 3 huffman tables */
  122. static VLC huff_vlc[16];
  123. static VLC huff_quad_vlc[2];
  124. /* computed from band_size_long */
  125. static uint16_t band_index_long[9][23];
  126. /* XXX: free when all decoders are closed */
  127. #define TABLE_4_3_SIZE (8191 + 16)*4
  128. static int8_t table_4_3_exp[TABLE_4_3_SIZE];
  129. static uint32_t table_4_3_value[TABLE_4_3_SIZE];
  130. static uint32_t exp_table[512];
  131. static uint32_t expval_table[512][16];
  132. /* intensity stereo coef table */
  133. static int32_t is_table[2][16];
  134. static int32_t is_table_lsf[2][2][16];
  135. static int32_t csa_table[8][4];
  136. static float csa_table_float[8][4];
  137. static int32_t mdct_win[8][36];
  138. /* lower 2 bits: modulo 3, higher bits: shift */
  139. static uint16_t scale_factor_modshift[64];
  140. /* [i][j]: 2^(-j/3) * FRAC_ONE * 2^(i+2) / (2^(i+2) - 1) */
  141. static int32_t scale_factor_mult[15][3];
  142. /* mult table for layer 2 group quantization */
  143. #define SCALE_GEN(v) \
  144. { FIXR(1.0 * (v)), FIXR(0.7937005259 * (v)), FIXR(0.6299605249 * (v)) }
  145. static const int32_t scale_factor_mult2[3][3] = {
  146. SCALE_GEN(4.0 / 3.0), /* 3 steps */
  147. SCALE_GEN(4.0 / 5.0), /* 5 steps */
  148. SCALE_GEN(4.0 / 9.0), /* 9 steps */
  149. };
  150. static DECLARE_ALIGNED_16(MPA_INT, window[512]);
  151. /* layer 1 unscaling */
  152. /* n = number of bits of the mantissa minus 1 */
  153. static inline int l1_unscale(int n, int mant, int scale_factor)
  154. {
  155. int shift, mod;
  156. int64_t val;
  157. shift = scale_factor_modshift[scale_factor];
  158. mod = shift & 3;
  159. shift >>= 2;
  160. val = MUL64(mant + (-1 << n) + 1, scale_factor_mult[n-1][mod]);
  161. shift += n;
  162. /* NOTE: at this point, 1 <= shift >= 21 + 15 */
  163. return (int)((val + (1LL << (shift - 1))) >> shift);
  164. }
  165. static inline int l2_unscale_group(int steps, int mant, int scale_factor)
  166. {
  167. int shift, mod, val;
  168. shift = scale_factor_modshift[scale_factor];
  169. mod = shift & 3;
  170. shift >>= 2;
  171. val = (mant - (steps >> 1)) * scale_factor_mult2[steps >> 2][mod];
  172. /* NOTE: at this point, 0 <= shift <= 21 */
  173. if (shift > 0)
  174. val = (val + (1 << (shift - 1))) >> shift;
  175. return val;
  176. }
  177. /* compute value^(4/3) * 2^(exponent/4). It normalized to FRAC_BITS */
  178. static inline int l3_unscale(int value, int exponent)
  179. {
  180. unsigned int m;
  181. int e;
  182. e = table_4_3_exp [4*value + (exponent&3)];
  183. m = table_4_3_value[4*value + (exponent&3)];
  184. e -= (exponent >> 2);
  185. assert(e>=1);
  186. if (e > 31)
  187. return 0;
  188. m = (m + (1 << (e-1))) >> e;
  189. return m;
  190. }
  191. /* all integer n^(4/3) computation code */
  192. #define DEV_ORDER 13
  193. #define POW_FRAC_BITS 24
  194. #define POW_FRAC_ONE (1 << POW_FRAC_BITS)
  195. #define POW_FIX(a) ((int)((a) * POW_FRAC_ONE))
  196. #define POW_MULL(a,b) (((int64_t)(a) * (int64_t)(b)) >> POW_FRAC_BITS)
  197. static int dev_4_3_coefs[DEV_ORDER];
  198. #if 0 /* unused */
  199. static int pow_mult3[3] = {
  200. POW_FIX(1.0),
  201. POW_FIX(1.25992104989487316476),
  202. POW_FIX(1.58740105196819947474),
  203. };
  204. #endif
  205. static void int_pow_init(void)
  206. {
  207. int i, a;
  208. a = POW_FIX(1.0);
  209. for(i=0;i<DEV_ORDER;i++) {
  210. a = POW_MULL(a, POW_FIX(4.0 / 3.0) - i * POW_FIX(1.0)) / (i + 1);
  211. dev_4_3_coefs[i] = a;
  212. }
  213. }
  214. #if 0 /* unused, remove? */
  215. /* return the mantissa and the binary exponent */
  216. static int int_pow(int i, int *exp_ptr)
  217. {
  218. int e, er, eq, j;
  219. int a, a1;
  220. /* renormalize */
  221. a = i;
  222. e = POW_FRAC_BITS;
  223. while (a < (1 << (POW_FRAC_BITS - 1))) {
  224. a = a << 1;
  225. e--;
  226. }
  227. a -= (1 << POW_FRAC_BITS);
  228. a1 = 0;
  229. for(j = DEV_ORDER - 1; j >= 0; j--)
  230. a1 = POW_MULL(a, dev_4_3_coefs[j] + a1);
  231. a = (1 << POW_FRAC_BITS) + a1;
  232. /* exponent compute (exact) */
  233. e = e * 4;
  234. er = e % 3;
  235. eq = e / 3;
  236. a = POW_MULL(a, pow_mult3[er]);
  237. while (a >= 2 * POW_FRAC_ONE) {
  238. a = a >> 1;
  239. eq++;
  240. }
  241. /* convert to float */
  242. while (a < POW_FRAC_ONE) {
  243. a = a << 1;
  244. eq--;
  245. }
  246. /* now POW_FRAC_ONE <= a < 2 * POW_FRAC_ONE */
  247. #if POW_FRAC_BITS > FRAC_BITS
  248. a = (a + (1 << (POW_FRAC_BITS - FRAC_BITS - 1))) >> (POW_FRAC_BITS - FRAC_BITS);
  249. /* correct overflow */
  250. if (a >= 2 * (1 << FRAC_BITS)) {
  251. a = a >> 1;
  252. eq++;
  253. }
  254. #endif
  255. *exp_ptr = eq;
  256. return a;
  257. }
  258. #endif
  259. static int decode_init(AVCodecContext * avctx)
  260. {
  261. MPADecodeContext *s = avctx->priv_data;
  262. static int init=0;
  263. int i, j, k;
  264. s->avctx = avctx;
  265. #if defined(USE_HIGHPRECISION) && defined(CONFIG_AUDIO_NONSHORT)
  266. avctx->sample_fmt= SAMPLE_FMT_S32;
  267. #else
  268. avctx->sample_fmt= SAMPLE_FMT_S16;
  269. #endif
  270. s->error_resilience= avctx->error_resilience;
  271. if(avctx->antialias_algo != FF_AA_FLOAT)
  272. s->compute_antialias= compute_antialias_integer;
  273. else
  274. s->compute_antialias= compute_antialias_float;
  275. if (!init && !avctx->parse_only) {
  276. /* scale factors table for layer 1/2 */
  277. for(i=0;i<64;i++) {
  278. int shift, mod;
  279. /* 1.0 (i = 3) is normalized to 2 ^ FRAC_BITS */
  280. shift = (i / 3);
  281. mod = i % 3;
  282. scale_factor_modshift[i] = mod | (shift << 2);
  283. }
  284. /* scale factor multiply for layer 1 */
  285. for(i=0;i<15;i++) {
  286. int n, norm;
  287. n = i + 2;
  288. norm = ((INT64_C(1) << n) * FRAC_ONE) / ((1 << n) - 1);
  289. scale_factor_mult[i][0] = MULL(FIXR(1.0 * 2.0), norm);
  290. scale_factor_mult[i][1] = MULL(FIXR(0.7937005259 * 2.0), norm);
  291. scale_factor_mult[i][2] = MULL(FIXR(0.6299605249 * 2.0), norm);
  292. dprintf(avctx, "%d: norm=%x s=%x %x %x\n",
  293. i, norm,
  294. scale_factor_mult[i][0],
  295. scale_factor_mult[i][1],
  296. scale_factor_mult[i][2]);
  297. }
  298. ff_mpa_synth_init(window);
  299. /* huffman decode tables */
  300. for(i=1;i<16;i++) {
  301. const HuffTable *h = &mpa_huff_tables[i];
  302. int xsize, x, y;
  303. unsigned int n;
  304. uint8_t tmp_bits [512];
  305. uint16_t tmp_codes[512];
  306. memset(tmp_bits , 0, sizeof(tmp_bits ));
  307. memset(tmp_codes, 0, sizeof(tmp_codes));
  308. xsize = h->xsize;
  309. n = xsize * xsize;
  310. j = 0;
  311. for(x=0;x<xsize;x++) {
  312. for(y=0;y<xsize;y++){
  313. tmp_bits [(x << 5) | y | ((x&&y)<<4)]= h->bits [j ];
  314. tmp_codes[(x << 5) | y | ((x&&y)<<4)]= h->codes[j++];
  315. }
  316. }
  317. /* XXX: fail test */
  318. init_vlc(&huff_vlc[i], 7, 512,
  319. tmp_bits, 1, 1, tmp_codes, 2, 2, 1);
  320. }
  321. for(i=0;i<2;i++) {
  322. init_vlc(&huff_quad_vlc[i], i == 0 ? 7 : 4, 16,
  323. mpa_quad_bits[i], 1, 1, mpa_quad_codes[i], 1, 1, 1);
  324. }
  325. for(i=0;i<9;i++) {
  326. k = 0;
  327. for(j=0;j<22;j++) {
  328. band_index_long[i][j] = k;
  329. k += band_size_long[i][j];
  330. }
  331. band_index_long[i][22] = k;
  332. }
  333. /* compute n ^ (4/3) and store it in mantissa/exp format */
  334. int_pow_init();
  335. for(i=1;i<TABLE_4_3_SIZE;i++) {
  336. double f, fm;
  337. int e, m;
  338. f = pow((double)(i/4), 4.0 / 3.0) * pow(2, (i&3)*0.25);
  339. fm = frexp(f, &e);
  340. m = (uint32_t)(fm*(1LL<<31) + 0.5);
  341. e+= FRAC_BITS - 31 + 5 - 100;
  342. /* normalized to FRAC_BITS */
  343. table_4_3_value[i] = m;
  344. // av_log(NULL, AV_LOG_DEBUG, "%d %d %f\n", i, m, pow((double)i, 4.0 / 3.0));
  345. table_4_3_exp[i] = -e;
  346. }
  347. for(i=0; i<512*16; i++){
  348. int exponent= (i>>4);
  349. double f= pow(i&15, 4.0 / 3.0) * pow(2, (exponent-400)*0.25 + FRAC_BITS + 5);
  350. expval_table[exponent][i&15]= llrint(f);
  351. if((i&15)==1)
  352. exp_table[exponent]= llrint(f);
  353. }
  354. for(i=0;i<7;i++) {
  355. float f;
  356. int v;
  357. if (i != 6) {
  358. f = tan((double)i * M_PI / 12.0);
  359. v = FIXR(f / (1.0 + f));
  360. } else {
  361. v = FIXR(1.0);
  362. }
  363. is_table[0][i] = v;
  364. is_table[1][6 - i] = v;
  365. }
  366. /* invalid values */
  367. for(i=7;i<16;i++)
  368. is_table[0][i] = is_table[1][i] = 0.0;
  369. for(i=0;i<16;i++) {
  370. double f;
  371. int e, k;
  372. for(j=0;j<2;j++) {
  373. e = -(j + 1) * ((i + 1) >> 1);
  374. f = pow(2.0, e / 4.0);
  375. k = i & 1;
  376. is_table_lsf[j][k ^ 1][i] = FIXR(f);
  377. is_table_lsf[j][k][i] = FIXR(1.0);
  378. dprintf(avctx, "is_table_lsf %d %d: %x %x\n",
  379. i, j, is_table_lsf[j][0][i], is_table_lsf[j][1][i]);
  380. }
  381. }
  382. for(i=0;i<8;i++) {
  383. float ci, cs, ca;
  384. ci = ci_table[i];
  385. cs = 1.0 / sqrt(1.0 + ci * ci);
  386. ca = cs * ci;
  387. csa_table[i][0] = FIXHR(cs/4);
  388. csa_table[i][1] = FIXHR(ca/4);
  389. csa_table[i][2] = FIXHR(ca/4) + FIXHR(cs/4);
  390. csa_table[i][3] = FIXHR(ca/4) - FIXHR(cs/4);
  391. csa_table_float[i][0] = cs;
  392. csa_table_float[i][1] = ca;
  393. csa_table_float[i][2] = ca + cs;
  394. csa_table_float[i][3] = ca - cs;
  395. // printf("%d %d %d %d\n", FIX(cs), FIX(cs-1), FIX(ca), FIX(cs)-FIX(ca));
  396. // av_log(NULL, AV_LOG_DEBUG,"%f %f %f %f\n", cs, ca, ca+cs, ca-cs);
  397. }
  398. /* compute mdct windows */
  399. for(i=0;i<36;i++) {
  400. for(j=0; j<4; j++){
  401. double d;
  402. if(j==2 && i%3 != 1)
  403. continue;
  404. d= sin(M_PI * (i + 0.5) / 36.0);
  405. if(j==1){
  406. if (i>=30) d= 0;
  407. else if(i>=24) d= sin(M_PI * (i - 18 + 0.5) / 12.0);
  408. else if(i>=18) d= 1;
  409. }else if(j==3){
  410. if (i< 6) d= 0;
  411. else if(i< 12) d= sin(M_PI * (i - 6 + 0.5) / 12.0);
  412. else if(i< 18) d= 1;
  413. }
  414. //merge last stage of imdct into the window coefficients
  415. d*= 0.5 / cos(M_PI*(2*i + 19)/72);
  416. if(j==2)
  417. mdct_win[j][i/3] = FIXHR((d / (1<<5)));
  418. else
  419. mdct_win[j][i ] = FIXHR((d / (1<<5)));
  420. // av_log(NULL, AV_LOG_DEBUG, "%2d %d %f\n", i,j,d / (1<<5));
  421. }
  422. }
  423. /* NOTE: we do frequency inversion adter the MDCT by changing
  424. the sign of the right window coefs */
  425. for(j=0;j<4;j++) {
  426. for(i=0;i<36;i+=2) {
  427. mdct_win[j + 4][i] = mdct_win[j][i];
  428. mdct_win[j + 4][i + 1] = -mdct_win[j][i + 1];
  429. }
  430. }
  431. #if defined(DEBUG)
  432. for(j=0;j<8;j++) {
  433. av_log(avctx, AV_LOG_DEBUG, "win%d=\n", j);
  434. for(i=0;i<36;i++)
  435. av_log(avctx, AV_LOG_DEBUG, "%f, ", (double)mdct_win[j][i] / FRAC_ONE);
  436. av_log(avctx, AV_LOG_DEBUG, "\n");
  437. }
  438. #endif
  439. init = 1;
  440. }
  441. #ifdef DEBUG
  442. s->frame_count = 0;
  443. #endif
  444. if (avctx->codec_id == CODEC_ID_MP3ADU)
  445. s->adu_mode = 1;
  446. return 0;
  447. }
  448. /* tab[i][j] = 1.0 / (2.0 * cos(pi*(2*k+1) / 2^(6 - j))) */
  449. /* cos(i*pi/64) */
  450. #define COS0_0 FIXHR(0.50060299823519630134/2)
  451. #define COS0_1 FIXHR(0.50547095989754365998/2)
  452. #define COS0_2 FIXHR(0.51544730992262454697/2)
  453. #define COS0_3 FIXHR(0.53104259108978417447/2)
  454. #define COS0_4 FIXHR(0.55310389603444452782/2)
  455. #define COS0_5 FIXHR(0.58293496820613387367/2)
  456. #define COS0_6 FIXHR(0.62250412303566481615/2)
  457. #define COS0_7 FIXHR(0.67480834145500574602/2)
  458. #define COS0_8 FIXHR(0.74453627100229844977/2)
  459. #define COS0_9 FIXHR(0.83934964541552703873/2)
  460. #define COS0_10 FIXHR(0.97256823786196069369/2)
  461. #define COS0_11 FIXHR(1.16943993343288495515/4)
  462. #define COS0_12 FIXHR(1.48416461631416627724/4)
  463. #define COS0_13 FIXHR(2.05778100995341155085/8)
  464. #define COS0_14 FIXHR(3.40760841846871878570/8)
  465. #define COS0_15 FIXHR(10.19000812354805681150/32)
  466. #define COS1_0 FIXHR(0.50241928618815570551/2)
  467. #define COS1_1 FIXHR(0.52249861493968888062/2)
  468. #define COS1_2 FIXHR(0.56694403481635770368/2)
  469. #define COS1_3 FIXHR(0.64682178335999012954/2)
  470. #define COS1_4 FIXHR(0.78815462345125022473/2)
  471. #define COS1_5 FIXHR(1.06067768599034747134/4)
  472. #define COS1_6 FIXHR(1.72244709823833392782/4)
  473. #define COS1_7 FIXHR(5.10114861868916385802/16)
  474. #define COS2_0 FIXHR(0.50979557910415916894/2)
  475. #define COS2_1 FIXHR(0.60134488693504528054/2)
  476. #define COS2_2 FIXHR(0.89997622313641570463/2)
  477. #define COS2_3 FIXHR(2.56291544774150617881/8)
  478. #define COS3_0 FIXHR(0.54119610014619698439/2)
  479. #define COS3_1 FIXHR(1.30656296487637652785/4)
  480. #define COS4_0 FIXHR(0.70710678118654752439/2)
  481. /* butterfly operator */
  482. #define BF(a, b, c, s)\
  483. {\
  484. tmp0 = tab[a] + tab[b];\
  485. tmp1 = tab[a] - tab[b];\
  486. tab[a] = tmp0;\
  487. tab[b] = MULH(tmp1<<(s), c);\
  488. }
  489. #define BF1(a, b, c, d)\
  490. {\
  491. BF(a, b, COS4_0, 1);\
  492. BF(c, d,-COS4_0, 1);\
  493. tab[c] += tab[d];\
  494. }
  495. #define BF2(a, b, c, d)\
  496. {\
  497. BF(a, b, COS4_0, 1);\
  498. BF(c, d,-COS4_0, 1);\
  499. tab[c] += tab[d];\
  500. tab[a] += tab[c];\
  501. tab[c] += tab[b];\
  502. tab[b] += tab[d];\
  503. }
  504. #define ADD(a, b) tab[a] += tab[b]
  505. /* DCT32 without 1/sqrt(2) coef zero scaling. */
  506. static void dct32(int32_t *out, int32_t *tab)
  507. {
  508. int tmp0, tmp1;
  509. /* pass 1 */
  510. BF( 0, 31, COS0_0 , 1);
  511. BF(15, 16, COS0_15, 5);
  512. /* pass 2 */
  513. BF( 0, 15, COS1_0 , 1);
  514. BF(16, 31,-COS1_0 , 1);
  515. /* pass 1 */
  516. BF( 7, 24, COS0_7 , 1);
  517. BF( 8, 23, COS0_8 , 1);
  518. /* pass 2 */
  519. BF( 7, 8, COS1_7 , 4);
  520. BF(23, 24,-COS1_7 , 4);
  521. /* pass 3 */
  522. BF( 0, 7, COS2_0 , 1);
  523. BF( 8, 15,-COS2_0 , 1);
  524. BF(16, 23, COS2_0 , 1);
  525. BF(24, 31,-COS2_0 , 1);
  526. /* pass 1 */
  527. BF( 3, 28, COS0_3 , 1);
  528. BF(12, 19, COS0_12, 2);
  529. /* pass 2 */
  530. BF( 3, 12, COS1_3 , 1);
  531. BF(19, 28,-COS1_3 , 1);
  532. /* pass 1 */
  533. BF( 4, 27, COS0_4 , 1);
  534. BF(11, 20, COS0_11, 2);
  535. /* pass 2 */
  536. BF( 4, 11, COS1_4 , 1);
  537. BF(20, 27,-COS1_4 , 1);
  538. /* pass 3 */
  539. BF( 3, 4, COS2_3 , 3);
  540. BF(11, 12,-COS2_3 , 3);
  541. BF(19, 20, COS2_3 , 3);
  542. BF(27, 28,-COS2_3 , 3);
  543. /* pass 4 */
  544. BF( 0, 3, COS3_0 , 1);
  545. BF( 4, 7,-COS3_0 , 1);
  546. BF( 8, 11, COS3_0 , 1);
  547. BF(12, 15,-COS3_0 , 1);
  548. BF(16, 19, COS3_0 , 1);
  549. BF(20, 23,-COS3_0 , 1);
  550. BF(24, 27, COS3_0 , 1);
  551. BF(28, 31,-COS3_0 , 1);
  552. /* pass 1 */
  553. BF( 1, 30, COS0_1 , 1);
  554. BF(14, 17, COS0_14, 3);
  555. /* pass 2 */
  556. BF( 1, 14, COS1_1 , 1);
  557. BF(17, 30,-COS1_1 , 1);
  558. /* pass 1 */
  559. BF( 6, 25, COS0_6 , 1);
  560. BF( 9, 22, COS0_9 , 1);
  561. /* pass 2 */
  562. BF( 6, 9, COS1_6 , 2);
  563. BF(22, 25,-COS1_6 , 2);
  564. /* pass 3 */
  565. BF( 1, 6, COS2_1 , 1);
  566. BF( 9, 14,-COS2_1 , 1);
  567. BF(17, 22, COS2_1 , 1);
  568. BF(25, 30,-COS2_1 , 1);
  569. /* pass 1 */
  570. BF( 2, 29, COS0_2 , 1);
  571. BF(13, 18, COS0_13, 3);
  572. /* pass 2 */
  573. BF( 2, 13, COS1_2 , 1);
  574. BF(18, 29,-COS1_2 , 1);
  575. /* pass 1 */
  576. BF( 5, 26, COS0_5 , 1);
  577. BF(10, 21, COS0_10, 1);
  578. /* pass 2 */
  579. BF( 5, 10, COS1_5 , 2);
  580. BF(21, 26,-COS1_5 , 2);
  581. /* pass 3 */
  582. BF( 2, 5, COS2_2 , 1);
  583. BF(10, 13,-COS2_2 , 1);
  584. BF(18, 21, COS2_2 , 1);
  585. BF(26, 29,-COS2_2 , 1);
  586. /* pass 4 */
  587. BF( 1, 2, COS3_1 , 2);
  588. BF( 5, 6,-COS3_1 , 2);
  589. BF( 9, 10, COS3_1 , 2);
  590. BF(13, 14,-COS3_1 , 2);
  591. BF(17, 18, COS3_1 , 2);
  592. BF(21, 22,-COS3_1 , 2);
  593. BF(25, 26, COS3_1 , 2);
  594. BF(29, 30,-COS3_1 , 2);
  595. /* pass 5 */
  596. BF1( 0, 1, 2, 3);
  597. BF2( 4, 5, 6, 7);
  598. BF1( 8, 9, 10, 11);
  599. BF2(12, 13, 14, 15);
  600. BF1(16, 17, 18, 19);
  601. BF2(20, 21, 22, 23);
  602. BF1(24, 25, 26, 27);
  603. BF2(28, 29, 30, 31);
  604. /* pass 6 */
  605. ADD( 8, 12);
  606. ADD(12, 10);
  607. ADD(10, 14);
  608. ADD(14, 9);
  609. ADD( 9, 13);
  610. ADD(13, 11);
  611. ADD(11, 15);
  612. out[ 0] = tab[0];
  613. out[16] = tab[1];
  614. out[ 8] = tab[2];
  615. out[24] = tab[3];
  616. out[ 4] = tab[4];
  617. out[20] = tab[5];
  618. out[12] = tab[6];
  619. out[28] = tab[7];
  620. out[ 2] = tab[8];
  621. out[18] = tab[9];
  622. out[10] = tab[10];
  623. out[26] = tab[11];
  624. out[ 6] = tab[12];
  625. out[22] = tab[13];
  626. out[14] = tab[14];
  627. out[30] = tab[15];
  628. ADD(24, 28);
  629. ADD(28, 26);
  630. ADD(26, 30);
  631. ADD(30, 25);
  632. ADD(25, 29);
  633. ADD(29, 27);
  634. ADD(27, 31);
  635. out[ 1] = tab[16] + tab[24];
  636. out[17] = tab[17] + tab[25];
  637. out[ 9] = tab[18] + tab[26];
  638. out[25] = tab[19] + tab[27];
  639. out[ 5] = tab[20] + tab[28];
  640. out[21] = tab[21] + tab[29];
  641. out[13] = tab[22] + tab[30];
  642. out[29] = tab[23] + tab[31];
  643. out[ 3] = tab[24] + tab[20];
  644. out[19] = tab[25] + tab[21];
  645. out[11] = tab[26] + tab[22];
  646. out[27] = tab[27] + tab[23];
  647. out[ 7] = tab[28] + tab[18];
  648. out[23] = tab[29] + tab[19];
  649. out[15] = tab[30] + tab[17];
  650. out[31] = tab[31];
  651. }
  652. #if FRAC_BITS <= 15
  653. static inline int round_sample(int *sum)
  654. {
  655. int sum1;
  656. sum1 = (*sum) >> OUT_SHIFT;
  657. *sum &= (1<<OUT_SHIFT)-1;
  658. if (sum1 < OUT_MIN)
  659. sum1 = OUT_MIN;
  660. else if (sum1 > OUT_MAX)
  661. sum1 = OUT_MAX;
  662. return sum1;
  663. }
  664. /* signed 16x16 -> 32 multiply add accumulate */
  665. #define MACS(rt, ra, rb) MAC16(rt, ra, rb)
  666. /* signed 16x16 -> 32 multiply */
  667. #define MULS(ra, rb) MUL16(ra, rb)
  668. #else
  669. static inline int round_sample(int64_t *sum)
  670. {
  671. int sum1;
  672. sum1 = (int)((*sum) >> OUT_SHIFT);
  673. *sum &= (1<<OUT_SHIFT)-1;
  674. if (sum1 < OUT_MIN)
  675. sum1 = OUT_MIN;
  676. else if (sum1 > OUT_MAX)
  677. sum1 = OUT_MAX;
  678. return sum1;
  679. }
  680. # define MULS(ra, rb) MUL64(ra, rb)
  681. #endif
  682. #define SUM8(sum, op, w, p) \
  683. { \
  684. sum op MULS((w)[0 * 64], p[0 * 64]);\
  685. sum op MULS((w)[1 * 64], p[1 * 64]);\
  686. sum op MULS((w)[2 * 64], p[2 * 64]);\
  687. sum op MULS((w)[3 * 64], p[3 * 64]);\
  688. sum op MULS((w)[4 * 64], p[4 * 64]);\
  689. sum op MULS((w)[5 * 64], p[5 * 64]);\
  690. sum op MULS((w)[6 * 64], p[6 * 64]);\
  691. sum op MULS((w)[7 * 64], p[7 * 64]);\
  692. }
  693. #define SUM8P2(sum1, op1, sum2, op2, w1, w2, p) \
  694. { \
  695. int tmp;\
  696. tmp = p[0 * 64];\
  697. sum1 op1 MULS((w1)[0 * 64], tmp);\
  698. sum2 op2 MULS((w2)[0 * 64], tmp);\
  699. tmp = p[1 * 64];\
  700. sum1 op1 MULS((w1)[1 * 64], tmp);\
  701. sum2 op2 MULS((w2)[1 * 64], tmp);\
  702. tmp = p[2 * 64];\
  703. sum1 op1 MULS((w1)[2 * 64], tmp);\
  704. sum2 op2 MULS((w2)[2 * 64], tmp);\
  705. tmp = p[3 * 64];\
  706. sum1 op1 MULS((w1)[3 * 64], tmp);\
  707. sum2 op2 MULS((w2)[3 * 64], tmp);\
  708. tmp = p[4 * 64];\
  709. sum1 op1 MULS((w1)[4 * 64], tmp);\
  710. sum2 op2 MULS((w2)[4 * 64], tmp);\
  711. tmp = p[5 * 64];\
  712. sum1 op1 MULS((w1)[5 * 64], tmp);\
  713. sum2 op2 MULS((w2)[5 * 64], tmp);\
  714. tmp = p[6 * 64];\
  715. sum1 op1 MULS((w1)[6 * 64], tmp);\
  716. sum2 op2 MULS((w2)[6 * 64], tmp);\
  717. tmp = p[7 * 64];\
  718. sum1 op1 MULS((w1)[7 * 64], tmp);\
  719. sum2 op2 MULS((w2)[7 * 64], tmp);\
  720. }
  721. void ff_mpa_synth_init(MPA_INT *window)
  722. {
  723. int i;
  724. /* max = 18760, max sum over all 16 coefs : 44736 */
  725. for(i=0;i<257;i++) {
  726. int v;
  727. v = ff_mpa_enwindow[i];
  728. #if WFRAC_BITS < 16
  729. v = (v + (1 << (16 - WFRAC_BITS - 1))) >> (16 - WFRAC_BITS);
  730. #endif
  731. window[i] = v;
  732. if ((i & 63) != 0)
  733. v = -v;
  734. if (i != 0)
  735. window[512 - i] = v;
  736. }
  737. }
  738. /* 32 sub band synthesis filter. Input: 32 sub band samples, Output:
  739. 32 samples. */
  740. /* XXX: optimize by avoiding ring buffer usage */
  741. void ff_mpa_synth_filter(MPA_INT *synth_buf_ptr, int *synth_buf_offset,
  742. MPA_INT *window, int *dither_state,
  743. OUT_INT *samples, int incr,
  744. int32_t sb_samples[SBLIMIT])
  745. {
  746. int32_t tmp[32];
  747. register MPA_INT *synth_buf;
  748. register const MPA_INT *w, *w2, *p;
  749. int j, offset, v;
  750. OUT_INT *samples2;
  751. #if FRAC_BITS <= 15
  752. int sum, sum2;
  753. #else
  754. int64_t sum, sum2;
  755. #endif
  756. dct32(tmp, sb_samples);
  757. offset = *synth_buf_offset;
  758. synth_buf = synth_buf_ptr + offset;
  759. for(j=0;j<32;j++) {
  760. v = tmp[j];
  761. #if FRAC_BITS <= 15
  762. /* NOTE: can cause a loss in precision if very high amplitude
  763. sound */
  764. if (v > 32767)
  765. v = 32767;
  766. else if (v < -32768)
  767. v = -32768;
  768. #endif
  769. synth_buf[j] = v;
  770. }
  771. /* copy to avoid wrap */
  772. memcpy(synth_buf + 512, synth_buf, 32 * sizeof(MPA_INT));
  773. samples2 = samples + 31 * incr;
  774. w = window;
  775. w2 = window + 31;
  776. sum = *dither_state;
  777. p = synth_buf + 16;
  778. SUM8(sum, +=, w, p);
  779. p = synth_buf + 48;
  780. SUM8(sum, -=, w + 32, p);
  781. *samples = round_sample(&sum);
  782. samples += incr;
  783. w++;
  784. /* we calculate two samples at the same time to avoid one memory
  785. access per two sample */
  786. for(j=1;j<16;j++) {
  787. sum2 = 0;
  788. p = synth_buf + 16 + j;
  789. SUM8P2(sum, +=, sum2, -=, w, w2, p);
  790. p = synth_buf + 48 - j;
  791. SUM8P2(sum, -=, sum2, -=, w + 32, w2 + 32, p);
  792. *samples = round_sample(&sum);
  793. samples += incr;
  794. sum += sum2;
  795. *samples2 = round_sample(&sum);
  796. samples2 -= incr;
  797. w++;
  798. w2--;
  799. }
  800. p = synth_buf + 32;
  801. SUM8(sum, -=, w + 32, p);
  802. *samples = round_sample(&sum);
  803. *dither_state= sum;
  804. offset = (offset - 32) & 511;
  805. *synth_buf_offset = offset;
  806. }
  807. #define C3 FIXHR(0.86602540378443864676/2)
  808. /* 0.5 / cos(pi*(2*i+1)/36) */
  809. static const int icos36[9] = {
  810. FIXR(0.50190991877167369479),
  811. FIXR(0.51763809020504152469), //0
  812. FIXR(0.55168895948124587824),
  813. FIXR(0.61038729438072803416),
  814. FIXR(0.70710678118654752439), //1
  815. FIXR(0.87172339781054900991),
  816. FIXR(1.18310079157624925896),
  817. FIXR(1.93185165257813657349), //2
  818. FIXR(5.73685662283492756461),
  819. };
  820. /* 0.5 / cos(pi*(2*i+1)/36) */
  821. static const int icos36h[9] = {
  822. FIXHR(0.50190991877167369479/2),
  823. FIXHR(0.51763809020504152469/2), //0
  824. FIXHR(0.55168895948124587824/2),
  825. FIXHR(0.61038729438072803416/2),
  826. FIXHR(0.70710678118654752439/2), //1
  827. FIXHR(0.87172339781054900991/2),
  828. FIXHR(1.18310079157624925896/4),
  829. FIXHR(1.93185165257813657349/4), //2
  830. // FIXHR(5.73685662283492756461),
  831. };
  832. /* 12 points IMDCT. We compute it "by hand" by factorizing obvious
  833. cases. */
  834. static void imdct12(int *out, int *in)
  835. {
  836. int in0, in1, in2, in3, in4, in5, t1, t2;
  837. in0= in[0*3];
  838. in1= in[1*3] + in[0*3];
  839. in2= in[2*3] + in[1*3];
  840. in3= in[3*3] + in[2*3];
  841. in4= in[4*3] + in[3*3];
  842. in5= in[5*3] + in[4*3];
  843. in5 += in3;
  844. in3 += in1;
  845. in2= MULH(2*in2, C3);
  846. in3= MULH(4*in3, C3);
  847. t1 = in0 - in4;
  848. t2 = MULH(2*(in1 - in5), icos36h[4]);
  849. out[ 7]=
  850. out[10]= t1 + t2;
  851. out[ 1]=
  852. out[ 4]= t1 - t2;
  853. in0 += in4>>1;
  854. in4 = in0 + in2;
  855. in5 += 2*in1;
  856. in1 = MULH(in5 + in3, icos36h[1]);
  857. out[ 8]=
  858. out[ 9]= in4 + in1;
  859. out[ 2]=
  860. out[ 3]= in4 - in1;
  861. in0 -= in2;
  862. in5 = MULH(2*(in5 - in3), icos36h[7]);
  863. out[ 0]=
  864. out[ 5]= in0 - in5;
  865. out[ 6]=
  866. out[11]= in0 + in5;
  867. }
  868. /* cos(pi*i/18) */
  869. #define C1 FIXHR(0.98480775301220805936/2)
  870. #define C2 FIXHR(0.93969262078590838405/2)
  871. #define C3 FIXHR(0.86602540378443864676/2)
  872. #define C4 FIXHR(0.76604444311897803520/2)
  873. #define C5 FIXHR(0.64278760968653932632/2)
  874. #define C6 FIXHR(0.5/2)
  875. #define C7 FIXHR(0.34202014332566873304/2)
  876. #define C8 FIXHR(0.17364817766693034885/2)
  877. /* using Lee like decomposition followed by hand coded 9 points DCT */
  878. static void imdct36(int *out, int *buf, int *in, int *win)
  879. {
  880. int i, j, t0, t1, t2, t3, s0, s1, s2, s3;
  881. int tmp[18], *tmp1, *in1;
  882. for(i=17;i>=1;i--)
  883. in[i] += in[i-1];
  884. for(i=17;i>=3;i-=2)
  885. in[i] += in[i-2];
  886. for(j=0;j<2;j++) {
  887. tmp1 = tmp + j;
  888. in1 = in + j;
  889. #if 0
  890. //more accurate but slower
  891. int64_t t0, t1, t2, t3;
  892. t2 = in1[2*4] + in1[2*8] - in1[2*2];
  893. t3 = (in1[2*0] + (int64_t)(in1[2*6]>>1))<<32;
  894. t1 = in1[2*0] - in1[2*6];
  895. tmp1[ 6] = t1 - (t2>>1);
  896. tmp1[16] = t1 + t2;
  897. t0 = MUL64(2*(in1[2*2] + in1[2*4]), C2);
  898. t1 = MUL64( in1[2*4] - in1[2*8] , -2*C8);
  899. t2 = MUL64(2*(in1[2*2] + in1[2*8]), -C4);
  900. tmp1[10] = (t3 - t0 - t2) >> 32;
  901. tmp1[ 2] = (t3 + t0 + t1) >> 32;
  902. tmp1[14] = (t3 + t2 - t1) >> 32;
  903. tmp1[ 4] = MULH(2*(in1[2*5] + in1[2*7] - in1[2*1]), -C3);
  904. t2 = MUL64(2*(in1[2*1] + in1[2*5]), C1);
  905. t3 = MUL64( in1[2*5] - in1[2*7] , -2*C7);
  906. t0 = MUL64(2*in1[2*3], C3);
  907. t1 = MUL64(2*(in1[2*1] + in1[2*7]), -C5);
  908. tmp1[ 0] = (t2 + t3 + t0) >> 32;
  909. tmp1[12] = (t2 + t1 - t0) >> 32;
  910. tmp1[ 8] = (t3 - t1 - t0) >> 32;
  911. #else
  912. t2 = in1[2*4] + in1[2*8] - in1[2*2];
  913. t3 = in1[2*0] + (in1[2*6]>>1);
  914. t1 = in1[2*0] - in1[2*6];
  915. tmp1[ 6] = t1 - (t2>>1);
  916. tmp1[16] = t1 + t2;
  917. t0 = MULH(2*(in1[2*2] + in1[2*4]), C2);
  918. t1 = MULH( in1[2*4] - in1[2*8] , -2*C8);
  919. t2 = MULH(2*(in1[2*2] + in1[2*8]), -C4);
  920. tmp1[10] = t3 - t0 - t2;
  921. tmp1[ 2] = t3 + t0 + t1;
  922. tmp1[14] = t3 + t2 - t1;
  923. tmp1[ 4] = MULH(2*(in1[2*5] + in1[2*7] - in1[2*1]), -C3);
  924. t2 = MULH(2*(in1[2*1] + in1[2*5]), C1);
  925. t3 = MULH( in1[2*5] - in1[2*7] , -2*C7);
  926. t0 = MULH(2*in1[2*3], C3);
  927. t1 = MULH(2*(in1[2*1] + in1[2*7]), -C5);
  928. tmp1[ 0] = t2 + t3 + t0;
  929. tmp1[12] = t2 + t1 - t0;
  930. tmp1[ 8] = t3 - t1 - t0;
  931. #endif
  932. }
  933. i = 0;
  934. for(j=0;j<4;j++) {
  935. t0 = tmp[i];
  936. t1 = tmp[i + 2];
  937. s0 = t1 + t0;
  938. s2 = t1 - t0;
  939. t2 = tmp[i + 1];
  940. t3 = tmp[i + 3];
  941. s1 = MULH(2*(t3 + t2), icos36h[j]);
  942. s3 = MULL(t3 - t2, icos36[8 - j]);
  943. t0 = s0 + s1;
  944. t1 = s0 - s1;
  945. out[(9 + j)*SBLIMIT] = MULH(t1, win[9 + j]) + buf[9 + j];
  946. out[(8 - j)*SBLIMIT] = MULH(t1, win[8 - j]) + buf[8 - j];
  947. buf[9 + j] = MULH(t0, win[18 + 9 + j]);
  948. buf[8 - j] = MULH(t0, win[18 + 8 - j]);
  949. t0 = s2 + s3;
  950. t1 = s2 - s3;
  951. out[(9 + 8 - j)*SBLIMIT] = MULH(t1, win[9 + 8 - j]) + buf[9 + 8 - j];
  952. out[( j)*SBLIMIT] = MULH(t1, win[ j]) + buf[ j];
  953. buf[9 + 8 - j] = MULH(t0, win[18 + 9 + 8 - j]);
  954. buf[ + j] = MULH(t0, win[18 + j]);
  955. i += 4;
  956. }
  957. s0 = tmp[16];
  958. s1 = MULH(2*tmp[17], icos36h[4]);
  959. t0 = s0 + s1;
  960. t1 = s0 - s1;
  961. out[(9 + 4)*SBLIMIT] = MULH(t1, win[9 + 4]) + buf[9 + 4];
  962. out[(8 - 4)*SBLIMIT] = MULH(t1, win[8 - 4]) + buf[8 - 4];
  963. buf[9 + 4] = MULH(t0, win[18 + 9 + 4]);
  964. buf[8 - 4] = MULH(t0, win[18 + 8 - 4]);
  965. }
  966. /* header decoding. MUST check the header before because no
  967. consistency check is done there. Return 1 if free format found and
  968. that the frame size must be computed externally */
  969. static int decode_header(MPADecodeContext *s, uint32_t header)
  970. {
  971. int sample_rate, frame_size, mpeg25, padding;
  972. int sample_rate_index, bitrate_index;
  973. if (header & (1<<20)) {
  974. s->lsf = (header & (1<<19)) ? 0 : 1;
  975. mpeg25 = 0;
  976. } else {
  977. s->lsf = 1;
  978. mpeg25 = 1;
  979. }
  980. s->layer = 4 - ((header >> 17) & 3);
  981. /* extract frequency */
  982. sample_rate_index = (header >> 10) & 3;
  983. sample_rate = ff_mpa_freq_tab[sample_rate_index] >> (s->lsf + mpeg25);
  984. sample_rate_index += 3 * (s->lsf + mpeg25);
  985. s->sample_rate_index = sample_rate_index;
  986. s->error_protection = ((header >> 16) & 1) ^ 1;
  987. s->sample_rate = sample_rate;
  988. bitrate_index = (header >> 12) & 0xf;
  989. padding = (header >> 9) & 1;
  990. //extension = (header >> 8) & 1;
  991. s->mode = (header >> 6) & 3;
  992. s->mode_ext = (header >> 4) & 3;
  993. //copyright = (header >> 3) & 1;
  994. //original = (header >> 2) & 1;
  995. //emphasis = header & 3;
  996. if (s->mode == MPA_MONO)
  997. s->nb_channels = 1;
  998. else
  999. s->nb_channels = 2;
  1000. if (bitrate_index != 0) {
  1001. frame_size = ff_mpa_bitrate_tab[s->lsf][s->layer - 1][bitrate_index];
  1002. s->bit_rate = frame_size * 1000;
  1003. switch(s->layer) {
  1004. case 1:
  1005. frame_size = (frame_size * 12000) / sample_rate;
  1006. frame_size = (frame_size + padding) * 4;
  1007. break;
  1008. case 2:
  1009. frame_size = (frame_size * 144000) / sample_rate;
  1010. frame_size += padding;
  1011. break;
  1012. default:
  1013. case 3:
  1014. frame_size = (frame_size * 144000) / (sample_rate << s->lsf);
  1015. frame_size += padding;
  1016. break;
  1017. }
  1018. s->frame_size = frame_size;
  1019. } else {
  1020. /* if no frame size computed, signal it */
  1021. return 1;
  1022. }
  1023. #if defined(DEBUG)
  1024. dprintf(s->avctx, "layer%d, %d Hz, %d kbits/s, ",
  1025. s->layer, s->sample_rate, s->bit_rate);
  1026. if (s->nb_channels == 2) {
  1027. if (s->layer == 3) {
  1028. if (s->mode_ext & MODE_EXT_MS_STEREO)
  1029. dprintf(s->avctx, "ms-");
  1030. if (s->mode_ext & MODE_EXT_I_STEREO)
  1031. dprintf(s->avctx, "i-");
  1032. }
  1033. dprintf(s->avctx, "stereo");
  1034. } else {
  1035. dprintf(s->avctx, "mono");
  1036. }
  1037. dprintf(s->avctx, "\n");
  1038. #endif
  1039. return 0;
  1040. }
  1041. /* useful helper to get mpeg audio stream infos. Return -1 if error in
  1042. header, otherwise the coded frame size in bytes */
  1043. int mpa_decode_header(AVCodecContext *avctx, uint32_t head, int *sample_rate)
  1044. {
  1045. MPADecodeContext s1, *s = &s1;
  1046. s1.avctx = avctx;
  1047. if (ff_mpa_check_header(head) != 0)
  1048. return -1;
  1049. if (decode_header(s, head) != 0) {
  1050. return -1;
  1051. }
  1052. switch(s->layer) {
  1053. case 1:
  1054. avctx->frame_size = 384;
  1055. break;
  1056. case 2:
  1057. avctx->frame_size = 1152;
  1058. break;
  1059. default:
  1060. case 3:
  1061. if (s->lsf)
  1062. avctx->frame_size = 576;
  1063. else
  1064. avctx->frame_size = 1152;
  1065. break;
  1066. }
  1067. *sample_rate = s->sample_rate;
  1068. avctx->channels = s->nb_channels;
  1069. avctx->bit_rate = s->bit_rate;
  1070. avctx->sub_id = s->layer;
  1071. return s->frame_size;
  1072. }
  1073. /* return the number of decoded frames */
  1074. static int mp_decode_layer1(MPADecodeContext *s)
  1075. {
  1076. int bound, i, v, n, ch, j, mant;
  1077. uint8_t allocation[MPA_MAX_CHANNELS][SBLIMIT];
  1078. uint8_t scale_factors[MPA_MAX_CHANNELS][SBLIMIT];
  1079. if (s->mode == MPA_JSTEREO)
  1080. bound = (s->mode_ext + 1) * 4;
  1081. else
  1082. bound = SBLIMIT;
  1083. /* allocation bits */
  1084. for(i=0;i<bound;i++) {
  1085. for(ch=0;ch<s->nb_channels;ch++) {
  1086. allocation[ch][i] = get_bits(&s->gb, 4);
  1087. }
  1088. }
  1089. for(i=bound;i<SBLIMIT;i++) {
  1090. allocation[0][i] = get_bits(&s->gb, 4);
  1091. }
  1092. /* scale factors */
  1093. for(i=0;i<bound;i++) {
  1094. for(ch=0;ch<s->nb_channels;ch++) {
  1095. if (allocation[ch][i])
  1096. scale_factors[ch][i] = get_bits(&s->gb, 6);
  1097. }
  1098. }
  1099. for(i=bound;i<SBLIMIT;i++) {
  1100. if (allocation[0][i]) {
  1101. scale_factors[0][i] = get_bits(&s->gb, 6);
  1102. scale_factors[1][i] = get_bits(&s->gb, 6);
  1103. }
  1104. }
  1105. /* compute samples */
  1106. for(j=0;j<12;j++) {
  1107. for(i=0;i<bound;i++) {
  1108. for(ch=0;ch<s->nb_channels;ch++) {
  1109. n = allocation[ch][i];
  1110. if (n) {
  1111. mant = get_bits(&s->gb, n + 1);
  1112. v = l1_unscale(n, mant, scale_factors[ch][i]);
  1113. } else {
  1114. v = 0;
  1115. }
  1116. s->sb_samples[ch][j][i] = v;
  1117. }
  1118. }
  1119. for(i=bound;i<SBLIMIT;i++) {
  1120. n = allocation[0][i];
  1121. if (n) {
  1122. mant = get_bits(&s->gb, n + 1);
  1123. v = l1_unscale(n, mant, scale_factors[0][i]);
  1124. s->sb_samples[0][j][i] = v;
  1125. v = l1_unscale(n, mant, scale_factors[1][i]);
  1126. s->sb_samples[1][j][i] = v;
  1127. } else {
  1128. s->sb_samples[0][j][i] = 0;
  1129. s->sb_samples[1][j][i] = 0;
  1130. }
  1131. }
  1132. }
  1133. return 12;
  1134. }
  1135. /* bitrate is in kb/s */
  1136. int l2_select_table(int bitrate, int nb_channels, int freq, int lsf)
  1137. {
  1138. int ch_bitrate, table;
  1139. ch_bitrate = bitrate / nb_channels;
  1140. if (!lsf) {
  1141. if ((freq == 48000 && ch_bitrate >= 56) ||
  1142. (ch_bitrate >= 56 && ch_bitrate <= 80))
  1143. table = 0;
  1144. else if (freq != 48000 && ch_bitrate >= 96)
  1145. table = 1;
  1146. else if (freq != 32000 && ch_bitrate <= 48)
  1147. table = 2;
  1148. else
  1149. table = 3;
  1150. } else {
  1151. table = 4;
  1152. }
  1153. return table;
  1154. }
  1155. static int mp_decode_layer2(MPADecodeContext *s)
  1156. {
  1157. int sblimit; /* number of used subbands */
  1158. const unsigned char *alloc_table;
  1159. int table, bit_alloc_bits, i, j, ch, bound, v;
  1160. unsigned char bit_alloc[MPA_MAX_CHANNELS][SBLIMIT];
  1161. unsigned char scale_code[MPA_MAX_CHANNELS][SBLIMIT];
  1162. unsigned char scale_factors[MPA_MAX_CHANNELS][SBLIMIT][3], *sf;
  1163. int scale, qindex, bits, steps, k, l, m, b;
  1164. /* select decoding table */
  1165. table = l2_select_table(s->bit_rate / 1000, s->nb_channels,
  1166. s->sample_rate, s->lsf);
  1167. sblimit = ff_mpa_sblimit_table[table];
  1168. alloc_table = ff_mpa_alloc_tables[table];
  1169. if (s->mode == MPA_JSTEREO)
  1170. bound = (s->mode_ext + 1) * 4;
  1171. else
  1172. bound = sblimit;
  1173. dprintf(s->avctx, "bound=%d sblimit=%d\n", bound, sblimit);
  1174. /* sanity check */
  1175. if( bound > sblimit ) bound = sblimit;
  1176. /* parse bit allocation */
  1177. j = 0;
  1178. for(i=0;i<bound;i++) {
  1179. bit_alloc_bits = alloc_table[j];
  1180. for(ch=0;ch<s->nb_channels;ch++) {
  1181. bit_alloc[ch][i] = get_bits(&s->gb, bit_alloc_bits);
  1182. }
  1183. j += 1 << bit_alloc_bits;
  1184. }
  1185. for(i=bound;i<sblimit;i++) {
  1186. bit_alloc_bits = alloc_table[j];
  1187. v = get_bits(&s->gb, bit_alloc_bits);
  1188. bit_alloc[0][i] = v;
  1189. bit_alloc[1][i] = v;
  1190. j += 1 << bit_alloc_bits;
  1191. }
  1192. #ifdef DEBUG
  1193. {
  1194. for(ch=0;ch<s->nb_channels;ch++) {
  1195. for(i=0;i<sblimit;i++)
  1196. dprintf(s->avctx, " %d", bit_alloc[ch][i]);
  1197. dprintf(s->avctx, "\n");
  1198. }
  1199. }
  1200. #endif
  1201. /* scale codes */
  1202. for(i=0;i<sblimit;i++) {
  1203. for(ch=0;ch<s->nb_channels;ch++) {
  1204. if (bit_alloc[ch][i])
  1205. scale_code[ch][i] = get_bits(&s->gb, 2);
  1206. }
  1207. }
  1208. /* scale factors */
  1209. for(i=0;i<sblimit;i++) {
  1210. for(ch=0;ch<s->nb_channels;ch++) {
  1211. if (bit_alloc[ch][i]) {
  1212. sf = scale_factors[ch][i];
  1213. switch(scale_code[ch][i]) {
  1214. default:
  1215. case 0:
  1216. sf[0] = get_bits(&s->gb, 6);
  1217. sf[1] = get_bits(&s->gb, 6);
  1218. sf[2] = get_bits(&s->gb, 6);
  1219. break;
  1220. case 2:
  1221. sf[0] = get_bits(&s->gb, 6);
  1222. sf[1] = sf[0];
  1223. sf[2] = sf[0];
  1224. break;
  1225. case 1:
  1226. sf[0] = get_bits(&s->gb, 6);
  1227. sf[2] = get_bits(&s->gb, 6);
  1228. sf[1] = sf[0];
  1229. break;
  1230. case 3:
  1231. sf[0] = get_bits(&s->gb, 6);
  1232. sf[2] = get_bits(&s->gb, 6);
  1233. sf[1] = sf[2];
  1234. break;
  1235. }
  1236. }
  1237. }
  1238. }
  1239. #ifdef DEBUG
  1240. for(ch=0;ch<s->nb_channels;ch++) {
  1241. for(i=0;i<sblimit;i++) {
  1242. if (bit_alloc[ch][i]) {
  1243. sf = scale_factors[ch][i];
  1244. dprintf(s->avctx, " %d %d %d", sf[0], sf[1], sf[2]);
  1245. } else {
  1246. dprintf(s->avctx, " -");
  1247. }
  1248. }
  1249. dprintf(s->avctx, "\n");
  1250. }
  1251. #endif
  1252. /* samples */
  1253. for(k=0;k<3;k++) {
  1254. for(l=0;l<12;l+=3) {
  1255. j = 0;
  1256. for(i=0;i<bound;i++) {
  1257. bit_alloc_bits = alloc_table[j];
  1258. for(ch=0;ch<s->nb_channels;ch++) {
  1259. b = bit_alloc[ch][i];
  1260. if (b) {
  1261. scale = scale_factors[ch][i][k];
  1262. qindex = alloc_table[j+b];
  1263. bits = ff_mpa_quant_bits[qindex];
  1264. if (bits < 0) {
  1265. /* 3 values at the same time */
  1266. v = get_bits(&s->gb, -bits);
  1267. steps = ff_mpa_quant_steps[qindex];
  1268. s->sb_samples[ch][k * 12 + l + 0][i] =
  1269. l2_unscale_group(steps, v % steps, scale);
  1270. v = v / steps;
  1271. s->sb_samples[ch][k * 12 + l + 1][i] =
  1272. l2_unscale_group(steps, v % steps, scale);
  1273. v = v / steps;
  1274. s->sb_samples[ch][k * 12 + l + 2][i] =
  1275. l2_unscale_group(steps, v, scale);
  1276. } else {
  1277. for(m=0;m<3;m++) {
  1278. v = get_bits(&s->gb, bits);
  1279. v = l1_unscale(bits - 1, v, scale);
  1280. s->sb_samples[ch][k * 12 + l + m][i] = v;
  1281. }
  1282. }
  1283. } else {
  1284. s->sb_samples[ch][k * 12 + l + 0][i] = 0;
  1285. s->sb_samples[ch][k * 12 + l + 1][i] = 0;
  1286. s->sb_samples[ch][k * 12 + l + 2][i] = 0;
  1287. }
  1288. }
  1289. /* next subband in alloc table */
  1290. j += 1 << bit_alloc_bits;
  1291. }
  1292. /* XXX: find a way to avoid this duplication of code */
  1293. for(i=bound;i<sblimit;i++) {
  1294. bit_alloc_bits = alloc_table[j];
  1295. b = bit_alloc[0][i];
  1296. if (b) {
  1297. int mant, scale0, scale1;
  1298. scale0 = scale_factors[0][i][k];
  1299. scale1 = scale_factors[1][i][k];
  1300. qindex = alloc_table[j+b];
  1301. bits = ff_mpa_quant_bits[qindex];
  1302. if (bits < 0) {
  1303. /* 3 values at the same time */
  1304. v = get_bits(&s->gb, -bits);
  1305. steps = ff_mpa_quant_steps[qindex];
  1306. mant = v % steps;
  1307. v = v / steps;
  1308. s->sb_samples[0][k * 12 + l + 0][i] =
  1309. l2_unscale_group(steps, mant, scale0);
  1310. s->sb_samples[1][k * 12 + l + 0][i] =
  1311. l2_unscale_group(steps, mant, scale1);
  1312. mant = v % steps;
  1313. v = v / steps;
  1314. s->sb_samples[0][k * 12 + l + 1][i] =
  1315. l2_unscale_group(steps, mant, scale0);
  1316. s->sb_samples[1][k * 12 + l + 1][i] =
  1317. l2_unscale_group(steps, mant, scale1);
  1318. s->sb_samples[0][k * 12 + l + 2][i] =
  1319. l2_unscale_group(steps, v, scale0);
  1320. s->sb_samples[1][k * 12 + l + 2][i] =
  1321. l2_unscale_group(steps, v, scale1);
  1322. } else {
  1323. for(m=0;m<3;m++) {
  1324. mant = get_bits(&s->gb, bits);
  1325. s->sb_samples[0][k * 12 + l + m][i] =
  1326. l1_unscale(bits - 1, mant, scale0);
  1327. s->sb_samples[1][k * 12 + l + m][i] =
  1328. l1_unscale(bits - 1, mant, scale1);
  1329. }
  1330. }
  1331. } else {
  1332. s->sb_samples[0][k * 12 + l + 0][i] = 0;
  1333. s->sb_samples[0][k * 12 + l + 1][i] = 0;
  1334. s->sb_samples[0][k * 12 + l + 2][i] = 0;
  1335. s->sb_samples[1][k * 12 + l + 0][i] = 0;
  1336. s->sb_samples[1][k * 12 + l + 1][i] = 0;
  1337. s->sb_samples[1][k * 12 + l + 2][i] = 0;
  1338. }
  1339. /* next subband in alloc table */
  1340. j += 1 << bit_alloc_bits;
  1341. }
  1342. /* fill remaining samples to zero */
  1343. for(i=sblimit;i<SBLIMIT;i++) {
  1344. for(ch=0;ch<s->nb_channels;ch++) {
  1345. s->sb_samples[ch][k * 12 + l + 0][i] = 0;
  1346. s->sb_samples[ch][k * 12 + l + 1][i] = 0;
  1347. s->sb_samples[ch][k * 12 + l + 2][i] = 0;
  1348. }
  1349. }
  1350. }
  1351. }
  1352. return 3 * 12;
  1353. }
  1354. static inline void lsf_sf_expand(int *slen,
  1355. int sf, int n1, int n2, int n3)
  1356. {
  1357. if (n3) {
  1358. slen[3] = sf % n3;
  1359. sf /= n3;
  1360. } else {
  1361. slen[3] = 0;
  1362. }
  1363. if (n2) {
  1364. slen[2] = sf % n2;
  1365. sf /= n2;
  1366. } else {
  1367. slen[2] = 0;
  1368. }
  1369. slen[1] = sf % n1;
  1370. sf /= n1;
  1371. slen[0] = sf;
  1372. }
  1373. static void exponents_from_scale_factors(MPADecodeContext *s,
  1374. GranuleDef *g,
  1375. int16_t *exponents)
  1376. {
  1377. const uint8_t *bstab, *pretab;
  1378. int len, i, j, k, l, v0, shift, gain, gains[3];
  1379. int16_t *exp_ptr;
  1380. exp_ptr = exponents;
  1381. gain = g->global_gain - 210;
  1382. shift = g->scalefac_scale + 1;
  1383. bstab = band_size_long[s->sample_rate_index];
  1384. pretab = mpa_pretab[g->preflag];
  1385. for(i=0;i<g->long_end;i++) {
  1386. v0 = gain - ((g->scale_factors[i] + pretab[i]) << shift) + 400;
  1387. len = bstab[i];
  1388. for(j=len;j>0;j--)
  1389. *exp_ptr++ = v0;
  1390. }
  1391. if (g->short_start < 13) {
  1392. bstab = band_size_short[s->sample_rate_index];
  1393. gains[0] = gain - (g->subblock_gain[0] << 3);
  1394. gains[1] = gain - (g->subblock_gain[1] << 3);
  1395. gains[2] = gain - (g->subblock_gain[2] << 3);
  1396. k = g->long_end;
  1397. for(i=g->short_start;i<13;i++) {
  1398. len = bstab[i];
  1399. for(l=0;l<3;l++) {
  1400. v0 = gains[l] - (g->scale_factors[k++] << shift) + 400;
  1401. for(j=len;j>0;j--)
  1402. *exp_ptr++ = v0;
  1403. }
  1404. }
  1405. }
  1406. }
  1407. /* handle n = 0 too */
  1408. static inline int get_bitsz(GetBitContext *s, int n)
  1409. {
  1410. if (n == 0)
  1411. return 0;
  1412. else
  1413. return get_bits(s, n);
  1414. }
  1415. static void switch_buffer(MPADecodeContext *s, int *pos, int *end_pos, int *end_pos2){
  1416. if(s->in_gb.buffer && *pos >= s->gb.size_in_bits){
  1417. s->gb= s->in_gb;
  1418. s->in_gb.buffer=NULL;
  1419. assert((get_bits_count(&s->gb) & 7) == 0);
  1420. skip_bits_long(&s->gb, *pos - *end_pos);
  1421. *end_pos2=
  1422. *end_pos= *end_pos2 + get_bits_count(&s->gb) - *pos;
  1423. *pos= get_bits_count(&s->gb);
  1424. }
  1425. }
  1426. static int huffman_decode(MPADecodeContext *s, GranuleDef *g,
  1427. int16_t *exponents, int end_pos2)
  1428. {
  1429. int s_index;
  1430. int i;
  1431. int last_pos, bits_left;
  1432. VLC *vlc;
  1433. int end_pos= FFMIN(end_pos2, s->gb.size_in_bits);
  1434. /* low frequencies (called big values) */
  1435. s_index = 0;
  1436. for(i=0;i<3;i++) {
  1437. int j, k, l, linbits;
  1438. j = g->region_size[i];
  1439. if (j == 0)
  1440. continue;
  1441. /* select vlc table */
  1442. k = g->table_select[i];
  1443. l = mpa_huff_data[k][0];
  1444. linbits = mpa_huff_data[k][1];
  1445. vlc = &huff_vlc[l];
  1446. if(!l){
  1447. memset(&g->sb_hybrid[s_index], 0, sizeof(*g->sb_hybrid)*2*j);
  1448. s_index += 2*j;
  1449. continue;
  1450. }
  1451. /* read huffcode and compute each couple */
  1452. for(;j>0;j--) {
  1453. int exponent, x, y, v;
  1454. int pos= get_bits_count(&s->gb);
  1455. if (pos >= end_pos){
  1456. // av_log(NULL, AV_LOG_ERROR, "pos: %d %d %d %d\n", pos, end_pos, end_pos2, s_index);
  1457. switch_buffer(s, &pos, &end_pos, &end_pos2);
  1458. // av_log(NULL, AV_LOG_ERROR, "new pos: %d %d\n", pos, end_pos);
  1459. if(pos >= end_pos)
  1460. break;
  1461. }
  1462. y = get_vlc2(&s->gb, vlc->table, 7, 3);
  1463. if(!y){
  1464. g->sb_hybrid[s_index ] =
  1465. g->sb_hybrid[s_index+1] = 0;
  1466. s_index += 2;
  1467. continue;
  1468. }
  1469. exponent= exponents[s_index];
  1470. dprintf(s->avctx, "region=%d n=%d x=%d y=%d exp=%d\n",
  1471. i, g->region_size[i] - j, x, y, exponent);
  1472. if(y&16){
  1473. x = y >> 5;
  1474. y = y & 0x0f;
  1475. if (x < 15){
  1476. v = expval_table[ exponent ][ x ];
  1477. // v = expval_table[ (exponent&3) ][ x ] >> FFMIN(0 - (exponent>>2), 31);
  1478. }else{
  1479. x += get_bitsz(&s->gb, linbits);
  1480. v = l3_unscale(x, exponent);
  1481. }
  1482. if (get_bits1(&s->gb))
  1483. v = -v;
  1484. g->sb_hybrid[s_index] = v;
  1485. if (y < 15){
  1486. v = expval_table[ exponent ][ y ];
  1487. }else{
  1488. y += get_bitsz(&s->gb, linbits);
  1489. v = l3_unscale(y, exponent);
  1490. }
  1491. if (get_bits1(&s->gb))
  1492. v = -v;
  1493. g->sb_hybrid[s_index+1] = v;
  1494. }else{
  1495. x = y >> 5;
  1496. y = y & 0x0f;
  1497. x += y;
  1498. if (x < 15){
  1499. v = expval_table[ exponent ][ x ];
  1500. }else{
  1501. x += get_bitsz(&s->gb, linbits);
  1502. v = l3_unscale(x, exponent);
  1503. }
  1504. if (get_bits1(&s->gb))
  1505. v = -v;
  1506. g->sb_hybrid[s_index+!!y] = v;
  1507. g->sb_hybrid[s_index+ !y] = 0;
  1508. }
  1509. s_index+=2;
  1510. }
  1511. }
  1512. /* high frequencies */
  1513. vlc = &huff_quad_vlc[g->count1table_select];
  1514. last_pos=0;
  1515. while (s_index <= 572) {
  1516. int pos, code;
  1517. pos = get_bits_count(&s->gb);
  1518. if (pos >= end_pos) {
  1519. if (pos > end_pos2 && last_pos){
  1520. /* some encoders generate an incorrect size for this
  1521. part. We must go back into the data */
  1522. s_index -= 4;
  1523. skip_bits_long(&s->gb, last_pos - pos);
  1524. av_log(NULL, AV_LOG_INFO, "overread, skip %d enddists: %d %d\n", last_pos - pos, end_pos-pos, end_pos2-pos);
  1525. if(s->error_resilience >= FF_ER_COMPLIANT)
  1526. s_index=0;
  1527. break;
  1528. }
  1529. // av_log(NULL, AV_LOG_ERROR, "pos2: %d %d %d %d\n", pos, end_pos, end_pos2, s_index);
  1530. switch_buffer(s, &pos, &end_pos, &end_pos2);
  1531. // av_log(NULL, AV_LOG_ERROR, "new pos2: %d %d %d\n", pos, end_pos, s_index);
  1532. if(pos >= end_pos)
  1533. break;
  1534. }
  1535. last_pos= pos;
  1536. code = get_vlc2(&s->gb, vlc->table, vlc->bits, 1);
  1537. dprintf(s->avctx, "t=%d code=%d\n", g->count1table_select, code);
  1538. g->sb_hybrid[s_index+0]=
  1539. g->sb_hybrid[s_index+1]=
  1540. g->sb_hybrid[s_index+2]=
  1541. g->sb_hybrid[s_index+3]= 0;
  1542. while(code){
  1543. static const int idxtab[16]={3,3,2,2,1,1,1,1,0,0,0,0,0,0,0,0};
  1544. int v;
  1545. int pos= s_index+idxtab[code];
  1546. code ^= 8>>idxtab[code];
  1547. v = exp_table[ exponents[pos] ];
  1548. // v = exp_table[ (exponents[pos]&3) ] >> FFMIN(0 - (exponents[pos]>>2), 31);
  1549. if(get_bits1(&s->gb))
  1550. v = -v;
  1551. g->sb_hybrid[pos] = v;
  1552. }
  1553. s_index+=4;
  1554. }
  1555. /* skip extension bits */
  1556. bits_left = end_pos2 - get_bits_count(&s->gb);
  1557. //av_log(NULL, AV_LOG_ERROR, "left:%d buf:%p\n", bits_left, s->in_gb.buffer);
  1558. if (bits_left < 0/* || bits_left > 500*/) {
  1559. av_log(NULL, AV_LOG_ERROR, "bits_left=%d\n", bits_left);
  1560. s_index=0;
  1561. }else if(bits_left > 0 && s->error_resilience >= FF_ER_AGGRESSIVE){
  1562. av_log(NULL, AV_LOG_ERROR, "bits_left=%d\n", bits_left);
  1563. s_index=0;
  1564. }
  1565. memset(&g->sb_hybrid[s_index], 0, sizeof(*g->sb_hybrid)*(576 - s_index));
  1566. skip_bits_long(&s->gb, bits_left);
  1567. i= get_bits_count(&s->gb);
  1568. switch_buffer(s, &i, &end_pos, &end_pos2);
  1569. return 0;
  1570. }
  1571. /* Reorder short blocks from bitstream order to interleaved order. It
  1572. would be faster to do it in parsing, but the code would be far more
  1573. complicated */
  1574. static void reorder_block(MPADecodeContext *s, GranuleDef *g)
  1575. {
  1576. int i, j, len;
  1577. int32_t *ptr, *dst, *ptr1;
  1578. int32_t tmp[576];
  1579. if (g->block_type != 2)
  1580. return;
  1581. if (g->switch_point) {
  1582. if (s->sample_rate_index != 8) {
  1583. ptr = g->sb_hybrid + 36;
  1584. } else {
  1585. ptr = g->sb_hybrid + 48;
  1586. }
  1587. } else {
  1588. ptr = g->sb_hybrid;
  1589. }
  1590. for(i=g->short_start;i<13;i++) {
  1591. len = band_size_short[s->sample_rate_index][i];
  1592. ptr1 = ptr;
  1593. dst = tmp;
  1594. for(j=len;j>0;j--) {
  1595. *dst++ = ptr[0*len];
  1596. *dst++ = ptr[1*len];
  1597. *dst++ = ptr[2*len];
  1598. ptr++;
  1599. }
  1600. ptr+=2*len;
  1601. memcpy(ptr1, tmp, len * 3 * sizeof(*ptr1));
  1602. }
  1603. }
  1604. #define ISQRT2 FIXR(0.70710678118654752440)
  1605. static void compute_stereo(MPADecodeContext *s,
  1606. GranuleDef *g0, GranuleDef *g1)
  1607. {
  1608. int i, j, k, l;
  1609. int32_t v1, v2;
  1610. int sf_max, tmp0, tmp1, sf, len, non_zero_found;
  1611. int32_t (*is_tab)[16];
  1612. int32_t *tab0, *tab1;
  1613. int non_zero_found_short[3];
  1614. /* intensity stereo */
  1615. if (s->mode_ext & MODE_EXT_I_STEREO) {
  1616. if (!s->lsf) {
  1617. is_tab = is_table;
  1618. sf_max = 7;
  1619. } else {
  1620. is_tab = is_table_lsf[g1->scalefac_compress & 1];
  1621. sf_max = 16;
  1622. }
  1623. tab0 = g0->sb_hybrid + 576;
  1624. tab1 = g1->sb_hybrid + 576;
  1625. non_zero_found_short[0] = 0;
  1626. non_zero_found_short[1] = 0;
  1627. non_zero_found_short[2] = 0;
  1628. k = (13 - g1->short_start) * 3 + g1->long_end - 3;
  1629. for(i = 12;i >= g1->short_start;i--) {
  1630. /* for last band, use previous scale factor */
  1631. if (i != 11)
  1632. k -= 3;
  1633. len = band_size_short[s->sample_rate_index][i];
  1634. for(l=2;l>=0;l--) {
  1635. tab0 -= len;
  1636. tab1 -= len;
  1637. if (!non_zero_found_short[l]) {
  1638. /* test if non zero band. if so, stop doing i-stereo */
  1639. for(j=0;j<len;j++) {
  1640. if (tab1[j] != 0) {
  1641. non_zero_found_short[l] = 1;
  1642. goto found1;
  1643. }
  1644. }
  1645. sf = g1->scale_factors[k + l];
  1646. if (sf >= sf_max)
  1647. goto found1;
  1648. v1 = is_tab[0][sf];
  1649. v2 = is_tab[1][sf];
  1650. for(j=0;j<len;j++) {
  1651. tmp0 = tab0[j];
  1652. tab0[j] = MULL(tmp0, v1);
  1653. tab1[j] = MULL(tmp0, v2);
  1654. }
  1655. } else {
  1656. found1:
  1657. if (s->mode_ext & MODE_EXT_MS_STEREO) {
  1658. /* lower part of the spectrum : do ms stereo
  1659. if enabled */
  1660. for(j=0;j<len;j++) {
  1661. tmp0 = tab0[j];
  1662. tmp1 = tab1[j];
  1663. tab0[j] = MULL(tmp0 + tmp1, ISQRT2);
  1664. tab1[j] = MULL(tmp0 - tmp1, ISQRT2);
  1665. }
  1666. }
  1667. }
  1668. }
  1669. }
  1670. non_zero_found = non_zero_found_short[0] |
  1671. non_zero_found_short[1] |
  1672. non_zero_found_short[2];
  1673. for(i = g1->long_end - 1;i >= 0;i--) {
  1674. len = band_size_long[s->sample_rate_index][i];
  1675. tab0 -= len;
  1676. tab1 -= len;
  1677. /* test if non zero band. if so, stop doing i-stereo */
  1678. if (!non_zero_found) {
  1679. for(j=0;j<len;j++) {
  1680. if (tab1[j] != 0) {
  1681. non_zero_found = 1;
  1682. goto found2;
  1683. }
  1684. }
  1685. /* for last band, use previous scale factor */
  1686. k = (i == 21) ? 20 : i;
  1687. sf = g1->scale_factors[k];
  1688. if (sf >= sf_max)
  1689. goto found2;
  1690. v1 = is_tab[0][sf];
  1691. v2 = is_tab[1][sf];
  1692. for(j=0;j<len;j++) {
  1693. tmp0 = tab0[j];
  1694. tab0[j] = MULL(tmp0, v1);
  1695. tab1[j] = MULL(tmp0, v2);
  1696. }
  1697. } else {
  1698. found2:
  1699. if (s->mode_ext & MODE_EXT_MS_STEREO) {
  1700. /* lower part of the spectrum : do ms stereo
  1701. if enabled */
  1702. for(j=0;j<len;j++) {
  1703. tmp0 = tab0[j];
  1704. tmp1 = tab1[j];
  1705. tab0[j] = MULL(tmp0 + tmp1, ISQRT2);
  1706. tab1[j] = MULL(tmp0 - tmp1, ISQRT2);
  1707. }
  1708. }
  1709. }
  1710. }
  1711. } else if (s->mode_ext & MODE_EXT_MS_STEREO) {
  1712. /* ms stereo ONLY */
  1713. /* NOTE: the 1/sqrt(2) normalization factor is included in the
  1714. global gain */
  1715. tab0 = g0->sb_hybrid;
  1716. tab1 = g1->sb_hybrid;
  1717. for(i=0;i<576;i++) {
  1718. tmp0 = tab0[i];
  1719. tmp1 = tab1[i];
  1720. tab0[i] = tmp0 + tmp1;
  1721. tab1[i] = tmp0 - tmp1;
  1722. }
  1723. }
  1724. }
  1725. static void compute_antialias_integer(MPADecodeContext *s,
  1726. GranuleDef *g)
  1727. {
  1728. int32_t *ptr, *csa;
  1729. int n, i;
  1730. /* we antialias only "long" bands */
  1731. if (g->block_type == 2) {
  1732. if (!g->switch_point)
  1733. return;
  1734. /* XXX: check this for 8000Hz case */
  1735. n = 1;
  1736. } else {
  1737. n = SBLIMIT - 1;
  1738. }
  1739. ptr = g->sb_hybrid + 18;
  1740. for(i = n;i > 0;i--) {
  1741. int tmp0, tmp1, tmp2;
  1742. csa = &csa_table[0][0];
  1743. #define INT_AA(j) \
  1744. tmp0 = ptr[-1-j];\
  1745. tmp1 = ptr[ j];\
  1746. tmp2= MULH(tmp0 + tmp1, csa[0+4*j]);\
  1747. ptr[-1-j] = 4*(tmp2 - MULH(tmp1, csa[2+4*j]));\
  1748. ptr[ j] = 4*(tmp2 + MULH(tmp0, csa[3+4*j]));
  1749. INT_AA(0)
  1750. INT_AA(1)
  1751. INT_AA(2)
  1752. INT_AA(3)
  1753. INT_AA(4)
  1754. INT_AA(5)
  1755. INT_AA(6)
  1756. INT_AA(7)
  1757. ptr += 18;
  1758. }
  1759. }
  1760. static void compute_antialias_float(MPADecodeContext *s,
  1761. GranuleDef *g)
  1762. {
  1763. int32_t *ptr;
  1764. int n, i;
  1765. /* we antialias only "long" bands */
  1766. if (g->block_type == 2) {
  1767. if (!g->switch_point)
  1768. return;
  1769. /* XXX: check this for 8000Hz case */
  1770. n = 1;
  1771. } else {
  1772. n = SBLIMIT - 1;
  1773. }
  1774. ptr = g->sb_hybrid + 18;
  1775. for(i = n;i > 0;i--) {
  1776. float tmp0, tmp1;
  1777. float *csa = &csa_table_float[0][0];
  1778. #define FLOAT_AA(j)\
  1779. tmp0= ptr[-1-j];\
  1780. tmp1= ptr[ j];\
  1781. ptr[-1-j] = lrintf(tmp0 * csa[0+4*j] - tmp1 * csa[1+4*j]);\
  1782. ptr[ j] = lrintf(tmp0 * csa[1+4*j] + tmp1 * csa[0+4*j]);
  1783. FLOAT_AA(0)
  1784. FLOAT_AA(1)
  1785. FLOAT_AA(2)
  1786. FLOAT_AA(3)
  1787. FLOAT_AA(4)
  1788. FLOAT_AA(5)
  1789. FLOAT_AA(6)
  1790. FLOAT_AA(7)
  1791. ptr += 18;
  1792. }
  1793. }
  1794. static void compute_imdct(MPADecodeContext *s,
  1795. GranuleDef *g,
  1796. int32_t *sb_samples,
  1797. int32_t *mdct_buf)
  1798. {
  1799. int32_t *ptr, *win, *win1, *buf, *out_ptr, *ptr1;
  1800. int32_t out2[12];
  1801. int i, j, mdct_long_end, v, sblimit;
  1802. /* find last non zero block */
  1803. ptr = g->sb_hybrid + 576;
  1804. ptr1 = g->sb_hybrid + 2 * 18;
  1805. while (ptr >= ptr1) {
  1806. ptr -= 6;
  1807. v = ptr[0] | ptr[1] | ptr[2] | ptr[3] | ptr[4] | ptr[5];
  1808. if (v != 0)
  1809. break;
  1810. }
  1811. sblimit = ((ptr - g->sb_hybrid) / 18) + 1;
  1812. if (g->block_type == 2) {
  1813. /* XXX: check for 8000 Hz */
  1814. if (g->switch_point)
  1815. mdct_long_end = 2;
  1816. else
  1817. mdct_long_end = 0;
  1818. } else {
  1819. mdct_long_end = sblimit;
  1820. }
  1821. buf = mdct_buf;
  1822. ptr = g->sb_hybrid;
  1823. for(j=0;j<mdct_long_end;j++) {
  1824. /* apply window & overlap with previous buffer */
  1825. out_ptr = sb_samples + j;
  1826. /* select window */
  1827. if (g->switch_point && j < 2)
  1828. win1 = mdct_win[0];
  1829. else
  1830. win1 = mdct_win[g->block_type];
  1831. /* select frequency inversion */
  1832. win = win1 + ((4 * 36) & -(j & 1));
  1833. imdct36(out_ptr, buf, ptr, win);
  1834. out_ptr += 18*SBLIMIT;
  1835. ptr += 18;
  1836. buf += 18;
  1837. }
  1838. for(j=mdct_long_end;j<sblimit;j++) {
  1839. /* select frequency inversion */
  1840. win = mdct_win[2] + ((4 * 36) & -(j & 1));
  1841. out_ptr = sb_samples + j;
  1842. for(i=0; i<6; i++){
  1843. *out_ptr = buf[i];
  1844. out_ptr += SBLIMIT;
  1845. }
  1846. imdct12(out2, ptr + 0);
  1847. for(i=0;i<6;i++) {
  1848. *out_ptr = MULH(out2[i], win[i]) + buf[i + 6*1];
  1849. buf[i + 6*2] = MULH(out2[i + 6], win[i + 6]);
  1850. out_ptr += SBLIMIT;
  1851. }
  1852. imdct12(out2, ptr + 1);
  1853. for(i=0;i<6;i++) {
  1854. *out_ptr = MULH(out2[i], win[i]) + buf[i + 6*2];
  1855. buf[i + 6*0] = MULH(out2[i + 6], win[i + 6]);
  1856. out_ptr += SBLIMIT;
  1857. }
  1858. imdct12(out2, ptr + 2);
  1859. for(i=0;i<6;i++) {
  1860. buf[i + 6*0] = MULH(out2[i], win[i]) + buf[i + 6*0];
  1861. buf[i + 6*1] = MULH(out2[i + 6], win[i + 6]);
  1862. buf[i + 6*2] = 0;
  1863. }
  1864. ptr += 18;
  1865. buf += 18;
  1866. }
  1867. /* zero bands */
  1868. for(j=sblimit;j<SBLIMIT;j++) {
  1869. /* overlap */
  1870. out_ptr = sb_samples + j;
  1871. for(i=0;i<18;i++) {
  1872. *out_ptr = buf[i];
  1873. buf[i] = 0;
  1874. out_ptr += SBLIMIT;
  1875. }
  1876. buf += 18;
  1877. }
  1878. }
  1879. #if defined(DEBUG)
  1880. void sample_dump(int fnum, int32_t *tab, int n)
  1881. {
  1882. static FILE *files[16], *f;
  1883. char buf[512];
  1884. int i;
  1885. int32_t v;
  1886. f = files[fnum];
  1887. if (!f) {
  1888. snprintf(buf, sizeof(buf), "/tmp/out%d.%s.pcm",
  1889. fnum,
  1890. #ifdef USE_HIGHPRECISION
  1891. "hp"
  1892. #else
  1893. "lp"
  1894. #endif
  1895. );
  1896. f = fopen(buf, "w");
  1897. if (!f)
  1898. return;
  1899. files[fnum] = f;
  1900. }
  1901. if (fnum == 0) {
  1902. static int pos = 0;
  1903. av_log(NULL, AV_LOG_DEBUG, "pos=%d\n", pos);
  1904. for(i=0;i<n;i++) {
  1905. av_log(NULL, AV_LOG_DEBUG, " %0.4f", (double)tab[i] / FRAC_ONE);
  1906. if ((i % 18) == 17)
  1907. av_log(NULL, AV_LOG_DEBUG, "\n");
  1908. }
  1909. pos += n;
  1910. }
  1911. for(i=0;i<n;i++) {
  1912. /* normalize to 23 frac bits */
  1913. v = tab[i] << (23 - FRAC_BITS);
  1914. fwrite(&v, 1, sizeof(int32_t), f);
  1915. }
  1916. }
  1917. #endif
  1918. /* main layer3 decoding function */
  1919. static int mp_decode_layer3(MPADecodeContext *s)
  1920. {
  1921. int nb_granules, main_data_begin, private_bits;
  1922. int gr, ch, blocksplit_flag, i, j, k, n, bits_pos;
  1923. GranuleDef granules[2][2], *g;
  1924. int16_t exponents[576];
  1925. /* read side info */
  1926. if (s->lsf) {
  1927. main_data_begin = get_bits(&s->gb, 8);
  1928. private_bits = get_bits(&s->gb, s->nb_channels);
  1929. nb_granules = 1;
  1930. } else {
  1931. main_data_begin = get_bits(&s->gb, 9);
  1932. if (s->nb_channels == 2)
  1933. private_bits = get_bits(&s->gb, 3);
  1934. else
  1935. private_bits = get_bits(&s->gb, 5);
  1936. nb_granules = 2;
  1937. for(ch=0;ch<s->nb_channels;ch++) {
  1938. granules[ch][0].scfsi = 0; /* all scale factors are transmitted */
  1939. granules[ch][1].scfsi = get_bits(&s->gb, 4);
  1940. }
  1941. }
  1942. for(gr=0;gr<nb_granules;gr++) {
  1943. for(ch=0;ch<s->nb_channels;ch++) {
  1944. dprintf(s->avctx, "gr=%d ch=%d: side_info\n", gr, ch);
  1945. g = &granules[ch][gr];
  1946. g->part2_3_length = get_bits(&s->gb, 12);
  1947. g->big_values = get_bits(&s->gb, 9);
  1948. if(g->big_values > 288){
  1949. av_log(s->avctx, AV_LOG_ERROR, "big_values too big\n");
  1950. return -1;
  1951. }
  1952. g->global_gain = get_bits(&s->gb, 8);
  1953. /* if MS stereo only is selected, we precompute the
  1954. 1/sqrt(2) renormalization factor */
  1955. if ((s->mode_ext & (MODE_EXT_MS_STEREO | MODE_EXT_I_STEREO)) ==
  1956. MODE_EXT_MS_STEREO)
  1957. g->global_gain -= 2;
  1958. if (s->lsf)
  1959. g->scalefac_compress = get_bits(&s->gb, 9);
  1960. else
  1961. g->scalefac_compress = get_bits(&s->gb, 4);
  1962. blocksplit_flag = get_bits(&s->gb, 1);
  1963. if (blocksplit_flag) {
  1964. g->block_type = get_bits(&s->gb, 2);
  1965. if (g->block_type == 0){
  1966. av_log(NULL, AV_LOG_ERROR, "invalid block type\n");
  1967. return -1;
  1968. }
  1969. g->switch_point = get_bits(&s->gb, 1);
  1970. for(i=0;i<2;i++)
  1971. g->table_select[i] = get_bits(&s->gb, 5);
  1972. for(i=0;i<3;i++)
  1973. g->subblock_gain[i] = get_bits(&s->gb, 3);
  1974. /* compute huffman coded region sizes */
  1975. if (g->block_type == 2)
  1976. g->region_size[0] = (36 / 2);
  1977. else {
  1978. if (s->sample_rate_index <= 2)
  1979. g->region_size[0] = (36 / 2);
  1980. else if (s->sample_rate_index != 8)
  1981. g->region_size[0] = (54 / 2);
  1982. else
  1983. g->region_size[0] = (108 / 2);
  1984. }
  1985. g->region_size[1] = (576 / 2);
  1986. } else {
  1987. int region_address1, region_address2, l;
  1988. g->block_type = 0;
  1989. g->switch_point = 0;
  1990. for(i=0;i<3;i++)
  1991. g->table_select[i] = get_bits(&s->gb, 5);
  1992. /* compute huffman coded region sizes */
  1993. region_address1 = get_bits(&s->gb, 4);
  1994. region_address2 = get_bits(&s->gb, 3);
  1995. dprintf(s->avctx, "region1=%d region2=%d\n",
  1996. region_address1, region_address2);
  1997. g->region_size[0] =
  1998. band_index_long[s->sample_rate_index][region_address1 + 1] >> 1;
  1999. l = region_address1 + region_address2 + 2;
  2000. /* should not overflow */
  2001. if (l > 22)
  2002. l = 22;
  2003. g->region_size[1] =
  2004. band_index_long[s->sample_rate_index][l] >> 1;
  2005. }
  2006. /* convert region offsets to region sizes and truncate
  2007. size to big_values */
  2008. g->region_size[2] = (576 / 2);
  2009. j = 0;
  2010. for(i=0;i<3;i++) {
  2011. k = FFMIN(g->region_size[i], g->big_values);
  2012. g->region_size[i] = k - j;
  2013. j = k;
  2014. }
  2015. /* compute band indexes */
  2016. if (g->block_type == 2) {
  2017. if (g->switch_point) {
  2018. /* if switched mode, we handle the 36 first samples as
  2019. long blocks. For 8000Hz, we handle the 48 first
  2020. exponents as long blocks (XXX: check this!) */
  2021. if (s->sample_rate_index <= 2)
  2022. g->long_end = 8;
  2023. else if (s->sample_rate_index != 8)
  2024. g->long_end = 6;
  2025. else
  2026. g->long_end = 4; /* 8000 Hz */
  2027. g->short_start = 2 + (s->sample_rate_index != 8);
  2028. } else {
  2029. g->long_end = 0;
  2030. g->short_start = 0;
  2031. }
  2032. } else {
  2033. g->short_start = 13;
  2034. g->long_end = 22;
  2035. }
  2036. g->preflag = 0;
  2037. if (!s->lsf)
  2038. g->preflag = get_bits(&s->gb, 1);
  2039. g->scalefac_scale = get_bits(&s->gb, 1);
  2040. g->count1table_select = get_bits(&s->gb, 1);
  2041. dprintf(s->avctx, "block_type=%d switch_point=%d\n",
  2042. g->block_type, g->switch_point);
  2043. }
  2044. }
  2045. if (!s->adu_mode) {
  2046. const uint8_t *ptr = s->gb.buffer + (get_bits_count(&s->gb)>>3);
  2047. assert((get_bits_count(&s->gb) & 7) == 0);
  2048. /* now we get bits from the main_data_begin offset */
  2049. dprintf(s->avctx, "seekback: %d\n", main_data_begin);
  2050. //av_log(NULL, AV_LOG_ERROR, "backstep:%d, lastbuf:%d\n", main_data_begin, s->last_buf_size);
  2051. memcpy(s->last_buf + s->last_buf_size, ptr, EXTRABYTES);
  2052. s->in_gb= s->gb;
  2053. init_get_bits(&s->gb, s->last_buf, s->last_buf_size*8);
  2054. skip_bits_long(&s->gb, 8*(s->last_buf_size - main_data_begin));
  2055. }
  2056. for(gr=0;gr<nb_granules;gr++) {
  2057. for(ch=0;ch<s->nb_channels;ch++) {
  2058. g = &granules[ch][gr];
  2059. if(get_bits_count(&s->gb)<0){
  2060. av_log(NULL, AV_LOG_ERROR, "mdb:%d, lastbuf:%d skipping granule %d\n",
  2061. main_data_begin, s->last_buf_size, gr);
  2062. skip_bits_long(&s->gb, g->part2_3_length);
  2063. memset(g->sb_hybrid, 0, sizeof(g->sb_hybrid));
  2064. if(get_bits_count(&s->gb) >= s->gb.size_in_bits && s->in_gb.buffer){
  2065. skip_bits_long(&s->in_gb, get_bits_count(&s->gb) - s->gb.size_in_bits);
  2066. s->gb= s->in_gb;
  2067. s->in_gb.buffer=NULL;
  2068. }
  2069. continue;
  2070. }
  2071. bits_pos = get_bits_count(&s->gb);
  2072. if (!s->lsf) {
  2073. uint8_t *sc;
  2074. int slen, slen1, slen2;
  2075. /* MPEG1 scale factors */
  2076. slen1 = slen_table[0][g->scalefac_compress];
  2077. slen2 = slen_table[1][g->scalefac_compress];
  2078. dprintf(s->avctx, "slen1=%d slen2=%d\n", slen1, slen2);
  2079. if (g->block_type == 2) {
  2080. n = g->switch_point ? 17 : 18;
  2081. j = 0;
  2082. if(slen1){
  2083. for(i=0;i<n;i++)
  2084. g->scale_factors[j++] = get_bits(&s->gb, slen1);
  2085. }else{
  2086. for(i=0;i<n;i++)
  2087. g->scale_factors[j++] = 0;
  2088. }
  2089. if(slen2){
  2090. for(i=0;i<18;i++)
  2091. g->scale_factors[j++] = get_bits(&s->gb, slen2);
  2092. for(i=0;i<3;i++)
  2093. g->scale_factors[j++] = 0;
  2094. }else{
  2095. for(i=0;i<21;i++)
  2096. g->scale_factors[j++] = 0;
  2097. }
  2098. } else {
  2099. sc = granules[ch][0].scale_factors;
  2100. j = 0;
  2101. for(k=0;k<4;k++) {
  2102. n = (k == 0 ? 6 : 5);
  2103. if ((g->scfsi & (0x8 >> k)) == 0) {
  2104. slen = (k < 2) ? slen1 : slen2;
  2105. if(slen){
  2106. for(i=0;i<n;i++)
  2107. g->scale_factors[j++] = get_bits(&s->gb, slen);
  2108. }else{
  2109. for(i=0;i<n;i++)
  2110. g->scale_factors[j++] = 0;
  2111. }
  2112. } else {
  2113. /* simply copy from last granule */
  2114. for(i=0;i<n;i++) {
  2115. g->scale_factors[j] = sc[j];
  2116. j++;
  2117. }
  2118. }
  2119. }
  2120. g->scale_factors[j++] = 0;
  2121. }
  2122. #if defined(DEBUG)
  2123. {
  2124. dprintf(s->avctx, "scfsi=%x gr=%d ch=%d scale_factors:\n",
  2125. g->scfsi, gr, ch);
  2126. for(i=0;i<j;i++)
  2127. dprintf(s->avctx, " %d", g->scale_factors[i]);
  2128. dprintf(s->avctx, "\n");
  2129. }
  2130. #endif
  2131. } else {
  2132. int tindex, tindex2, slen[4], sl, sf;
  2133. /* LSF scale factors */
  2134. if (g->block_type == 2) {
  2135. tindex = g->switch_point ? 2 : 1;
  2136. } else {
  2137. tindex = 0;
  2138. }
  2139. sf = g->scalefac_compress;
  2140. if ((s->mode_ext & MODE_EXT_I_STEREO) && ch == 1) {
  2141. /* intensity stereo case */
  2142. sf >>= 1;
  2143. if (sf < 180) {
  2144. lsf_sf_expand(slen, sf, 6, 6, 0);
  2145. tindex2 = 3;
  2146. } else if (sf < 244) {
  2147. lsf_sf_expand(slen, sf - 180, 4, 4, 0);
  2148. tindex2 = 4;
  2149. } else {
  2150. lsf_sf_expand(slen, sf - 244, 3, 0, 0);
  2151. tindex2 = 5;
  2152. }
  2153. } else {
  2154. /* normal case */
  2155. if (sf < 400) {
  2156. lsf_sf_expand(slen, sf, 5, 4, 4);
  2157. tindex2 = 0;
  2158. } else if (sf < 500) {
  2159. lsf_sf_expand(slen, sf - 400, 5, 4, 0);
  2160. tindex2 = 1;
  2161. } else {
  2162. lsf_sf_expand(slen, sf - 500, 3, 0, 0);
  2163. tindex2 = 2;
  2164. g->preflag = 1;
  2165. }
  2166. }
  2167. j = 0;
  2168. for(k=0;k<4;k++) {
  2169. n = lsf_nsf_table[tindex2][tindex][k];
  2170. sl = slen[k];
  2171. if(sl){
  2172. for(i=0;i<n;i++)
  2173. g->scale_factors[j++] = get_bits(&s->gb, sl);
  2174. }else{
  2175. for(i=0;i<n;i++)
  2176. g->scale_factors[j++] = 0;
  2177. }
  2178. }
  2179. /* XXX: should compute exact size */
  2180. for(;j<40;j++)
  2181. g->scale_factors[j] = 0;
  2182. #if defined(DEBUG)
  2183. {
  2184. dprintf(s->avctx, "gr=%d ch=%d scale_factors:\n",
  2185. gr, ch);
  2186. for(i=0;i<40;i++)
  2187. dprintf(s->avctx, " %d", g->scale_factors[i]);
  2188. dprintf(s->avctx, "\n");
  2189. }
  2190. #endif
  2191. }
  2192. exponents_from_scale_factors(s, g, exponents);
  2193. /* read Huffman coded residue */
  2194. huffman_decode(s, g, exponents, bits_pos + g->part2_3_length);
  2195. #if defined(DEBUG)
  2196. sample_dump(0, g->sb_hybrid, 576);
  2197. #endif
  2198. } /* ch */
  2199. if (s->nb_channels == 2)
  2200. compute_stereo(s, &granules[0][gr], &granules[1][gr]);
  2201. for(ch=0;ch<s->nb_channels;ch++) {
  2202. g = &granules[ch][gr];
  2203. reorder_block(s, g);
  2204. #if defined(DEBUG)
  2205. sample_dump(0, g->sb_hybrid, 576);
  2206. #endif
  2207. s->compute_antialias(s, g);
  2208. #if defined(DEBUG)
  2209. sample_dump(1, g->sb_hybrid, 576);
  2210. #endif
  2211. compute_imdct(s, g, &s->sb_samples[ch][18 * gr][0], s->mdct_buf[ch]);
  2212. #if defined(DEBUG)
  2213. sample_dump(2, &s->sb_samples[ch][18 * gr][0], 576);
  2214. #endif
  2215. }
  2216. } /* gr */
  2217. if(get_bits_count(&s->gb)<0)
  2218. skip_bits_long(&s->gb, -get_bits_count(&s->gb));
  2219. return nb_granules * 18;
  2220. }
  2221. static int mp_decode_frame(MPADecodeContext *s,
  2222. OUT_INT *samples, const uint8_t *buf, int buf_size)
  2223. {
  2224. int i, nb_frames, ch;
  2225. OUT_INT *samples_ptr;
  2226. init_get_bits(&s->gb, buf + HEADER_SIZE, (buf_size - HEADER_SIZE)*8);
  2227. /* skip error protection field */
  2228. if (s->error_protection)
  2229. get_bits(&s->gb, 16);
  2230. dprintf(s->avctx, "frame %d:\n", s->frame_count);
  2231. switch(s->layer) {
  2232. case 1:
  2233. nb_frames = mp_decode_layer1(s);
  2234. break;
  2235. case 2:
  2236. nb_frames = mp_decode_layer2(s);
  2237. break;
  2238. case 3:
  2239. default:
  2240. nb_frames = mp_decode_layer3(s);
  2241. s->last_buf_size=0;
  2242. if(s->in_gb.buffer){
  2243. align_get_bits(&s->gb);
  2244. i= (s->gb.size_in_bits - get_bits_count(&s->gb))>>3;
  2245. if(i >= 0 && i <= BACKSTEP_SIZE){
  2246. memmove(s->last_buf, s->gb.buffer + (get_bits_count(&s->gb)>>3), i);
  2247. s->last_buf_size=i;
  2248. }else
  2249. av_log(NULL, AV_LOG_ERROR, "invalid old backstep %d\n", i);
  2250. s->gb= s->in_gb;
  2251. s->in_gb.buffer= NULL;
  2252. }
  2253. align_get_bits(&s->gb);
  2254. assert((get_bits_count(&s->gb) & 7) == 0);
  2255. i= (s->gb.size_in_bits - get_bits_count(&s->gb))>>3;
  2256. if(i<0 || i > BACKSTEP_SIZE || nb_frames<0){
  2257. av_log(NULL, AV_LOG_ERROR, "invalid new backstep %d\n", i);
  2258. i= FFMIN(BACKSTEP_SIZE, buf_size - HEADER_SIZE);
  2259. }
  2260. assert(i <= buf_size - HEADER_SIZE && i>= 0);
  2261. memcpy(s->last_buf + s->last_buf_size, s->gb.buffer + buf_size - HEADER_SIZE - i, i);
  2262. s->last_buf_size += i;
  2263. break;
  2264. }
  2265. #if defined(DEBUG)
  2266. for(i=0;i<nb_frames;i++) {
  2267. for(ch=0;ch<s->nb_channels;ch++) {
  2268. int j;
  2269. dprintf(s->avctx, "%d-%d:", i, ch);
  2270. for(j=0;j<SBLIMIT;j++)
  2271. dprintf(s->avctx, " %0.6f", (double)s->sb_samples[ch][i][j] / FRAC_ONE);
  2272. dprintf(s->avctx, "\n");
  2273. }
  2274. }
  2275. #endif
  2276. /* apply the synthesis filter */
  2277. for(ch=0;ch<s->nb_channels;ch++) {
  2278. samples_ptr = samples + ch;
  2279. for(i=0;i<nb_frames;i++) {
  2280. ff_mpa_synth_filter(s->synth_buf[ch], &(s->synth_buf_offset[ch]),
  2281. window, &s->dither_state,
  2282. samples_ptr, s->nb_channels,
  2283. s->sb_samples[ch][i]);
  2284. samples_ptr += 32 * s->nb_channels;
  2285. }
  2286. }
  2287. #ifdef DEBUG
  2288. s->frame_count++;
  2289. #endif
  2290. return nb_frames * 32 * sizeof(OUT_INT) * s->nb_channels;
  2291. }
  2292. static int decode_frame(AVCodecContext * avctx,
  2293. void *data, int *data_size,
  2294. uint8_t * buf, int buf_size)
  2295. {
  2296. MPADecodeContext *s = avctx->priv_data;
  2297. uint32_t header;
  2298. int out_size;
  2299. OUT_INT *out_samples = data;
  2300. retry:
  2301. if(buf_size < HEADER_SIZE)
  2302. return -1;
  2303. header = (buf[0] << 24) | (buf[1] << 16) | (buf[2] << 8) | buf[3];
  2304. if(ff_mpa_check_header(header) < 0){
  2305. buf++;
  2306. // buf_size--;
  2307. av_log(avctx, AV_LOG_ERROR, "Header missing skipping one byte.\n");
  2308. goto retry;
  2309. }
  2310. if (decode_header(s, header) == 1) {
  2311. /* free format: prepare to compute frame size */
  2312. s->frame_size = -1;
  2313. return -1;
  2314. }
  2315. /* update codec info */
  2316. avctx->channels = s->nb_channels;
  2317. avctx->bit_rate = s->bit_rate;
  2318. avctx->sub_id = s->layer;
  2319. switch(s->layer) {
  2320. case 1:
  2321. avctx->frame_size = 384;
  2322. break;
  2323. case 2:
  2324. avctx->frame_size = 1152;
  2325. break;
  2326. case 3:
  2327. if (s->lsf)
  2328. avctx->frame_size = 576;
  2329. else
  2330. avctx->frame_size = 1152;
  2331. break;
  2332. }
  2333. if(s->frame_size<=0 || s->frame_size > buf_size){
  2334. av_log(avctx, AV_LOG_ERROR, "incomplete frame\n");
  2335. return -1;
  2336. }else if(s->frame_size < buf_size){
  2337. av_log(avctx, AV_LOG_ERROR, "incorrect frame size\n");
  2338. }
  2339. out_size = mp_decode_frame(s, out_samples, buf, buf_size);
  2340. if(out_size>=0){
  2341. *data_size = out_size;
  2342. avctx->sample_rate = s->sample_rate;
  2343. //FIXME maybe move the other codec info stuff from above here too
  2344. }else
  2345. av_log(avctx, AV_LOG_DEBUG, "Error while decoding MPEG audio frame.\n"); //FIXME return -1 / but also return the number of bytes consumed
  2346. s->frame_size = 0;
  2347. return buf_size;
  2348. }
  2349. static void flush(AVCodecContext *avctx){
  2350. MPADecodeContext *s = avctx->priv_data;
  2351. s->last_buf_size= 0;
  2352. }
  2353. #ifdef CONFIG_MP3ADU_DECODER
  2354. static int decode_frame_adu(AVCodecContext * avctx,
  2355. void *data, int *data_size,
  2356. uint8_t * buf, int buf_size)
  2357. {
  2358. MPADecodeContext *s = avctx->priv_data;
  2359. uint32_t header;
  2360. int len, out_size;
  2361. OUT_INT *out_samples = data;
  2362. len = buf_size;
  2363. // Discard too short frames
  2364. if (buf_size < HEADER_SIZE) {
  2365. *data_size = 0;
  2366. return buf_size;
  2367. }
  2368. if (len > MPA_MAX_CODED_FRAME_SIZE)
  2369. len = MPA_MAX_CODED_FRAME_SIZE;
  2370. // Get header and restore sync word
  2371. header = (buf[0] << 24) | (buf[1] << 16) | (buf[2] << 8) | buf[3] | 0xffe00000;
  2372. if (ff_mpa_check_header(header) < 0) { // Bad header, discard frame
  2373. *data_size = 0;
  2374. return buf_size;
  2375. }
  2376. decode_header(s, header);
  2377. /* update codec info */
  2378. avctx->sample_rate = s->sample_rate;
  2379. avctx->channels = s->nb_channels;
  2380. avctx->bit_rate = s->bit_rate;
  2381. avctx->sub_id = s->layer;
  2382. avctx->frame_size=s->frame_size = len;
  2383. if (avctx->parse_only) {
  2384. out_size = buf_size;
  2385. } else {
  2386. out_size = mp_decode_frame(s, out_samples, buf, buf_size);
  2387. }
  2388. *data_size = out_size;
  2389. return buf_size;
  2390. }
  2391. #endif /* CONFIG_MP3ADU_DECODER */
  2392. #ifdef CONFIG_MP3ON4_DECODER
  2393. /* Next 3 arrays are indexed by channel config number (passed via codecdata) */
  2394. static int mp3Frames[16] = {0,1,1,2,3,3,4,5,2}; /* number of mp3 decoder instances */
  2395. static int mp3Channels[16] = {0,1,2,3,4,5,6,8,4}; /* total output channels */
  2396. /* offsets into output buffer, assume output order is FL FR BL BR C LFE */
  2397. static int chan_offset[9][5] = {
  2398. {0},
  2399. {0}, // C
  2400. {0}, // FLR
  2401. {2,0}, // C FLR
  2402. {2,0,3}, // C FLR BS
  2403. {4,0,2}, // C FLR BLRS
  2404. {4,0,2,5}, // C FLR BLRS LFE
  2405. {4,0,2,6,5}, // C FLR BLRS BLR LFE
  2406. {0,2} // FLR BLRS
  2407. };
  2408. static int decode_init_mp3on4(AVCodecContext * avctx)
  2409. {
  2410. MP3On4DecodeContext *s = avctx->priv_data;
  2411. int i;
  2412. if ((avctx->extradata_size < 2) || (avctx->extradata == NULL)) {
  2413. av_log(avctx, AV_LOG_ERROR, "Codec extradata missing or too short.\n");
  2414. return -1;
  2415. }
  2416. s->chan_cfg = (((unsigned char *)avctx->extradata)[1] >> 3) & 0x0f;
  2417. s->frames = mp3Frames[s->chan_cfg];
  2418. if(!s->frames) {
  2419. av_log(avctx, AV_LOG_ERROR, "Invalid channel config number.\n");
  2420. return -1;
  2421. }
  2422. avctx->channels = mp3Channels[s->chan_cfg];
  2423. /* Init the first mp3 decoder in standard way, so that all tables get builded
  2424. * We replace avctx->priv_data with the context of the first decoder so that
  2425. * decode_init() does not have to be changed.
  2426. * Other decoders will be inited here copying data from the first context
  2427. */
  2428. // Allocate zeroed memory for the first decoder context
  2429. s->mp3decctx[0] = av_mallocz(sizeof(MPADecodeContext));
  2430. // Put decoder context in place to make init_decode() happy
  2431. avctx->priv_data = s->mp3decctx[0];
  2432. decode_init(avctx);
  2433. // Restore mp3on4 context pointer
  2434. avctx->priv_data = s;
  2435. s->mp3decctx[0]->adu_mode = 1; // Set adu mode
  2436. /* Create a separate codec/context for each frame (first is already ok).
  2437. * Each frame is 1 or 2 channels - up to 5 frames allowed
  2438. */
  2439. for (i = 1; i < s->frames; i++) {
  2440. s->mp3decctx[i] = av_mallocz(sizeof(MPADecodeContext));
  2441. s->mp3decctx[i]->compute_antialias = s->mp3decctx[0]->compute_antialias;
  2442. s->mp3decctx[i]->adu_mode = 1;
  2443. s->mp3decctx[i]->avctx = avctx;
  2444. }
  2445. return 0;
  2446. }
  2447. static int decode_close_mp3on4(AVCodecContext * avctx)
  2448. {
  2449. MP3On4DecodeContext *s = avctx->priv_data;
  2450. int i;
  2451. for (i = 0; i < s->frames; i++)
  2452. if (s->mp3decctx[i])
  2453. av_free(s->mp3decctx[i]);
  2454. return 0;
  2455. }
  2456. static int decode_frame_mp3on4(AVCodecContext * avctx,
  2457. void *data, int *data_size,
  2458. uint8_t * buf, int buf_size)
  2459. {
  2460. MP3On4DecodeContext *s = avctx->priv_data;
  2461. MPADecodeContext *m;
  2462. int len, out_size = 0;
  2463. uint32_t header;
  2464. OUT_INT *out_samples = data;
  2465. OUT_INT decoded_buf[MPA_FRAME_SIZE * MPA_MAX_CHANNELS];
  2466. OUT_INT *outptr, *bp;
  2467. int fsize;
  2468. unsigned char *start2 = buf, *start;
  2469. int fr, i, j, n;
  2470. int off = avctx->channels;
  2471. int *coff = chan_offset[s->chan_cfg];
  2472. len = buf_size;
  2473. // Discard too short frames
  2474. if (buf_size < HEADER_SIZE) {
  2475. *data_size = 0;
  2476. return buf_size;
  2477. }
  2478. // If only one decoder interleave is not needed
  2479. outptr = s->frames == 1 ? out_samples : decoded_buf;
  2480. for (fr = 0; fr < s->frames; fr++) {
  2481. start = start2;
  2482. fsize = (start[0] << 4) | (start[1] >> 4);
  2483. start2 += fsize;
  2484. if (fsize > len)
  2485. fsize = len;
  2486. len -= fsize;
  2487. if (fsize > MPA_MAX_CODED_FRAME_SIZE)
  2488. fsize = MPA_MAX_CODED_FRAME_SIZE;
  2489. m = s->mp3decctx[fr];
  2490. assert (m != NULL);
  2491. // Get header
  2492. header = (start[0] << 24) | (start[1] << 16) | (start[2] << 8) | start[3] | 0xfff00000;
  2493. if (ff_mpa_check_header(header) < 0) { // Bad header, discard block
  2494. *data_size = 0;
  2495. return buf_size;
  2496. }
  2497. decode_header(m, header);
  2498. mp_decode_frame(m, decoded_buf, start, fsize);
  2499. n = MPA_FRAME_SIZE * m->nb_channels;
  2500. out_size += n * sizeof(OUT_INT);
  2501. if(s->frames > 1) {
  2502. /* interleave output data */
  2503. bp = out_samples + coff[fr];
  2504. if(m->nb_channels == 1) {
  2505. for(j = 0; j < n; j++) {
  2506. *bp = decoded_buf[j];
  2507. bp += off;
  2508. }
  2509. } else {
  2510. for(j = 0; j < n; j++) {
  2511. bp[0] = decoded_buf[j++];
  2512. bp[1] = decoded_buf[j];
  2513. bp += off;
  2514. }
  2515. }
  2516. }
  2517. }
  2518. /* update codec info */
  2519. avctx->sample_rate = s->mp3decctx[0]->sample_rate;
  2520. avctx->frame_size= buf_size;
  2521. avctx->bit_rate = 0;
  2522. for (i = 0; i < s->frames; i++)
  2523. avctx->bit_rate += s->mp3decctx[i]->bit_rate;
  2524. *data_size = out_size;
  2525. return buf_size;
  2526. }
  2527. #endif /* CONFIG_MP3ON4_DECODER */
  2528. #ifdef CONFIG_MP2_DECODER
  2529. AVCodec mp2_decoder =
  2530. {
  2531. "mp2",
  2532. CODEC_TYPE_AUDIO,
  2533. CODEC_ID_MP2,
  2534. sizeof(MPADecodeContext),
  2535. decode_init,
  2536. NULL,
  2537. NULL,
  2538. decode_frame,
  2539. CODEC_CAP_PARSE_ONLY,
  2540. };
  2541. #endif
  2542. #ifdef CONFIG_MP3_DECODER
  2543. AVCodec mp3_decoder =
  2544. {
  2545. "mp3",
  2546. CODEC_TYPE_AUDIO,
  2547. CODEC_ID_MP3,
  2548. sizeof(MPADecodeContext),
  2549. decode_init,
  2550. NULL,
  2551. NULL,
  2552. decode_frame,
  2553. CODEC_CAP_PARSE_ONLY,
  2554. .flush= flush,
  2555. };
  2556. #endif
  2557. #ifdef CONFIG_MP3ADU_DECODER
  2558. AVCodec mp3adu_decoder =
  2559. {
  2560. "mp3adu",
  2561. CODEC_TYPE_AUDIO,
  2562. CODEC_ID_MP3ADU,
  2563. sizeof(MPADecodeContext),
  2564. decode_init,
  2565. NULL,
  2566. NULL,
  2567. decode_frame_adu,
  2568. CODEC_CAP_PARSE_ONLY,
  2569. .flush= flush,
  2570. };
  2571. #endif
  2572. #ifdef CONFIG_MP3ON4_DECODER
  2573. AVCodec mp3on4_decoder =
  2574. {
  2575. "mp3on4",
  2576. CODEC_TYPE_AUDIO,
  2577. CODEC_ID_MP3ON4,
  2578. sizeof(MP3On4DecodeContext),
  2579. decode_init_mp3on4,
  2580. NULL,
  2581. decode_close_mp3on4,
  2582. decode_frame_mp3on4,
  2583. .flush= flush,
  2584. };
  2585. #endif