You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1748 lines
64KB

  1. /*
  2. * AAC Spectral Band Replication decoding functions
  3. * Copyright (c) 2008-2009 Robert Swain ( rob opendot cl )
  4. * Copyright (c) 2009-2010 Alex Converse <alex.converse@gmail.com>
  5. *
  6. * This file is part of FFmpeg.
  7. *
  8. * FFmpeg is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU Lesser General Public
  10. * License as published by the Free Software Foundation; either
  11. * version 2.1 of the License, or (at your option) any later version.
  12. *
  13. * FFmpeg is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * Lesser General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU Lesser General Public
  19. * License along with FFmpeg; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  21. */
  22. /**
  23. * @file
  24. * AAC Spectral Band Replication decoding functions
  25. * @author Robert Swain ( rob opendot cl )
  26. */
  27. #include "aac.h"
  28. #include "sbr.h"
  29. #include "aacsbr.h"
  30. #include "aacsbrdata.h"
  31. #include "fft.h"
  32. #include "aacps.h"
  33. #include "sbrdsp.h"
  34. #include "libavutil/internal.h"
  35. #include "libavutil/libm.h"
  36. #include "libavutil/avassert.h"
  37. #include <stdint.h>
  38. #include <float.h>
  39. #include <math.h>
  40. #define ENVELOPE_ADJUSTMENT_OFFSET 2
  41. #define NOISE_FLOOR_OFFSET 6.0f
  42. #if ARCH_MIPS
  43. #include "mips/aacsbr_mips.h"
  44. #endif /* ARCH_MIPS */
  45. /**
  46. * SBR VLC tables
  47. */
  48. enum {
  49. T_HUFFMAN_ENV_1_5DB,
  50. F_HUFFMAN_ENV_1_5DB,
  51. T_HUFFMAN_ENV_BAL_1_5DB,
  52. F_HUFFMAN_ENV_BAL_1_5DB,
  53. T_HUFFMAN_ENV_3_0DB,
  54. F_HUFFMAN_ENV_3_0DB,
  55. T_HUFFMAN_ENV_BAL_3_0DB,
  56. F_HUFFMAN_ENV_BAL_3_0DB,
  57. T_HUFFMAN_NOISE_3_0DB,
  58. T_HUFFMAN_NOISE_BAL_3_0DB,
  59. };
  60. /**
  61. * bs_frame_class - frame class of current SBR frame (14496-3 sp04 p98)
  62. */
  63. enum {
  64. FIXFIX,
  65. FIXVAR,
  66. VARFIX,
  67. VARVAR,
  68. };
  69. enum {
  70. EXTENSION_ID_PS = 2,
  71. };
  72. static VLC vlc_sbr[10];
  73. static const int8_t vlc_sbr_lav[10] =
  74. { 60, 60, 24, 24, 31, 31, 12, 12, 31, 12 };
  75. #define SBR_INIT_VLC_STATIC(num, size) \
  76. INIT_VLC_STATIC(&vlc_sbr[num], 9, sbr_tmp[num].table_size / sbr_tmp[num].elem_size, \
  77. sbr_tmp[num].sbr_bits , 1, 1, \
  78. sbr_tmp[num].sbr_codes, sbr_tmp[num].elem_size, sbr_tmp[num].elem_size, \
  79. size)
  80. #define SBR_VLC_ROW(name) \
  81. { name ## _codes, name ## _bits, sizeof(name ## _codes), sizeof(name ## _codes[0]) }
  82. static void aacsbr_func_ptr_init(AACSBRContext *c);
  83. av_cold void ff_aac_sbr_init(void)
  84. {
  85. int n;
  86. static const struct {
  87. const void *sbr_codes, *sbr_bits;
  88. const unsigned int table_size, elem_size;
  89. } sbr_tmp[] = {
  90. SBR_VLC_ROW(t_huffman_env_1_5dB),
  91. SBR_VLC_ROW(f_huffman_env_1_5dB),
  92. SBR_VLC_ROW(t_huffman_env_bal_1_5dB),
  93. SBR_VLC_ROW(f_huffman_env_bal_1_5dB),
  94. SBR_VLC_ROW(t_huffman_env_3_0dB),
  95. SBR_VLC_ROW(f_huffman_env_3_0dB),
  96. SBR_VLC_ROW(t_huffman_env_bal_3_0dB),
  97. SBR_VLC_ROW(f_huffman_env_bal_3_0dB),
  98. SBR_VLC_ROW(t_huffman_noise_3_0dB),
  99. SBR_VLC_ROW(t_huffman_noise_bal_3_0dB),
  100. };
  101. // SBR VLC table initialization
  102. SBR_INIT_VLC_STATIC(0, 1098);
  103. SBR_INIT_VLC_STATIC(1, 1092);
  104. SBR_INIT_VLC_STATIC(2, 768);
  105. SBR_INIT_VLC_STATIC(3, 1026);
  106. SBR_INIT_VLC_STATIC(4, 1058);
  107. SBR_INIT_VLC_STATIC(5, 1052);
  108. SBR_INIT_VLC_STATIC(6, 544);
  109. SBR_INIT_VLC_STATIC(7, 544);
  110. SBR_INIT_VLC_STATIC(8, 592);
  111. SBR_INIT_VLC_STATIC(9, 512);
  112. for (n = 1; n < 320; n++)
  113. sbr_qmf_window_us[320 + n] = sbr_qmf_window_us[320 - n];
  114. sbr_qmf_window_us[384] = -sbr_qmf_window_us[384];
  115. sbr_qmf_window_us[512] = -sbr_qmf_window_us[512];
  116. for (n = 0; n < 320; n++)
  117. sbr_qmf_window_ds[n] = sbr_qmf_window_us[2*n];
  118. ff_ps_init();
  119. }
  120. /** Places SBR in pure upsampling mode. */
  121. static void sbr_turnoff(SpectralBandReplication *sbr) {
  122. sbr->start = 0;
  123. // Init defults used in pure upsampling mode
  124. sbr->kx[1] = 32; //Typo in spec, kx' inits to 32
  125. sbr->m[1] = 0;
  126. // Reset values for first SBR header
  127. sbr->data[0].e_a[1] = sbr->data[1].e_a[1] = -1;
  128. memset(&sbr->spectrum_params, -1, sizeof(SpectrumParameters));
  129. }
  130. av_cold void ff_aac_sbr_ctx_init(AACContext *ac, SpectralBandReplication *sbr)
  131. {
  132. if(sbr->mdct.mdct_bits)
  133. return;
  134. sbr->kx[0] = sbr->kx[1];
  135. sbr_turnoff(sbr);
  136. sbr->data[0].synthesis_filterbank_samples_offset = SBR_SYNTHESIS_BUF_SIZE - (1280 - 128);
  137. sbr->data[1].synthesis_filterbank_samples_offset = SBR_SYNTHESIS_BUF_SIZE - (1280 - 128);
  138. /* SBR requires samples to be scaled to +/-32768.0 to work correctly.
  139. * mdct scale factors are adjusted to scale up from +/-1.0 at analysis
  140. * and scale back down at synthesis. */
  141. ff_mdct_init(&sbr->mdct, 7, 1, 1.0 / (64 * 32768.0));
  142. ff_mdct_init(&sbr->mdct_ana, 7, 1, -2.0 * 32768.0);
  143. ff_ps_ctx_init(&sbr->ps);
  144. ff_sbrdsp_init(&sbr->dsp);
  145. aacsbr_func_ptr_init(&sbr->c);
  146. }
  147. av_cold void ff_aac_sbr_ctx_close(SpectralBandReplication *sbr)
  148. {
  149. ff_mdct_end(&sbr->mdct);
  150. ff_mdct_end(&sbr->mdct_ana);
  151. }
  152. static int qsort_comparison_function_int16(const void *a, const void *b)
  153. {
  154. return *(const int16_t *)a - *(const int16_t *)b;
  155. }
  156. static inline int in_table_int16(const int16_t *table, int last_el, int16_t needle)
  157. {
  158. int i;
  159. for (i = 0; i <= last_el; i++)
  160. if (table[i] == needle)
  161. return 1;
  162. return 0;
  163. }
  164. /// Limiter Frequency Band Table (14496-3 sp04 p198)
  165. static void sbr_make_f_tablelim(SpectralBandReplication *sbr)
  166. {
  167. int k;
  168. if (sbr->bs_limiter_bands > 0) {
  169. static const float bands_warped[3] = { 1.32715174233856803909f, //2^(0.49/1.2)
  170. 1.18509277094158210129f, //2^(0.49/2)
  171. 1.11987160404675912501f }; //2^(0.49/3)
  172. const float lim_bands_per_octave_warped = bands_warped[sbr->bs_limiter_bands - 1];
  173. int16_t patch_borders[7];
  174. uint16_t *in = sbr->f_tablelim + 1, *out = sbr->f_tablelim;
  175. patch_borders[0] = sbr->kx[1];
  176. for (k = 1; k <= sbr->num_patches; k++)
  177. patch_borders[k] = patch_borders[k-1] + sbr->patch_num_subbands[k-1];
  178. memcpy(sbr->f_tablelim, sbr->f_tablelow,
  179. (sbr->n[0] + 1) * sizeof(sbr->f_tablelow[0]));
  180. if (sbr->num_patches > 1)
  181. memcpy(sbr->f_tablelim + sbr->n[0] + 1, patch_borders + 1,
  182. (sbr->num_patches - 1) * sizeof(patch_borders[0]));
  183. qsort(sbr->f_tablelim, sbr->num_patches + sbr->n[0],
  184. sizeof(sbr->f_tablelim[0]),
  185. qsort_comparison_function_int16);
  186. sbr->n_lim = sbr->n[0] + sbr->num_patches - 1;
  187. while (out < sbr->f_tablelim + sbr->n_lim) {
  188. if (*in >= *out * lim_bands_per_octave_warped) {
  189. *++out = *in++;
  190. } else if (*in == *out ||
  191. !in_table_int16(patch_borders, sbr->num_patches, *in)) {
  192. in++;
  193. sbr->n_lim--;
  194. } else if (!in_table_int16(patch_borders, sbr->num_patches, *out)) {
  195. *out = *in++;
  196. sbr->n_lim--;
  197. } else {
  198. *++out = *in++;
  199. }
  200. }
  201. } else {
  202. sbr->f_tablelim[0] = sbr->f_tablelow[0];
  203. sbr->f_tablelim[1] = sbr->f_tablelow[sbr->n[0]];
  204. sbr->n_lim = 1;
  205. }
  206. }
  207. static unsigned int read_sbr_header(SpectralBandReplication *sbr, GetBitContext *gb)
  208. {
  209. unsigned int cnt = get_bits_count(gb);
  210. uint8_t bs_header_extra_1;
  211. uint8_t bs_header_extra_2;
  212. int old_bs_limiter_bands = sbr->bs_limiter_bands;
  213. SpectrumParameters old_spectrum_params;
  214. sbr->start = 1;
  215. // Save last spectrum parameters variables to compare to new ones
  216. memcpy(&old_spectrum_params, &sbr->spectrum_params, sizeof(SpectrumParameters));
  217. sbr->bs_amp_res_header = get_bits1(gb);
  218. sbr->spectrum_params.bs_start_freq = get_bits(gb, 4);
  219. sbr->spectrum_params.bs_stop_freq = get_bits(gb, 4);
  220. sbr->spectrum_params.bs_xover_band = get_bits(gb, 3);
  221. skip_bits(gb, 2); // bs_reserved
  222. bs_header_extra_1 = get_bits1(gb);
  223. bs_header_extra_2 = get_bits1(gb);
  224. if (bs_header_extra_1) {
  225. sbr->spectrum_params.bs_freq_scale = get_bits(gb, 2);
  226. sbr->spectrum_params.bs_alter_scale = get_bits1(gb);
  227. sbr->spectrum_params.bs_noise_bands = get_bits(gb, 2);
  228. } else {
  229. sbr->spectrum_params.bs_freq_scale = 2;
  230. sbr->spectrum_params.bs_alter_scale = 1;
  231. sbr->spectrum_params.bs_noise_bands = 2;
  232. }
  233. // Check if spectrum parameters changed
  234. if (memcmp(&old_spectrum_params, &sbr->spectrum_params, sizeof(SpectrumParameters)))
  235. sbr->reset = 1;
  236. if (bs_header_extra_2) {
  237. sbr->bs_limiter_bands = get_bits(gb, 2);
  238. sbr->bs_limiter_gains = get_bits(gb, 2);
  239. sbr->bs_interpol_freq = get_bits1(gb);
  240. sbr->bs_smoothing_mode = get_bits1(gb);
  241. } else {
  242. sbr->bs_limiter_bands = 2;
  243. sbr->bs_limiter_gains = 2;
  244. sbr->bs_interpol_freq = 1;
  245. sbr->bs_smoothing_mode = 1;
  246. }
  247. if (sbr->bs_limiter_bands != old_bs_limiter_bands && !sbr->reset)
  248. sbr_make_f_tablelim(sbr);
  249. return get_bits_count(gb) - cnt;
  250. }
  251. static int array_min_int16(const int16_t *array, int nel)
  252. {
  253. int i, min = array[0];
  254. for (i = 1; i < nel; i++)
  255. min = FFMIN(array[i], min);
  256. return min;
  257. }
  258. static void make_bands(int16_t* bands, int start, int stop, int num_bands)
  259. {
  260. int k, previous, present;
  261. float base, prod;
  262. base = powf((float)stop / start, 1.0f / num_bands);
  263. prod = start;
  264. previous = start;
  265. for (k = 0; k < num_bands-1; k++) {
  266. prod *= base;
  267. present = lrintf(prod);
  268. bands[k] = present - previous;
  269. previous = present;
  270. }
  271. bands[num_bands-1] = stop - previous;
  272. }
  273. static int check_n_master(AVCodecContext *avctx, int n_master, int bs_xover_band)
  274. {
  275. // Requirements (14496-3 sp04 p205)
  276. if (n_master <= 0) {
  277. av_log(avctx, AV_LOG_ERROR, "Invalid n_master: %d\n", n_master);
  278. return -1;
  279. }
  280. if (bs_xover_band >= n_master) {
  281. av_log(avctx, AV_LOG_ERROR,
  282. "Invalid bitstream, crossover band index beyond array bounds: %d\n",
  283. bs_xover_band);
  284. return -1;
  285. }
  286. return 0;
  287. }
  288. /// Master Frequency Band Table (14496-3 sp04 p194)
  289. static int sbr_make_f_master(AACContext *ac, SpectralBandReplication *sbr,
  290. SpectrumParameters *spectrum)
  291. {
  292. unsigned int temp, max_qmf_subbands;
  293. unsigned int start_min, stop_min;
  294. int k;
  295. const int8_t *sbr_offset_ptr;
  296. int16_t stop_dk[13];
  297. if (sbr->sample_rate < 32000) {
  298. temp = 3000;
  299. } else if (sbr->sample_rate < 64000) {
  300. temp = 4000;
  301. } else
  302. temp = 5000;
  303. switch (sbr->sample_rate) {
  304. case 16000:
  305. sbr_offset_ptr = sbr_offset[0];
  306. break;
  307. case 22050:
  308. sbr_offset_ptr = sbr_offset[1];
  309. break;
  310. case 24000:
  311. sbr_offset_ptr = sbr_offset[2];
  312. break;
  313. case 32000:
  314. sbr_offset_ptr = sbr_offset[3];
  315. break;
  316. case 44100: case 48000: case 64000:
  317. sbr_offset_ptr = sbr_offset[4];
  318. break;
  319. case 88200: case 96000: case 128000: case 176400: case 192000:
  320. sbr_offset_ptr = sbr_offset[5];
  321. break;
  322. default:
  323. av_log(ac->avctx, AV_LOG_ERROR,
  324. "Unsupported sample rate for SBR: %d\n", sbr->sample_rate);
  325. return -1;
  326. }
  327. start_min = ((temp << 7) + (sbr->sample_rate >> 1)) / sbr->sample_rate;
  328. stop_min = ((temp << 8) + (sbr->sample_rate >> 1)) / sbr->sample_rate;
  329. sbr->k[0] = start_min + sbr_offset_ptr[spectrum->bs_start_freq];
  330. if (spectrum->bs_stop_freq < 14) {
  331. sbr->k[2] = stop_min;
  332. make_bands(stop_dk, stop_min, 64, 13);
  333. qsort(stop_dk, 13, sizeof(stop_dk[0]), qsort_comparison_function_int16);
  334. for (k = 0; k < spectrum->bs_stop_freq; k++)
  335. sbr->k[2] += stop_dk[k];
  336. } else if (spectrum->bs_stop_freq == 14) {
  337. sbr->k[2] = 2*sbr->k[0];
  338. } else if (spectrum->bs_stop_freq == 15) {
  339. sbr->k[2] = 3*sbr->k[0];
  340. } else {
  341. av_log(ac->avctx, AV_LOG_ERROR,
  342. "Invalid bs_stop_freq: %d\n", spectrum->bs_stop_freq);
  343. return -1;
  344. }
  345. sbr->k[2] = FFMIN(64, sbr->k[2]);
  346. // Requirements (14496-3 sp04 p205)
  347. if (sbr->sample_rate <= 32000) {
  348. max_qmf_subbands = 48;
  349. } else if (sbr->sample_rate == 44100) {
  350. max_qmf_subbands = 35;
  351. } else if (sbr->sample_rate >= 48000)
  352. max_qmf_subbands = 32;
  353. else
  354. av_assert0(0);
  355. if (sbr->k[2] - sbr->k[0] > max_qmf_subbands) {
  356. av_log(ac->avctx, AV_LOG_ERROR,
  357. "Invalid bitstream, too many QMF subbands: %d\n", sbr->k[2] - sbr->k[0]);
  358. return -1;
  359. }
  360. if (!spectrum->bs_freq_scale) {
  361. int dk, k2diff;
  362. dk = spectrum->bs_alter_scale + 1;
  363. sbr->n_master = ((sbr->k[2] - sbr->k[0] + (dk&2)) >> dk) << 1;
  364. if (check_n_master(ac->avctx, sbr->n_master, sbr->spectrum_params.bs_xover_band))
  365. return -1;
  366. for (k = 1; k <= sbr->n_master; k++)
  367. sbr->f_master[k] = dk;
  368. k2diff = sbr->k[2] - sbr->k[0] - sbr->n_master * dk;
  369. if (k2diff < 0) {
  370. sbr->f_master[1]--;
  371. sbr->f_master[2]-= (k2diff < -1);
  372. } else if (k2diff) {
  373. sbr->f_master[sbr->n_master]++;
  374. }
  375. sbr->f_master[0] = sbr->k[0];
  376. for (k = 1; k <= sbr->n_master; k++)
  377. sbr->f_master[k] += sbr->f_master[k - 1];
  378. } else {
  379. int half_bands = 7 - spectrum->bs_freq_scale; // bs_freq_scale = {1,2,3}
  380. int two_regions, num_bands_0;
  381. int vdk0_max, vdk1_min;
  382. int16_t vk0[49];
  383. if (49 * sbr->k[2] > 110 * sbr->k[0]) {
  384. two_regions = 1;
  385. sbr->k[1] = 2 * sbr->k[0];
  386. } else {
  387. two_regions = 0;
  388. sbr->k[1] = sbr->k[2];
  389. }
  390. num_bands_0 = lrintf(half_bands * log2f(sbr->k[1] / (float)sbr->k[0])) * 2;
  391. if (num_bands_0 <= 0) { // Requirements (14496-3 sp04 p205)
  392. av_log(ac->avctx, AV_LOG_ERROR, "Invalid num_bands_0: %d\n", num_bands_0);
  393. return -1;
  394. }
  395. vk0[0] = 0;
  396. make_bands(vk0+1, sbr->k[0], sbr->k[1], num_bands_0);
  397. qsort(vk0 + 1, num_bands_0, sizeof(vk0[1]), qsort_comparison_function_int16);
  398. vdk0_max = vk0[num_bands_0];
  399. vk0[0] = sbr->k[0];
  400. for (k = 1; k <= num_bands_0; k++) {
  401. if (vk0[k] <= 0) { // Requirements (14496-3 sp04 p205)
  402. av_log(ac->avctx, AV_LOG_ERROR, "Invalid vDk0[%d]: %d\n", k, vk0[k]);
  403. return -1;
  404. }
  405. vk0[k] += vk0[k-1];
  406. }
  407. if (two_regions) {
  408. int16_t vk1[49];
  409. float invwarp = spectrum->bs_alter_scale ? 0.76923076923076923077f
  410. : 1.0f; // bs_alter_scale = {0,1}
  411. int num_bands_1 = lrintf(half_bands * invwarp *
  412. log2f(sbr->k[2] / (float)sbr->k[1])) * 2;
  413. make_bands(vk1+1, sbr->k[1], sbr->k[2], num_bands_1);
  414. vdk1_min = array_min_int16(vk1 + 1, num_bands_1);
  415. if (vdk1_min < vdk0_max) {
  416. int change;
  417. qsort(vk1 + 1, num_bands_1, sizeof(vk1[1]), qsort_comparison_function_int16);
  418. change = FFMIN(vdk0_max - vk1[1], (vk1[num_bands_1] - vk1[1]) >> 1);
  419. vk1[1] += change;
  420. vk1[num_bands_1] -= change;
  421. }
  422. qsort(vk1 + 1, num_bands_1, sizeof(vk1[1]), qsort_comparison_function_int16);
  423. vk1[0] = sbr->k[1];
  424. for (k = 1; k <= num_bands_1; k++) {
  425. if (vk1[k] <= 0) { // Requirements (14496-3 sp04 p205)
  426. av_log(ac->avctx, AV_LOG_ERROR, "Invalid vDk1[%d]: %d\n", k, vk1[k]);
  427. return -1;
  428. }
  429. vk1[k] += vk1[k-1];
  430. }
  431. sbr->n_master = num_bands_0 + num_bands_1;
  432. if (check_n_master(ac->avctx, sbr->n_master, sbr->spectrum_params.bs_xover_band))
  433. return -1;
  434. memcpy(&sbr->f_master[0], vk0,
  435. (num_bands_0 + 1) * sizeof(sbr->f_master[0]));
  436. memcpy(&sbr->f_master[num_bands_0 + 1], vk1 + 1,
  437. num_bands_1 * sizeof(sbr->f_master[0]));
  438. } else {
  439. sbr->n_master = num_bands_0;
  440. if (check_n_master(ac->avctx, sbr->n_master, sbr->spectrum_params.bs_xover_band))
  441. return -1;
  442. memcpy(sbr->f_master, vk0, (num_bands_0 + 1) * sizeof(sbr->f_master[0]));
  443. }
  444. }
  445. return 0;
  446. }
  447. /// High Frequency Generation - Patch Construction (14496-3 sp04 p216 fig. 4.46)
  448. static int sbr_hf_calc_npatches(AACContext *ac, SpectralBandReplication *sbr)
  449. {
  450. int i, k, sb = 0;
  451. int msb = sbr->k[0];
  452. int usb = sbr->kx[1];
  453. int goal_sb = ((1000 << 11) + (sbr->sample_rate >> 1)) / sbr->sample_rate;
  454. sbr->num_patches = 0;
  455. if (goal_sb < sbr->kx[1] + sbr->m[1]) {
  456. for (k = 0; sbr->f_master[k] < goal_sb; k++) ;
  457. } else
  458. k = sbr->n_master;
  459. do {
  460. int odd = 0;
  461. for (i = k; i == k || sb > (sbr->k[0] - 1 + msb - odd); i--) {
  462. sb = sbr->f_master[i];
  463. odd = (sb + sbr->k[0]) & 1;
  464. }
  465. // Requirements (14496-3 sp04 p205) sets the maximum number of patches to 5.
  466. // After this check the final number of patches can still be six which is
  467. // illegal however the Coding Technologies decoder check stream has a final
  468. // count of 6 patches
  469. if (sbr->num_patches > 5) {
  470. av_log(ac->avctx, AV_LOG_ERROR, "Too many patches: %d\n", sbr->num_patches);
  471. return -1;
  472. }
  473. sbr->patch_num_subbands[sbr->num_patches] = FFMAX(sb - usb, 0);
  474. sbr->patch_start_subband[sbr->num_patches] = sbr->k[0] - odd - sbr->patch_num_subbands[sbr->num_patches];
  475. if (sbr->patch_num_subbands[sbr->num_patches] > 0) {
  476. usb = sb;
  477. msb = sb;
  478. sbr->num_patches++;
  479. } else
  480. msb = sbr->kx[1];
  481. if (sbr->f_master[k] - sb < 3)
  482. k = sbr->n_master;
  483. } while (sb != sbr->kx[1] + sbr->m[1]);
  484. if (sbr->num_patches > 1 && sbr->patch_num_subbands[sbr->num_patches-1] < 3)
  485. sbr->num_patches--;
  486. return 0;
  487. }
  488. /// Derived Frequency Band Tables (14496-3 sp04 p197)
  489. static int sbr_make_f_derived(AACContext *ac, SpectralBandReplication *sbr)
  490. {
  491. int k, temp;
  492. sbr->n[1] = sbr->n_master - sbr->spectrum_params.bs_xover_band;
  493. sbr->n[0] = (sbr->n[1] + 1) >> 1;
  494. memcpy(sbr->f_tablehigh, &sbr->f_master[sbr->spectrum_params.bs_xover_band],
  495. (sbr->n[1] + 1) * sizeof(sbr->f_master[0]));
  496. sbr->m[1] = sbr->f_tablehigh[sbr->n[1]] - sbr->f_tablehigh[0];
  497. sbr->kx[1] = sbr->f_tablehigh[0];
  498. // Requirements (14496-3 sp04 p205)
  499. if (sbr->kx[1] + sbr->m[1] > 64) {
  500. av_log(ac->avctx, AV_LOG_ERROR,
  501. "Stop frequency border too high: %d\n", sbr->kx[1] + sbr->m[1]);
  502. return -1;
  503. }
  504. if (sbr->kx[1] > 32) {
  505. av_log(ac->avctx, AV_LOG_ERROR, "Start frequency border too high: %d\n", sbr->kx[1]);
  506. return -1;
  507. }
  508. sbr->f_tablelow[0] = sbr->f_tablehigh[0];
  509. temp = sbr->n[1] & 1;
  510. for (k = 1; k <= sbr->n[0]; k++)
  511. sbr->f_tablelow[k] = sbr->f_tablehigh[2 * k - temp];
  512. sbr->n_q = FFMAX(1, lrintf(sbr->spectrum_params.bs_noise_bands *
  513. log2f(sbr->k[2] / (float)sbr->kx[1]))); // 0 <= bs_noise_bands <= 3
  514. if (sbr->n_q > 5) {
  515. av_log(ac->avctx, AV_LOG_ERROR, "Too many noise floor scale factors: %d\n", sbr->n_q);
  516. return -1;
  517. }
  518. sbr->f_tablenoise[0] = sbr->f_tablelow[0];
  519. temp = 0;
  520. for (k = 1; k <= sbr->n_q; k++) {
  521. temp += (sbr->n[0] - temp) / (sbr->n_q + 1 - k);
  522. sbr->f_tablenoise[k] = sbr->f_tablelow[temp];
  523. }
  524. if (sbr_hf_calc_npatches(ac, sbr) < 0)
  525. return -1;
  526. sbr_make_f_tablelim(sbr);
  527. sbr->data[0].f_indexnoise = 0;
  528. sbr->data[1].f_indexnoise = 0;
  529. return 0;
  530. }
  531. static av_always_inline void get_bits1_vector(GetBitContext *gb, uint8_t *vec,
  532. int elements)
  533. {
  534. int i;
  535. for (i = 0; i < elements; i++) {
  536. vec[i] = get_bits1(gb);
  537. }
  538. }
  539. /** ceil(log2(index+1)) */
  540. static const int8_t ceil_log2[] = {
  541. 0, 1, 2, 2, 3, 3,
  542. };
  543. static int read_sbr_grid(AACContext *ac, SpectralBandReplication *sbr,
  544. GetBitContext *gb, SBRData *ch_data)
  545. {
  546. int i;
  547. unsigned bs_pointer = 0;
  548. // frameLengthFlag ? 15 : 16; 960 sample length frames unsupported; this value is numTimeSlots
  549. int abs_bord_trail = 16;
  550. int num_rel_lead, num_rel_trail;
  551. unsigned bs_num_env_old = ch_data->bs_num_env;
  552. ch_data->bs_freq_res[0] = ch_data->bs_freq_res[ch_data->bs_num_env];
  553. ch_data->bs_amp_res = sbr->bs_amp_res_header;
  554. ch_data->t_env_num_env_old = ch_data->t_env[bs_num_env_old];
  555. switch (ch_data->bs_frame_class = get_bits(gb, 2)) {
  556. case FIXFIX:
  557. ch_data->bs_num_env = 1 << get_bits(gb, 2);
  558. num_rel_lead = ch_data->bs_num_env - 1;
  559. if (ch_data->bs_num_env == 1)
  560. ch_data->bs_amp_res = 0;
  561. if (ch_data->bs_num_env > 4) {
  562. av_log(ac->avctx, AV_LOG_ERROR,
  563. "Invalid bitstream, too many SBR envelopes in FIXFIX type SBR frame: %d\n",
  564. ch_data->bs_num_env);
  565. return -1;
  566. }
  567. ch_data->t_env[0] = 0;
  568. ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail;
  569. abs_bord_trail = (abs_bord_trail + (ch_data->bs_num_env >> 1)) /
  570. ch_data->bs_num_env;
  571. for (i = 0; i < num_rel_lead; i++)
  572. ch_data->t_env[i + 1] = ch_data->t_env[i] + abs_bord_trail;
  573. ch_data->bs_freq_res[1] = get_bits1(gb);
  574. for (i = 1; i < ch_data->bs_num_env; i++)
  575. ch_data->bs_freq_res[i + 1] = ch_data->bs_freq_res[1];
  576. break;
  577. case FIXVAR:
  578. abs_bord_trail += get_bits(gb, 2);
  579. num_rel_trail = get_bits(gb, 2);
  580. ch_data->bs_num_env = num_rel_trail + 1;
  581. ch_data->t_env[0] = 0;
  582. ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail;
  583. for (i = 0; i < num_rel_trail; i++)
  584. ch_data->t_env[ch_data->bs_num_env - 1 - i] =
  585. ch_data->t_env[ch_data->bs_num_env - i] - 2 * get_bits(gb, 2) - 2;
  586. bs_pointer = get_bits(gb, ceil_log2[ch_data->bs_num_env]);
  587. for (i = 0; i < ch_data->bs_num_env; i++)
  588. ch_data->bs_freq_res[ch_data->bs_num_env - i] = get_bits1(gb);
  589. break;
  590. case VARFIX:
  591. ch_data->t_env[0] = get_bits(gb, 2);
  592. num_rel_lead = get_bits(gb, 2);
  593. ch_data->bs_num_env = num_rel_lead + 1;
  594. ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail;
  595. for (i = 0; i < num_rel_lead; i++)
  596. ch_data->t_env[i + 1] = ch_data->t_env[i] + 2 * get_bits(gb, 2) + 2;
  597. bs_pointer = get_bits(gb, ceil_log2[ch_data->bs_num_env]);
  598. get_bits1_vector(gb, ch_data->bs_freq_res + 1, ch_data->bs_num_env);
  599. break;
  600. case VARVAR:
  601. ch_data->t_env[0] = get_bits(gb, 2);
  602. abs_bord_trail += get_bits(gb, 2);
  603. num_rel_lead = get_bits(gb, 2);
  604. num_rel_trail = get_bits(gb, 2);
  605. ch_data->bs_num_env = num_rel_lead + num_rel_trail + 1;
  606. if (ch_data->bs_num_env > 5) {
  607. av_log(ac->avctx, AV_LOG_ERROR,
  608. "Invalid bitstream, too many SBR envelopes in VARVAR type SBR frame: %d\n",
  609. ch_data->bs_num_env);
  610. return -1;
  611. }
  612. ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail;
  613. for (i = 0; i < num_rel_lead; i++)
  614. ch_data->t_env[i + 1] = ch_data->t_env[i] + 2 * get_bits(gb, 2) + 2;
  615. for (i = 0; i < num_rel_trail; i++)
  616. ch_data->t_env[ch_data->bs_num_env - 1 - i] =
  617. ch_data->t_env[ch_data->bs_num_env - i] - 2 * get_bits(gb, 2) - 2;
  618. bs_pointer = get_bits(gb, ceil_log2[ch_data->bs_num_env]);
  619. get_bits1_vector(gb, ch_data->bs_freq_res + 1, ch_data->bs_num_env);
  620. break;
  621. }
  622. if (bs_pointer > ch_data->bs_num_env + 1) {
  623. av_log(ac->avctx, AV_LOG_ERROR,
  624. "Invalid bitstream, bs_pointer points to a middle noise border outside the time borders table: %d\n",
  625. bs_pointer);
  626. return -1;
  627. }
  628. for (i = 1; i <= ch_data->bs_num_env; i++) {
  629. if (ch_data->t_env[i-1] > ch_data->t_env[i]) {
  630. av_log(ac->avctx, AV_LOG_ERROR, "Non monotone time borders\n");
  631. return -1;
  632. }
  633. }
  634. ch_data->bs_num_noise = (ch_data->bs_num_env > 1) + 1;
  635. ch_data->t_q[0] = ch_data->t_env[0];
  636. ch_data->t_q[ch_data->bs_num_noise] = ch_data->t_env[ch_data->bs_num_env];
  637. if (ch_data->bs_num_noise > 1) {
  638. unsigned int idx;
  639. if (ch_data->bs_frame_class == FIXFIX) {
  640. idx = ch_data->bs_num_env >> 1;
  641. } else if (ch_data->bs_frame_class & 1) { // FIXVAR or VARVAR
  642. idx = ch_data->bs_num_env - FFMAX((int)bs_pointer - 1, 1);
  643. } else { // VARFIX
  644. if (!bs_pointer)
  645. idx = 1;
  646. else if (bs_pointer == 1)
  647. idx = ch_data->bs_num_env - 1;
  648. else // bs_pointer > 1
  649. idx = bs_pointer - 1;
  650. }
  651. ch_data->t_q[1] = ch_data->t_env[idx];
  652. }
  653. ch_data->e_a[0] = -(ch_data->e_a[1] != bs_num_env_old); // l_APrev
  654. ch_data->e_a[1] = -1;
  655. if ((ch_data->bs_frame_class & 1) && bs_pointer) { // FIXVAR or VARVAR and bs_pointer != 0
  656. ch_data->e_a[1] = ch_data->bs_num_env + 1 - bs_pointer;
  657. } else if ((ch_data->bs_frame_class == 2) && (bs_pointer > 1)) // VARFIX and bs_pointer > 1
  658. ch_data->e_a[1] = bs_pointer - 1;
  659. return 0;
  660. }
  661. static void copy_sbr_grid(SBRData *dst, const SBRData *src) {
  662. //These variables are saved from the previous frame rather than copied
  663. dst->bs_freq_res[0] = dst->bs_freq_res[dst->bs_num_env];
  664. dst->t_env_num_env_old = dst->t_env[dst->bs_num_env];
  665. dst->e_a[0] = -(dst->e_a[1] != dst->bs_num_env);
  666. //These variables are read from the bitstream and therefore copied
  667. memcpy(dst->bs_freq_res+1, src->bs_freq_res+1, sizeof(dst->bs_freq_res)-sizeof(*dst->bs_freq_res));
  668. memcpy(dst->t_env, src->t_env, sizeof(dst->t_env));
  669. memcpy(dst->t_q, src->t_q, sizeof(dst->t_q));
  670. dst->bs_num_env = src->bs_num_env;
  671. dst->bs_amp_res = src->bs_amp_res;
  672. dst->bs_num_noise = src->bs_num_noise;
  673. dst->bs_frame_class = src->bs_frame_class;
  674. dst->e_a[1] = src->e_a[1];
  675. }
  676. /// Read how the envelope and noise floor data is delta coded
  677. static void read_sbr_dtdf(SpectralBandReplication *sbr, GetBitContext *gb,
  678. SBRData *ch_data)
  679. {
  680. get_bits1_vector(gb, ch_data->bs_df_env, ch_data->bs_num_env);
  681. get_bits1_vector(gb, ch_data->bs_df_noise, ch_data->bs_num_noise);
  682. }
  683. /// Read inverse filtering data
  684. static void read_sbr_invf(SpectralBandReplication *sbr, GetBitContext *gb,
  685. SBRData *ch_data)
  686. {
  687. int i;
  688. memcpy(ch_data->bs_invf_mode[1], ch_data->bs_invf_mode[0], 5 * sizeof(uint8_t));
  689. for (i = 0; i < sbr->n_q; i++)
  690. ch_data->bs_invf_mode[0][i] = get_bits(gb, 2);
  691. }
  692. static void read_sbr_envelope(SpectralBandReplication *sbr, GetBitContext *gb,
  693. SBRData *ch_data, int ch)
  694. {
  695. int bits;
  696. int i, j, k;
  697. VLC_TYPE (*t_huff)[2], (*f_huff)[2];
  698. int t_lav, f_lav;
  699. const int delta = (ch == 1 && sbr->bs_coupling == 1) + 1;
  700. const int odd = sbr->n[1] & 1;
  701. if (sbr->bs_coupling && ch) {
  702. if (ch_data->bs_amp_res) {
  703. bits = 5;
  704. t_huff = vlc_sbr[T_HUFFMAN_ENV_BAL_3_0DB].table;
  705. t_lav = vlc_sbr_lav[T_HUFFMAN_ENV_BAL_3_0DB];
  706. f_huff = vlc_sbr[F_HUFFMAN_ENV_BAL_3_0DB].table;
  707. f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_BAL_3_0DB];
  708. } else {
  709. bits = 6;
  710. t_huff = vlc_sbr[T_HUFFMAN_ENV_BAL_1_5DB].table;
  711. t_lav = vlc_sbr_lav[T_HUFFMAN_ENV_BAL_1_5DB];
  712. f_huff = vlc_sbr[F_HUFFMAN_ENV_BAL_1_5DB].table;
  713. f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_BAL_1_5DB];
  714. }
  715. } else {
  716. if (ch_data->bs_amp_res) {
  717. bits = 6;
  718. t_huff = vlc_sbr[T_HUFFMAN_ENV_3_0DB].table;
  719. t_lav = vlc_sbr_lav[T_HUFFMAN_ENV_3_0DB];
  720. f_huff = vlc_sbr[F_HUFFMAN_ENV_3_0DB].table;
  721. f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_3_0DB];
  722. } else {
  723. bits = 7;
  724. t_huff = vlc_sbr[T_HUFFMAN_ENV_1_5DB].table;
  725. t_lav = vlc_sbr_lav[T_HUFFMAN_ENV_1_5DB];
  726. f_huff = vlc_sbr[F_HUFFMAN_ENV_1_5DB].table;
  727. f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_1_5DB];
  728. }
  729. }
  730. for (i = 0; i < ch_data->bs_num_env; i++) {
  731. if (ch_data->bs_df_env[i]) {
  732. // bs_freq_res[0] == bs_freq_res[bs_num_env] from prev frame
  733. if (ch_data->bs_freq_res[i + 1] == ch_data->bs_freq_res[i]) {
  734. for (j = 0; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++)
  735. ch_data->env_facs[i + 1][j] = ch_data->env_facs[i][j] + delta * (get_vlc2(gb, t_huff, 9, 3) - t_lav);
  736. } else if (ch_data->bs_freq_res[i + 1]) {
  737. for (j = 0; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++) {
  738. k = (j + odd) >> 1; // find k such that f_tablelow[k] <= f_tablehigh[j] < f_tablelow[k + 1]
  739. ch_data->env_facs[i + 1][j] = ch_data->env_facs[i][k] + delta * (get_vlc2(gb, t_huff, 9, 3) - t_lav);
  740. }
  741. } else {
  742. for (j = 0; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++) {
  743. k = j ? 2*j - odd : 0; // find k such that f_tablehigh[k] == f_tablelow[j]
  744. ch_data->env_facs[i + 1][j] = ch_data->env_facs[i][k] + delta * (get_vlc2(gb, t_huff, 9, 3) - t_lav);
  745. }
  746. }
  747. } else {
  748. ch_data->env_facs[i + 1][0] = delta * get_bits(gb, bits); // bs_env_start_value_balance
  749. for (j = 1; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++)
  750. ch_data->env_facs[i + 1][j] = ch_data->env_facs[i + 1][j - 1] + delta * (get_vlc2(gb, f_huff, 9, 3) - f_lav);
  751. }
  752. }
  753. //assign 0th elements of env_facs from last elements
  754. memcpy(ch_data->env_facs[0], ch_data->env_facs[ch_data->bs_num_env],
  755. sizeof(ch_data->env_facs[0]));
  756. }
  757. static void read_sbr_noise(SpectralBandReplication *sbr, GetBitContext *gb,
  758. SBRData *ch_data, int ch)
  759. {
  760. int i, j;
  761. VLC_TYPE (*t_huff)[2], (*f_huff)[2];
  762. int t_lav, f_lav;
  763. int delta = (ch == 1 && sbr->bs_coupling == 1) + 1;
  764. if (sbr->bs_coupling && ch) {
  765. t_huff = vlc_sbr[T_HUFFMAN_NOISE_BAL_3_0DB].table;
  766. t_lav = vlc_sbr_lav[T_HUFFMAN_NOISE_BAL_3_0DB];
  767. f_huff = vlc_sbr[F_HUFFMAN_ENV_BAL_3_0DB].table;
  768. f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_BAL_3_0DB];
  769. } else {
  770. t_huff = vlc_sbr[T_HUFFMAN_NOISE_3_0DB].table;
  771. t_lav = vlc_sbr_lav[T_HUFFMAN_NOISE_3_0DB];
  772. f_huff = vlc_sbr[F_HUFFMAN_ENV_3_0DB].table;
  773. f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_3_0DB];
  774. }
  775. for (i = 0; i < ch_data->bs_num_noise; i++) {
  776. if (ch_data->bs_df_noise[i]) {
  777. for (j = 0; j < sbr->n_q; j++)
  778. ch_data->noise_facs[i + 1][j] = ch_data->noise_facs[i][j] + delta * (get_vlc2(gb, t_huff, 9, 2) - t_lav);
  779. } else {
  780. ch_data->noise_facs[i + 1][0] = delta * get_bits(gb, 5); // bs_noise_start_value_balance or bs_noise_start_value_level
  781. for (j = 1; j < sbr->n_q; j++)
  782. ch_data->noise_facs[i + 1][j] = ch_data->noise_facs[i + 1][j - 1] + delta * (get_vlc2(gb, f_huff, 9, 3) - f_lav);
  783. }
  784. }
  785. //assign 0th elements of noise_facs from last elements
  786. memcpy(ch_data->noise_facs[0], ch_data->noise_facs[ch_data->bs_num_noise],
  787. sizeof(ch_data->noise_facs[0]));
  788. }
  789. static void read_sbr_extension(AACContext *ac, SpectralBandReplication *sbr,
  790. GetBitContext *gb,
  791. int bs_extension_id, int *num_bits_left)
  792. {
  793. switch (bs_extension_id) {
  794. case EXTENSION_ID_PS:
  795. if (ac->oc[1].m4ac.ps != 1) {
  796. av_log(ac->avctx, AV_LOG_DEBUG, "Parametric Stereo was found in the bitstream.\n");
  797. ac->oc[1].m4ac.ps = 1;
  798. ff_aac_output_configure(ac, ac->oc[1].layout_map, ac->oc[1].layout_map_tags,
  799. ac->oc[1].status, 1);
  800. }
  801. av_assert0(ac->oc[1].m4ac.ps);
  802. #if 1
  803. *num_bits_left -= ff_ps_read_data(ac->avctx, gb, &sbr->ps, *num_bits_left);
  804. #else
  805. av_log_missing_feature(ac->avctx, "Parametric Stereo", 0);
  806. skip_bits_long(gb, *num_bits_left); // bs_fill_bits
  807. *num_bits_left = 0;
  808. #endif
  809. break;
  810. default:
  811. // some files contain 0-padding
  812. if (bs_extension_id || *num_bits_left > 16 || show_bits(gb, *num_bits_left))
  813. av_log_missing_feature(ac->avctx, "Reserved SBR extensions", 1);
  814. skip_bits_long(gb, *num_bits_left); // bs_fill_bits
  815. *num_bits_left = 0;
  816. break;
  817. }
  818. }
  819. static int read_sbr_single_channel_element(AACContext *ac,
  820. SpectralBandReplication *sbr,
  821. GetBitContext *gb)
  822. {
  823. if (get_bits1(gb)) // bs_data_extra
  824. skip_bits(gb, 4); // bs_reserved
  825. if (read_sbr_grid(ac, sbr, gb, &sbr->data[0]))
  826. return -1;
  827. read_sbr_dtdf(sbr, gb, &sbr->data[0]);
  828. read_sbr_invf(sbr, gb, &sbr->data[0]);
  829. read_sbr_envelope(sbr, gb, &sbr->data[0], 0);
  830. read_sbr_noise(sbr, gb, &sbr->data[0], 0);
  831. if ((sbr->data[0].bs_add_harmonic_flag = get_bits1(gb)))
  832. get_bits1_vector(gb, sbr->data[0].bs_add_harmonic, sbr->n[1]);
  833. return 0;
  834. }
  835. static int read_sbr_channel_pair_element(AACContext *ac,
  836. SpectralBandReplication *sbr,
  837. GetBitContext *gb)
  838. {
  839. if (get_bits1(gb)) // bs_data_extra
  840. skip_bits(gb, 8); // bs_reserved
  841. if ((sbr->bs_coupling = get_bits1(gb))) {
  842. if (read_sbr_grid(ac, sbr, gb, &sbr->data[0]))
  843. return -1;
  844. copy_sbr_grid(&sbr->data[1], &sbr->data[0]);
  845. read_sbr_dtdf(sbr, gb, &sbr->data[0]);
  846. read_sbr_dtdf(sbr, gb, &sbr->data[1]);
  847. read_sbr_invf(sbr, gb, &sbr->data[0]);
  848. memcpy(sbr->data[1].bs_invf_mode[1], sbr->data[1].bs_invf_mode[0], sizeof(sbr->data[1].bs_invf_mode[0]));
  849. memcpy(sbr->data[1].bs_invf_mode[0], sbr->data[0].bs_invf_mode[0], sizeof(sbr->data[1].bs_invf_mode[0]));
  850. read_sbr_envelope(sbr, gb, &sbr->data[0], 0);
  851. read_sbr_noise(sbr, gb, &sbr->data[0], 0);
  852. read_sbr_envelope(sbr, gb, &sbr->data[1], 1);
  853. read_sbr_noise(sbr, gb, &sbr->data[1], 1);
  854. } else {
  855. if (read_sbr_grid(ac, sbr, gb, &sbr->data[0]) ||
  856. read_sbr_grid(ac, sbr, gb, &sbr->data[1]))
  857. return -1;
  858. read_sbr_dtdf(sbr, gb, &sbr->data[0]);
  859. read_sbr_dtdf(sbr, gb, &sbr->data[1]);
  860. read_sbr_invf(sbr, gb, &sbr->data[0]);
  861. read_sbr_invf(sbr, gb, &sbr->data[1]);
  862. read_sbr_envelope(sbr, gb, &sbr->data[0], 0);
  863. read_sbr_envelope(sbr, gb, &sbr->data[1], 1);
  864. read_sbr_noise(sbr, gb, &sbr->data[0], 0);
  865. read_sbr_noise(sbr, gb, &sbr->data[1], 1);
  866. }
  867. if ((sbr->data[0].bs_add_harmonic_flag = get_bits1(gb)))
  868. get_bits1_vector(gb, sbr->data[0].bs_add_harmonic, sbr->n[1]);
  869. if ((sbr->data[1].bs_add_harmonic_flag = get_bits1(gb)))
  870. get_bits1_vector(gb, sbr->data[1].bs_add_harmonic, sbr->n[1]);
  871. return 0;
  872. }
  873. static unsigned int read_sbr_data(AACContext *ac, SpectralBandReplication *sbr,
  874. GetBitContext *gb, int id_aac)
  875. {
  876. unsigned int cnt = get_bits_count(gb);
  877. if (id_aac == TYPE_SCE || id_aac == TYPE_CCE) {
  878. if (read_sbr_single_channel_element(ac, sbr, gb)) {
  879. sbr_turnoff(sbr);
  880. return get_bits_count(gb) - cnt;
  881. }
  882. } else if (id_aac == TYPE_CPE) {
  883. if (read_sbr_channel_pair_element(ac, sbr, gb)) {
  884. sbr_turnoff(sbr);
  885. return get_bits_count(gb) - cnt;
  886. }
  887. } else {
  888. av_log(ac->avctx, AV_LOG_ERROR,
  889. "Invalid bitstream - cannot apply SBR to element type %d\n", id_aac);
  890. sbr_turnoff(sbr);
  891. return get_bits_count(gb) - cnt;
  892. }
  893. if (get_bits1(gb)) { // bs_extended_data
  894. int num_bits_left = get_bits(gb, 4); // bs_extension_size
  895. if (num_bits_left == 15)
  896. num_bits_left += get_bits(gb, 8); // bs_esc_count
  897. num_bits_left <<= 3;
  898. while (num_bits_left > 7) {
  899. num_bits_left -= 2;
  900. read_sbr_extension(ac, sbr, gb, get_bits(gb, 2), &num_bits_left); // bs_extension_id
  901. }
  902. if (num_bits_left < 0) {
  903. av_log(ac->avctx, AV_LOG_ERROR, "SBR Extension over read.\n");
  904. }
  905. if (num_bits_left > 0)
  906. skip_bits(gb, num_bits_left);
  907. }
  908. return get_bits_count(gb) - cnt;
  909. }
  910. static void sbr_reset(AACContext *ac, SpectralBandReplication *sbr)
  911. {
  912. int err;
  913. err = sbr_make_f_master(ac, sbr, &sbr->spectrum_params);
  914. if (err >= 0)
  915. err = sbr_make_f_derived(ac, sbr);
  916. if (err < 0) {
  917. av_log(ac->avctx, AV_LOG_ERROR,
  918. "SBR reset failed. Switching SBR to pure upsampling mode.\n");
  919. sbr_turnoff(sbr);
  920. }
  921. }
  922. /**
  923. * Decode Spectral Band Replication extension data; reference: table 4.55.
  924. *
  925. * @param crc flag indicating the presence of CRC checksum
  926. * @param cnt length of TYPE_FIL syntactic element in bytes
  927. *
  928. * @return Returns number of bytes consumed from the TYPE_FIL element.
  929. */
  930. int ff_decode_sbr_extension(AACContext *ac, SpectralBandReplication *sbr,
  931. GetBitContext *gb_host, int crc, int cnt, int id_aac)
  932. {
  933. unsigned int num_sbr_bits = 0, num_align_bits;
  934. unsigned bytes_read;
  935. GetBitContext gbc = *gb_host, *gb = &gbc;
  936. skip_bits_long(gb_host, cnt*8 - 4);
  937. sbr->reset = 0;
  938. if (!sbr->sample_rate)
  939. sbr->sample_rate = 2 * ac->oc[1].m4ac.sample_rate; //TODO use the nominal sample rate for arbitrary sample rate support
  940. if (!ac->oc[1].m4ac.ext_sample_rate)
  941. ac->oc[1].m4ac.ext_sample_rate = 2 * ac->oc[1].m4ac.sample_rate;
  942. if (crc) {
  943. skip_bits(gb, 10); // bs_sbr_crc_bits; TODO - implement CRC check
  944. num_sbr_bits += 10;
  945. }
  946. //Save some state from the previous frame.
  947. sbr->kx[0] = sbr->kx[1];
  948. sbr->m[0] = sbr->m[1];
  949. sbr->kx_and_m_pushed = 1;
  950. num_sbr_bits++;
  951. if (get_bits1(gb)) // bs_header_flag
  952. num_sbr_bits += read_sbr_header(sbr, gb);
  953. if (sbr->reset)
  954. sbr_reset(ac, sbr);
  955. if (sbr->start)
  956. num_sbr_bits += read_sbr_data(ac, sbr, gb, id_aac);
  957. num_align_bits = ((cnt << 3) - 4 - num_sbr_bits) & 7;
  958. bytes_read = ((num_sbr_bits + num_align_bits + 4) >> 3);
  959. if (bytes_read > cnt) {
  960. av_log(ac->avctx, AV_LOG_ERROR,
  961. "Expected to read %d SBR bytes actually read %d.\n", cnt, bytes_read);
  962. }
  963. return cnt;
  964. }
  965. /// Dequantization and stereo decoding (14496-3 sp04 p203)
  966. static void sbr_dequant(SpectralBandReplication *sbr, int id_aac)
  967. {
  968. int k, e;
  969. int ch;
  970. if (id_aac == TYPE_CPE && sbr->bs_coupling) {
  971. float alpha = sbr->data[0].bs_amp_res ? 1.0f : 0.5f;
  972. float pan_offset = sbr->data[0].bs_amp_res ? 12.0f : 24.0f;
  973. for (e = 1; e <= sbr->data[0].bs_num_env; e++) {
  974. for (k = 0; k < sbr->n[sbr->data[0].bs_freq_res[e]]; k++) {
  975. float temp1 = exp2f(sbr->data[0].env_facs[e][k] * alpha + 7.0f);
  976. float temp2 = exp2f((pan_offset - sbr->data[1].env_facs[e][k]) * alpha);
  977. float fac = temp1 / (1.0f + temp2);
  978. sbr->data[0].env_facs[e][k] = fac;
  979. sbr->data[1].env_facs[e][k] = fac * temp2;
  980. }
  981. }
  982. for (e = 1; e <= sbr->data[0].bs_num_noise; e++) {
  983. for (k = 0; k < sbr->n_q; k++) {
  984. float temp1 = exp2f(NOISE_FLOOR_OFFSET - sbr->data[0].noise_facs[e][k] + 1);
  985. float temp2 = exp2f(12 - sbr->data[1].noise_facs[e][k]);
  986. float fac = temp1 / (1.0f + temp2);
  987. sbr->data[0].noise_facs[e][k] = fac;
  988. sbr->data[1].noise_facs[e][k] = fac * temp2;
  989. }
  990. }
  991. } else { // SCE or one non-coupled CPE
  992. for (ch = 0; ch < (id_aac == TYPE_CPE) + 1; ch++) {
  993. float alpha = sbr->data[ch].bs_amp_res ? 1.0f : 0.5f;
  994. for (e = 1; e <= sbr->data[ch].bs_num_env; e++)
  995. for (k = 0; k < sbr->n[sbr->data[ch].bs_freq_res[e]]; k++)
  996. sbr->data[ch].env_facs[e][k] =
  997. exp2f(alpha * sbr->data[ch].env_facs[e][k] + 6.0f);
  998. for (e = 1; e <= sbr->data[ch].bs_num_noise; e++)
  999. for (k = 0; k < sbr->n_q; k++)
  1000. sbr->data[ch].noise_facs[e][k] =
  1001. exp2f(NOISE_FLOOR_OFFSET - sbr->data[ch].noise_facs[e][k]);
  1002. }
  1003. }
  1004. }
  1005. /**
  1006. * Analysis QMF Bank (14496-3 sp04 p206)
  1007. *
  1008. * @param x pointer to the beginning of the first sample window
  1009. * @param W array of complex-valued samples split into subbands
  1010. */
  1011. #ifndef sbr_qmf_analysis
  1012. static void sbr_qmf_analysis(AVFloatDSPContext *dsp, FFTContext *mdct,
  1013. SBRDSPContext *sbrdsp, const float *in, float *x,
  1014. float z[320], float W[2][32][32][2], int buf_idx)
  1015. {
  1016. int i;
  1017. memcpy(x , x+1024, (320-32)*sizeof(x[0]));
  1018. memcpy(x+288, in, 1024*sizeof(x[0]));
  1019. for (i = 0; i < 32; i++) { // numTimeSlots*RATE = 16*2 as 960 sample frames
  1020. // are not supported
  1021. dsp->vector_fmul_reverse(z, sbr_qmf_window_ds, x, 320);
  1022. sbrdsp->sum64x5(z);
  1023. sbrdsp->qmf_pre_shuffle(z);
  1024. mdct->imdct_half(mdct, z, z+64);
  1025. sbrdsp->qmf_post_shuffle(W[buf_idx][i], z);
  1026. x += 32;
  1027. }
  1028. }
  1029. #endif
  1030. /**
  1031. * Synthesis QMF Bank (14496-3 sp04 p206) and Downsampled Synthesis QMF Bank
  1032. * (14496-3 sp04 p206)
  1033. */
  1034. #ifndef sbr_qmf_synthesis
  1035. static void sbr_qmf_synthesis(FFTContext *mdct,
  1036. SBRDSPContext *sbrdsp, AVFloatDSPContext *dsp,
  1037. float *out, float X[2][38][64],
  1038. float mdct_buf[2][64],
  1039. float *v0, int *v_off, const unsigned int div)
  1040. {
  1041. int i, n;
  1042. const float *sbr_qmf_window = div ? sbr_qmf_window_ds : sbr_qmf_window_us;
  1043. const int step = 128 >> div;
  1044. float *v;
  1045. for (i = 0; i < 32; i++) {
  1046. if (*v_off < step) {
  1047. int saved_samples = (1280 - 128) >> div;
  1048. memcpy(&v0[SBR_SYNTHESIS_BUF_SIZE - saved_samples], v0, saved_samples * sizeof(float));
  1049. *v_off = SBR_SYNTHESIS_BUF_SIZE - saved_samples - step;
  1050. } else {
  1051. *v_off -= step;
  1052. }
  1053. v = v0 + *v_off;
  1054. if (div) {
  1055. for (n = 0; n < 32; n++) {
  1056. X[0][i][ n] = -X[0][i][n];
  1057. X[0][i][32+n] = X[1][i][31-n];
  1058. }
  1059. mdct->imdct_half(mdct, mdct_buf[0], X[0][i]);
  1060. sbrdsp->qmf_deint_neg(v, mdct_buf[0]);
  1061. } else {
  1062. sbrdsp->neg_odd_64(X[1][i]);
  1063. mdct->imdct_half(mdct, mdct_buf[0], X[0][i]);
  1064. mdct->imdct_half(mdct, mdct_buf[1], X[1][i]);
  1065. sbrdsp->qmf_deint_bfly(v, mdct_buf[1], mdct_buf[0]);
  1066. }
  1067. dsp->vector_fmul (out, v , sbr_qmf_window , 64 >> div);
  1068. dsp->vector_fmul_add(out, v + ( 192 >> div), sbr_qmf_window + ( 64 >> div), out , 64 >> div);
  1069. dsp->vector_fmul_add(out, v + ( 256 >> div), sbr_qmf_window + (128 >> div), out , 64 >> div);
  1070. dsp->vector_fmul_add(out, v + ( 448 >> div), sbr_qmf_window + (192 >> div), out , 64 >> div);
  1071. dsp->vector_fmul_add(out, v + ( 512 >> div), sbr_qmf_window + (256 >> div), out , 64 >> div);
  1072. dsp->vector_fmul_add(out, v + ( 704 >> div), sbr_qmf_window + (320 >> div), out , 64 >> div);
  1073. dsp->vector_fmul_add(out, v + ( 768 >> div), sbr_qmf_window + (384 >> div), out , 64 >> div);
  1074. dsp->vector_fmul_add(out, v + ( 960 >> div), sbr_qmf_window + (448 >> div), out , 64 >> div);
  1075. dsp->vector_fmul_add(out, v + (1024 >> div), sbr_qmf_window + (512 >> div), out , 64 >> div);
  1076. dsp->vector_fmul_add(out, v + (1216 >> div), sbr_qmf_window + (576 >> div), out , 64 >> div);
  1077. out += 64 >> div;
  1078. }
  1079. }
  1080. #endif
  1081. /** High Frequency Generation (14496-3 sp04 p214+) and Inverse Filtering
  1082. * (14496-3 sp04 p214)
  1083. * Warning: This routine does not seem numerically stable.
  1084. */
  1085. static void sbr_hf_inverse_filter(SBRDSPContext *dsp,
  1086. float (*alpha0)[2], float (*alpha1)[2],
  1087. const float X_low[32][40][2], int k0)
  1088. {
  1089. int k;
  1090. for (k = 0; k < k0; k++) {
  1091. LOCAL_ALIGNED_16(float, phi, [3], [2][2]);
  1092. float dk;
  1093. dsp->autocorrelate(X_low[k], phi);
  1094. dk = phi[2][1][0] * phi[1][0][0] -
  1095. (phi[1][1][0] * phi[1][1][0] + phi[1][1][1] * phi[1][1][1]) / 1.000001f;
  1096. if (!dk) {
  1097. alpha1[k][0] = 0;
  1098. alpha1[k][1] = 0;
  1099. } else {
  1100. float temp_real, temp_im;
  1101. temp_real = phi[0][0][0] * phi[1][1][0] -
  1102. phi[0][0][1] * phi[1][1][1] -
  1103. phi[0][1][0] * phi[1][0][0];
  1104. temp_im = phi[0][0][0] * phi[1][1][1] +
  1105. phi[0][0][1] * phi[1][1][0] -
  1106. phi[0][1][1] * phi[1][0][0];
  1107. alpha1[k][0] = temp_real / dk;
  1108. alpha1[k][1] = temp_im / dk;
  1109. }
  1110. if (!phi[1][0][0]) {
  1111. alpha0[k][0] = 0;
  1112. alpha0[k][1] = 0;
  1113. } else {
  1114. float temp_real, temp_im;
  1115. temp_real = phi[0][0][0] + alpha1[k][0] * phi[1][1][0] +
  1116. alpha1[k][1] * phi[1][1][1];
  1117. temp_im = phi[0][0][1] + alpha1[k][1] * phi[1][1][0] -
  1118. alpha1[k][0] * phi[1][1][1];
  1119. alpha0[k][0] = -temp_real / phi[1][0][0];
  1120. alpha0[k][1] = -temp_im / phi[1][0][0];
  1121. }
  1122. if (alpha1[k][0] * alpha1[k][0] + alpha1[k][1] * alpha1[k][1] >= 16.0f ||
  1123. alpha0[k][0] * alpha0[k][0] + alpha0[k][1] * alpha0[k][1] >= 16.0f) {
  1124. alpha1[k][0] = 0;
  1125. alpha1[k][1] = 0;
  1126. alpha0[k][0] = 0;
  1127. alpha0[k][1] = 0;
  1128. }
  1129. }
  1130. }
  1131. /// Chirp Factors (14496-3 sp04 p214)
  1132. static void sbr_chirp(SpectralBandReplication *sbr, SBRData *ch_data)
  1133. {
  1134. int i;
  1135. float new_bw;
  1136. static const float bw_tab[] = { 0.0f, 0.75f, 0.9f, 0.98f };
  1137. for (i = 0; i < sbr->n_q; i++) {
  1138. if (ch_data->bs_invf_mode[0][i] + ch_data->bs_invf_mode[1][i] == 1) {
  1139. new_bw = 0.6f;
  1140. } else
  1141. new_bw = bw_tab[ch_data->bs_invf_mode[0][i]];
  1142. if (new_bw < ch_data->bw_array[i]) {
  1143. new_bw = 0.75f * new_bw + 0.25f * ch_data->bw_array[i];
  1144. } else
  1145. new_bw = 0.90625f * new_bw + 0.09375f * ch_data->bw_array[i];
  1146. ch_data->bw_array[i] = new_bw < 0.015625f ? 0.0f : new_bw;
  1147. }
  1148. }
  1149. /// Generate the subband filtered lowband
  1150. static int sbr_lf_gen(AACContext *ac, SpectralBandReplication *sbr,
  1151. float X_low[32][40][2], const float W[2][32][32][2],
  1152. int buf_idx)
  1153. {
  1154. int i, k;
  1155. const int t_HFGen = 8;
  1156. const int i_f = 32;
  1157. memset(X_low, 0, 32*sizeof(*X_low));
  1158. for (k = 0; k < sbr->kx[1]; k++) {
  1159. for (i = t_HFGen; i < i_f + t_HFGen; i++) {
  1160. X_low[k][i][0] = W[buf_idx][i - t_HFGen][k][0];
  1161. X_low[k][i][1] = W[buf_idx][i - t_HFGen][k][1];
  1162. }
  1163. }
  1164. buf_idx = 1-buf_idx;
  1165. for (k = 0; k < sbr->kx[0]; k++) {
  1166. for (i = 0; i < t_HFGen; i++) {
  1167. X_low[k][i][0] = W[buf_idx][i + i_f - t_HFGen][k][0];
  1168. X_low[k][i][1] = W[buf_idx][i + i_f - t_HFGen][k][1];
  1169. }
  1170. }
  1171. return 0;
  1172. }
  1173. /// High Frequency Generator (14496-3 sp04 p215)
  1174. static int sbr_hf_gen(AACContext *ac, SpectralBandReplication *sbr,
  1175. float X_high[64][40][2], const float X_low[32][40][2],
  1176. const float (*alpha0)[2], const float (*alpha1)[2],
  1177. const float bw_array[5], const uint8_t *t_env,
  1178. int bs_num_env)
  1179. {
  1180. int j, x;
  1181. int g = 0;
  1182. int k = sbr->kx[1];
  1183. for (j = 0; j < sbr->num_patches; j++) {
  1184. for (x = 0; x < sbr->patch_num_subbands[j]; x++, k++) {
  1185. const int p = sbr->patch_start_subband[j] + x;
  1186. while (g <= sbr->n_q && k >= sbr->f_tablenoise[g])
  1187. g++;
  1188. g--;
  1189. if (g < 0) {
  1190. av_log(ac->avctx, AV_LOG_ERROR,
  1191. "ERROR : no subband found for frequency %d\n", k);
  1192. return -1;
  1193. }
  1194. sbr->dsp.hf_gen(X_high[k] + ENVELOPE_ADJUSTMENT_OFFSET,
  1195. X_low[p] + ENVELOPE_ADJUSTMENT_OFFSET,
  1196. alpha0[p], alpha1[p], bw_array[g],
  1197. 2 * t_env[0], 2 * t_env[bs_num_env]);
  1198. }
  1199. }
  1200. if (k < sbr->m[1] + sbr->kx[1])
  1201. memset(X_high + k, 0, (sbr->m[1] + sbr->kx[1] - k) * sizeof(*X_high));
  1202. return 0;
  1203. }
  1204. /// Generate the subband filtered lowband
  1205. static int sbr_x_gen(SpectralBandReplication *sbr, float X[2][38][64],
  1206. const float Y0[38][64][2], const float Y1[38][64][2],
  1207. const float X_low[32][40][2], int ch)
  1208. {
  1209. int k, i;
  1210. const int i_f = 32;
  1211. const int i_Temp = FFMAX(2*sbr->data[ch].t_env_num_env_old - i_f, 0);
  1212. memset(X, 0, 2*sizeof(*X));
  1213. for (k = 0; k < sbr->kx[0]; k++) {
  1214. for (i = 0; i < i_Temp; i++) {
  1215. X[0][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][0];
  1216. X[1][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][1];
  1217. }
  1218. }
  1219. for (; k < sbr->kx[0] + sbr->m[0]; k++) {
  1220. for (i = 0; i < i_Temp; i++) {
  1221. X[0][i][k] = Y0[i + i_f][k][0];
  1222. X[1][i][k] = Y0[i + i_f][k][1];
  1223. }
  1224. }
  1225. for (k = 0; k < sbr->kx[1]; k++) {
  1226. for (i = i_Temp; i < 38; i++) {
  1227. X[0][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][0];
  1228. X[1][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][1];
  1229. }
  1230. }
  1231. for (; k < sbr->kx[1] + sbr->m[1]; k++) {
  1232. for (i = i_Temp; i < i_f; i++) {
  1233. X[0][i][k] = Y1[i][k][0];
  1234. X[1][i][k] = Y1[i][k][1];
  1235. }
  1236. }
  1237. return 0;
  1238. }
  1239. /** High Frequency Adjustment (14496-3 sp04 p217) and Mapping
  1240. * (14496-3 sp04 p217)
  1241. */
  1242. static int sbr_mapping(AACContext *ac, SpectralBandReplication *sbr,
  1243. SBRData *ch_data, int e_a[2])
  1244. {
  1245. int e, i, m;
  1246. memset(ch_data->s_indexmapped[1], 0, 7*sizeof(ch_data->s_indexmapped[1]));
  1247. for (e = 0; e < ch_data->bs_num_env; e++) {
  1248. const unsigned int ilim = sbr->n[ch_data->bs_freq_res[e + 1]];
  1249. uint16_t *table = ch_data->bs_freq_res[e + 1] ? sbr->f_tablehigh : sbr->f_tablelow;
  1250. int k;
  1251. if (sbr->kx[1] != table[0]) {
  1252. av_log(ac->avctx, AV_LOG_ERROR, "kx != f_table{high,low}[0]. "
  1253. "Derived frequency tables were not regenerated.\n");
  1254. sbr_turnoff(sbr);
  1255. return AVERROR_BUG;
  1256. }
  1257. for (i = 0; i < ilim; i++)
  1258. for (m = table[i]; m < table[i + 1]; m++)
  1259. sbr->e_origmapped[e][m - sbr->kx[1]] = ch_data->env_facs[e+1][i];
  1260. // ch_data->bs_num_noise > 1 => 2 noise floors
  1261. k = (ch_data->bs_num_noise > 1) && (ch_data->t_env[e] >= ch_data->t_q[1]);
  1262. for (i = 0; i < sbr->n_q; i++)
  1263. for (m = sbr->f_tablenoise[i]; m < sbr->f_tablenoise[i + 1]; m++)
  1264. sbr->q_mapped[e][m - sbr->kx[1]] = ch_data->noise_facs[k+1][i];
  1265. for (i = 0; i < sbr->n[1]; i++) {
  1266. if (ch_data->bs_add_harmonic_flag) {
  1267. const unsigned int m_midpoint =
  1268. (sbr->f_tablehigh[i] + sbr->f_tablehigh[i + 1]) >> 1;
  1269. ch_data->s_indexmapped[e + 1][m_midpoint - sbr->kx[1]] = ch_data->bs_add_harmonic[i] *
  1270. (e >= e_a[1] || (ch_data->s_indexmapped[0][m_midpoint - sbr->kx[1]] == 1));
  1271. }
  1272. }
  1273. for (i = 0; i < ilim; i++) {
  1274. int additional_sinusoid_present = 0;
  1275. for (m = table[i]; m < table[i + 1]; m++) {
  1276. if (ch_data->s_indexmapped[e + 1][m - sbr->kx[1]]) {
  1277. additional_sinusoid_present = 1;
  1278. break;
  1279. }
  1280. }
  1281. memset(&sbr->s_mapped[e][table[i] - sbr->kx[1]], additional_sinusoid_present,
  1282. (table[i + 1] - table[i]) * sizeof(sbr->s_mapped[e][0]));
  1283. }
  1284. }
  1285. memcpy(ch_data->s_indexmapped[0], ch_data->s_indexmapped[ch_data->bs_num_env], sizeof(ch_data->s_indexmapped[0]));
  1286. return 0;
  1287. }
  1288. /// Estimation of current envelope (14496-3 sp04 p218)
  1289. static void sbr_env_estimate(float (*e_curr)[48], float X_high[64][40][2],
  1290. SpectralBandReplication *sbr, SBRData *ch_data)
  1291. {
  1292. int e, m;
  1293. int kx1 = sbr->kx[1];
  1294. if (sbr->bs_interpol_freq) {
  1295. for (e = 0; e < ch_data->bs_num_env; e++) {
  1296. const float recip_env_size = 0.5f / (ch_data->t_env[e + 1] - ch_data->t_env[e]);
  1297. int ilb = ch_data->t_env[e] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
  1298. int iub = ch_data->t_env[e + 1] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
  1299. for (m = 0; m < sbr->m[1]; m++) {
  1300. float sum = sbr->dsp.sum_square(X_high[m+kx1] + ilb, iub - ilb);
  1301. e_curr[e][m] = sum * recip_env_size;
  1302. }
  1303. }
  1304. } else {
  1305. int k, p;
  1306. for (e = 0; e < ch_data->bs_num_env; e++) {
  1307. const int env_size = 2 * (ch_data->t_env[e + 1] - ch_data->t_env[e]);
  1308. int ilb = ch_data->t_env[e] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
  1309. int iub = ch_data->t_env[e + 1] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
  1310. const uint16_t *table = ch_data->bs_freq_res[e + 1] ? sbr->f_tablehigh : sbr->f_tablelow;
  1311. for (p = 0; p < sbr->n[ch_data->bs_freq_res[e + 1]]; p++) {
  1312. float sum = 0.0f;
  1313. const int den = env_size * (table[p + 1] - table[p]);
  1314. for (k = table[p]; k < table[p + 1]; k++) {
  1315. sum += sbr->dsp.sum_square(X_high[k] + ilb, iub - ilb);
  1316. }
  1317. sum /= den;
  1318. for (k = table[p]; k < table[p + 1]; k++) {
  1319. e_curr[e][k - kx1] = sum;
  1320. }
  1321. }
  1322. }
  1323. }
  1324. }
  1325. /**
  1326. * Calculation of levels of additional HF signal components (14496-3 sp04 p219)
  1327. * and Calculation of gain (14496-3 sp04 p219)
  1328. */
  1329. static void sbr_gain_calc(AACContext *ac, SpectralBandReplication *sbr,
  1330. SBRData *ch_data, const int e_a[2])
  1331. {
  1332. int e, k, m;
  1333. // max gain limits : -3dB, 0dB, 3dB, inf dB (limiter off)
  1334. static const float limgain[4] = { 0.70795, 1.0, 1.41254, 10000000000 };
  1335. for (e = 0; e < ch_data->bs_num_env; e++) {
  1336. int delta = !((e == e_a[1]) || (e == e_a[0]));
  1337. for (k = 0; k < sbr->n_lim; k++) {
  1338. float gain_boost, gain_max;
  1339. float sum[2] = { 0.0f, 0.0f };
  1340. for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
  1341. const float temp = sbr->e_origmapped[e][m] / (1.0f + sbr->q_mapped[e][m]);
  1342. sbr->q_m[e][m] = sqrtf(temp * sbr->q_mapped[e][m]);
  1343. sbr->s_m[e][m] = sqrtf(temp * ch_data->s_indexmapped[e + 1][m]);
  1344. if (!sbr->s_mapped[e][m]) {
  1345. sbr->gain[e][m] = sqrtf(sbr->e_origmapped[e][m] /
  1346. ((1.0f + sbr->e_curr[e][m]) *
  1347. (1.0f + sbr->q_mapped[e][m] * delta)));
  1348. } else {
  1349. sbr->gain[e][m] = sqrtf(sbr->e_origmapped[e][m] * sbr->q_mapped[e][m] /
  1350. ((1.0f + sbr->e_curr[e][m]) *
  1351. (1.0f + sbr->q_mapped[e][m])));
  1352. }
  1353. }
  1354. for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
  1355. sum[0] += sbr->e_origmapped[e][m];
  1356. sum[1] += sbr->e_curr[e][m];
  1357. }
  1358. gain_max = limgain[sbr->bs_limiter_gains] * sqrtf((FLT_EPSILON + sum[0]) / (FLT_EPSILON + sum[1]));
  1359. gain_max = FFMIN(100000.f, gain_max);
  1360. for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
  1361. float q_m_max = sbr->q_m[e][m] * gain_max / sbr->gain[e][m];
  1362. sbr->q_m[e][m] = FFMIN(sbr->q_m[e][m], q_m_max);
  1363. sbr->gain[e][m] = FFMIN(sbr->gain[e][m], gain_max);
  1364. }
  1365. sum[0] = sum[1] = 0.0f;
  1366. for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
  1367. sum[0] += sbr->e_origmapped[e][m];
  1368. sum[1] += sbr->e_curr[e][m] * sbr->gain[e][m] * sbr->gain[e][m]
  1369. + sbr->s_m[e][m] * sbr->s_m[e][m]
  1370. + (delta && !sbr->s_m[e][m]) * sbr->q_m[e][m] * sbr->q_m[e][m];
  1371. }
  1372. gain_boost = sqrtf((FLT_EPSILON + sum[0]) / (FLT_EPSILON + sum[1]));
  1373. gain_boost = FFMIN(1.584893192f, gain_boost);
  1374. for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
  1375. sbr->gain[e][m] *= gain_boost;
  1376. sbr->q_m[e][m] *= gain_boost;
  1377. sbr->s_m[e][m] *= gain_boost;
  1378. }
  1379. }
  1380. }
  1381. }
  1382. /// Assembling HF Signals (14496-3 sp04 p220)
  1383. static void sbr_hf_assemble(float Y1[38][64][2],
  1384. const float X_high[64][40][2],
  1385. SpectralBandReplication *sbr, SBRData *ch_data,
  1386. const int e_a[2])
  1387. {
  1388. int e, i, j, m;
  1389. const int h_SL = 4 * !sbr->bs_smoothing_mode;
  1390. const int kx = sbr->kx[1];
  1391. const int m_max = sbr->m[1];
  1392. static const float h_smooth[5] = {
  1393. 0.33333333333333,
  1394. 0.30150283239582,
  1395. 0.21816949906249,
  1396. 0.11516383427084,
  1397. 0.03183050093751,
  1398. };
  1399. float (*g_temp)[48] = ch_data->g_temp, (*q_temp)[48] = ch_data->q_temp;
  1400. int indexnoise = ch_data->f_indexnoise;
  1401. int indexsine = ch_data->f_indexsine;
  1402. if (sbr->reset) {
  1403. for (i = 0; i < h_SL; i++) {
  1404. memcpy(g_temp[i + 2*ch_data->t_env[0]], sbr->gain[0], m_max * sizeof(sbr->gain[0][0]));
  1405. memcpy(q_temp[i + 2*ch_data->t_env[0]], sbr->q_m[0], m_max * sizeof(sbr->q_m[0][0]));
  1406. }
  1407. } else if (h_SL) {
  1408. memcpy(g_temp[2*ch_data->t_env[0]], g_temp[2*ch_data->t_env_num_env_old], 4*sizeof(g_temp[0]));
  1409. memcpy(q_temp[2*ch_data->t_env[0]], q_temp[2*ch_data->t_env_num_env_old], 4*sizeof(q_temp[0]));
  1410. }
  1411. for (e = 0; e < ch_data->bs_num_env; e++) {
  1412. for (i = 2 * ch_data->t_env[e]; i < 2 * ch_data->t_env[e + 1]; i++) {
  1413. memcpy(g_temp[h_SL + i], sbr->gain[e], m_max * sizeof(sbr->gain[0][0]));
  1414. memcpy(q_temp[h_SL + i], sbr->q_m[e], m_max * sizeof(sbr->q_m[0][0]));
  1415. }
  1416. }
  1417. for (e = 0; e < ch_data->bs_num_env; e++) {
  1418. for (i = 2 * ch_data->t_env[e]; i < 2 * ch_data->t_env[e + 1]; i++) {
  1419. LOCAL_ALIGNED_16(float, g_filt_tab, [48]);
  1420. LOCAL_ALIGNED_16(float, q_filt_tab, [48]);
  1421. float *g_filt, *q_filt;
  1422. if (h_SL && e != e_a[0] && e != e_a[1]) {
  1423. g_filt = g_filt_tab;
  1424. q_filt = q_filt_tab;
  1425. for (m = 0; m < m_max; m++) {
  1426. const int idx1 = i + h_SL;
  1427. g_filt[m] = 0.0f;
  1428. q_filt[m] = 0.0f;
  1429. for (j = 0; j <= h_SL; j++) {
  1430. g_filt[m] += g_temp[idx1 - j][m] * h_smooth[j];
  1431. q_filt[m] += q_temp[idx1 - j][m] * h_smooth[j];
  1432. }
  1433. }
  1434. } else {
  1435. g_filt = g_temp[i + h_SL];
  1436. q_filt = q_temp[i];
  1437. }
  1438. sbr->dsp.hf_g_filt(Y1[i] + kx, X_high + kx, g_filt, m_max,
  1439. i + ENVELOPE_ADJUSTMENT_OFFSET);
  1440. if (e != e_a[0] && e != e_a[1]) {
  1441. sbr->dsp.hf_apply_noise[indexsine](Y1[i] + kx, sbr->s_m[e],
  1442. q_filt, indexnoise,
  1443. kx, m_max);
  1444. } else {
  1445. int idx = indexsine&1;
  1446. int A = (1-((indexsine+(kx & 1))&2));
  1447. int B = (A^(-idx)) + idx;
  1448. float *out = &Y1[i][kx][idx];
  1449. float *in = sbr->s_m[e];
  1450. for (m = 0; m+1 < m_max; m+=2) {
  1451. out[2*m ] += in[m ] * A;
  1452. out[2*m+2] += in[m+1] * B;
  1453. }
  1454. if(m_max&1)
  1455. out[2*m ] += in[m ] * A;
  1456. }
  1457. indexnoise = (indexnoise + m_max) & 0x1ff;
  1458. indexsine = (indexsine + 1) & 3;
  1459. }
  1460. }
  1461. ch_data->f_indexnoise = indexnoise;
  1462. ch_data->f_indexsine = indexsine;
  1463. }
  1464. void ff_sbr_apply(AACContext *ac, SpectralBandReplication *sbr, int id_aac,
  1465. float* L, float* R)
  1466. {
  1467. int downsampled = ac->oc[1].m4ac.ext_sample_rate < sbr->sample_rate;
  1468. int ch;
  1469. int nch = (id_aac == TYPE_CPE) ? 2 : 1;
  1470. int err;
  1471. if (!sbr->kx_and_m_pushed) {
  1472. sbr->kx[0] = sbr->kx[1];
  1473. sbr->m[0] = sbr->m[1];
  1474. } else {
  1475. sbr->kx_and_m_pushed = 0;
  1476. }
  1477. if (sbr->start) {
  1478. sbr_dequant(sbr, id_aac);
  1479. }
  1480. for (ch = 0; ch < nch; ch++) {
  1481. /* decode channel */
  1482. sbr_qmf_analysis(&ac->fdsp, &sbr->mdct_ana, &sbr->dsp, ch ? R : L, sbr->data[ch].analysis_filterbank_samples,
  1483. (float*)sbr->qmf_filter_scratch,
  1484. sbr->data[ch].W, sbr->data[ch].Ypos);
  1485. sbr->c.sbr_lf_gen(ac, sbr, sbr->X_low, sbr->data[ch].W, sbr->data[ch].Ypos);
  1486. sbr->data[ch].Ypos ^= 1;
  1487. if (sbr->start) {
  1488. sbr->c.sbr_hf_inverse_filter(&sbr->dsp, sbr->alpha0, sbr->alpha1, sbr->X_low, sbr->k[0]);
  1489. sbr_chirp(sbr, &sbr->data[ch]);
  1490. sbr_hf_gen(ac, sbr, sbr->X_high, sbr->X_low, sbr->alpha0, sbr->alpha1,
  1491. sbr->data[ch].bw_array, sbr->data[ch].t_env,
  1492. sbr->data[ch].bs_num_env);
  1493. // hf_adj
  1494. err = sbr_mapping(ac, sbr, &sbr->data[ch], sbr->data[ch].e_a);
  1495. if (!err) {
  1496. sbr_env_estimate(sbr->e_curr, sbr->X_high, sbr, &sbr->data[ch]);
  1497. sbr_gain_calc(ac, sbr, &sbr->data[ch], sbr->data[ch].e_a);
  1498. sbr->c.sbr_hf_assemble(sbr->data[ch].Y[sbr->data[ch].Ypos],
  1499. sbr->X_high, sbr, &sbr->data[ch],
  1500. sbr->data[ch].e_a);
  1501. }
  1502. }
  1503. /* synthesis */
  1504. sbr->c.sbr_x_gen(sbr, sbr->X[ch],
  1505. sbr->data[ch].Y[1-sbr->data[ch].Ypos],
  1506. sbr->data[ch].Y[ sbr->data[ch].Ypos],
  1507. sbr->X_low, ch);
  1508. }
  1509. if (ac->oc[1].m4ac.ps == 1) {
  1510. if (sbr->ps.start) {
  1511. ff_ps_apply(ac->avctx, &sbr->ps, sbr->X[0], sbr->X[1], sbr->kx[1] + sbr->m[1]);
  1512. } else {
  1513. memcpy(sbr->X[1], sbr->X[0], sizeof(sbr->X[0]));
  1514. }
  1515. nch = 2;
  1516. }
  1517. sbr_qmf_synthesis(&sbr->mdct, &sbr->dsp, &ac->fdsp,
  1518. L, sbr->X[0], sbr->qmf_filter_scratch,
  1519. sbr->data[0].synthesis_filterbank_samples,
  1520. &sbr->data[0].synthesis_filterbank_samples_offset,
  1521. downsampled);
  1522. if (nch == 2)
  1523. sbr_qmf_synthesis(&sbr->mdct, &sbr->dsp, &ac->fdsp,
  1524. R, sbr->X[1], sbr->qmf_filter_scratch,
  1525. sbr->data[1].synthesis_filterbank_samples,
  1526. &sbr->data[1].synthesis_filterbank_samples_offset,
  1527. downsampled);
  1528. }
  1529. static void aacsbr_func_ptr_init(AACSBRContext *c)
  1530. {
  1531. c->sbr_lf_gen = sbr_lf_gen;
  1532. c->sbr_hf_assemble = sbr_hf_assemble;
  1533. c->sbr_x_gen = sbr_x_gen;
  1534. c->sbr_hf_inverse_filter = sbr_hf_inverse_filter;
  1535. if(ARCH_MIPS)
  1536. ff_aacsbr_func_ptr_init_mips(c);
  1537. }