You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1063 lines
35KB

  1. /*
  2. * Rate control for video encoders
  3. *
  4. * Copyright (c) 2002-2004 Michael Niedermayer <michaelni@gmx.at>
  5. *
  6. * This file is part of FFmpeg.
  7. *
  8. * FFmpeg is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU Lesser General Public
  10. * License as published by the Free Software Foundation; either
  11. * version 2.1 of the License, or (at your option) any later version.
  12. *
  13. * FFmpeg is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * Lesser General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU Lesser General Public
  19. * License along with FFmpeg; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  21. */
  22. /**
  23. * @file
  24. * Rate control for video encoders.
  25. */
  26. #include "avcodec.h"
  27. #include "ratecontrol.h"
  28. #include "mpegvideo.h"
  29. #include "libavutil/eval.h"
  30. #undef NDEBUG // Always check asserts, the speed effect is far too small to disable them.
  31. #include <assert.h>
  32. #ifndef M_E
  33. #define M_E 2.718281828
  34. #endif
  35. static int init_pass2(MpegEncContext *s);
  36. static double get_qscale(MpegEncContext *s, RateControlEntry *rce,
  37. double rate_factor, int frame_num);
  38. void ff_write_pass1_stats(MpegEncContext *s)
  39. {
  40. snprintf(s->avctx->stats_out, 256,
  41. "in:%d out:%d type:%d q:%d itex:%d ptex:%d mv:%d misc:%d "
  42. "fcode:%d bcode:%d mc-var:%d var:%d icount:%d skipcount:%d hbits:%d;\n",
  43. s->current_picture_ptr->f.display_picture_number,
  44. s->current_picture_ptr->f.coded_picture_number,
  45. s->pict_type,
  46. s->current_picture.f.quality,
  47. s->i_tex_bits,
  48. s->p_tex_bits,
  49. s->mv_bits,
  50. s->misc_bits,
  51. s->f_code,
  52. s->b_code,
  53. s->current_picture.mc_mb_var_sum,
  54. s->current_picture.mb_var_sum,
  55. s->i_count, s->skip_count,
  56. s->header_bits);
  57. }
  58. static double get_fps(AVCodecContext *avctx)
  59. {
  60. return 1.0 / av_q2d(avctx->time_base) / FFMAX(avctx->ticks_per_frame, 1);
  61. }
  62. static inline double qp2bits(RateControlEntry *rce, double qp)
  63. {
  64. if (qp <= 0.0) {
  65. av_log(NULL, AV_LOG_ERROR, "qp<=0.0\n");
  66. }
  67. return rce->qscale * (double)(rce->i_tex_bits + rce->p_tex_bits + 1) / qp;
  68. }
  69. static inline double bits2qp(RateControlEntry *rce, double bits)
  70. {
  71. if (bits < 0.9) {
  72. av_log(NULL, AV_LOG_ERROR, "bits<0.9\n");
  73. }
  74. return rce->qscale * (double)(rce->i_tex_bits + rce->p_tex_bits + 1) / bits;
  75. }
  76. int ff_rate_control_init(MpegEncContext *s)
  77. {
  78. RateControlContext *rcc = &s->rc_context;
  79. int i, res;
  80. static const char * const const_names[] = {
  81. "PI",
  82. "E",
  83. "iTex",
  84. "pTex",
  85. "tex",
  86. "mv",
  87. "fCode",
  88. "iCount",
  89. "mcVar",
  90. "var",
  91. "isI",
  92. "isP",
  93. "isB",
  94. "avgQP",
  95. "qComp",
  96. #if 0
  97. "lastIQP",
  98. "lastPQP",
  99. "lastBQP",
  100. "nextNonBQP",
  101. #endif
  102. "avgIITex",
  103. "avgPITex",
  104. "avgPPTex",
  105. "avgBPTex",
  106. "avgTex",
  107. NULL
  108. };
  109. static double (* const func1[])(void *, double) = {
  110. (void *)bits2qp,
  111. (void *)qp2bits,
  112. NULL
  113. };
  114. static const char * const func1_names[] = {
  115. "bits2qp",
  116. "qp2bits",
  117. NULL
  118. };
  119. emms_c();
  120. if (!s->avctx->rc_max_available_vbv_use && s->avctx->rc_buffer_size) {
  121. if (s->avctx->rc_max_rate) {
  122. s->avctx->rc_max_available_vbv_use = av_clipf(s->avctx->rc_max_rate/(s->avctx->rc_buffer_size*get_fps(s->avctx)), 1.0/3, 1.0);
  123. } else
  124. s->avctx->rc_max_available_vbv_use = 1.0;
  125. }
  126. res = av_expr_parse(&rcc->rc_eq_eval,
  127. s->avctx->rc_eq ? s->avctx->rc_eq : "tex^qComp",
  128. const_names, func1_names, func1,
  129. NULL, NULL, 0, s->avctx);
  130. if (res < 0) {
  131. av_log(s->avctx, AV_LOG_ERROR, "Error parsing rc_eq \"%s\"\n", s->avctx->rc_eq);
  132. return res;
  133. }
  134. for (i = 0; i < 5; i++) {
  135. rcc->pred[i].coeff = FF_QP2LAMBDA * 7.0;
  136. rcc->pred[i].count = 1.0;
  137. rcc->pred[i].decay = 0.4;
  138. rcc->i_cplx_sum [i] =
  139. rcc->p_cplx_sum [i] =
  140. rcc->mv_bits_sum[i] =
  141. rcc->qscale_sum [i] =
  142. rcc->frame_count[i] = 1; // 1 is better because of 1/0 and such
  143. rcc->last_qscale_for[i] = FF_QP2LAMBDA * 5;
  144. }
  145. rcc->buffer_index = s->avctx->rc_initial_buffer_occupancy;
  146. if (!rcc->buffer_index)
  147. rcc->buffer_index = s->avctx->rc_buffer_size * 3 / 4;
  148. if (s->flags & CODEC_FLAG_PASS2) {
  149. int i;
  150. char *p;
  151. /* find number of pics */
  152. p = s->avctx->stats_in;
  153. for (i = -1; p; i++)
  154. p = strchr(p + 1, ';');
  155. i += s->max_b_frames;
  156. if (i <= 0 || i >= INT_MAX / sizeof(RateControlEntry))
  157. return -1;
  158. rcc->entry = av_mallocz(i * sizeof(RateControlEntry));
  159. rcc->num_entries = i;
  160. /* init all to skipped p frames
  161. * (with b frames we might have a not encoded frame at the end FIXME) */
  162. for (i = 0; i < rcc->num_entries; i++) {
  163. RateControlEntry *rce = &rcc->entry[i];
  164. rce->pict_type = rce->new_pict_type = AV_PICTURE_TYPE_P;
  165. rce->qscale = rce->new_qscale = FF_QP2LAMBDA * 2;
  166. rce->misc_bits = s->mb_num + 10;
  167. rce->mb_var_sum = s->mb_num * 100;
  168. }
  169. /* read stats */
  170. p = s->avctx->stats_in;
  171. for (i = 0; i < rcc->num_entries - s->max_b_frames; i++) {
  172. RateControlEntry *rce;
  173. int picture_number;
  174. int e;
  175. char *next;
  176. next = strchr(p, ';');
  177. if (next) {
  178. (*next) = 0; // sscanf in unbelievably slow on looong strings // FIXME copy / do not write
  179. next++;
  180. }
  181. e = sscanf(p, " in:%d ", &picture_number);
  182. assert(picture_number >= 0);
  183. assert(picture_number < rcc->num_entries);
  184. rce = &rcc->entry[picture_number];
  185. e += sscanf(p, " in:%*d out:%*d type:%d q:%f itex:%d ptex:%d mv:%d misc:%d fcode:%d bcode:%d mc-var:%d var:%d icount:%d skipcount:%d hbits:%d",
  186. &rce->pict_type, &rce->qscale, &rce->i_tex_bits, &rce->p_tex_bits,
  187. &rce->mv_bits, &rce->misc_bits,
  188. &rce->f_code, &rce->b_code,
  189. &rce->mc_mb_var_sum, &rce->mb_var_sum,
  190. &rce->i_count, &rce->skip_count, &rce->header_bits);
  191. if (e != 14) {
  192. av_log(s->avctx, AV_LOG_ERROR,
  193. "statistics are damaged at line %d, parser out=%d\n",
  194. i, e);
  195. return -1;
  196. }
  197. p = next;
  198. }
  199. if (init_pass2(s) < 0)
  200. return -1;
  201. // FIXME maybe move to end
  202. if ((s->flags & CODEC_FLAG_PASS2) && s->avctx->rc_strategy == FF_RC_STRATEGY_XVID) {
  203. #if CONFIG_LIBXVID
  204. return ff_xvid_rate_control_init(s);
  205. #else
  206. av_log(s->avctx, AV_LOG_ERROR,
  207. "Xvid ratecontrol requires libavcodec compiled with Xvid support.\n");
  208. return -1;
  209. #endif
  210. }
  211. }
  212. if (!(s->flags & CODEC_FLAG_PASS2)) {
  213. rcc->short_term_qsum = 0.001;
  214. rcc->short_term_qcount = 0.001;
  215. rcc->pass1_rc_eq_output_sum = 0.001;
  216. rcc->pass1_wanted_bits = 0.001;
  217. if (s->avctx->qblur > 1.0) {
  218. av_log(s->avctx, AV_LOG_ERROR, "qblur too large\n");
  219. return -1;
  220. }
  221. /* init stuff with the user specified complexity */
  222. if (s->avctx->rc_initial_cplx) {
  223. for (i = 0; i < 60 * 30; i++) {
  224. double bits = s->avctx->rc_initial_cplx * (i / 10000.0 + 1.0) * s->mb_num;
  225. RateControlEntry rce;
  226. if (i % ((s->gop_size + 3) / 4) == 0)
  227. rce.pict_type = AV_PICTURE_TYPE_I;
  228. else if (i % (s->max_b_frames + 1))
  229. rce.pict_type = AV_PICTURE_TYPE_B;
  230. else
  231. rce.pict_type = AV_PICTURE_TYPE_P;
  232. rce.new_pict_type = rce.pict_type;
  233. rce.mc_mb_var_sum = bits * s->mb_num / 100000;
  234. rce.mb_var_sum = s->mb_num;
  235. rce.qscale = FF_QP2LAMBDA * 2;
  236. rce.f_code = 2;
  237. rce.b_code = 1;
  238. rce.misc_bits = 1;
  239. if (s->pict_type == AV_PICTURE_TYPE_I) {
  240. rce.i_count = s->mb_num;
  241. rce.i_tex_bits = bits;
  242. rce.p_tex_bits = 0;
  243. rce.mv_bits = 0;
  244. } else {
  245. rce.i_count = 0; // FIXME we do know this approx
  246. rce.i_tex_bits = 0;
  247. rce.p_tex_bits = bits * 0.9;
  248. rce.mv_bits = bits * 0.1;
  249. }
  250. rcc->i_cplx_sum[rce.pict_type] += rce.i_tex_bits * rce.qscale;
  251. rcc->p_cplx_sum[rce.pict_type] += rce.p_tex_bits * rce.qscale;
  252. rcc->mv_bits_sum[rce.pict_type] += rce.mv_bits;
  253. rcc->frame_count[rce.pict_type]++;
  254. get_qscale(s, &rce, rcc->pass1_wanted_bits / rcc->pass1_rc_eq_output_sum, i);
  255. // FIXME misbehaves a little for variable fps
  256. rcc->pass1_wanted_bits += s->bit_rate / get_fps(s->avctx);
  257. }
  258. }
  259. }
  260. return 0;
  261. }
  262. void ff_rate_control_uninit(MpegEncContext *s)
  263. {
  264. RateControlContext *rcc = &s->rc_context;
  265. emms_c();
  266. av_expr_free(rcc->rc_eq_eval);
  267. av_freep(&rcc->entry);
  268. #if CONFIG_LIBXVID
  269. if ((s->flags & CODEC_FLAG_PASS2) && s->avctx->rc_strategy == FF_RC_STRATEGY_XVID)
  270. ff_xvid_rate_control_uninit(s);
  271. #endif
  272. }
  273. int ff_vbv_update(MpegEncContext *s, int frame_size)
  274. {
  275. RateControlContext *rcc = &s->rc_context;
  276. const double fps = get_fps(s->avctx);
  277. const int buffer_size = s->avctx->rc_buffer_size;
  278. const double min_rate = s->avctx->rc_min_rate / fps;
  279. const double max_rate = s->avctx->rc_max_rate / fps;
  280. av_dlog(s, "%d %f %d %f %f\n",
  281. buffer_size, rcc->buffer_index, frame_size, min_rate, max_rate);
  282. if (buffer_size) {
  283. int left;
  284. rcc->buffer_index -= frame_size;
  285. if (rcc->buffer_index < 0) {
  286. av_log(s->avctx, AV_LOG_ERROR, "rc buffer underflow\n");
  287. rcc->buffer_index = 0;
  288. }
  289. left = buffer_size - rcc->buffer_index - 1;
  290. rcc->buffer_index += av_clip(left, min_rate, max_rate);
  291. if (rcc->buffer_index > buffer_size) {
  292. int stuffing = ceil((rcc->buffer_index - buffer_size) / 8);
  293. if (stuffing < 4 && s->codec_id == AV_CODEC_ID_MPEG4)
  294. stuffing = 4;
  295. rcc->buffer_index -= 8 * stuffing;
  296. if (s->avctx->debug & FF_DEBUG_RC)
  297. av_log(s->avctx, AV_LOG_DEBUG, "stuffing %d bytes\n", stuffing);
  298. return stuffing;
  299. }
  300. }
  301. return 0;
  302. }
  303. /**
  304. * Modify the bitrate curve from pass1 for one frame.
  305. */
  306. static double get_qscale(MpegEncContext *s, RateControlEntry *rce,
  307. double rate_factor, int frame_num)
  308. {
  309. RateControlContext *rcc = &s->rc_context;
  310. AVCodecContext *a = s->avctx;
  311. const int pict_type = rce->new_pict_type;
  312. const double mb_num = s->mb_num;
  313. double q, bits;
  314. int i;
  315. double const_values[] = {
  316. M_PI,
  317. M_E,
  318. rce->i_tex_bits * rce->qscale,
  319. rce->p_tex_bits * rce->qscale,
  320. (rce->i_tex_bits + rce->p_tex_bits) * (double)rce->qscale,
  321. rce->mv_bits / mb_num,
  322. rce->pict_type == AV_PICTURE_TYPE_B ? (rce->f_code + rce->b_code) * 0.5 : rce->f_code,
  323. rce->i_count / mb_num,
  324. rce->mc_mb_var_sum / mb_num,
  325. rce->mb_var_sum / mb_num,
  326. rce->pict_type == AV_PICTURE_TYPE_I,
  327. rce->pict_type == AV_PICTURE_TYPE_P,
  328. rce->pict_type == AV_PICTURE_TYPE_B,
  329. rcc->qscale_sum[pict_type] / (double)rcc->frame_count[pict_type],
  330. a->qcompress,
  331. #if 0
  332. rcc->last_qscale_for[AV_PICTURE_TYPE_I],
  333. rcc->last_qscale_for[AV_PICTURE_TYPE_P],
  334. rcc->last_qscale_for[AV_PICTURE_TYPE_B],
  335. rcc->next_non_b_qscale,
  336. #endif
  337. rcc->i_cplx_sum[AV_PICTURE_TYPE_I] / (double)rcc->frame_count[AV_PICTURE_TYPE_I],
  338. rcc->i_cplx_sum[AV_PICTURE_TYPE_P] / (double)rcc->frame_count[AV_PICTURE_TYPE_P],
  339. rcc->p_cplx_sum[AV_PICTURE_TYPE_P] / (double)rcc->frame_count[AV_PICTURE_TYPE_P],
  340. rcc->p_cplx_sum[AV_PICTURE_TYPE_B] / (double)rcc->frame_count[AV_PICTURE_TYPE_B],
  341. (rcc->i_cplx_sum[pict_type] + rcc->p_cplx_sum[pict_type]) / (double)rcc->frame_count[pict_type],
  342. 0
  343. };
  344. bits = av_expr_eval(rcc->rc_eq_eval, const_values, rce);
  345. if (isnan(bits)) {
  346. av_log(s->avctx, AV_LOG_ERROR, "Error evaluating rc_eq \"%s\"\n", s->avctx->rc_eq);
  347. return -1;
  348. }
  349. rcc->pass1_rc_eq_output_sum += bits;
  350. bits *= rate_factor;
  351. if (bits < 0.0)
  352. bits = 0.0;
  353. bits += 1.0; // avoid 1/0 issues
  354. /* user override */
  355. for (i = 0; i < s->avctx->rc_override_count; i++) {
  356. RcOverride *rco = s->avctx->rc_override;
  357. if (rco[i].start_frame > frame_num)
  358. continue;
  359. if (rco[i].end_frame < frame_num)
  360. continue;
  361. if (rco[i].qscale)
  362. bits = qp2bits(rce, rco[i].qscale); // FIXME move at end to really force it?
  363. else
  364. bits *= rco[i].quality_factor;
  365. }
  366. q = bits2qp(rce, bits);
  367. /* I/B difference */
  368. if (pict_type == AV_PICTURE_TYPE_I && s->avctx->i_quant_factor < 0.0)
  369. q = -q * s->avctx->i_quant_factor + s->avctx->i_quant_offset;
  370. else if (pict_type == AV_PICTURE_TYPE_B && s->avctx->b_quant_factor < 0.0)
  371. q = -q * s->avctx->b_quant_factor + s->avctx->b_quant_offset;
  372. if (q < 1)
  373. q = 1;
  374. return q;
  375. }
  376. static double get_diff_limited_q(MpegEncContext *s, RateControlEntry *rce, double q)
  377. {
  378. RateControlContext *rcc = &s->rc_context;
  379. AVCodecContext *a = s->avctx;
  380. const int pict_type = rce->new_pict_type;
  381. const double last_p_q = rcc->last_qscale_for[AV_PICTURE_TYPE_P];
  382. const double last_non_b_q = rcc->last_qscale_for[rcc->last_non_b_pict_type];
  383. if (pict_type == AV_PICTURE_TYPE_I &&
  384. (a->i_quant_factor > 0.0 || rcc->last_non_b_pict_type == AV_PICTURE_TYPE_P))
  385. q = last_p_q * FFABS(a->i_quant_factor) + a->i_quant_offset;
  386. else if (pict_type == AV_PICTURE_TYPE_B &&
  387. a->b_quant_factor > 0.0)
  388. q = last_non_b_q * a->b_quant_factor + a->b_quant_offset;
  389. if (q < 1)
  390. q = 1;
  391. /* last qscale / qdiff stuff */
  392. if (rcc->last_non_b_pict_type == pict_type || pict_type != AV_PICTURE_TYPE_I) {
  393. double last_q = rcc->last_qscale_for[pict_type];
  394. const int maxdiff = FF_QP2LAMBDA * a->max_qdiff;
  395. if (q > last_q + maxdiff)
  396. q = last_q + maxdiff;
  397. else if (q < last_q - maxdiff)
  398. q = last_q - maxdiff;
  399. }
  400. rcc->last_qscale_for[pict_type] = q; // Note we cannot do that after blurring
  401. if (pict_type != AV_PICTURE_TYPE_B)
  402. rcc->last_non_b_pict_type = pict_type;
  403. return q;
  404. }
  405. /**
  406. * Get the qmin & qmax for pict_type.
  407. */
  408. static void get_qminmax(int *qmin_ret, int *qmax_ret, MpegEncContext *s, int pict_type)
  409. {
  410. int qmin = s->avctx->lmin;
  411. int qmax = s->avctx->lmax;
  412. assert(qmin <= qmax);
  413. switch (pict_type) {
  414. case AV_PICTURE_TYPE_B:
  415. qmin = (int)(qmin * FFABS(s->avctx->b_quant_factor) + s->avctx->b_quant_offset + 0.5);
  416. qmax = (int)(qmax * FFABS(s->avctx->b_quant_factor) + s->avctx->b_quant_offset + 0.5);
  417. break;
  418. case AV_PICTURE_TYPE_I:
  419. qmin = (int)(qmin * FFABS(s->avctx->i_quant_factor) + s->avctx->i_quant_offset + 0.5);
  420. qmax = (int)(qmax * FFABS(s->avctx->i_quant_factor) + s->avctx->i_quant_offset + 0.5);
  421. break;
  422. }
  423. qmin = av_clip(qmin, 1, FF_LAMBDA_MAX);
  424. qmax = av_clip(qmax, 1, FF_LAMBDA_MAX);
  425. if (qmax < qmin)
  426. qmax = qmin;
  427. *qmin_ret = qmin;
  428. *qmax_ret = qmax;
  429. }
  430. static double modify_qscale(MpegEncContext *s, RateControlEntry *rce,
  431. double q, int frame_num)
  432. {
  433. RateControlContext *rcc = &s->rc_context;
  434. const double buffer_size = s->avctx->rc_buffer_size;
  435. const double fps = get_fps(s->avctx);
  436. const double min_rate = s->avctx->rc_min_rate / fps;
  437. const double max_rate = s->avctx->rc_max_rate / fps;
  438. const int pict_type = rce->new_pict_type;
  439. int qmin, qmax;
  440. get_qminmax(&qmin, &qmax, s, pict_type);
  441. /* modulation */
  442. if (s->avctx->rc_qmod_freq &&
  443. frame_num % s->avctx->rc_qmod_freq == 0 &&
  444. pict_type == AV_PICTURE_TYPE_P)
  445. q *= s->avctx->rc_qmod_amp;
  446. /* buffer overflow/underflow protection */
  447. if (buffer_size) {
  448. double expected_size = rcc->buffer_index;
  449. double q_limit;
  450. if (min_rate) {
  451. double d = 2 * (buffer_size - expected_size) / buffer_size;
  452. if (d > 1.0)
  453. d = 1.0;
  454. else if (d < 0.0001)
  455. d = 0.0001;
  456. q *= pow(d, 1.0 / s->avctx->rc_buffer_aggressivity);
  457. q_limit = bits2qp(rce,
  458. FFMAX((min_rate - buffer_size + rcc->buffer_index) *
  459. s->avctx->rc_min_vbv_overflow_use, 1));
  460. if (q > q_limit) {
  461. if (s->avctx->debug & FF_DEBUG_RC)
  462. av_log(s->avctx, AV_LOG_DEBUG,
  463. "limiting QP %f -> %f\n", q, q_limit);
  464. q = q_limit;
  465. }
  466. }
  467. if (max_rate) {
  468. double d = 2 * expected_size / buffer_size;
  469. if (d > 1.0)
  470. d = 1.0;
  471. else if (d < 0.0001)
  472. d = 0.0001;
  473. q /= pow(d, 1.0 / s->avctx->rc_buffer_aggressivity);
  474. q_limit = bits2qp(rce,
  475. FFMAX(rcc->buffer_index *
  476. s->avctx->rc_max_available_vbv_use,
  477. 1));
  478. if (q < q_limit) {
  479. if (s->avctx->debug & FF_DEBUG_RC)
  480. av_log(s->avctx, AV_LOG_DEBUG,
  481. "limiting QP %f -> %f\n", q, q_limit);
  482. q = q_limit;
  483. }
  484. }
  485. }
  486. av_dlog(s, "q:%f max:%f min:%f size:%f index:%f agr:%f\n",
  487. q, max_rate, min_rate, buffer_size, rcc->buffer_index,
  488. s->avctx->rc_buffer_aggressivity);
  489. if (s->avctx->rc_qsquish == 0.0 || qmin == qmax) {
  490. if (q < qmin)
  491. q = qmin;
  492. else if (q > qmax)
  493. q = qmax;
  494. } else {
  495. double min2 = log(qmin);
  496. double max2 = log(qmax);
  497. q = log(q);
  498. q = (q - min2) / (max2 - min2) - 0.5;
  499. q *= -4.0;
  500. q = 1.0 / (1.0 + exp(q));
  501. q = q * (max2 - min2) + min2;
  502. q = exp(q);
  503. }
  504. return q;
  505. }
  506. // ----------------------------------
  507. // 1 Pass Code
  508. static double predict_size(Predictor *p, double q, double var)
  509. {
  510. return p->coeff * var / (q * p->count);
  511. }
  512. static void update_predictor(Predictor *p, double q, double var, double size)
  513. {
  514. double new_coeff = size * q / (var + 1);
  515. if (var < 10)
  516. return;
  517. p->count *= p->decay;
  518. p->coeff *= p->decay;
  519. p->count++;
  520. p->coeff += new_coeff;
  521. }
  522. static void adaptive_quantization(MpegEncContext *s, double q)
  523. {
  524. int i;
  525. const float lumi_masking = s->avctx->lumi_masking / (128.0 * 128.0);
  526. const float dark_masking = s->avctx->dark_masking / (128.0 * 128.0);
  527. const float temp_cplx_masking = s->avctx->temporal_cplx_masking;
  528. const float spatial_cplx_masking = s->avctx->spatial_cplx_masking;
  529. const float p_masking = s->avctx->p_masking;
  530. const float border_masking = s->avctx->border_masking;
  531. float bits_sum = 0.0;
  532. float cplx_sum = 0.0;
  533. float *cplx_tab = s->cplx_tab;
  534. float *bits_tab = s->bits_tab;
  535. const int qmin = s->avctx->mb_lmin;
  536. const int qmax = s->avctx->mb_lmax;
  537. Picture *const pic = &s->current_picture;
  538. const int mb_width = s->mb_width;
  539. const int mb_height = s->mb_height;
  540. for (i = 0; i < s->mb_num; i++) {
  541. const int mb_xy = s->mb_index2xy[i];
  542. float temp_cplx = sqrt(pic->mc_mb_var[mb_xy]); // FIXME merge in pow()
  543. float spat_cplx = sqrt(pic->mb_var[mb_xy]);
  544. const int lumi = pic->mb_mean[mb_xy];
  545. float bits, cplx, factor;
  546. int mb_x = mb_xy % s->mb_stride;
  547. int mb_y = mb_xy / s->mb_stride;
  548. int mb_distance;
  549. float mb_factor = 0.0;
  550. if (spat_cplx < 4)
  551. spat_cplx = 4; // FIXME finetune
  552. if (temp_cplx < 4)
  553. temp_cplx = 4; // FIXME finetune
  554. if ((s->mb_type[mb_xy] & CANDIDATE_MB_TYPE_INTRA)) { // FIXME hq mode
  555. cplx = spat_cplx;
  556. factor = 1.0 + p_masking;
  557. } else {
  558. cplx = temp_cplx;
  559. factor = pow(temp_cplx, -temp_cplx_masking);
  560. }
  561. factor *= pow(spat_cplx, -spatial_cplx_masking);
  562. if (lumi > 127)
  563. factor *= (1.0 - (lumi - 128) * (lumi - 128) * lumi_masking);
  564. else
  565. factor *= (1.0 - (lumi - 128) * (lumi - 128) * dark_masking);
  566. if (mb_x < mb_width / 5) {
  567. mb_distance = mb_width / 5 - mb_x;
  568. mb_factor = (float)mb_distance / (float)(mb_width / 5);
  569. } else if (mb_x > 4 * mb_width / 5) {
  570. mb_distance = mb_x - 4 * mb_width / 5;
  571. mb_factor = (float)mb_distance / (float)(mb_width / 5);
  572. }
  573. if (mb_y < mb_height / 5) {
  574. mb_distance = mb_height / 5 - mb_y;
  575. mb_factor = FFMAX(mb_factor,
  576. (float)mb_distance / (float)(mb_height / 5));
  577. } else if (mb_y > 4 * mb_height / 5) {
  578. mb_distance = mb_y - 4 * mb_height / 5;
  579. mb_factor = FFMAX(mb_factor,
  580. (float)mb_distance / (float)(mb_height / 5));
  581. }
  582. factor *= 1.0 - border_masking * mb_factor;
  583. if (factor < 0.00001)
  584. factor = 0.00001;
  585. bits = cplx * factor;
  586. cplx_sum += cplx;
  587. bits_sum += bits;
  588. cplx_tab[i] = cplx;
  589. bits_tab[i] = bits;
  590. }
  591. /* handle qmin/qmax clipping */
  592. if (s->flags & CODEC_FLAG_NORMALIZE_AQP) {
  593. float factor = bits_sum / cplx_sum;
  594. for (i = 0; i < s->mb_num; i++) {
  595. float newq = q * cplx_tab[i] / bits_tab[i];
  596. newq *= factor;
  597. if (newq > qmax) {
  598. bits_sum -= bits_tab[i];
  599. cplx_sum -= cplx_tab[i] * q / qmax;
  600. } else if (newq < qmin) {
  601. bits_sum -= bits_tab[i];
  602. cplx_sum -= cplx_tab[i] * q / qmin;
  603. }
  604. }
  605. if (bits_sum < 0.001)
  606. bits_sum = 0.001;
  607. if (cplx_sum < 0.001)
  608. cplx_sum = 0.001;
  609. }
  610. for (i = 0; i < s->mb_num; i++) {
  611. const int mb_xy = s->mb_index2xy[i];
  612. float newq = q * cplx_tab[i] / bits_tab[i];
  613. int intq;
  614. if (s->flags & CODEC_FLAG_NORMALIZE_AQP) {
  615. newq *= bits_sum / cplx_sum;
  616. }
  617. intq = (int)(newq + 0.5);
  618. if (intq > qmax)
  619. intq = qmax;
  620. else if (intq < qmin)
  621. intq = qmin;
  622. s->lambda_table[mb_xy] = intq;
  623. }
  624. }
  625. void ff_get_2pass_fcode(MpegEncContext *s)
  626. {
  627. RateControlContext *rcc = &s->rc_context;
  628. RateControlEntry *rce = &rcc->entry[s->picture_number];
  629. s->f_code = rce->f_code;
  630. s->b_code = rce->b_code;
  631. }
  632. // FIXME rd or at least approx for dquant
  633. float ff_rate_estimate_qscale(MpegEncContext *s, int dry_run)
  634. {
  635. float q;
  636. int qmin, qmax;
  637. float br_compensation;
  638. double diff;
  639. double short_term_q;
  640. double fps;
  641. int picture_number = s->picture_number;
  642. int64_t wanted_bits;
  643. RateControlContext *rcc = &s->rc_context;
  644. AVCodecContext *a = s->avctx;
  645. RateControlEntry local_rce, *rce;
  646. double bits;
  647. double rate_factor;
  648. int var;
  649. const int pict_type = s->pict_type;
  650. Picture * const pic = &s->current_picture;
  651. emms_c();
  652. #if CONFIG_LIBXVID
  653. if ((s->flags & CODEC_FLAG_PASS2) &&
  654. s->avctx->rc_strategy == FF_RC_STRATEGY_XVID)
  655. return ff_xvid_rate_estimate_qscale(s, dry_run);
  656. #endif
  657. get_qminmax(&qmin, &qmax, s, pict_type);
  658. fps = get_fps(s->avctx);
  659. /* update predictors */
  660. if (picture_number > 2 && !dry_run) {
  661. const int last_var = s->last_pict_type == AV_PICTURE_TYPE_I ? rcc->last_mb_var_sum
  662. : rcc->last_mc_mb_var_sum;
  663. av_assert1(s->frame_bits >= s->stuffing_bits);
  664. update_predictor(&rcc->pred[s->last_pict_type],
  665. rcc->last_qscale,
  666. sqrt(last_var),
  667. s->frame_bits - s->stuffing_bits);
  668. }
  669. if (s->flags & CODEC_FLAG_PASS2) {
  670. assert(picture_number >= 0);
  671. if (picture_number >= rcc->num_entries) {
  672. av_log(s, AV_LOG_ERROR, "Input is longer than 2-pass log file\n");
  673. return -1;
  674. }
  675. rce = &rcc->entry[picture_number];
  676. wanted_bits = rce->expected_bits;
  677. } else {
  678. Picture *dts_pic;
  679. rce = &local_rce;
  680. /* FIXME add a dts field to AVFrame and ensure it is set and use it
  681. * here instead of reordering but the reordering is simpler for now
  682. * until H.264 B-pyramid must be handled. */
  683. if (s->pict_type == AV_PICTURE_TYPE_B || s->low_delay)
  684. dts_pic = s->current_picture_ptr;
  685. else
  686. dts_pic = s->last_picture_ptr;
  687. if (!dts_pic || dts_pic->f.pts == AV_NOPTS_VALUE)
  688. wanted_bits = (uint64_t)(s->bit_rate * (double)picture_number / fps);
  689. else
  690. wanted_bits = (uint64_t)(s->bit_rate * (double)dts_pic->f.pts / fps);
  691. }
  692. diff = s->total_bits - wanted_bits;
  693. br_compensation = (a->bit_rate_tolerance - diff) / a->bit_rate_tolerance;
  694. if (br_compensation <= 0.0)
  695. br_compensation = 0.001;
  696. var = pict_type == AV_PICTURE_TYPE_I ? pic->mb_var_sum : pic->mc_mb_var_sum;
  697. short_term_q = 0; /* avoid warning */
  698. if (s->flags & CODEC_FLAG_PASS2) {
  699. if (pict_type != AV_PICTURE_TYPE_I)
  700. assert(pict_type == rce->new_pict_type);
  701. q = rce->new_qscale / br_compensation;
  702. av_dlog(s, "%f %f %f last:%d var:%d type:%d//\n", q, rce->new_qscale,
  703. br_compensation, s->frame_bits, var, pict_type);
  704. } else {
  705. rce->pict_type =
  706. rce->new_pict_type = pict_type;
  707. rce->mc_mb_var_sum = pic->mc_mb_var_sum;
  708. rce->mb_var_sum = pic->mb_var_sum;
  709. rce->qscale = FF_QP2LAMBDA * 2;
  710. rce->f_code = s->f_code;
  711. rce->b_code = s->b_code;
  712. rce->misc_bits = 1;
  713. bits = predict_size(&rcc->pred[pict_type], rce->qscale, sqrt(var));
  714. if (pict_type == AV_PICTURE_TYPE_I) {
  715. rce->i_count = s->mb_num;
  716. rce->i_tex_bits = bits;
  717. rce->p_tex_bits = 0;
  718. rce->mv_bits = 0;
  719. } else {
  720. rce->i_count = 0; // FIXME we do know this approx
  721. rce->i_tex_bits = 0;
  722. rce->p_tex_bits = bits * 0.9;
  723. rce->mv_bits = bits * 0.1;
  724. }
  725. rcc->i_cplx_sum[pict_type] += rce->i_tex_bits * rce->qscale;
  726. rcc->p_cplx_sum[pict_type] += rce->p_tex_bits * rce->qscale;
  727. rcc->mv_bits_sum[pict_type] += rce->mv_bits;
  728. rcc->frame_count[pict_type]++;
  729. bits = rce->i_tex_bits + rce->p_tex_bits;
  730. rate_factor = rcc->pass1_wanted_bits /
  731. rcc->pass1_rc_eq_output_sum * br_compensation;
  732. q = get_qscale(s, rce, rate_factor, picture_number);
  733. if (q < 0)
  734. return -1;
  735. assert(q > 0.0);
  736. q = get_diff_limited_q(s, rce, q);
  737. assert(q > 0.0);
  738. // FIXME type dependent blur like in 2-pass
  739. if (pict_type == AV_PICTURE_TYPE_P || s->intra_only) {
  740. rcc->short_term_qsum *= a->qblur;
  741. rcc->short_term_qcount *= a->qblur;
  742. rcc->short_term_qsum += q;
  743. rcc->short_term_qcount++;
  744. q = short_term_q = rcc->short_term_qsum / rcc->short_term_qcount;
  745. }
  746. assert(q > 0.0);
  747. q = modify_qscale(s, rce, q, picture_number);
  748. rcc->pass1_wanted_bits += s->bit_rate / fps;
  749. assert(q > 0.0);
  750. }
  751. if (s->avctx->debug & FF_DEBUG_RC) {
  752. av_log(s->avctx, AV_LOG_DEBUG,
  753. "%c qp:%d<%2.1f<%d %d want:%d total:%d comp:%f st_q:%2.2f "
  754. "size:%d var:%d/%d br:%d fps:%d\n",
  755. av_get_picture_type_char(pict_type),
  756. qmin, q, qmax, picture_number,
  757. (int)wanted_bits / 1000, (int)s->total_bits / 1000,
  758. br_compensation, short_term_q, s->frame_bits,
  759. pic->mb_var_sum, pic->mc_mb_var_sum,
  760. s->bit_rate / 1000, (int)fps);
  761. }
  762. if (q < qmin)
  763. q = qmin;
  764. else if (q > qmax)
  765. q = qmax;
  766. if (s->adaptive_quant)
  767. adaptive_quantization(s, q);
  768. else
  769. q = (int)(q + 0.5);
  770. if (!dry_run) {
  771. rcc->last_qscale = q;
  772. rcc->last_mc_mb_var_sum = pic->mc_mb_var_sum;
  773. rcc->last_mb_var_sum = pic->mb_var_sum;
  774. }
  775. return q;
  776. }
  777. // ----------------------------------------------
  778. // 2-Pass code
  779. static int init_pass2(MpegEncContext *s)
  780. {
  781. RateControlContext *rcc = &s->rc_context;
  782. AVCodecContext *a = s->avctx;
  783. int i, toobig;
  784. double fps = get_fps(s->avctx);
  785. double complexity[5] = { 0 }; // approximate bits at quant=1
  786. uint64_t const_bits[5] = { 0 }; // quantizer independent bits
  787. uint64_t all_const_bits;
  788. uint64_t all_available_bits = (uint64_t)(s->bit_rate *
  789. (double)rcc->num_entries / fps);
  790. double rate_factor = 0;
  791. double step;
  792. const int filter_size = (int)(a->qblur * 4) | 1;
  793. double expected_bits;
  794. double *qscale, *blurred_qscale, qscale_sum;
  795. /* find complexity & const_bits & decide the pict_types */
  796. for (i = 0; i < rcc->num_entries; i++) {
  797. RateControlEntry *rce = &rcc->entry[i];
  798. rce->new_pict_type = rce->pict_type;
  799. rcc->i_cplx_sum[rce->pict_type] += rce->i_tex_bits * rce->qscale;
  800. rcc->p_cplx_sum[rce->pict_type] += rce->p_tex_bits * rce->qscale;
  801. rcc->mv_bits_sum[rce->pict_type] += rce->mv_bits;
  802. rcc->frame_count[rce->pict_type]++;
  803. complexity[rce->new_pict_type] += (rce->i_tex_bits + rce->p_tex_bits) *
  804. (double)rce->qscale;
  805. const_bits[rce->new_pict_type] += rce->mv_bits + rce->misc_bits;
  806. }
  807. all_const_bits = const_bits[AV_PICTURE_TYPE_I] +
  808. const_bits[AV_PICTURE_TYPE_P] +
  809. const_bits[AV_PICTURE_TYPE_B];
  810. if (all_available_bits < all_const_bits) {
  811. av_log(s->avctx, AV_LOG_ERROR, "requested bitrate is too low\n");
  812. return -1;
  813. }
  814. qscale = av_malloc(sizeof(double) * rcc->num_entries);
  815. blurred_qscale = av_malloc(sizeof(double) * rcc->num_entries);
  816. toobig = 0;
  817. for (step = 256 * 256; step > 0.0000001; step *= 0.5) {
  818. expected_bits = 0;
  819. rate_factor += step;
  820. rcc->buffer_index = s->avctx->rc_buffer_size / 2;
  821. /* find qscale */
  822. for (i = 0; i < rcc->num_entries; i++) {
  823. RateControlEntry *rce = &rcc->entry[i];
  824. qscale[i] = get_qscale(s, &rcc->entry[i], rate_factor, i);
  825. rcc->last_qscale_for[rce->pict_type] = qscale[i];
  826. }
  827. assert(filter_size % 2 == 1);
  828. /* fixed I/B QP relative to P mode */
  829. for (i = FFMAX(0, rcc->num_entries - 300); i < rcc->num_entries; i++) {
  830. RateControlEntry *rce = &rcc->entry[i];
  831. qscale[i] = get_diff_limited_q(s, rce, qscale[i]);
  832. }
  833. for (i = rcc->num_entries - 1; i >= 0; i--) {
  834. RateControlEntry *rce = &rcc->entry[i];
  835. qscale[i] = get_diff_limited_q(s, rce, qscale[i]);
  836. }
  837. /* smooth curve */
  838. for (i = 0; i < rcc->num_entries; i++) {
  839. RateControlEntry *rce = &rcc->entry[i];
  840. const int pict_type = rce->new_pict_type;
  841. int j;
  842. double q = 0.0, sum = 0.0;
  843. for (j = 0; j < filter_size; j++) {
  844. int index = i + j - filter_size / 2;
  845. double d = index - i;
  846. double coeff = a->qblur == 0 ? 1.0 : exp(-d * d / (a->qblur * a->qblur));
  847. if (index < 0 || index >= rcc->num_entries)
  848. continue;
  849. if (pict_type != rcc->entry[index].new_pict_type)
  850. continue;
  851. q += qscale[index] * coeff;
  852. sum += coeff;
  853. }
  854. blurred_qscale[i] = q / sum;
  855. }
  856. /* find expected bits */
  857. for (i = 0; i < rcc->num_entries; i++) {
  858. RateControlEntry *rce = &rcc->entry[i];
  859. double bits;
  860. rce->new_qscale = modify_qscale(s, rce, blurred_qscale[i], i);
  861. bits = qp2bits(rce, rce->new_qscale) + rce->mv_bits + rce->misc_bits;
  862. bits += 8 * ff_vbv_update(s, bits);
  863. rce->expected_bits = expected_bits;
  864. expected_bits += bits;
  865. }
  866. av_dlog(s->avctx,
  867. "expected_bits: %f all_available_bits: %d rate_factor: %f\n",
  868. expected_bits, (int)all_available_bits, rate_factor);
  869. if (expected_bits > all_available_bits) {
  870. rate_factor -= step;
  871. ++toobig;
  872. }
  873. }
  874. av_free(qscale);
  875. av_free(blurred_qscale);
  876. /* check bitrate calculations and print info */
  877. qscale_sum = 0.0;
  878. for (i = 0; i < rcc->num_entries; i++) {
  879. av_dlog(s, "[lavc rc] entry[%d].new_qscale = %.3f qp = %.3f\n",
  880. i,
  881. rcc->entry[i].new_qscale,
  882. rcc->entry[i].new_qscale / FF_QP2LAMBDA);
  883. qscale_sum += av_clip(rcc->entry[i].new_qscale / FF_QP2LAMBDA,
  884. s->avctx->qmin, s->avctx->qmax);
  885. }
  886. assert(toobig <= 40);
  887. av_log(s->avctx, AV_LOG_DEBUG,
  888. "[lavc rc] requested bitrate: %d bps expected bitrate: %d bps\n",
  889. s->bit_rate,
  890. (int)(expected_bits / ((double)all_available_bits / s->bit_rate)));
  891. av_log(s->avctx, AV_LOG_DEBUG,
  892. "[lavc rc] estimated target average qp: %.3f\n",
  893. (float)qscale_sum / rcc->num_entries);
  894. if (toobig == 0) {
  895. av_log(s->avctx, AV_LOG_INFO,
  896. "[lavc rc] Using all of requested bitrate is not "
  897. "necessary for this video with these parameters.\n");
  898. } else if (toobig == 40) {
  899. av_log(s->avctx, AV_LOG_ERROR,
  900. "[lavc rc] Error: bitrate too low for this video "
  901. "with these parameters.\n");
  902. return -1;
  903. } else if (fabs(expected_bits / all_available_bits - 1.0) > 0.01) {
  904. av_log(s->avctx, AV_LOG_ERROR,
  905. "[lavc rc] Error: 2pass curve failed to converge\n");
  906. return -1;
  907. }
  908. return 0;
  909. }