You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1170 lines
43KB

  1. /*
  2. * FFV1 encoder
  3. *
  4. * Copyright (c) 2003-2012 Michael Niedermayer <michaelni@gmx.at>
  5. *
  6. * This file is part of FFmpeg.
  7. *
  8. * FFmpeg is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU Lesser General Public
  10. * License as published by the Free Software Foundation; either
  11. * version 2.1 of the License, or (at your option) any later version.
  12. *
  13. * FFmpeg is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * Lesser General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU Lesser General Public
  19. * License along with FFmpeg; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  21. */
  22. /**
  23. * @file
  24. * FF Video Codec 1 (a lossless codec) encoder
  25. */
  26. #include "libavutil/avassert.h"
  27. #include "libavutil/crc.h"
  28. #include "libavutil/opt.h"
  29. #include "libavutil/imgutils.h"
  30. #include "libavutil/pixdesc.h"
  31. #include "libavutil/timer.h"
  32. #include "avcodec.h"
  33. #include "internal.h"
  34. #include "put_bits.h"
  35. #include "rangecoder.h"
  36. #include "golomb.h"
  37. #include "mathops.h"
  38. #include "ffv1.h"
  39. static const int8_t quant5_10bit[256] = {
  40. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1,
  41. 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
  42. 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
  43. 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  44. 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  45. 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  46. 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  47. 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  48. -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2,
  49. -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2,
  50. -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2,
  51. -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2,
  52. -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -1,
  53. -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
  54. -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
  55. -1, -1, -1, -1, -1, -1, -0, -0, -0, -0, -0, -0, -0, -0, -0, -0,
  56. };
  57. static const int8_t quant5[256] = {
  58. 0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  59. 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  60. 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  61. 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  62. 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  63. 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  64. 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  65. 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  66. -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2,
  67. -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2,
  68. -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2,
  69. -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2,
  70. -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2,
  71. -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2,
  72. -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2,
  73. -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -1, -1, -1,
  74. };
  75. static const int8_t quant9_10bit[256] = {
  76. 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2,
  77. 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3,
  78. 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
  79. 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4,
  80. 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
  81. 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
  82. 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
  83. 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
  84. -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4,
  85. -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4,
  86. -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4,
  87. -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4,
  88. -4, -4, -4, -4, -4, -4, -4, -4, -4, -3, -3, -3, -3, -3, -3, -3,
  89. -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3,
  90. -3, -3, -3, -3, -3, -3, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2,
  91. -2, -2, -2, -2, -1, -1, -1, -1, -1, -1, -1, -1, -0, -0, -0, -0,
  92. };
  93. static const int8_t quant11[256] = {
  94. 0, 1, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4,
  95. 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
  96. 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
  97. 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
  98. 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
  99. 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
  100. 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
  101. 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
  102. -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5,
  103. -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5,
  104. -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5,
  105. -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5,
  106. -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5,
  107. -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -4, -4,
  108. -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4,
  109. -4, -4, -4, -4, -4, -3, -3, -3, -3, -3, -3, -3, -2, -2, -2, -1,
  110. };
  111. static const uint8_t ver2_state[256] = {
  112. 0, 10, 10, 10, 10, 16, 16, 16, 28, 16, 16, 29, 42, 49, 20, 49,
  113. 59, 25, 26, 26, 27, 31, 33, 33, 33, 34, 34, 37, 67, 38, 39, 39,
  114. 40, 40, 41, 79, 43, 44, 45, 45, 48, 48, 64, 50, 51, 52, 88, 52,
  115. 53, 74, 55, 57, 58, 58, 74, 60, 101, 61, 62, 84, 66, 66, 68, 69,
  116. 87, 82, 71, 97, 73, 73, 82, 75, 111, 77, 94, 78, 87, 81, 83, 97,
  117. 85, 83, 94, 86, 99, 89, 90, 99, 111, 92, 93, 134, 95, 98, 105, 98,
  118. 105, 110, 102, 108, 102, 118, 103, 106, 106, 113, 109, 112, 114, 112, 116, 125,
  119. 115, 116, 117, 117, 126, 119, 125, 121, 121, 123, 145, 124, 126, 131, 127, 129,
  120. 165, 130, 132, 138, 133, 135, 145, 136, 137, 139, 146, 141, 143, 142, 144, 148,
  121. 147, 155, 151, 149, 151, 150, 152, 157, 153, 154, 156, 168, 158, 162, 161, 160,
  122. 172, 163, 169, 164, 166, 184, 167, 170, 177, 174, 171, 173, 182, 176, 180, 178,
  123. 175, 189, 179, 181, 186, 183, 192, 185, 200, 187, 191, 188, 190, 197, 193, 196,
  124. 197, 194, 195, 196, 198, 202, 199, 201, 210, 203, 207, 204, 205, 206, 208, 214,
  125. 209, 211, 221, 212, 213, 215, 224, 216, 217, 218, 219, 220, 222, 228, 223, 225,
  126. 226, 224, 227, 229, 240, 230, 231, 232, 233, 234, 235, 236, 238, 239, 237, 242,
  127. 241, 243, 242, 244, 245, 246, 247, 248, 249, 250, 251, 252, 252, 253, 254, 255,
  128. };
  129. static void find_best_state(uint8_t best_state[256][256],
  130. const uint8_t one_state[256])
  131. {
  132. int i, j, k, m;
  133. double l2tab[256];
  134. for (i = 1; i < 256; i++)
  135. l2tab[i] = log2(i / 256.0);
  136. for (i = 0; i < 256; i++) {
  137. double best_len[256];
  138. double p = i / 256.0;
  139. for (j = 0; j < 256; j++)
  140. best_len[j] = 1 << 30;
  141. for (j = FFMAX(i - 10, 1); j < FFMIN(i + 11, 256); j++) {
  142. double occ[256] = { 0 };
  143. double len = 0;
  144. occ[j] = 1.0;
  145. for (k = 0; k < 256; k++) {
  146. double newocc[256] = { 0 };
  147. for (m = 1; m < 256; m++)
  148. if (occ[m]) {
  149. len -=occ[m]*( p *l2tab[ m]
  150. + (1-p)*l2tab[256-m]);
  151. }
  152. if (len < best_len[k]) {
  153. best_len[k] = len;
  154. best_state[i][k] = j;
  155. }
  156. for (m = 0; m < 256; m++)
  157. if (occ[m]) {
  158. newocc[ one_state[ m]] += occ[m] * p;
  159. newocc[256 - one_state[256 - m]] += occ[m] * (1 - p);
  160. }
  161. memcpy(occ, newocc, sizeof(occ));
  162. }
  163. }
  164. }
  165. }
  166. static av_always_inline av_flatten void put_symbol_inline(RangeCoder *c,
  167. uint8_t *state, int v,
  168. int is_signed,
  169. uint64_t rc_stat[256][2],
  170. uint64_t rc_stat2[32][2])
  171. {
  172. int i;
  173. #define put_rac(C, S, B) \
  174. do { \
  175. if (rc_stat) { \
  176. rc_stat[*(S)][B]++; \
  177. rc_stat2[(S) - state][B]++; \
  178. } \
  179. put_rac(C, S, B); \
  180. } while (0)
  181. if (v) {
  182. const int a = FFABS(v);
  183. const int e = av_log2(a);
  184. put_rac(c, state + 0, 0);
  185. if (e <= 9) {
  186. for (i = 0; i < e; i++)
  187. put_rac(c, state + 1 + i, 1); // 1..10
  188. put_rac(c, state + 1 + i, 0);
  189. for (i = e - 1; i >= 0; i--)
  190. put_rac(c, state + 22 + i, (a >> i) & 1); // 22..31
  191. if (is_signed)
  192. put_rac(c, state + 11 + e, v < 0); // 11..21
  193. } else {
  194. for (i = 0; i < e; i++)
  195. put_rac(c, state + 1 + FFMIN(i, 9), 1); // 1..10
  196. put_rac(c, state + 1 + 9, 0);
  197. for (i = e - 1; i >= 0; i--)
  198. put_rac(c, state + 22 + FFMIN(i, 9), (a >> i) & 1); // 22..31
  199. if (is_signed)
  200. put_rac(c, state + 11 + 10, v < 0); // 11..21
  201. }
  202. } else {
  203. put_rac(c, state + 0, 1);
  204. }
  205. #undef put_rac
  206. }
  207. static av_noinline void put_symbol(RangeCoder *c, uint8_t *state,
  208. int v, int is_signed)
  209. {
  210. put_symbol_inline(c, state, v, is_signed, NULL, NULL);
  211. }
  212. static inline void put_vlc_symbol(PutBitContext *pb, VlcState *const state,
  213. int v, int bits)
  214. {
  215. int i, k, code;
  216. v = fold(v - state->bias, bits);
  217. i = state->count;
  218. k = 0;
  219. while (i < state->error_sum) { // FIXME: optimize
  220. k++;
  221. i += i;
  222. }
  223. av_assert2(k <= 13);
  224. #if 0 // JPEG LS
  225. if (k == 0 && 2 * state->drift <= -state->count)
  226. code = v ^ (-1);
  227. else
  228. code = v;
  229. #else
  230. code = v ^ ((2 * state->drift + state->count) >> 31);
  231. #endif
  232. av_dlog(NULL, "v:%d/%d bias:%d error:%d drift:%d count:%d k:%d\n", v, code,
  233. state->bias, state->error_sum, state->drift, state->count, k);
  234. set_sr_golomb(pb, code, k, 12, bits);
  235. update_vlc_state(state, v);
  236. }
  237. static av_always_inline int encode_line(FFV1Context *s, int w,
  238. int16_t *sample[3],
  239. int plane_index, int bits)
  240. {
  241. PlaneContext *const p = &s->plane[plane_index];
  242. RangeCoder *const c = &s->c;
  243. int x;
  244. int run_index = s->run_index;
  245. int run_count = 0;
  246. int run_mode = 0;
  247. if (s->ac) {
  248. if (c->bytestream_end - c->bytestream < w * 20) {
  249. av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
  250. return AVERROR_INVALIDDATA;
  251. }
  252. } else {
  253. if (s->pb.buf_end - s->pb.buf - (put_bits_count(&s->pb) >> 3) < w * 4) {
  254. av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
  255. return AVERROR_INVALIDDATA;
  256. }
  257. }
  258. for (x = 0; x < w; x++) {
  259. int diff, context;
  260. context = get_context(p, sample[0] + x, sample[1] + x, sample[2] + x);
  261. diff = sample[0][x] - predict(sample[0] + x, sample[1] + x);
  262. if (context < 0) {
  263. context = -context;
  264. diff = -diff;
  265. }
  266. diff = fold(diff, bits);
  267. if (s->ac) {
  268. if (s->flags & CODEC_FLAG_PASS1) {
  269. put_symbol_inline(c, p->state[context], diff, 1, s->rc_stat,
  270. s->rc_stat2[p->quant_table_index][context]);
  271. } else {
  272. put_symbol_inline(c, p->state[context], diff, 1, NULL, NULL);
  273. }
  274. } else {
  275. if (context == 0)
  276. run_mode = 1;
  277. if (run_mode) {
  278. if (diff) {
  279. while (run_count >= 1 << ff_log2_run[run_index]) {
  280. run_count -= 1 << ff_log2_run[run_index];
  281. run_index++;
  282. put_bits(&s->pb, 1, 1);
  283. }
  284. put_bits(&s->pb, 1 + ff_log2_run[run_index], run_count);
  285. if (run_index)
  286. run_index--;
  287. run_count = 0;
  288. run_mode = 0;
  289. if (diff > 0)
  290. diff--;
  291. } else {
  292. run_count++;
  293. }
  294. }
  295. av_dlog(s->avctx, "count:%d index:%d, mode:%d, x:%d pos:%d\n",
  296. run_count, run_index, run_mode, x,
  297. (int)put_bits_count(&s->pb));
  298. if (run_mode == 0)
  299. put_vlc_symbol(&s->pb, &p->vlc_state[context], diff, bits);
  300. }
  301. }
  302. if (run_mode) {
  303. while (run_count >= 1 << ff_log2_run[run_index]) {
  304. run_count -= 1 << ff_log2_run[run_index];
  305. run_index++;
  306. put_bits(&s->pb, 1, 1);
  307. }
  308. if (run_count)
  309. put_bits(&s->pb, 1, 1);
  310. }
  311. s->run_index = run_index;
  312. return 0;
  313. }
  314. static void encode_plane(FFV1Context *s, uint8_t *src, int w, int h,
  315. int stride, int plane_index)
  316. {
  317. int x, y, i;
  318. const int ring_size = s->avctx->context_model ? 3 : 2;
  319. int16_t *sample[3];
  320. s->run_index = 0;
  321. memset(s->sample_buffer, 0, ring_size * (w + 6) * sizeof(*s->sample_buffer));
  322. for (y = 0; y < h; y++) {
  323. for (i = 0; i < ring_size; i++)
  324. sample[i] = s->sample_buffer + (w + 6) * ((h + i - y) % ring_size) + 3;
  325. sample[0][-1]= sample[1][0 ];
  326. sample[1][ w]= sample[1][w-1];
  327. // { START_TIMER
  328. if (s->bits_per_raw_sample <= 8) {
  329. for (x = 0; x < w; x++)
  330. sample[0][x] = src[x + stride * y];
  331. encode_line(s, w, sample, plane_index, 8);
  332. } else {
  333. if (s->packed_at_lsb) {
  334. for (x = 0; x < w; x++) {
  335. sample[0][x] = ((uint16_t*)(src + stride*y))[x];
  336. }
  337. } else {
  338. for (x = 0; x < w; x++) {
  339. sample[0][x] = ((uint16_t*)(src + stride*y))[x] >> (16 - s->bits_per_raw_sample);
  340. }
  341. }
  342. encode_line(s, w, sample, plane_index, s->bits_per_raw_sample);
  343. }
  344. // STOP_TIMER("encode line") }
  345. }
  346. }
  347. static void encode_rgb_frame(FFV1Context *s, uint8_t *src[3], int w, int h, int stride[3])
  348. {
  349. int x, y, p, i;
  350. const int ring_size = s->avctx->context_model ? 3 : 2;
  351. int16_t *sample[4][3];
  352. int lbd = s->bits_per_raw_sample <= 8;
  353. int bits = s->bits_per_raw_sample > 0 ? s->bits_per_raw_sample : 8;
  354. int offset = 1 << bits;
  355. s->run_index = 0;
  356. memset(s->sample_buffer, 0, ring_size * MAX_PLANES *
  357. (w + 6) * sizeof(*s->sample_buffer));
  358. for (y = 0; y < h; y++) {
  359. for (i = 0; i < ring_size; i++)
  360. for (p = 0; p < MAX_PLANES; p++)
  361. sample[p][i]= s->sample_buffer + p*ring_size*(w+6) + ((h+i-y)%ring_size)*(w+6) + 3;
  362. for (x = 0; x < w; x++) {
  363. int b, g, r, av_uninit(a);
  364. if (lbd) {
  365. unsigned v = *((uint32_t*)(src[0] + x*4 + stride[0]*y));
  366. b = v & 0xFF;
  367. g = (v >> 8) & 0xFF;
  368. r = (v >> 16) & 0xFF;
  369. a = v >> 24;
  370. } else {
  371. b = *((uint16_t*)(src[0] + x*2 + stride[0]*y));
  372. g = *((uint16_t*)(src[1] + x*2 + stride[1]*y));
  373. r = *((uint16_t*)(src[2] + x*2 + stride[2]*y));
  374. }
  375. b -= g;
  376. r -= g;
  377. g += (b + r) >> 2;
  378. b += offset;
  379. r += offset;
  380. sample[0][0][x] = g;
  381. sample[1][0][x] = b;
  382. sample[2][0][x] = r;
  383. sample[3][0][x] = a;
  384. }
  385. for (p = 0; p < 3 + s->transparency; p++) {
  386. sample[p][0][-1] = sample[p][1][0 ];
  387. sample[p][1][ w] = sample[p][1][w-1];
  388. if (lbd)
  389. encode_line(s, w, sample[p], (p + 1) / 2, 9);
  390. else
  391. encode_line(s, w, sample[p], (p + 1) / 2, bits + 1);
  392. }
  393. }
  394. }
  395. static void write_quant_table(RangeCoder *c, int16_t *quant_table)
  396. {
  397. int last = 0;
  398. int i;
  399. uint8_t state[CONTEXT_SIZE];
  400. memset(state, 128, sizeof(state));
  401. for (i = 1; i < 128; i++)
  402. if (quant_table[i] != quant_table[i - 1]) {
  403. put_symbol(c, state, i - last - 1, 0);
  404. last = i;
  405. }
  406. put_symbol(c, state, i - last - 1, 0);
  407. }
  408. static void write_quant_tables(RangeCoder *c,
  409. int16_t quant_table[MAX_CONTEXT_INPUTS][256])
  410. {
  411. int i;
  412. for (i = 0; i < 5; i++)
  413. write_quant_table(c, quant_table[i]);
  414. }
  415. static void write_header(FFV1Context *f)
  416. {
  417. uint8_t state[CONTEXT_SIZE];
  418. int i, j;
  419. RangeCoder *const c = &f->slice_context[0]->c;
  420. memset(state, 128, sizeof(state));
  421. if (f->version < 2) {
  422. put_symbol(c, state, f->version, 0);
  423. put_symbol(c, state, f->ac, 0);
  424. if (f->ac > 1) {
  425. for (i = 1; i < 256; i++)
  426. put_symbol(c, state,
  427. f->state_transition[i] - c->one_state[i], 1);
  428. }
  429. put_symbol(c, state, f->colorspace, 0); //YUV cs type
  430. if (f->version > 0)
  431. put_symbol(c, state, f->bits_per_raw_sample, 0);
  432. put_rac(c, state, f->chroma_planes);
  433. put_symbol(c, state, f->chroma_h_shift, 0);
  434. put_symbol(c, state, f->chroma_v_shift, 0);
  435. put_rac(c, state, f->transparency);
  436. write_quant_tables(c, f->quant_table);
  437. } else if (f->version < 3) {
  438. put_symbol(c, state, f->slice_count, 0);
  439. for (i = 0; i < f->slice_count; i++) {
  440. FFV1Context *fs = f->slice_context[i];
  441. put_symbol(c, state,
  442. (fs->slice_x + 1) * f->num_h_slices / f->width, 0);
  443. put_symbol(c, state,
  444. (fs->slice_y + 1) * f->num_v_slices / f->height, 0);
  445. put_symbol(c, state,
  446. (fs->slice_width + 1) * f->num_h_slices / f->width - 1,
  447. 0);
  448. put_symbol(c, state,
  449. (fs->slice_height + 1) * f->num_v_slices / f->height - 1,
  450. 0);
  451. for (j = 0; j < f->plane_count; j++) {
  452. put_symbol(c, state, f->plane[j].quant_table_index, 0);
  453. av_assert0(f->plane[j].quant_table_index == f->avctx->context_model);
  454. }
  455. }
  456. }
  457. }
  458. static int write_extradata(FFV1Context *f)
  459. {
  460. RangeCoder *const c = &f->c;
  461. uint8_t state[CONTEXT_SIZE];
  462. int i, j, k;
  463. uint8_t state2[32][CONTEXT_SIZE];
  464. unsigned v;
  465. memset(state2, 128, sizeof(state2));
  466. memset(state, 128, sizeof(state));
  467. f->avctx->extradata_size = 10000 + 4 +
  468. (11 * 11 * 5 * 5 * 5 + 11 * 11 * 11) * 32;
  469. f->avctx->extradata = av_malloc(f->avctx->extradata_size);
  470. ff_init_range_encoder(c, f->avctx->extradata, f->avctx->extradata_size);
  471. ff_build_rac_states(c, 0.05 * (1LL << 32), 256 - 8);
  472. put_symbol(c, state, f->version, 0);
  473. if (f->version > 2) {
  474. if (f->version == 3)
  475. f->minor_version = 2;
  476. put_symbol(c, state, f->minor_version, 0);
  477. }
  478. put_symbol(c, state, f->ac, 0);
  479. if (f->ac > 1)
  480. for (i = 1; i < 256; i++)
  481. put_symbol(c, state, f->state_transition[i] - c->one_state[i], 1);
  482. put_symbol(c, state, f->colorspace, 0); // YUV cs type
  483. put_symbol(c, state, f->bits_per_raw_sample, 0);
  484. put_rac(c, state, f->chroma_planes);
  485. put_symbol(c, state, f->chroma_h_shift, 0);
  486. put_symbol(c, state, f->chroma_v_shift, 0);
  487. put_rac(c, state, f->transparency);
  488. put_symbol(c, state, f->num_h_slices - 1, 0);
  489. put_symbol(c, state, f->num_v_slices - 1, 0);
  490. put_symbol(c, state, f->quant_table_count, 0);
  491. for (i = 0; i < f->quant_table_count; i++)
  492. write_quant_tables(c, f->quant_tables[i]);
  493. for (i = 0; i < f->quant_table_count; i++) {
  494. for (j = 0; j < f->context_count[i] * CONTEXT_SIZE; j++)
  495. if (f->initial_states[i] && f->initial_states[i][0][j] != 128)
  496. break;
  497. if (j < f->context_count[i] * CONTEXT_SIZE) {
  498. put_rac(c, state, 1);
  499. for (j = 0; j < f->context_count[i]; j++)
  500. for (k = 0; k < CONTEXT_SIZE; k++) {
  501. int pred = j ? f->initial_states[i][j - 1][k] : 128;
  502. put_symbol(c, state2[k],
  503. (int8_t)(f->initial_states[i][j][k] - pred), 1);
  504. }
  505. } else {
  506. put_rac(c, state, 0);
  507. }
  508. }
  509. if (f->version > 2) {
  510. put_symbol(c, state, f->ec, 0);
  511. }
  512. f->avctx->extradata_size = ff_rac_terminate(c);
  513. v = av_crc(av_crc_get_table(AV_CRC_32_IEEE), 0, f->avctx->extradata, f->avctx->extradata_size);
  514. AV_WL32(f->avctx->extradata + f->avctx->extradata_size, v);
  515. f->avctx->extradata_size += 4;
  516. return 0;
  517. }
  518. static int sort_stt(FFV1Context *s, uint8_t stt[256])
  519. {
  520. int i, i2, changed, print = 0;
  521. do {
  522. changed = 0;
  523. for (i = 12; i < 244; i++) {
  524. for (i2 = i + 1; i2 < 245 && i2 < i + 4; i2++) {
  525. #define COST(old, new) \
  526. s->rc_stat[old][0] * -log2((256 - (new)) / 256.0) + \
  527. s->rc_stat[old][1] * -log2((new) / 256.0)
  528. #define COST2(old, new) \
  529. COST(old, new) + COST(256 - (old), 256 - (new))
  530. double size0 = COST2(i, i) + COST2(i2, i2);
  531. double sizeX = COST2(i, i2) + COST2(i2, i);
  532. if (size0 - sizeX > size0*(1e-14) && i != 128 && i2 != 128) {
  533. int j;
  534. FFSWAP(int, stt[i], stt[i2]);
  535. FFSWAP(int, s->rc_stat[i][0], s->rc_stat[i2][0]);
  536. FFSWAP(int, s->rc_stat[i][1], s->rc_stat[i2][1]);
  537. if (i != 256 - i2) {
  538. FFSWAP(int, stt[256 - i], stt[256 - i2]);
  539. FFSWAP(int, s->rc_stat[256 - i][0], s->rc_stat[256 - i2][0]);
  540. FFSWAP(int, s->rc_stat[256 - i][1], s->rc_stat[256 - i2][1]);
  541. }
  542. for (j = 1; j < 256; j++) {
  543. if (stt[j] == i)
  544. stt[j] = i2;
  545. else if (stt[j] == i2)
  546. stt[j] = i;
  547. if (i != 256 - i2) {
  548. if (stt[256 - j] == 256 - i)
  549. stt[256 - j] = 256 - i2;
  550. else if (stt[256 - j] == 256 - i2)
  551. stt[256 - j] = 256 - i;
  552. }
  553. }
  554. print = changed = 1;
  555. }
  556. }
  557. }
  558. } while (changed);
  559. return print;
  560. }
  561. static av_cold int encode_init(AVCodecContext *avctx)
  562. {
  563. FFV1Context *s = avctx->priv_data;
  564. const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(avctx->pix_fmt);
  565. int i, j, k, m, ret;
  566. ffv1_common_init(avctx);
  567. s->version = 0;
  568. if ((avctx->flags & (CODEC_FLAG_PASS1|CODEC_FLAG_PASS2)) || avctx->slices>1)
  569. s->version = FFMAX(s->version, 2);
  570. if (avctx->level == 3) {
  571. s->version = 3;
  572. }
  573. if (s->ec < 0) {
  574. s->ec = (s->version >= 3);
  575. }
  576. if (s->version >= 2 && avctx->strict_std_compliance > FF_COMPLIANCE_EXPERIMENTAL) {
  577. av_log(avctx, AV_LOG_ERROR, "Version 2 needed for requested features but version 2 is experimental and not enabled\n");
  578. return AVERROR_INVALIDDATA;
  579. }
  580. s->ac = avctx->coder_type > 0 ? 2 : 0;
  581. s->plane_count = 3;
  582. switch(avctx->pix_fmt) {
  583. case AV_PIX_FMT_YUV444P9:
  584. case AV_PIX_FMT_YUV422P9:
  585. case AV_PIX_FMT_YUV420P9:
  586. if (!avctx->bits_per_raw_sample)
  587. s->bits_per_raw_sample = 9;
  588. case AV_PIX_FMT_YUV444P10:
  589. case AV_PIX_FMT_YUV420P10:
  590. case AV_PIX_FMT_YUV422P10:
  591. s->packed_at_lsb = 1;
  592. if (!avctx->bits_per_raw_sample && !s->bits_per_raw_sample)
  593. s->bits_per_raw_sample = 10;
  594. case AV_PIX_FMT_GRAY16:
  595. case AV_PIX_FMT_YUV444P16:
  596. case AV_PIX_FMT_YUV422P16:
  597. case AV_PIX_FMT_YUV420P16:
  598. if (!avctx->bits_per_raw_sample && !s->bits_per_raw_sample) {
  599. s->bits_per_raw_sample = 16;
  600. } else if (!s->bits_per_raw_sample) {
  601. s->bits_per_raw_sample = avctx->bits_per_raw_sample;
  602. }
  603. if (s->bits_per_raw_sample <= 8) {
  604. av_log(avctx, AV_LOG_ERROR, "bits_per_raw_sample invalid\n");
  605. return AVERROR_INVALIDDATA;
  606. }
  607. if (!s->ac && avctx->coder_type == -1) {
  608. av_log(avctx, AV_LOG_INFO, "bits_per_raw_sample > 8, forcing coder 1\n");
  609. s->ac = 2;
  610. }
  611. if (!s->ac) {
  612. av_log(avctx, AV_LOG_ERROR, "bits_per_raw_sample of more than 8 needs -coder 1 currently\n");
  613. return AVERROR(ENOSYS);
  614. }
  615. s->version = FFMAX(s->version, 1);
  616. case AV_PIX_FMT_GRAY8:
  617. case AV_PIX_FMT_YUV444P:
  618. case AV_PIX_FMT_YUV440P:
  619. case AV_PIX_FMT_YUV422P:
  620. case AV_PIX_FMT_YUV420P:
  621. case AV_PIX_FMT_YUV411P:
  622. case AV_PIX_FMT_YUV410P:
  623. s->chroma_planes = desc->nb_components < 3 ? 0 : 1;
  624. s->colorspace = 0;
  625. break;
  626. case AV_PIX_FMT_YUVA444P:
  627. case AV_PIX_FMT_YUVA422P:
  628. case AV_PIX_FMT_YUVA420P:
  629. s->chroma_planes = 1;
  630. s->colorspace = 0;
  631. s->transparency = 1;
  632. break;
  633. case AV_PIX_FMT_RGB32:
  634. s->colorspace = 1;
  635. s->transparency = 1;
  636. break;
  637. case AV_PIX_FMT_0RGB32:
  638. s->colorspace = 1;
  639. break;
  640. case AV_PIX_FMT_GBRP9:
  641. if (!avctx->bits_per_raw_sample)
  642. s->bits_per_raw_sample = 9;
  643. case AV_PIX_FMT_GBRP10:
  644. if (!avctx->bits_per_raw_sample && !s->bits_per_raw_sample)
  645. s->bits_per_raw_sample = 10;
  646. case AV_PIX_FMT_GBRP12:
  647. if (!avctx->bits_per_raw_sample && !s->bits_per_raw_sample)
  648. s->bits_per_raw_sample = 12;
  649. case AV_PIX_FMT_GBRP14:
  650. if (!avctx->bits_per_raw_sample && !s->bits_per_raw_sample)
  651. s->bits_per_raw_sample = 14;
  652. else if (!s->bits_per_raw_sample)
  653. s->bits_per_raw_sample = avctx->bits_per_raw_sample;
  654. s->colorspace = 1;
  655. s->chroma_planes = 1;
  656. s->version = FFMAX(s->version, 1);
  657. break;
  658. default:
  659. av_log(avctx, AV_LOG_ERROR, "format not supported\n");
  660. return AVERROR(ENOSYS);
  661. }
  662. if (s->transparency) {
  663. av_log(avctx, AV_LOG_WARNING, "Storing alpha plane, this will require a recent FFV1 decoder to playback!\n");
  664. }
  665. if (avctx->context_model > 1U) {
  666. av_log(avctx, AV_LOG_ERROR, "Invalid context model %d, valid values are 0 and 1\n", avctx->context_model);
  667. return AVERROR(EINVAL);
  668. }
  669. if (s->ac > 1)
  670. for (i = 1; i < 256; i++)
  671. s->state_transition[i] = ver2_state[i];
  672. for (i = 0; i < 256; i++) {
  673. s->quant_table_count = 2;
  674. if (s->bits_per_raw_sample <= 8) {
  675. s->quant_tables[0][0][i]= quant11[i];
  676. s->quant_tables[0][1][i]= 11*quant11[i];
  677. s->quant_tables[0][2][i]= 11*11*quant11[i];
  678. s->quant_tables[1][0][i]= quant11[i];
  679. s->quant_tables[1][1][i]= 11*quant11[i];
  680. s->quant_tables[1][2][i]= 11*11*quant5 [i];
  681. s->quant_tables[1][3][i]= 5*11*11*quant5 [i];
  682. s->quant_tables[1][4][i]= 5*5*11*11*quant5 [i];
  683. } else {
  684. s->quant_tables[0][0][i]= quant9_10bit[i];
  685. s->quant_tables[0][1][i]= 11*quant9_10bit[i];
  686. s->quant_tables[0][2][i]= 11*11*quant9_10bit[i];
  687. s->quant_tables[1][0][i]= quant9_10bit[i];
  688. s->quant_tables[1][1][i]= 11*quant9_10bit[i];
  689. s->quant_tables[1][2][i]= 11*11*quant5_10bit[i];
  690. s->quant_tables[1][3][i]= 5*11*11*quant5_10bit[i];
  691. s->quant_tables[1][4][i]= 5*5*11*11*quant5_10bit[i];
  692. }
  693. }
  694. s->context_count[0] = (11 * 11 * 11 + 1) / 2;
  695. s->context_count[1] = (11 * 11 * 5 * 5 * 5 + 1) / 2;
  696. memcpy(s->quant_table, s->quant_tables[avctx->context_model],
  697. sizeof(s->quant_table));
  698. for (i = 0; i < s->plane_count; i++) {
  699. PlaneContext *const p = &s->plane[i];
  700. memcpy(p->quant_table, s->quant_table, sizeof(p->quant_table));
  701. p->quant_table_index = avctx->context_model;
  702. p->context_count = s->context_count[p->quant_table_index];
  703. }
  704. if ((ret = ffv1_allocate_initial_states(s)) < 0)
  705. return ret;
  706. avctx->coded_frame = &s->picture;
  707. if (!s->transparency)
  708. s->plane_count = 2;
  709. avcodec_get_chroma_sub_sample(avctx->pix_fmt, &s->chroma_h_shift, &s->chroma_v_shift);
  710. s->picture_number = 0;
  711. if (avctx->flags & (CODEC_FLAG_PASS1 | CODEC_FLAG_PASS2)) {
  712. for (i = 0; i < s->quant_table_count; i++) {
  713. s->rc_stat2[i] = av_mallocz(s->context_count[i] *
  714. sizeof(*s->rc_stat2[i]));
  715. if (!s->rc_stat2[i])
  716. return AVERROR(ENOMEM);
  717. }
  718. }
  719. if (avctx->stats_in) {
  720. char *p = avctx->stats_in;
  721. uint8_t best_state[256][256];
  722. int gob_count = 0;
  723. char *next;
  724. av_assert0(s->version >= 2);
  725. for (;;) {
  726. for (j = 0; j < 256; j++)
  727. for (i = 0; i < 2; i++) {
  728. s->rc_stat[j][i] = strtol(p, &next, 0);
  729. if (next == p) {
  730. av_log(avctx, AV_LOG_ERROR,
  731. "2Pass file invalid at %d %d [%s]\n", j, i, p);
  732. return AVERROR_INVALIDDATA;
  733. }
  734. p = next;
  735. }
  736. for (i = 0; i < s->quant_table_count; i++)
  737. for (j = 0; j < s->context_count[i]; j++) {
  738. for (k = 0; k < 32; k++)
  739. for (m = 0; m < 2; m++) {
  740. s->rc_stat2[i][j][k][m] = strtol(p, &next, 0);
  741. if (next == p) {
  742. av_log(avctx, AV_LOG_ERROR,
  743. "2Pass file invalid at %d %d %d %d [%s]\n",
  744. i, j, k, m, p);
  745. return AVERROR_INVALIDDATA;
  746. }
  747. p = next;
  748. }
  749. }
  750. gob_count = strtol(p, &next, 0);
  751. if (next == p || gob_count <= 0) {
  752. av_log(avctx, AV_LOG_ERROR, "2Pass file invalid\n");
  753. return AVERROR_INVALIDDATA;
  754. }
  755. p = next;
  756. while (*p == '\n' || *p == ' ')
  757. p++;
  758. if (p[0] == 0)
  759. break;
  760. }
  761. sort_stt(s, s->state_transition);
  762. find_best_state(best_state, s->state_transition);
  763. for (i = 0; i < s->quant_table_count; i++) {
  764. for (k = 0; k < 32; k++) {
  765. double a=0, b=0;
  766. int jp = 0;
  767. for (j = 0; j < s->context_count[i]; j++) {
  768. double p = 128;
  769. if (s->rc_stat2[i][j][k][0] + s->rc_stat2[i][j][k][1] > 200 && j || a+b > 200) {
  770. if (a+b)
  771. p = 256.0 * b / (a + b);
  772. s->initial_states[i][jp][k] =
  773. best_state[av_clip(round(p), 1, 255)][av_clip((a + b) / gob_count, 0, 255)];
  774. for(jp++; jp<j; jp++)
  775. s->initial_states[i][jp][k] = s->initial_states[i][jp-1][k];
  776. a=b=0;
  777. }
  778. a += s->rc_stat2[i][j][k][0];
  779. b += s->rc_stat2[i][j][k][1];
  780. if (a+b) {
  781. p = 256.0 * b / (a + b);
  782. }
  783. s->initial_states[i][j][k] =
  784. best_state[av_clip(round(p), 1, 255)][av_clip((a + b) / gob_count, 0, 255)];
  785. }
  786. }
  787. }
  788. }
  789. if (s->version > 1) {
  790. s->num_v_slices = (avctx->width > 352 || avctx->height > 288 || !avctx->slices) ? 2 : 1;
  791. for (; s->num_v_slices < 9; s->num_v_slices++) {
  792. for (s->num_h_slices = s->num_v_slices; s->num_h_slices < 2*s->num_v_slices; s->num_h_slices++) {
  793. if (avctx->slices == s->num_h_slices * s->num_v_slices && avctx->slices <= 64 || !avctx->slices)
  794. goto slices_ok;
  795. }
  796. }
  797. av_log(avctx, AV_LOG_ERROR,
  798. "Unsupported number %d of slices requested, please specify a "
  799. "supported number with -slices (ex:4,6,9,12,16, ...)\n",
  800. avctx->slices);
  801. return AVERROR(ENOSYS);
  802. slices_ok:
  803. write_extradata(s);
  804. }
  805. if ((ret = ffv1_init_slice_contexts(s)) < 0)
  806. return ret;
  807. if ((ret = ffv1_init_slices_state(s)) < 0)
  808. return ret;
  809. #define STATS_OUT_SIZE 1024 * 1024 * 6
  810. if (avctx->flags & CODEC_FLAG_PASS1) {
  811. avctx->stats_out = av_mallocz(STATS_OUT_SIZE);
  812. if (!avctx->stats_out)
  813. return AVERROR(ENOMEM);
  814. for (i = 0; i < s->quant_table_count; i++)
  815. for (j = 0; j < s->slice_count; j++) {
  816. FFV1Context *sf = s->slice_context[j];
  817. av_assert0(!sf->rc_stat2[i]);
  818. sf->rc_stat2[i] = av_mallocz(s->context_count[i] *
  819. sizeof(*sf->rc_stat2[i]));
  820. if (!sf->rc_stat2[i])
  821. return AVERROR(ENOMEM);
  822. }
  823. }
  824. return 0;
  825. }
  826. static void encode_slice_header(FFV1Context *f, FFV1Context *fs)
  827. {
  828. RangeCoder *c = &fs->c;
  829. uint8_t state[CONTEXT_SIZE];
  830. int j;
  831. memset(state, 128, sizeof(state));
  832. put_symbol(c, state, (fs->slice_x +1)*f->num_h_slices / f->width , 0);
  833. put_symbol(c, state, (fs->slice_y +1)*f->num_v_slices / f->height , 0);
  834. put_symbol(c, state, (fs->slice_width +1)*f->num_h_slices / f->width -1, 0);
  835. put_symbol(c, state, (fs->slice_height+1)*f->num_v_slices / f->height-1, 0);
  836. for (j=0; j<f->plane_count; j++) {
  837. put_symbol(c, state, f->plane[j].quant_table_index, 0);
  838. av_assert0(f->plane[j].quant_table_index == f->avctx->context_model);
  839. }
  840. if (!f->picture.interlaced_frame)
  841. put_symbol(c, state, 3, 0);
  842. else
  843. put_symbol(c, state, 1 + !f->picture.top_field_first, 0);
  844. put_symbol(c, state, f->picture.sample_aspect_ratio.num, 0);
  845. put_symbol(c, state, f->picture.sample_aspect_ratio.den, 0);
  846. }
  847. static int encode_slice(AVCodecContext *c, void *arg)
  848. {
  849. FFV1Context *fs = *(void **)arg;
  850. FFV1Context *f = fs->avctx->priv_data;
  851. int width = fs->slice_width;
  852. int height = fs->slice_height;
  853. int x = fs->slice_x;
  854. int y = fs->slice_y;
  855. AVFrame *const p = &f->picture;
  856. const int ps = av_pix_fmt_desc_get(c->pix_fmt)->comp[0].step_minus1 + 1;
  857. if (p->key_frame)
  858. ffv1_clear_slice_state(f, fs);
  859. if (f->version > 2) {
  860. encode_slice_header(f, fs);
  861. }
  862. if (!fs->ac) {
  863. if (f->version > 2)
  864. put_rac(&fs->c, (uint8_t[]) { 129 }, 0);
  865. fs->ac_byte_count = f->version > 2 || (!x && !y) ? ff_rac_terminate(&fs->c) : 0;
  866. init_put_bits(&fs->pb,
  867. fs->c.bytestream_start + fs->ac_byte_count,
  868. fs->c.bytestream_end - fs->c.bytestream_start - fs->ac_byte_count);
  869. }
  870. if (f->colorspace == 0) {
  871. const int chroma_width = -((-width) >> f->chroma_h_shift);
  872. const int chroma_height = -((-height) >> f->chroma_v_shift);
  873. const int cx = x >> f->chroma_h_shift;
  874. const int cy = y >> f->chroma_v_shift;
  875. encode_plane(fs, p->data[0] + ps*x + y*p->linesize[0], width, height, p->linesize[0], 0);
  876. if (f->chroma_planes) {
  877. encode_plane(fs, p->data[1] + ps*cx+cy*p->linesize[1], chroma_width, chroma_height, p->linesize[1], 1);
  878. encode_plane(fs, p->data[2] + ps*cx+cy*p->linesize[2], chroma_width, chroma_height, p->linesize[2], 1);
  879. }
  880. if (fs->transparency)
  881. encode_plane(fs, p->data[3] + ps*x + y*p->linesize[3], width, height, p->linesize[3], 2);
  882. } else {
  883. uint8_t *planes[3] = {p->data[0] + ps*x + y*p->linesize[0],
  884. p->data[1] + ps*x + y*p->linesize[1],
  885. p->data[2] + ps*x + y*p->linesize[2]};
  886. encode_rgb_frame(fs, planes, width, height, p->linesize);
  887. }
  888. emms_c();
  889. return 0;
  890. }
  891. static int encode_frame(AVCodecContext *avctx, AVPacket *pkt,
  892. const AVFrame *pict, int *got_packet)
  893. {
  894. FFV1Context *f = avctx->priv_data;
  895. RangeCoder *const c = &f->slice_context[0]->c;
  896. AVFrame *const p = &f->picture;
  897. int used_count = 0;
  898. uint8_t keystate = 128;
  899. uint8_t *buf_p;
  900. int i, ret;
  901. if ((ret = ff_alloc_packet2(avctx, pkt, avctx->width*avctx->height*((8*2+1+1)*4)/8
  902. + FF_MIN_BUFFER_SIZE)) < 0)
  903. return ret;
  904. ff_init_range_encoder(c, pkt->data, pkt->size);
  905. ff_build_rac_states(c, 0.05 * (1LL << 32), 256 - 8);
  906. *p = *pict;
  907. p->pict_type = AV_PICTURE_TYPE_I;
  908. if (avctx->gop_size == 0 || f->picture_number % avctx->gop_size == 0) {
  909. put_rac(c, &keystate, 1);
  910. p->key_frame = 1;
  911. f->gob_count++;
  912. write_header(f);
  913. } else {
  914. put_rac(c, &keystate, 0);
  915. p->key_frame = 0;
  916. }
  917. if (f->ac > 1) {
  918. int i;
  919. for (i = 1; i < 256; i++) {
  920. c->one_state[i] = f->state_transition[i];
  921. c->zero_state[256 - i] = 256 - c->one_state[i];
  922. }
  923. }
  924. for (i = 1; i < f->slice_count; i++) {
  925. FFV1Context *fs = f->slice_context[i];
  926. uint8_t *start = pkt->data + (pkt->size - used_count) * (int64_t)i / f->slice_count;
  927. int len = pkt->size / f->slice_count;
  928. ff_init_range_encoder(&fs->c, start, len);
  929. }
  930. avctx->execute(avctx, encode_slice, &f->slice_context[0], NULL,
  931. f->slice_count, sizeof(void *));
  932. buf_p = pkt->data;
  933. for (i = 0; i < f->slice_count; i++) {
  934. FFV1Context *fs = f->slice_context[i];
  935. int bytes;
  936. if (fs->ac) {
  937. uint8_t state = 129;
  938. put_rac(&fs->c, &state, 0);
  939. bytes = ff_rac_terminate(&fs->c);
  940. } else {
  941. flush_put_bits(&fs->pb); // FIXME: nicer padding
  942. bytes = fs->ac_byte_count + (put_bits_count(&fs->pb) + 7) / 8;
  943. }
  944. if (i > 0 || f->version > 2) {
  945. av_assert0(bytes < pkt->size / f->slice_count);
  946. memmove(buf_p, fs->c.bytestream_start, bytes);
  947. av_assert0(bytes < (1 << 24));
  948. AV_WB24(buf_p + bytes, bytes);
  949. bytes += 3;
  950. }
  951. if (f->ec) {
  952. unsigned v;
  953. buf_p[bytes++] = 0;
  954. v = av_crc(av_crc_get_table(AV_CRC_32_IEEE), 0, buf_p, bytes);
  955. AV_WL32(buf_p + bytes, v);
  956. bytes += 4;
  957. }
  958. buf_p += bytes;
  959. }
  960. if ((avctx->flags & CODEC_FLAG_PASS1) && (f->picture_number & 31) == 0) {
  961. int j, k, m;
  962. char *p = avctx->stats_out;
  963. char *end = p + STATS_OUT_SIZE;
  964. memset(f->rc_stat, 0, sizeof(f->rc_stat));
  965. for (i = 0; i < f->quant_table_count; i++)
  966. memset(f->rc_stat2[i], 0, f->context_count[i] * sizeof(*f->rc_stat2[i]));
  967. for (j = 0; j < f->slice_count; j++) {
  968. FFV1Context *fs = f->slice_context[j];
  969. for (i = 0; i < 256; i++) {
  970. f->rc_stat[i][0] += fs->rc_stat[i][0];
  971. f->rc_stat[i][1] += fs->rc_stat[i][1];
  972. }
  973. for (i = 0; i < f->quant_table_count; i++) {
  974. for (k = 0; k < f->context_count[i]; k++)
  975. for (m = 0; m < 32; m++) {
  976. f->rc_stat2[i][k][m][0] += fs->rc_stat2[i][k][m][0];
  977. f->rc_stat2[i][k][m][1] += fs->rc_stat2[i][k][m][1];
  978. }
  979. }
  980. }
  981. for (j = 0; j < 256; j++) {
  982. snprintf(p, end - p, "%" PRIu64 " %" PRIu64 " ",
  983. f->rc_stat[j][0], f->rc_stat[j][1]);
  984. p += strlen(p);
  985. }
  986. snprintf(p, end - p, "\n");
  987. for (i = 0; i < f->quant_table_count; i++) {
  988. for (j = 0; j < f->context_count[i]; j++)
  989. for (m = 0; m < 32; m++) {
  990. snprintf(p, end - p, "%" PRIu64 " %" PRIu64 " ",
  991. f->rc_stat2[i][j][m][0], f->rc_stat2[i][j][m][1]);
  992. p += strlen(p);
  993. }
  994. }
  995. snprintf(p, end - p, "%d\n", f->gob_count);
  996. } else if (avctx->flags & CODEC_FLAG_PASS1)
  997. avctx->stats_out[0] = '\0';
  998. f->picture_number++;
  999. pkt->size = buf_p - pkt->data;
  1000. pkt->flags |= AV_PKT_FLAG_KEY * p->key_frame;
  1001. *got_packet = 1;
  1002. return 0;
  1003. }
  1004. #define OFFSET(x) offsetof(FFV1Context, x)
  1005. #define VE AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_ENCODING_PARAM
  1006. static const AVOption options[] = {
  1007. { "slicecrc", "Protect slices with CRCs", OFFSET(ec), AV_OPT_TYPE_INT, { .i64 = -1 }, -1, 1, VE },
  1008. { NULL }
  1009. };
  1010. static const AVClass class = {
  1011. .class_name = "ffv1 encoder",
  1012. .item_name = av_default_item_name,
  1013. .option = options,
  1014. .version = LIBAVUTIL_VERSION_INT,
  1015. };
  1016. static const AVCodecDefault ffv1_defaults[] = {
  1017. { "coder", "-1" },
  1018. { NULL },
  1019. };
  1020. AVCodec ff_ffv1_encoder = {
  1021. .name = "ffv1",
  1022. .type = AVMEDIA_TYPE_VIDEO,
  1023. .id = AV_CODEC_ID_FFV1,
  1024. .priv_data_size = sizeof(FFV1Context),
  1025. .init = encode_init,
  1026. .encode2 = encode_frame,
  1027. .close = ffv1_close,
  1028. .capabilities = CODEC_CAP_SLICE_THREADS,
  1029. .pix_fmts = (const enum AVPixelFormat[]) {
  1030. AV_PIX_FMT_YUV420P, AV_PIX_FMT_YUVA420P, AV_PIX_FMT_YUVA422P, AV_PIX_FMT_YUV444P,
  1031. AV_PIX_FMT_YUVA444P, AV_PIX_FMT_YUV440P, AV_PIX_FMT_YUV422P, AV_PIX_FMT_YUV411P,
  1032. AV_PIX_FMT_YUV410P, AV_PIX_FMT_0RGB32, AV_PIX_FMT_RGB32, AV_PIX_FMT_YUV420P16,
  1033. AV_PIX_FMT_YUV422P16, AV_PIX_FMT_YUV444P16, AV_PIX_FMT_YUV444P9, AV_PIX_FMT_YUV422P9,
  1034. AV_PIX_FMT_YUV420P9, AV_PIX_FMT_YUV420P10, AV_PIX_FMT_YUV422P10, AV_PIX_FMT_YUV444P10,
  1035. AV_PIX_FMT_GRAY16, AV_PIX_FMT_GRAY8, AV_PIX_FMT_GBRP9, AV_PIX_FMT_GBRP10,
  1036. AV_PIX_FMT_GBRP12, AV_PIX_FMT_GBRP14,
  1037. AV_PIX_FMT_NONE
  1038. },
  1039. .long_name = NULL_IF_CONFIG_SMALL("FFmpeg video codec #1"),
  1040. .defaults = ffv1_defaults,
  1041. .priv_class = &class,
  1042. };