You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1152 lines
41KB

  1. /*
  2. * Indeo Video v3 compatible decoder
  3. * Copyright (c) 2009 - 2011 Maxim Poliakovski
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file
  23. * This is a decoder for Intel Indeo Video v3.
  24. * It is based on vector quantization, run-length coding and motion compensation.
  25. * Known container formats: .avi and .mov
  26. * Known FOURCCs: 'IV31', 'IV32'
  27. *
  28. * @see http://wiki.multimedia.cx/index.php?title=Indeo_3
  29. */
  30. #include "libavutil/imgutils.h"
  31. #include "libavutil/intreadwrite.h"
  32. #include "avcodec.h"
  33. #include "copy_block.h"
  34. #include "dsputil.h"
  35. #include "bytestream.h"
  36. #include "get_bits.h"
  37. #include "internal.h"
  38. #include "indeo3data.h"
  39. /* RLE opcodes. */
  40. enum {
  41. RLE_ESC_F9 = 249, ///< same as RLE_ESC_FA + do the same with next block
  42. RLE_ESC_FA = 250, ///< INTRA: skip block, INTER: copy data from reference
  43. RLE_ESC_FB = 251, ///< apply null delta to N blocks / skip N blocks
  44. RLE_ESC_FC = 252, ///< same as RLE_ESC_FD + do the same with next block
  45. RLE_ESC_FD = 253, ///< apply null delta to all remaining lines of this block
  46. RLE_ESC_FE = 254, ///< apply null delta to all lines up to the 3rd line
  47. RLE_ESC_FF = 255 ///< apply null delta to all lines up to the 2nd line
  48. };
  49. /* Some constants for parsing frame bitstream flags. */
  50. #define BS_8BIT_PEL (1 << 1) ///< 8bit pixel bitdepth indicator
  51. #define BS_KEYFRAME (1 << 2) ///< intra frame indicator
  52. #define BS_MV_Y_HALF (1 << 4) ///< vertical mv halfpel resolution indicator
  53. #define BS_MV_X_HALF (1 << 5) ///< horizontal mv halfpel resolution indicator
  54. #define BS_NONREF (1 << 8) ///< nonref (discardable) frame indicator
  55. #define BS_BUFFER 9 ///< indicates which of two frame buffers should be used
  56. typedef struct Plane {
  57. uint8_t *buffers[2];
  58. uint8_t *pixels[2]; ///< pointer to the actual pixel data of the buffers above
  59. uint32_t width;
  60. uint32_t height;
  61. uint32_t pitch;
  62. } Plane;
  63. #define CELL_STACK_MAX 20
  64. typedef struct Cell {
  65. int16_t xpos; ///< cell coordinates in 4x4 blocks
  66. int16_t ypos;
  67. int16_t width; ///< cell width in 4x4 blocks
  68. int16_t height; ///< cell height in 4x4 blocks
  69. uint8_t tree; ///< tree id: 0- MC tree, 1 - VQ tree
  70. const int8_t *mv_ptr; ///< ptr to the motion vector if any
  71. } Cell;
  72. typedef struct Indeo3DecodeContext {
  73. AVCodecContext *avctx;
  74. AVFrame frame;
  75. DSPContext dsp;
  76. GetBitContext gb;
  77. int need_resync;
  78. int skip_bits;
  79. const uint8_t *next_cell_data;
  80. const uint8_t *last_byte;
  81. const int8_t *mc_vectors;
  82. unsigned num_vectors; ///< number of motion vectors in mc_vectors
  83. int16_t width, height;
  84. uint32_t frame_num; ///< current frame number (zero-based)
  85. uint32_t data_size; ///< size of the frame data in bytes
  86. uint16_t frame_flags; ///< frame properties
  87. uint8_t cb_offset; ///< needed for selecting VQ tables
  88. uint8_t buf_sel; ///< active frame buffer: 0 - primary, 1 -secondary
  89. const uint8_t *y_data_ptr;
  90. const uint8_t *v_data_ptr;
  91. const uint8_t *u_data_ptr;
  92. int32_t y_data_size;
  93. int32_t v_data_size;
  94. int32_t u_data_size;
  95. const uint8_t *alt_quant; ///< secondary VQ table set for the modes 1 and 4
  96. Plane planes[3];
  97. } Indeo3DecodeContext;
  98. static uint8_t requant_tab[8][128];
  99. /*
  100. * Build the static requantization table.
  101. * This table is used to remap pixel values according to a specific
  102. * quant index and thus avoid overflows while adding deltas.
  103. */
  104. static av_cold void build_requant_tab(void)
  105. {
  106. static int8_t offsets[8] = { 1, 1, 2, -3, -3, 3, 4, 4 };
  107. static int8_t deltas [8] = { 0, 1, 0, 4, 4, 1, 0, 1 };
  108. int i, j, step;
  109. for (i = 0; i < 8; i++) {
  110. step = i + 2;
  111. for (j = 0; j < 128; j++)
  112. requant_tab[i][j] = (j + offsets[i]) / step * step + deltas[i];
  113. }
  114. /* some last elements calculated above will have values >= 128 */
  115. /* pixel values shall never exceed 127 so set them to non-overflowing values */
  116. /* according with the quantization step of the respective section */
  117. requant_tab[0][127] = 126;
  118. requant_tab[1][119] = 118;
  119. requant_tab[1][120] = 118;
  120. requant_tab[2][126] = 124;
  121. requant_tab[2][127] = 124;
  122. requant_tab[6][124] = 120;
  123. requant_tab[6][125] = 120;
  124. requant_tab[6][126] = 120;
  125. requant_tab[6][127] = 120;
  126. /* Patch for compatibility with the Intel's binary decoders */
  127. requant_tab[1][7] = 10;
  128. requant_tab[4][8] = 10;
  129. }
  130. static av_cold int allocate_frame_buffers(Indeo3DecodeContext *ctx,
  131. AVCodecContext *avctx, int luma_width, int luma_height)
  132. {
  133. int p, chroma_width, chroma_height;
  134. int luma_pitch, chroma_pitch, luma_size, chroma_size;
  135. if (luma_width < 16 || luma_width > 640 ||
  136. luma_height < 16 || luma_height > 480 ||
  137. luma_width & 3 || luma_height & 3) {
  138. av_log(avctx, AV_LOG_ERROR, "Invalid picture dimensions: %d x %d!\n",
  139. luma_width, luma_height);
  140. return AVERROR_INVALIDDATA;
  141. }
  142. ctx->width = luma_width ;
  143. ctx->height = luma_height;
  144. chroma_width = FFALIGN(luma_width >> 2, 4);
  145. chroma_height = FFALIGN(luma_height >> 2, 4);
  146. luma_pitch = FFALIGN(luma_width, 16);
  147. chroma_pitch = FFALIGN(chroma_width, 16);
  148. /* Calculate size of the luminance plane. */
  149. /* Add one line more for INTRA prediction. */
  150. luma_size = luma_pitch * (luma_height + 1);
  151. /* Calculate size of a chrominance planes. */
  152. /* Add one line more for INTRA prediction. */
  153. chroma_size = chroma_pitch * (chroma_height + 1);
  154. /* allocate frame buffers */
  155. for (p = 0; p < 3; p++) {
  156. ctx->planes[p].pitch = !p ? luma_pitch : chroma_pitch;
  157. ctx->planes[p].width = !p ? luma_width : chroma_width;
  158. ctx->planes[p].height = !p ? luma_height : chroma_height;
  159. ctx->planes[p].buffers[0] = av_malloc(!p ? luma_size : chroma_size);
  160. ctx->planes[p].buffers[1] = av_malloc(!p ? luma_size : chroma_size);
  161. /* fill the INTRA prediction lines with the middle pixel value = 64 */
  162. memset(ctx->planes[p].buffers[0], 0x40, ctx->planes[p].pitch);
  163. memset(ctx->planes[p].buffers[1], 0x40, ctx->planes[p].pitch);
  164. /* set buffer pointers = buf_ptr + pitch and thus skip the INTRA prediction line */
  165. ctx->planes[p].pixels[0] = ctx->planes[p].buffers[0] + ctx->planes[p].pitch;
  166. ctx->planes[p].pixels[1] = ctx->planes[p].buffers[1] + ctx->planes[p].pitch;
  167. memset(ctx->planes[p].pixels[0], 0, ctx->planes[p].pitch * ctx->planes[p].height);
  168. memset(ctx->planes[p].pixels[1], 0, ctx->planes[p].pitch * ctx->planes[p].height);
  169. }
  170. return 0;
  171. }
  172. static av_cold void free_frame_buffers(Indeo3DecodeContext *ctx)
  173. {
  174. int p;
  175. ctx->width=
  176. ctx->height= 0;
  177. for (p = 0; p < 3; p++) {
  178. av_freep(&ctx->planes[p].buffers[0]);
  179. av_freep(&ctx->planes[p].buffers[1]);
  180. ctx->planes[p].pixels[0] = ctx->planes[p].pixels[1] = 0;
  181. }
  182. }
  183. /**
  184. * Copy pixels of the cell(x + mv_x, y + mv_y) from the previous frame into
  185. * the cell(x, y) in the current frame.
  186. *
  187. * @param ctx pointer to the decoder context
  188. * @param plane pointer to the plane descriptor
  189. * @param cell pointer to the cell descriptor
  190. */
  191. static void copy_cell(Indeo3DecodeContext *ctx, Plane *plane, Cell *cell)
  192. {
  193. int h, w, mv_x, mv_y, offset, offset_dst;
  194. uint8_t *src, *dst;
  195. /* setup output and reference pointers */
  196. offset_dst = (cell->ypos << 2) * plane->pitch + (cell->xpos << 2);
  197. dst = plane->pixels[ctx->buf_sel] + offset_dst;
  198. if(cell->mv_ptr){
  199. mv_y = cell->mv_ptr[0];
  200. mv_x = cell->mv_ptr[1];
  201. }else
  202. mv_x= mv_y= 0;
  203. offset = offset_dst + mv_y * plane->pitch + mv_x;
  204. src = plane->pixels[ctx->buf_sel ^ 1] + offset;
  205. h = cell->height << 2;
  206. for (w = cell->width; w > 0;) {
  207. /* copy using 16xH blocks */
  208. if (!((cell->xpos << 2) & 15) && w >= 4) {
  209. for (; w >= 4; src += 16, dst += 16, w -= 4)
  210. ctx->dsp.put_no_rnd_pixels_tab[0][0](dst, src, plane->pitch, h);
  211. }
  212. /* copy using 8xH blocks */
  213. if (!((cell->xpos << 2) & 7) && w >= 2) {
  214. ctx->dsp.put_no_rnd_pixels_tab[1][0](dst, src, plane->pitch, h);
  215. w -= 2;
  216. src += 8;
  217. dst += 8;
  218. }
  219. if (w >= 1) {
  220. copy_block4(dst, src, plane->pitch, plane->pitch, h);
  221. w--;
  222. src += 4;
  223. dst += 4;
  224. }
  225. }
  226. }
  227. /* Average 4/8 pixels at once without rounding using SWAR */
  228. #define AVG_32(dst, src, ref) \
  229. AV_WN32A(dst, ((AV_RN32A(src) + AV_RN32A(ref)) >> 1) & 0x7F7F7F7FUL)
  230. #define AVG_64(dst, src, ref) \
  231. AV_WN64A(dst, ((AV_RN64A(src) + AV_RN64A(ref)) >> 1) & 0x7F7F7F7F7F7F7F7FULL)
  232. /*
  233. * Replicate each even pixel as follows:
  234. * ABCDEFGH -> AACCEEGG
  235. */
  236. static inline uint64_t replicate64(uint64_t a) {
  237. #if HAVE_BIGENDIAN
  238. a &= 0xFF00FF00FF00FF00ULL;
  239. a |= a >> 8;
  240. #else
  241. a &= 0x00FF00FF00FF00FFULL;
  242. a |= a << 8;
  243. #endif
  244. return a;
  245. }
  246. static inline uint32_t replicate32(uint32_t a) {
  247. #if HAVE_BIGENDIAN
  248. a &= 0xFF00FF00UL;
  249. a |= a >> 8;
  250. #else
  251. a &= 0x00FF00FFUL;
  252. a |= a << 8;
  253. #endif
  254. return a;
  255. }
  256. /* Fill n lines with 64bit pixel value pix */
  257. static inline void fill_64(uint8_t *dst, const uint64_t pix, int32_t n,
  258. int32_t row_offset)
  259. {
  260. for (; n > 0; dst += row_offset, n--)
  261. AV_WN64A(dst, pix);
  262. }
  263. /* Error codes for cell decoding. */
  264. enum {
  265. IV3_NOERR = 0,
  266. IV3_BAD_RLE = 1,
  267. IV3_BAD_DATA = 2,
  268. IV3_BAD_COUNTER = 3,
  269. IV3_UNSUPPORTED = 4,
  270. IV3_OUT_OF_DATA = 5
  271. };
  272. #define BUFFER_PRECHECK \
  273. if (*data_ptr >= last_ptr) \
  274. return IV3_OUT_OF_DATA; \
  275. #define RLE_BLOCK_COPY \
  276. if (cell->mv_ptr || !skip_flag) \
  277. copy_block4(dst, ref, row_offset, row_offset, 4 << v_zoom)
  278. #define RLE_BLOCK_COPY_8 \
  279. pix64 = AV_RN64A(ref);\
  280. if (is_first_row) {/* special prediction case: top line of a cell */\
  281. pix64 = replicate64(pix64);\
  282. fill_64(dst + row_offset, pix64, 7, row_offset);\
  283. AVG_64(dst, ref, dst + row_offset);\
  284. } else \
  285. fill_64(dst, pix64, 8, row_offset)
  286. #define RLE_LINES_COPY \
  287. copy_block4(dst, ref, row_offset, row_offset, num_lines << v_zoom)
  288. #define RLE_LINES_COPY_M10 \
  289. pix64 = AV_RN64A(ref);\
  290. if (is_top_of_cell) {\
  291. pix64 = replicate64(pix64);\
  292. fill_64(dst + row_offset, pix64, (num_lines << 1) - 1, row_offset);\
  293. AVG_64(dst, ref, dst + row_offset);\
  294. } else \
  295. fill_64(dst, pix64, num_lines << 1, row_offset)
  296. #define APPLY_DELTA_4 \
  297. AV_WN16A(dst + line_offset ,\
  298. (AV_RN16A(ref ) + delta_tab->deltas[dyad1]) & 0x7F7F);\
  299. AV_WN16A(dst + line_offset + 2,\
  300. (AV_RN16A(ref + 2) + delta_tab->deltas[dyad2]) & 0x7F7F);\
  301. if (mode >= 3) {\
  302. if (is_top_of_cell && !cell->ypos) {\
  303. AV_COPY32(dst, dst + row_offset);\
  304. } else {\
  305. AVG_32(dst, ref, dst + row_offset);\
  306. }\
  307. }
  308. #define APPLY_DELTA_8 \
  309. /* apply two 32-bit VQ deltas to next even line */\
  310. if (is_top_of_cell) { \
  311. AV_WN32A(dst + row_offset , \
  312. (replicate32(AV_RN32A(ref )) + delta_tab->deltas_m10[dyad1]) & 0x7F7F7F7F);\
  313. AV_WN32A(dst + row_offset + 4, \
  314. (replicate32(AV_RN32A(ref + 4)) + delta_tab->deltas_m10[dyad2]) & 0x7F7F7F7F);\
  315. } else { \
  316. AV_WN32A(dst + row_offset , \
  317. (AV_RN32A(ref ) + delta_tab->deltas_m10[dyad1]) & 0x7F7F7F7F);\
  318. AV_WN32A(dst + row_offset + 4, \
  319. (AV_RN32A(ref + 4) + delta_tab->deltas_m10[dyad2]) & 0x7F7F7F7F);\
  320. } \
  321. /* odd lines are not coded but rather interpolated/replicated */\
  322. /* first line of the cell on the top of image? - replicate */\
  323. /* otherwise - interpolate */\
  324. if (is_top_of_cell && !cell->ypos) {\
  325. AV_COPY64(dst, dst + row_offset);\
  326. } else \
  327. AVG_64(dst, ref, dst + row_offset);
  328. #define APPLY_DELTA_1011_INTER \
  329. if (mode == 10) { \
  330. AV_WN32A(dst , \
  331. (AV_RN32A(dst ) + delta_tab->deltas_m10[dyad1]) & 0x7F7F7F7F);\
  332. AV_WN32A(dst + 4 , \
  333. (AV_RN32A(dst + 4 ) + delta_tab->deltas_m10[dyad2]) & 0x7F7F7F7F);\
  334. AV_WN32A(dst + row_offset , \
  335. (AV_RN32A(dst + row_offset ) + delta_tab->deltas_m10[dyad1]) & 0x7F7F7F7F);\
  336. AV_WN32A(dst + row_offset + 4, \
  337. (AV_RN32A(dst + row_offset + 4) + delta_tab->deltas_m10[dyad2]) & 0x7F7F7F7F);\
  338. } else { \
  339. AV_WN16A(dst , \
  340. (AV_RN16A(dst ) + delta_tab->deltas[dyad1]) & 0x7F7F);\
  341. AV_WN16A(dst + 2 , \
  342. (AV_RN16A(dst + 2 ) + delta_tab->deltas[dyad2]) & 0x7F7F);\
  343. AV_WN16A(dst + row_offset , \
  344. (AV_RN16A(dst + row_offset ) + delta_tab->deltas[dyad1]) & 0x7F7F);\
  345. AV_WN16A(dst + row_offset + 2, \
  346. (AV_RN16A(dst + row_offset + 2) + delta_tab->deltas[dyad2]) & 0x7F7F);\
  347. }
  348. static int decode_cell_data(Indeo3DecodeContext *ctx, Cell *cell,
  349. uint8_t *block, uint8_t *ref_block,
  350. int pitch, int h_zoom, int v_zoom, int mode,
  351. const vqEntry *delta[2], int swap_quads[2],
  352. const uint8_t **data_ptr, const uint8_t *last_ptr)
  353. {
  354. int x, y, line, num_lines;
  355. int rle_blocks = 0;
  356. uint8_t code, *dst, *ref;
  357. const vqEntry *delta_tab;
  358. unsigned int dyad1, dyad2;
  359. uint64_t pix64;
  360. int skip_flag = 0, is_top_of_cell, is_first_row = 1;
  361. int row_offset, blk_row_offset, line_offset;
  362. row_offset = pitch;
  363. blk_row_offset = (row_offset << (2 + v_zoom)) - (cell->width << 2);
  364. line_offset = v_zoom ? row_offset : 0;
  365. if (cell->height & v_zoom || cell->width & h_zoom)
  366. return IV3_BAD_DATA;
  367. for (y = 0; y < cell->height; is_first_row = 0, y += 1 + v_zoom) {
  368. for (x = 0; x < cell->width; x += 1 + h_zoom) {
  369. ref = ref_block;
  370. dst = block;
  371. if (rle_blocks > 0) {
  372. if (mode <= 4) {
  373. RLE_BLOCK_COPY;
  374. } else if (mode == 10 && !cell->mv_ptr) {
  375. RLE_BLOCK_COPY_8;
  376. }
  377. rle_blocks--;
  378. } else {
  379. for (line = 0; line < 4;) {
  380. num_lines = 1;
  381. is_top_of_cell = is_first_row && !line;
  382. /* select primary VQ table for odd, secondary for even lines */
  383. if (mode <= 4)
  384. delta_tab = delta[line & 1];
  385. else
  386. delta_tab = delta[1];
  387. BUFFER_PRECHECK;
  388. code = bytestream_get_byte(data_ptr);
  389. if (code < 248) {
  390. if (code < delta_tab->num_dyads) {
  391. BUFFER_PRECHECK;
  392. dyad1 = bytestream_get_byte(data_ptr);
  393. dyad2 = code;
  394. if (dyad1 >= delta_tab->num_dyads || dyad1 >= 248)
  395. return IV3_BAD_DATA;
  396. } else {
  397. /* process QUADS */
  398. code -= delta_tab->num_dyads;
  399. dyad1 = code / delta_tab->quad_exp;
  400. dyad2 = code % delta_tab->quad_exp;
  401. if (swap_quads[line & 1])
  402. FFSWAP(unsigned int, dyad1, dyad2);
  403. }
  404. if (mode <= 4) {
  405. APPLY_DELTA_4;
  406. } else if (mode == 10 && !cell->mv_ptr) {
  407. APPLY_DELTA_8;
  408. } else {
  409. APPLY_DELTA_1011_INTER;
  410. }
  411. } else {
  412. /* process RLE codes */
  413. switch (code) {
  414. case RLE_ESC_FC:
  415. skip_flag = 0;
  416. rle_blocks = 1;
  417. code = 253;
  418. /* FALLTHROUGH */
  419. case RLE_ESC_FF:
  420. case RLE_ESC_FE:
  421. case RLE_ESC_FD:
  422. num_lines = 257 - code - line;
  423. if (num_lines <= 0)
  424. return IV3_BAD_RLE;
  425. if (mode <= 4) {
  426. RLE_LINES_COPY;
  427. } else if (mode == 10 && !cell->mv_ptr) {
  428. RLE_LINES_COPY_M10;
  429. }
  430. break;
  431. case RLE_ESC_FB:
  432. BUFFER_PRECHECK;
  433. code = bytestream_get_byte(data_ptr);
  434. rle_blocks = (code & 0x1F) - 1; /* set block counter */
  435. if (code >= 64 || rle_blocks < 0)
  436. return IV3_BAD_COUNTER;
  437. skip_flag = code & 0x20;
  438. num_lines = 4 - line; /* enforce next block processing */
  439. if (mode >= 10 || (cell->mv_ptr || !skip_flag)) {
  440. if (mode <= 4) {
  441. RLE_LINES_COPY;
  442. } else if (mode == 10 && !cell->mv_ptr) {
  443. RLE_LINES_COPY_M10;
  444. }
  445. }
  446. break;
  447. case RLE_ESC_F9:
  448. skip_flag = 1;
  449. rle_blocks = 1;
  450. /* FALLTHROUGH */
  451. case RLE_ESC_FA:
  452. if (line)
  453. return IV3_BAD_RLE;
  454. num_lines = 4; /* enforce next block processing */
  455. if (cell->mv_ptr) {
  456. if (mode <= 4) {
  457. RLE_LINES_COPY;
  458. } else if (mode == 10 && !cell->mv_ptr) {
  459. RLE_LINES_COPY_M10;
  460. }
  461. }
  462. break;
  463. default:
  464. return IV3_UNSUPPORTED;
  465. }
  466. }
  467. line += num_lines;
  468. ref += row_offset * (num_lines << v_zoom);
  469. dst += row_offset * (num_lines << v_zoom);
  470. }
  471. }
  472. /* move to next horizontal block */
  473. block += 4 << h_zoom;
  474. ref_block += 4 << h_zoom;
  475. }
  476. /* move to next line of blocks */
  477. ref_block += blk_row_offset;
  478. block += blk_row_offset;
  479. }
  480. return IV3_NOERR;
  481. }
  482. /**
  483. * Decode a vector-quantized cell.
  484. * It consists of several routines, each of which handles one or more "modes"
  485. * with which a cell can be encoded.
  486. *
  487. * @param ctx pointer to the decoder context
  488. * @param avctx ptr to the AVCodecContext
  489. * @param plane pointer to the plane descriptor
  490. * @param cell pointer to the cell descriptor
  491. * @param data_ptr pointer to the compressed data
  492. * @param last_ptr pointer to the last byte to catch reads past end of buffer
  493. * @return number of consumed bytes or negative number in case of error
  494. */
  495. static int decode_cell(Indeo3DecodeContext *ctx, AVCodecContext *avctx,
  496. Plane *plane, Cell *cell, const uint8_t *data_ptr,
  497. const uint8_t *last_ptr)
  498. {
  499. int x, mv_x, mv_y, mode, vq_index, prim_indx, second_indx;
  500. int zoom_fac;
  501. int offset, error = 0, swap_quads[2];
  502. uint8_t code, *block, *ref_block = 0;
  503. const vqEntry *delta[2];
  504. const uint8_t *data_start = data_ptr;
  505. /* get coding mode and VQ table index from the VQ descriptor byte */
  506. code = *data_ptr++;
  507. mode = code >> 4;
  508. vq_index = code & 0xF;
  509. /* setup output and reference pointers */
  510. offset = (cell->ypos << 2) * plane->pitch + (cell->xpos << 2);
  511. block = plane->pixels[ctx->buf_sel] + offset;
  512. if (cell->mv_ptr) {
  513. mv_y = cell->mv_ptr[0];
  514. mv_x = cell->mv_ptr[1];
  515. if ( mv_x + 4*cell->xpos < 0
  516. || mv_y + 4*cell->ypos < 0
  517. || mv_x + 4*cell->xpos + 4*cell->width > plane->width
  518. || mv_y + 4*cell->ypos + 4*cell->height > plane->height) {
  519. av_log(avctx, AV_LOG_ERROR, "motion vector %d %d outside reference\n", mv_x + 4*cell->xpos, mv_y + 4*cell->ypos);
  520. return AVERROR_INVALIDDATA;
  521. }
  522. }
  523. if (!cell->mv_ptr) {
  524. /* use previous line as reference for INTRA cells */
  525. ref_block = block - plane->pitch;
  526. } else if (mode >= 10) {
  527. /* for mode 10 and 11 INTER first copy the predicted cell into the current one */
  528. /* so we don't need to do data copying for each RLE code later */
  529. copy_cell(ctx, plane, cell);
  530. } else {
  531. /* set the pointer to the reference pixels for modes 0-4 INTER */
  532. mv_y = cell->mv_ptr[0];
  533. mv_x = cell->mv_ptr[1];
  534. offset += mv_y * plane->pitch + mv_x;
  535. ref_block = plane->pixels[ctx->buf_sel ^ 1] + offset;
  536. }
  537. /* select VQ tables as follows: */
  538. /* modes 0 and 3 use only the primary table for all lines in a block */
  539. /* while modes 1 and 4 switch between primary and secondary tables on alternate lines */
  540. if (mode == 1 || mode == 4) {
  541. code = ctx->alt_quant[vq_index];
  542. prim_indx = (code >> 4) + ctx->cb_offset;
  543. second_indx = (code & 0xF) + ctx->cb_offset;
  544. } else {
  545. vq_index += ctx->cb_offset;
  546. prim_indx = second_indx = vq_index;
  547. }
  548. if (prim_indx >= 24 || second_indx >= 24) {
  549. av_log(avctx, AV_LOG_ERROR, "Invalid VQ table indexes! Primary: %d, secondary: %d!\n",
  550. prim_indx, second_indx);
  551. return AVERROR_INVALIDDATA;
  552. }
  553. delta[0] = &vq_tab[second_indx];
  554. delta[1] = &vq_tab[prim_indx];
  555. swap_quads[0] = second_indx >= 16;
  556. swap_quads[1] = prim_indx >= 16;
  557. /* requantize the prediction if VQ index of this cell differs from VQ index */
  558. /* of the predicted cell in order to avoid overflows. */
  559. if (vq_index >= 8 && ref_block) {
  560. for (x = 0; x < cell->width << 2; x++)
  561. ref_block[x] = requant_tab[vq_index & 7][ref_block[x] & 127];
  562. }
  563. error = IV3_NOERR;
  564. switch (mode) {
  565. case 0: /*------------------ MODES 0 & 1 (4x4 block processing) --------------------*/
  566. case 1:
  567. case 3: /*------------------ MODES 3 & 4 (4x8 block processing) --------------------*/
  568. case 4:
  569. if (mode >= 3 && cell->mv_ptr) {
  570. av_log(avctx, AV_LOG_ERROR, "Attempt to apply Mode 3/4 to an INTER cell!\n");
  571. return AVERROR_INVALIDDATA;
  572. }
  573. zoom_fac = mode >= 3;
  574. error = decode_cell_data(ctx, cell, block, ref_block, plane->pitch,
  575. 0, zoom_fac, mode, delta, swap_quads,
  576. &data_ptr, last_ptr);
  577. break;
  578. case 10: /*-------------------- MODE 10 (8x8 block processing) ---------------------*/
  579. case 11: /*----------------- MODE 11 (4x8 INTER block processing) ------------------*/
  580. if (mode == 10 && !cell->mv_ptr) { /* MODE 10 INTRA processing */
  581. error = decode_cell_data(ctx, cell, block, ref_block, plane->pitch,
  582. 1, 1, mode, delta, swap_quads,
  583. &data_ptr, last_ptr);
  584. } else { /* mode 10 and 11 INTER processing */
  585. if (mode == 11 && !cell->mv_ptr) {
  586. av_log(avctx, AV_LOG_ERROR, "Attempt to use Mode 11 for an INTRA cell!\n");
  587. return AVERROR_INVALIDDATA;
  588. }
  589. zoom_fac = mode == 10;
  590. error = decode_cell_data(ctx, cell, block, ref_block, plane->pitch,
  591. zoom_fac, 1, mode, delta, swap_quads,
  592. &data_ptr, last_ptr);
  593. }
  594. break;
  595. default:
  596. av_log(avctx, AV_LOG_ERROR, "Unsupported coding mode: %d\n", mode);
  597. return AVERROR_INVALIDDATA;
  598. }//switch mode
  599. switch (error) {
  600. case IV3_BAD_RLE:
  601. av_log(avctx, AV_LOG_ERROR, "Mode %d: RLE code %X is not allowed at the current line\n",
  602. mode, data_ptr[-1]);
  603. return AVERROR_INVALIDDATA;
  604. case IV3_BAD_DATA:
  605. av_log(avctx, AV_LOG_ERROR, "Mode %d: invalid VQ data\n", mode);
  606. return AVERROR_INVALIDDATA;
  607. case IV3_BAD_COUNTER:
  608. av_log(avctx, AV_LOG_ERROR, "Mode %d: RLE-FB invalid counter: %d\n", mode, code);
  609. return AVERROR_INVALIDDATA;
  610. case IV3_UNSUPPORTED:
  611. av_log(avctx, AV_LOG_ERROR, "Mode %d: unsupported RLE code: %X\n", mode, data_ptr[-1]);
  612. return AVERROR_INVALIDDATA;
  613. case IV3_OUT_OF_DATA:
  614. av_log(avctx, AV_LOG_ERROR, "Mode %d: attempt to read past end of buffer\n", mode);
  615. return AVERROR_INVALIDDATA;
  616. }
  617. return data_ptr - data_start; /* report number of bytes consumed from the input buffer */
  618. }
  619. /* Binary tree codes. */
  620. enum {
  621. H_SPLIT = 0,
  622. V_SPLIT = 1,
  623. INTRA_NULL = 2,
  624. INTER_DATA = 3
  625. };
  626. #define SPLIT_CELL(size, new_size) (new_size) = ((size) > 2) ? ((((size) + 2) >> 2) << 1) : 1
  627. #define UPDATE_BITPOS(n) \
  628. ctx->skip_bits += (n); \
  629. ctx->need_resync = 1
  630. #define RESYNC_BITSTREAM \
  631. if (ctx->need_resync && !(get_bits_count(&ctx->gb) & 7)) { \
  632. skip_bits_long(&ctx->gb, ctx->skip_bits); \
  633. ctx->skip_bits = 0; \
  634. ctx->need_resync = 0; \
  635. }
  636. #define CHECK_CELL \
  637. if (curr_cell.xpos + curr_cell.width > (plane->width >> 2) || \
  638. curr_cell.ypos + curr_cell.height > (plane->height >> 2)) { \
  639. av_log(avctx, AV_LOG_ERROR, "Invalid cell: x=%d, y=%d, w=%d, h=%d\n", \
  640. curr_cell.xpos, curr_cell.ypos, curr_cell.width, curr_cell.height); \
  641. return AVERROR_INVALIDDATA; \
  642. }
  643. static int parse_bintree(Indeo3DecodeContext *ctx, AVCodecContext *avctx,
  644. Plane *plane, int code, Cell *ref_cell,
  645. const int depth, const int strip_width)
  646. {
  647. Cell curr_cell;
  648. int bytes_used;
  649. int mv_x, mv_y;
  650. if (depth <= 0) {
  651. av_log(avctx, AV_LOG_ERROR, "Stack overflow (corrupted binary tree)!\n");
  652. return AVERROR_INVALIDDATA; // unwind recursion
  653. }
  654. curr_cell = *ref_cell; // clone parent cell
  655. if (code == H_SPLIT) {
  656. SPLIT_CELL(ref_cell->height, curr_cell.height);
  657. ref_cell->ypos += curr_cell.height;
  658. ref_cell->height -= curr_cell.height;
  659. if (ref_cell->height <= 0 || curr_cell.height <= 0)
  660. return AVERROR_INVALIDDATA;
  661. } else if (code == V_SPLIT) {
  662. if (curr_cell.width > strip_width) {
  663. /* split strip */
  664. curr_cell.width = (curr_cell.width <= (strip_width << 1) ? 1 : 2) * strip_width;
  665. } else
  666. SPLIT_CELL(ref_cell->width, curr_cell.width);
  667. ref_cell->xpos += curr_cell.width;
  668. ref_cell->width -= curr_cell.width;
  669. if (ref_cell->width <= 0 || curr_cell.width <= 0)
  670. return AVERROR_INVALIDDATA;
  671. }
  672. while (get_bits_left(&ctx->gb) >= 2) { /* loop until return */
  673. RESYNC_BITSTREAM;
  674. switch (code = get_bits(&ctx->gb, 2)) {
  675. case H_SPLIT:
  676. case V_SPLIT:
  677. if (parse_bintree(ctx, avctx, plane, code, &curr_cell, depth - 1, strip_width))
  678. return AVERROR_INVALIDDATA;
  679. break;
  680. case INTRA_NULL:
  681. if (!curr_cell.tree) { /* MC tree INTRA code */
  682. curr_cell.mv_ptr = 0; /* mark the current strip as INTRA */
  683. curr_cell.tree = 1; /* enter the VQ tree */
  684. } else { /* VQ tree NULL code */
  685. RESYNC_BITSTREAM;
  686. code = get_bits(&ctx->gb, 2);
  687. if (code >= 2) {
  688. av_log(avctx, AV_LOG_ERROR, "Invalid VQ_NULL code: %d\n", code);
  689. return AVERROR_INVALIDDATA;
  690. }
  691. if (code == 1)
  692. av_log(avctx, AV_LOG_ERROR, "SkipCell procedure not implemented yet!\n");
  693. CHECK_CELL
  694. if (!curr_cell.mv_ptr)
  695. return AVERROR_INVALIDDATA;
  696. mv_y = curr_cell.mv_ptr[0];
  697. mv_x = curr_cell.mv_ptr[1];
  698. if ( mv_x + 4*curr_cell.xpos < 0
  699. || mv_y + 4*curr_cell.ypos < 0
  700. || mv_x + 4*curr_cell.xpos + 4*curr_cell.width > plane->width
  701. || mv_y + 4*curr_cell.ypos + 4*curr_cell.height > plane->height) {
  702. av_log(avctx, AV_LOG_ERROR, "motion vector %d %d outside reference\n", mv_x + 4*curr_cell.xpos, mv_y + 4*curr_cell.ypos);
  703. return AVERROR_INVALIDDATA;
  704. }
  705. copy_cell(ctx, plane, &curr_cell);
  706. return 0;
  707. }
  708. break;
  709. case INTER_DATA:
  710. if (!curr_cell.tree) { /* MC tree INTER code */
  711. unsigned mv_idx;
  712. /* get motion vector index and setup the pointer to the mv set */
  713. if (!ctx->need_resync)
  714. ctx->next_cell_data = &ctx->gb.buffer[(get_bits_count(&ctx->gb) + 7) >> 3];
  715. if (ctx->next_cell_data >= ctx->last_byte) {
  716. av_log(avctx, AV_LOG_ERROR, "motion vector out of array\n");
  717. return AVERROR_INVALIDDATA;
  718. }
  719. mv_idx = *(ctx->next_cell_data++);
  720. if (mv_idx >= ctx->num_vectors) {
  721. av_log(avctx, AV_LOG_ERROR, "motion vector index out of range\n");
  722. return AVERROR_INVALIDDATA;
  723. }
  724. curr_cell.mv_ptr = &ctx->mc_vectors[mv_idx << 1];
  725. curr_cell.tree = 1; /* enter the VQ tree */
  726. UPDATE_BITPOS(8);
  727. } else { /* VQ tree DATA code */
  728. if (!ctx->need_resync)
  729. ctx->next_cell_data = &ctx->gb.buffer[(get_bits_count(&ctx->gb) + 7) >> 3];
  730. CHECK_CELL
  731. bytes_used = decode_cell(ctx, avctx, plane, &curr_cell,
  732. ctx->next_cell_data, ctx->last_byte);
  733. if (bytes_used < 0)
  734. return AVERROR_INVALIDDATA;
  735. UPDATE_BITPOS(bytes_used << 3);
  736. ctx->next_cell_data += bytes_used;
  737. return 0;
  738. }
  739. break;
  740. }
  741. }//while
  742. return AVERROR_INVALIDDATA;
  743. }
  744. static int decode_plane(Indeo3DecodeContext *ctx, AVCodecContext *avctx,
  745. Plane *plane, const uint8_t *data, int32_t data_size,
  746. int32_t strip_width)
  747. {
  748. Cell curr_cell;
  749. unsigned num_vectors;
  750. /* each plane data starts with mc_vector_count field, */
  751. /* an optional array of motion vectors followed by the vq data */
  752. num_vectors = bytestream_get_le32(&data); data_size -= 4;
  753. if (num_vectors > 256) {
  754. av_log(ctx->avctx, AV_LOG_ERROR,
  755. "Read invalid number of motion vectors %d\n", num_vectors);
  756. return AVERROR_INVALIDDATA;
  757. }
  758. if (num_vectors * 2 > data_size)
  759. return AVERROR_INVALIDDATA;
  760. ctx->num_vectors = num_vectors;
  761. ctx->mc_vectors = num_vectors ? data : 0;
  762. /* init the bitreader */
  763. init_get_bits(&ctx->gb, &data[num_vectors * 2], (data_size - num_vectors * 2) << 3);
  764. ctx->skip_bits = 0;
  765. ctx->need_resync = 0;
  766. ctx->last_byte = data + data_size;
  767. /* initialize the 1st cell and set its dimensions to whole plane */
  768. curr_cell.xpos = curr_cell.ypos = 0;
  769. curr_cell.width = plane->width >> 2;
  770. curr_cell.height = plane->height >> 2;
  771. curr_cell.tree = 0; // we are in the MC tree now
  772. curr_cell.mv_ptr = 0; // no motion vector = INTRA cell
  773. return parse_bintree(ctx, avctx, plane, INTRA_NULL, &curr_cell, CELL_STACK_MAX, strip_width);
  774. }
  775. #define OS_HDR_ID MKBETAG('F', 'R', 'M', 'H')
  776. static int decode_frame_headers(Indeo3DecodeContext *ctx, AVCodecContext *avctx,
  777. const uint8_t *buf, int buf_size)
  778. {
  779. const uint8_t *buf_ptr = buf, *bs_hdr;
  780. uint32_t frame_num, word2, check_sum, data_size;
  781. uint32_t y_offset, u_offset, v_offset, starts[3], ends[3];
  782. uint16_t height, width;
  783. int i, j;
  784. /* parse and check the OS header */
  785. frame_num = bytestream_get_le32(&buf_ptr);
  786. word2 = bytestream_get_le32(&buf_ptr);
  787. check_sum = bytestream_get_le32(&buf_ptr);
  788. data_size = bytestream_get_le32(&buf_ptr);
  789. if ((frame_num ^ word2 ^ data_size ^ OS_HDR_ID) != check_sum) {
  790. av_log(avctx, AV_LOG_ERROR, "OS header checksum mismatch!\n");
  791. return AVERROR_INVALIDDATA;
  792. }
  793. /* parse the bitstream header */
  794. bs_hdr = buf_ptr;
  795. buf_size -= 16;
  796. if (bytestream_get_le16(&buf_ptr) != 32) {
  797. av_log(avctx, AV_LOG_ERROR, "Unsupported codec version!\n");
  798. return AVERROR_INVALIDDATA;
  799. }
  800. ctx->frame_num = frame_num;
  801. ctx->frame_flags = bytestream_get_le16(&buf_ptr);
  802. ctx->data_size = (bytestream_get_le32(&buf_ptr) + 7) >> 3;
  803. ctx->cb_offset = *buf_ptr++;
  804. if (ctx->data_size == 16)
  805. return 4;
  806. if (ctx->data_size > buf_size)
  807. ctx->data_size = buf_size;
  808. buf_ptr += 3; // skip reserved byte and checksum
  809. /* check frame dimensions */
  810. height = bytestream_get_le16(&buf_ptr);
  811. width = bytestream_get_le16(&buf_ptr);
  812. if (av_image_check_size(width, height, 0, avctx))
  813. return AVERROR_INVALIDDATA;
  814. if (width != ctx->width || height != ctx->height) {
  815. int res;
  816. av_dlog(avctx, "Frame dimensions changed!\n");
  817. if (width < 16 || width > 640 ||
  818. height < 16 || height > 480 ||
  819. width & 3 || height & 3) {
  820. av_log(avctx, AV_LOG_ERROR,
  821. "Invalid picture dimensions: %d x %d!\n", width, height);
  822. return AVERROR_INVALIDDATA;
  823. }
  824. free_frame_buffers(ctx);
  825. if ((res = allocate_frame_buffers(ctx, avctx, width, height)) < 0)
  826. return res;
  827. avcodec_set_dimensions(avctx, width, height);
  828. }
  829. y_offset = bytestream_get_le32(&buf_ptr);
  830. v_offset = bytestream_get_le32(&buf_ptr);
  831. u_offset = bytestream_get_le32(&buf_ptr);
  832. /* unfortunately there is no common order of planes in the buffer */
  833. /* so we use that sorting algo for determining planes data sizes */
  834. starts[0] = y_offset;
  835. starts[1] = v_offset;
  836. starts[2] = u_offset;
  837. for (j = 0; j < 3; j++) {
  838. ends[j] = ctx->data_size;
  839. for (i = 2; i >= 0; i--)
  840. if (starts[i] < ends[j] && starts[i] > starts[j])
  841. ends[j] = starts[i];
  842. }
  843. ctx->y_data_size = ends[0] - starts[0];
  844. ctx->v_data_size = ends[1] - starts[1];
  845. ctx->u_data_size = ends[2] - starts[2];
  846. if (FFMAX3(y_offset, v_offset, u_offset) >= ctx->data_size - 16 ||
  847. FFMIN3(ctx->y_data_size, ctx->v_data_size, ctx->u_data_size) <= 0) {
  848. av_log(avctx, AV_LOG_ERROR, "One of the y/u/v offsets is invalid\n");
  849. return AVERROR_INVALIDDATA;
  850. }
  851. ctx->y_data_ptr = bs_hdr + y_offset;
  852. ctx->v_data_ptr = bs_hdr + v_offset;
  853. ctx->u_data_ptr = bs_hdr + u_offset;
  854. ctx->alt_quant = buf_ptr + sizeof(uint32_t);
  855. if (ctx->data_size == 16) {
  856. av_log(avctx, AV_LOG_DEBUG, "Sync frame encountered!\n");
  857. return 16;
  858. }
  859. if (ctx->frame_flags & BS_8BIT_PEL) {
  860. av_log_ask_for_sample(avctx, "8-bit pixel format\n");
  861. return AVERROR_PATCHWELCOME;
  862. }
  863. if (ctx->frame_flags & BS_MV_X_HALF || ctx->frame_flags & BS_MV_Y_HALF) {
  864. av_log_ask_for_sample(avctx, "halfpel motion vectors\n");
  865. return AVERROR_PATCHWELCOME;
  866. }
  867. return 0;
  868. }
  869. /**
  870. * Convert and output the current plane.
  871. * All pixel values will be upsampled by shifting right by one bit.
  872. *
  873. * @param[in] plane pointer to the descriptor of the plane being processed
  874. * @param[in] buf_sel indicates which frame buffer the input data stored in
  875. * @param[out] dst pointer to the buffer receiving converted pixels
  876. * @param[in] dst_pitch pitch for moving to the next y line
  877. * @param[in] dst_height output plane height
  878. */
  879. static void output_plane(const Plane *plane, int buf_sel, uint8_t *dst,
  880. int dst_pitch, int dst_height)
  881. {
  882. int x,y;
  883. const uint8_t *src = plane->pixels[buf_sel];
  884. uint32_t pitch = plane->pitch;
  885. dst_height = FFMIN(dst_height, plane->height);
  886. for (y = 0; y < dst_height; y++) {
  887. /* convert four pixels at once using SWAR */
  888. for (x = 0; x < plane->width >> 2; x++) {
  889. AV_WN32A(dst, (AV_RN32A(src) & 0x7F7F7F7F) << 1);
  890. src += 4;
  891. dst += 4;
  892. }
  893. for (x <<= 2; x < plane->width; x++)
  894. *dst++ = *src++ << 1;
  895. src += pitch - plane->width;
  896. dst += dst_pitch - plane->width;
  897. }
  898. }
  899. static av_cold int decode_init(AVCodecContext *avctx)
  900. {
  901. Indeo3DecodeContext *ctx = avctx->priv_data;
  902. ctx->avctx = avctx;
  903. avctx->pix_fmt = AV_PIX_FMT_YUV410P;
  904. avcodec_get_frame_defaults(&ctx->frame);
  905. build_requant_tab();
  906. ff_dsputil_init(&ctx->dsp, avctx);
  907. return allocate_frame_buffers(ctx, avctx, avctx->width, avctx->height);
  908. }
  909. static int decode_frame(AVCodecContext *avctx, void *data, int *got_frame,
  910. AVPacket *avpkt)
  911. {
  912. Indeo3DecodeContext *ctx = avctx->priv_data;
  913. const uint8_t *buf = avpkt->data;
  914. int buf_size = avpkt->size;
  915. int res;
  916. res = decode_frame_headers(ctx, avctx, buf, buf_size);
  917. if (res < 0)
  918. return res;
  919. /* skip sync(null) frames */
  920. if (res) {
  921. // we have processed 16 bytes but no data was decoded
  922. *got_frame = 0;
  923. return buf_size;
  924. }
  925. /* skip droppable INTER frames if requested */
  926. if (ctx->frame_flags & BS_NONREF &&
  927. (avctx->skip_frame >= AVDISCARD_NONREF))
  928. return 0;
  929. /* skip INTER frames if requested */
  930. if (!(ctx->frame_flags & BS_KEYFRAME) && avctx->skip_frame >= AVDISCARD_NONKEY)
  931. return 0;
  932. /* use BS_BUFFER flag for buffer switching */
  933. ctx->buf_sel = (ctx->frame_flags >> BS_BUFFER) & 1;
  934. if (ctx->frame.data[0])
  935. avctx->release_buffer(avctx, &ctx->frame);
  936. ctx->frame.reference = 0;
  937. if ((res = ff_get_buffer(avctx, &ctx->frame)) < 0) {
  938. av_log(ctx->avctx, AV_LOG_ERROR, "get_buffer() failed\n");
  939. return res;
  940. }
  941. /* decode luma plane */
  942. if ((res = decode_plane(ctx, avctx, ctx->planes, ctx->y_data_ptr, ctx->y_data_size, 40)))
  943. return res;
  944. /* decode chroma planes */
  945. if ((res = decode_plane(ctx, avctx, &ctx->planes[1], ctx->u_data_ptr, ctx->u_data_size, 10)))
  946. return res;
  947. if ((res = decode_plane(ctx, avctx, &ctx->planes[2], ctx->v_data_ptr, ctx->v_data_size, 10)))
  948. return res;
  949. output_plane(&ctx->planes[0], ctx->buf_sel,
  950. ctx->frame.data[0], ctx->frame.linesize[0],
  951. avctx->height);
  952. output_plane(&ctx->planes[1], ctx->buf_sel,
  953. ctx->frame.data[1], ctx->frame.linesize[1],
  954. (avctx->height + 3) >> 2);
  955. output_plane(&ctx->planes[2], ctx->buf_sel,
  956. ctx->frame.data[2], ctx->frame.linesize[2],
  957. (avctx->height + 3) >> 2);
  958. *got_frame = 1;
  959. *(AVFrame*)data = ctx->frame;
  960. return buf_size;
  961. }
  962. static av_cold int decode_close(AVCodecContext *avctx)
  963. {
  964. Indeo3DecodeContext *ctx = avctx->priv_data;
  965. free_frame_buffers(avctx->priv_data);
  966. if (ctx->frame.data[0])
  967. avctx->release_buffer(avctx, &ctx->frame);
  968. return 0;
  969. }
  970. AVCodec ff_indeo3_decoder = {
  971. .name = "indeo3",
  972. .type = AVMEDIA_TYPE_VIDEO,
  973. .id = AV_CODEC_ID_INDEO3,
  974. .priv_data_size = sizeof(Indeo3DecodeContext),
  975. .init = decode_init,
  976. .close = decode_close,
  977. .decode = decode_frame,
  978. .long_name = NULL_IF_CONFIG_SMALL("Intel Indeo 3"),
  979. .capabilities = CODEC_CAP_DR1,
  980. };