You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

264 lines
8.0KB

  1. /*
  2. * AAC encoder utilities
  3. * Copyright (C) 2015 Rostislav Pehlivanov
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file
  23. * AAC encoder utilities
  24. * @author Rostislav Pehlivanov ( atomnuker gmail com )
  25. */
  26. #ifndef AVCODEC_AACENC_UTILS_H
  27. #define AVCODEC_AACENC_UTILS_H
  28. #include "aac.h"
  29. #include "aacenctab.h"
  30. #include "aactab.h"
  31. #define ROUND_STANDARD 0.4054f
  32. #define ROUND_TO_ZERO 0.1054f
  33. #define C_QUANT 0.4054f
  34. static inline void abs_pow34_v(float *out, const float *in, const int size)
  35. {
  36. int i;
  37. for (i = 0; i < size; i++) {
  38. float a = fabsf(in[i]);
  39. out[i] = sqrtf(a * sqrtf(a));
  40. }
  41. }
  42. static inline float pos_pow34(float a)
  43. {
  44. return sqrtf(a * sqrtf(a));
  45. }
  46. /**
  47. * Quantize one coefficient.
  48. * @return absolute value of the quantized coefficient
  49. * @see 3GPP TS26.403 5.6.2 "Scalefactor determination"
  50. */
  51. static inline int quant(float coef, const float Q, const float rounding)
  52. {
  53. float a = coef * Q;
  54. return sqrtf(a * sqrtf(a)) + rounding;
  55. }
  56. static inline void quantize_bands(int *out, const float *in, const float *scaled,
  57. int size, float Q34, int is_signed, int maxval,
  58. const float rounding)
  59. {
  60. int i;
  61. double qc;
  62. for (i = 0; i < size; i++) {
  63. qc = scaled[i] * Q34;
  64. out[i] = (int)FFMIN(qc + rounding, (double)maxval);
  65. if (is_signed && in[i] < 0.0f) {
  66. out[i] = -out[i];
  67. }
  68. }
  69. }
  70. static inline float find_max_val(int group_len, int swb_size, const float *scaled)
  71. {
  72. float maxval = 0.0f;
  73. int w2, i;
  74. for (w2 = 0; w2 < group_len; w2++) {
  75. for (i = 0; i < swb_size; i++) {
  76. maxval = FFMAX(maxval, scaled[w2*128+i]);
  77. }
  78. }
  79. return maxval;
  80. }
  81. static inline int find_min_book(float maxval, int sf)
  82. {
  83. float Q = ff_aac_pow2sf_tab[POW_SF2_ZERO - sf + SCALE_ONE_POS - SCALE_DIV_512];
  84. float Q34 = sqrtf(Q * sqrtf(Q));
  85. int qmaxval, cb;
  86. qmaxval = maxval * Q34 + C_QUANT;
  87. if (qmaxval >= (FF_ARRAY_ELEMS(aac_maxval_cb)))
  88. cb = 11;
  89. else
  90. cb = aac_maxval_cb[qmaxval];
  91. return cb;
  92. }
  93. static inline float find_form_factor(int group_len, int swb_size, float thresh,
  94. const float *scaled, float nzslope) {
  95. const float iswb_size = 1.0f / swb_size;
  96. const float iswb_sizem1 = 1.0f / (swb_size - 1);
  97. const float ethresh = thresh;
  98. float form = 0.0f, weight = 0.0f;
  99. int w2, i;
  100. for (w2 = 0; w2 < group_len; w2++) {
  101. float e = 0.0f, e2 = 0.0f, var = 0.0f, maxval = 0.0f;
  102. float nzl = 0;
  103. for (i = 0; i < swb_size; i++) {
  104. float s = fabsf(scaled[w2*128+i]);
  105. maxval = FFMAX(maxval, s);
  106. e += s;
  107. e2 += s *= s;
  108. /* We really don't want a hard non-zero-line count, since
  109. * even below-threshold lines do add up towards band spectral power.
  110. * So, fall steeply towards zero, but smoothly
  111. */
  112. if (s >= ethresh) {
  113. nzl += 1.0f;
  114. } else {
  115. nzl += powf(s / ethresh, nzslope);
  116. }
  117. }
  118. if (e2 > thresh) {
  119. float frm;
  120. e *= iswb_size;
  121. /** compute variance */
  122. for (i = 0; i < swb_size; i++) {
  123. float d = fabsf(scaled[w2*128+i]) - e;
  124. var += d*d;
  125. }
  126. var = sqrtf(var * iswb_sizem1);
  127. e2 *= iswb_size;
  128. frm = e / FFMIN(e+4*var,maxval);
  129. form += e2 * sqrtf(frm) / FFMAX(0.5f,nzl);
  130. weight += e2;
  131. }
  132. }
  133. if (weight > 0) {
  134. return form / weight;
  135. } else {
  136. return 1.0f;
  137. }
  138. }
  139. /** Return the minimum scalefactor where the quantized coef does not clip. */
  140. static inline uint8_t coef2minsf(float coef)
  141. {
  142. return av_clip_uint8(log2f(coef)*4 - 69 + SCALE_ONE_POS - SCALE_DIV_512);
  143. }
  144. /** Return the maximum scalefactor where the quantized coef is not zero. */
  145. static inline uint8_t coef2maxsf(float coef)
  146. {
  147. return av_clip_uint8(log2f(coef)*4 + 6 + SCALE_ONE_POS - SCALE_DIV_512);
  148. }
  149. /*
  150. * Returns the closest possible index to an array of float values, given a value.
  151. */
  152. static inline int quant_array_idx(const float val, const float *arr, const int num)
  153. {
  154. int i, index = 0;
  155. float quant_min_err = INFINITY;
  156. for (i = 0; i < num; i++) {
  157. float error = (val - arr[i])*(val - arr[i]);
  158. if (error < quant_min_err) {
  159. quant_min_err = error;
  160. index = i;
  161. }
  162. }
  163. return index;
  164. }
  165. /**
  166. * approximates exp10f(-3.0f*(0.5f + 0.5f * cosf(FFMIN(b,15.5f) / 15.5f)))
  167. */
  168. static av_always_inline float bval2bmax(float b)
  169. {
  170. return 0.001f + 0.0035f * (b*b*b) / (15.5f*15.5f*15.5f);
  171. }
  172. /*
  173. * Compute a nextband map to be used with SF delta constraint utilities.
  174. * The nextband array should contain 128 elements, and positions that don't
  175. * map to valid, nonzero bands of the form w*16+g (with w being the initial
  176. * window of the window group, only) are left indetermined.
  177. */
  178. static inline void ff_init_nextband_map(const SingleChannelElement *sce, uint8_t *nextband)
  179. {
  180. unsigned char prevband = 0;
  181. int w, g;
  182. /** Just a safe default */
  183. for (g = 0; g < 128; g++)
  184. nextband[g] = g;
  185. /** Now really navigate the nonzero band chain */
  186. for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
  187. for (g = 0; g < sce->ics.num_swb; g++) {
  188. if (!sce->zeroes[w*16+g] && sce->band_type[w*16+g] < RESERVED_BT)
  189. prevband = nextband[prevband] = w*16+g;
  190. }
  191. }
  192. nextband[prevband] = prevband; /* terminate */
  193. }
  194. /*
  195. * Updates nextband to reflect a removed band (equivalent to
  196. * calling ff_init_nextband_map after marking a band as zero)
  197. */
  198. static inline void ff_nextband_remove(uint8_t *nextband, int prevband, int band)
  199. {
  200. nextband[prevband] = nextband[band];
  201. }
  202. /*
  203. * Checks whether the specified band could be removed without inducing
  204. * scalefactor delta that violates SF delta encoding constraints.
  205. * prev_sf has to be the scalefactor of the previous nonzero, nonspecial
  206. * band, in encoding order, or negative if there was no such band.
  207. */
  208. static inline int ff_sfdelta_can_remove_band(const SingleChannelElement *sce,
  209. const uint8_t *nextband, int prev_sf, int band)
  210. {
  211. return prev_sf >= 0
  212. && sce->sf_idx[nextband[band]] >= (prev_sf - SCALE_MAX_DIFF)
  213. && sce->sf_idx[nextband[band]] <= (prev_sf + SCALE_MAX_DIFF);
  214. }
  215. /*
  216. * Checks whether the specified band's scalefactor could be replaced
  217. * with another one without violating SF delta encoding constraints.
  218. * prev_sf has to be the scalefactor of the previous nonzero, nonsepcial
  219. * band, in encoding order, or negative if there was no such band.
  220. */
  221. static inline int ff_sfdelta_can_replace(const SingleChannelElement *sce,
  222. const uint8_t *nextband, int prev_sf, int new_sf, int band)
  223. {
  224. return new_sf >= (prev_sf - SCALE_MAX_DIFF)
  225. && new_sf <= (prev_sf + SCALE_MAX_DIFF)
  226. && sce->sf_idx[nextband[band]] >= (new_sf - SCALE_MAX_DIFF)
  227. && sce->sf_idx[nextband[band]] <= (new_sf + SCALE_MAX_DIFF);
  228. }
  229. #define ERROR_IF(cond, ...) \
  230. if (cond) { \
  231. av_log(avctx, AV_LOG_ERROR, __VA_ARGS__); \
  232. return AVERROR(EINVAL); \
  233. }
  234. #define WARN_IF(cond, ...) \
  235. if (cond) { \
  236. av_log(avctx, AV_LOG_WARNING, __VA_ARGS__); \
  237. }
  238. #endif /* AVCODEC_AACENC_UTILS_H */