You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

5878 lines
229KB

  1. /*
  2. * VC-1 and WMV3 decoder
  3. * Copyright (c) 2011 Mashiat Sarker Shakkhar
  4. * Copyright (c) 2006-2007 Konstantin Shishkov
  5. * Partly based on vc9.c (c) 2005 Anonymous, Alex Beregszaszi, Michael Niedermayer
  6. *
  7. * This file is part of FFmpeg.
  8. *
  9. * FFmpeg is free software; you can redistribute it and/or
  10. * modify it under the terms of the GNU Lesser General Public
  11. * License as published by the Free Software Foundation; either
  12. * version 2.1 of the License, or (at your option) any later version.
  13. *
  14. * FFmpeg is distributed in the hope that it will be useful,
  15. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  16. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  17. * Lesser General Public License for more details.
  18. *
  19. * You should have received a copy of the GNU Lesser General Public
  20. * License along with FFmpeg; if not, write to the Free Software
  21. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  22. */
  23. /**
  24. * @file
  25. * VC-1 and WMV3 decoder
  26. */
  27. #include "internal.h"
  28. #include "dsputil.h"
  29. #include "avcodec.h"
  30. #include "mpegvideo.h"
  31. #include "h263.h"
  32. #include "vc1.h"
  33. #include "vc1data.h"
  34. #include "vc1acdata.h"
  35. #include "msmpeg4data.h"
  36. #include "unary.h"
  37. #include "simple_idct.h"
  38. #include "mathops.h"
  39. #include "vdpau_internal.h"
  40. #undef NDEBUG
  41. #include <assert.h>
  42. #define MB_INTRA_VLC_BITS 9
  43. #define DC_VLC_BITS 9
  44. #define AC_VLC_BITS 9
  45. static const uint16_t vlc_offs[] = {
  46. 0, 520, 552, 616, 1128, 1160, 1224, 1740, 1772, 1836, 1900, 2436,
  47. 2986, 3050, 3610, 4154, 4218, 4746, 5326, 5390, 5902, 6554, 7658, 8342,
  48. 9304, 9988, 10630, 11234, 12174, 13006, 13560, 14232, 14786, 15432, 16350, 17522,
  49. 20372, 21818, 22330, 22394, 23166, 23678, 23742, 24820, 25332, 25396, 26460, 26980,
  50. 27048, 27592, 27600, 27608, 27616, 27624, 28224, 28258, 28290, 28802, 28834, 28866,
  51. 29378, 29412, 29444, 29960, 29994, 30026, 30538, 30572, 30604, 31120, 31154, 31186,
  52. 31714, 31746, 31778, 32306, 32340, 32372
  53. };
  54. // offset tables for interlaced picture MVDATA decoding
  55. static const int offset_table1[9] = { 0, 1, 2, 4, 8, 16, 32, 64, 128 };
  56. static const int offset_table2[9] = { 0, 1, 3, 7, 15, 31, 63, 127, 255 };
  57. /**
  58. * Init VC-1 specific tables and VC1Context members
  59. * @param v The VC1Context to initialize
  60. * @return Status
  61. */
  62. static int vc1_init_common(VC1Context *v)
  63. {
  64. static int done = 0;
  65. int i = 0;
  66. static VLC_TYPE vlc_table[32372][2];
  67. v->hrd_rate = v->hrd_buffer = NULL;
  68. /* VLC tables */
  69. if (!done) {
  70. INIT_VLC_STATIC(&ff_vc1_bfraction_vlc, VC1_BFRACTION_VLC_BITS, 23,
  71. ff_vc1_bfraction_bits, 1, 1,
  72. ff_vc1_bfraction_codes, 1, 1, 1 << VC1_BFRACTION_VLC_BITS);
  73. INIT_VLC_STATIC(&ff_vc1_norm2_vlc, VC1_NORM2_VLC_BITS, 4,
  74. ff_vc1_norm2_bits, 1, 1,
  75. ff_vc1_norm2_codes, 1, 1, 1 << VC1_NORM2_VLC_BITS);
  76. INIT_VLC_STATIC(&ff_vc1_norm6_vlc, VC1_NORM6_VLC_BITS, 64,
  77. ff_vc1_norm6_bits, 1, 1,
  78. ff_vc1_norm6_codes, 2, 2, 556);
  79. INIT_VLC_STATIC(&ff_vc1_imode_vlc, VC1_IMODE_VLC_BITS, 7,
  80. ff_vc1_imode_bits, 1, 1,
  81. ff_vc1_imode_codes, 1, 1, 1 << VC1_IMODE_VLC_BITS);
  82. for (i = 0; i < 3; i++) {
  83. ff_vc1_ttmb_vlc[i].table = &vlc_table[vlc_offs[i * 3 + 0]];
  84. ff_vc1_ttmb_vlc[i].table_allocated = vlc_offs[i * 3 + 1] - vlc_offs[i * 3 + 0];
  85. init_vlc(&ff_vc1_ttmb_vlc[i], VC1_TTMB_VLC_BITS, 16,
  86. ff_vc1_ttmb_bits[i], 1, 1,
  87. ff_vc1_ttmb_codes[i], 2, 2, INIT_VLC_USE_NEW_STATIC);
  88. ff_vc1_ttblk_vlc[i].table = &vlc_table[vlc_offs[i * 3 + 1]];
  89. ff_vc1_ttblk_vlc[i].table_allocated = vlc_offs[i * 3 + 2] - vlc_offs[i * 3 + 1];
  90. init_vlc(&ff_vc1_ttblk_vlc[i], VC1_TTBLK_VLC_BITS, 8,
  91. ff_vc1_ttblk_bits[i], 1, 1,
  92. ff_vc1_ttblk_codes[i], 1, 1, INIT_VLC_USE_NEW_STATIC);
  93. ff_vc1_subblkpat_vlc[i].table = &vlc_table[vlc_offs[i * 3 + 2]];
  94. ff_vc1_subblkpat_vlc[i].table_allocated = vlc_offs[i * 3 + 3] - vlc_offs[i * 3 + 2];
  95. init_vlc(&ff_vc1_subblkpat_vlc[i], VC1_SUBBLKPAT_VLC_BITS, 15,
  96. ff_vc1_subblkpat_bits[i], 1, 1,
  97. ff_vc1_subblkpat_codes[i], 1, 1, INIT_VLC_USE_NEW_STATIC);
  98. }
  99. for (i = 0; i < 4; i++) {
  100. ff_vc1_4mv_block_pattern_vlc[i].table = &vlc_table[vlc_offs[i * 3 + 9]];
  101. ff_vc1_4mv_block_pattern_vlc[i].table_allocated = vlc_offs[i * 3 + 10] - vlc_offs[i * 3 + 9];
  102. init_vlc(&ff_vc1_4mv_block_pattern_vlc[i], VC1_4MV_BLOCK_PATTERN_VLC_BITS, 16,
  103. ff_vc1_4mv_block_pattern_bits[i], 1, 1,
  104. ff_vc1_4mv_block_pattern_codes[i], 1, 1, INIT_VLC_USE_NEW_STATIC);
  105. ff_vc1_cbpcy_p_vlc[i].table = &vlc_table[vlc_offs[i * 3 + 10]];
  106. ff_vc1_cbpcy_p_vlc[i].table_allocated = vlc_offs[i * 3 + 11] - vlc_offs[i * 3 + 10];
  107. init_vlc(&ff_vc1_cbpcy_p_vlc[i], VC1_CBPCY_P_VLC_BITS, 64,
  108. ff_vc1_cbpcy_p_bits[i], 1, 1,
  109. ff_vc1_cbpcy_p_codes[i], 2, 2, INIT_VLC_USE_NEW_STATIC);
  110. ff_vc1_mv_diff_vlc[i].table = &vlc_table[vlc_offs[i * 3 + 11]];
  111. ff_vc1_mv_diff_vlc[i].table_allocated = vlc_offs[i * 3 + 12] - vlc_offs[i * 3 + 11];
  112. init_vlc(&ff_vc1_mv_diff_vlc[i], VC1_MV_DIFF_VLC_BITS, 73,
  113. ff_vc1_mv_diff_bits[i], 1, 1,
  114. ff_vc1_mv_diff_codes[i], 2, 2, INIT_VLC_USE_NEW_STATIC);
  115. }
  116. for (i = 0; i < 8; i++) {
  117. ff_vc1_ac_coeff_table[i].table = &vlc_table[vlc_offs[i * 2 + 21]];
  118. ff_vc1_ac_coeff_table[i].table_allocated = vlc_offs[i * 2 + 22] - vlc_offs[i * 2 + 21];
  119. init_vlc(&ff_vc1_ac_coeff_table[i], AC_VLC_BITS, vc1_ac_sizes[i],
  120. &vc1_ac_tables[i][0][1], 8, 4,
  121. &vc1_ac_tables[i][0][0], 8, 4, INIT_VLC_USE_NEW_STATIC);
  122. /* initialize interlaced MVDATA tables (2-Ref) */
  123. ff_vc1_2ref_mvdata_vlc[i].table = &vlc_table[vlc_offs[i * 2 + 22]];
  124. ff_vc1_2ref_mvdata_vlc[i].table_allocated = vlc_offs[i * 2 + 23] - vlc_offs[i * 2 + 22];
  125. init_vlc(&ff_vc1_2ref_mvdata_vlc[i], VC1_2REF_MVDATA_VLC_BITS, 126,
  126. ff_vc1_2ref_mvdata_bits[i], 1, 1,
  127. ff_vc1_2ref_mvdata_codes[i], 4, 4, INIT_VLC_USE_NEW_STATIC);
  128. }
  129. for (i = 0; i < 4; i++) {
  130. /* initialize 4MV MBMODE VLC tables for interlaced frame P picture */
  131. ff_vc1_intfr_4mv_mbmode_vlc[i].table = &vlc_table[vlc_offs[i * 3 + 37]];
  132. ff_vc1_intfr_4mv_mbmode_vlc[i].table_allocated = vlc_offs[i * 3 + 38] - vlc_offs[i * 3 + 37];
  133. init_vlc(&ff_vc1_intfr_4mv_mbmode_vlc[i], VC1_INTFR_4MV_MBMODE_VLC_BITS, 15,
  134. ff_vc1_intfr_4mv_mbmode_bits[i], 1, 1,
  135. ff_vc1_intfr_4mv_mbmode_codes[i], 2, 2, INIT_VLC_USE_NEW_STATIC);
  136. /* initialize NON-4MV MBMODE VLC tables for the same */
  137. ff_vc1_intfr_non4mv_mbmode_vlc[i].table = &vlc_table[vlc_offs[i * 3 + 38]];
  138. ff_vc1_intfr_non4mv_mbmode_vlc[i].table_allocated = vlc_offs[i * 3 + 39] - vlc_offs[i * 3 + 38];
  139. init_vlc(&ff_vc1_intfr_non4mv_mbmode_vlc[i], VC1_INTFR_NON4MV_MBMODE_VLC_BITS, 9,
  140. ff_vc1_intfr_non4mv_mbmode_bits[i], 1, 1,
  141. ff_vc1_intfr_non4mv_mbmode_codes[i], 1, 1, INIT_VLC_USE_NEW_STATIC);
  142. /* initialize interlaced MVDATA tables (1-Ref) */
  143. ff_vc1_1ref_mvdata_vlc[i].table = &vlc_table[vlc_offs[i * 3 + 39]];
  144. ff_vc1_1ref_mvdata_vlc[i].table_allocated = vlc_offs[i * 3 + 40] - vlc_offs[i * 3 + 39];
  145. init_vlc(&ff_vc1_1ref_mvdata_vlc[i], VC1_1REF_MVDATA_VLC_BITS, 72,
  146. ff_vc1_1ref_mvdata_bits[i], 1, 1,
  147. ff_vc1_1ref_mvdata_codes[i], 4, 4, INIT_VLC_USE_NEW_STATIC);
  148. }
  149. for (i = 0; i < 4; i++) {
  150. /* Initialize 2MV Block pattern VLC tables */
  151. ff_vc1_2mv_block_pattern_vlc[i].table = &vlc_table[vlc_offs[i + 49]];
  152. ff_vc1_2mv_block_pattern_vlc[i].table_allocated = vlc_offs[i + 50] - vlc_offs[i + 49];
  153. init_vlc(&ff_vc1_2mv_block_pattern_vlc[i], VC1_2MV_BLOCK_PATTERN_VLC_BITS, 4,
  154. ff_vc1_2mv_block_pattern_bits[i], 1, 1,
  155. ff_vc1_2mv_block_pattern_codes[i], 1, 1, INIT_VLC_USE_NEW_STATIC);
  156. }
  157. for (i = 0; i < 8; i++) {
  158. /* Initialize interlaced CBPCY VLC tables (Table 124 - Table 131) */
  159. ff_vc1_icbpcy_vlc[i].table = &vlc_table[vlc_offs[i * 3 + 53]];
  160. ff_vc1_icbpcy_vlc[i].table_allocated = vlc_offs[i * 3 + 54] - vlc_offs[i * 3 + 53];
  161. init_vlc(&ff_vc1_icbpcy_vlc[i], VC1_ICBPCY_VLC_BITS, 63,
  162. ff_vc1_icbpcy_p_bits[i], 1, 1,
  163. ff_vc1_icbpcy_p_codes[i], 2, 2, INIT_VLC_USE_NEW_STATIC);
  164. /* Initialize interlaced field picture MBMODE VLC tables */
  165. ff_vc1_if_mmv_mbmode_vlc[i].table = &vlc_table[vlc_offs[i * 3 + 54]];
  166. ff_vc1_if_mmv_mbmode_vlc[i].table_allocated = vlc_offs[i * 3 + 55] - vlc_offs[i * 3 + 54];
  167. init_vlc(&ff_vc1_if_mmv_mbmode_vlc[i], VC1_IF_MMV_MBMODE_VLC_BITS, 8,
  168. ff_vc1_if_mmv_mbmode_bits[i], 1, 1,
  169. ff_vc1_if_mmv_mbmode_codes[i], 1, 1, INIT_VLC_USE_NEW_STATIC);
  170. ff_vc1_if_1mv_mbmode_vlc[i].table = &vlc_table[vlc_offs[i * 3 + 55]];
  171. ff_vc1_if_1mv_mbmode_vlc[i].table_allocated = vlc_offs[i * 3 + 56] - vlc_offs[i * 3 + 55];
  172. init_vlc(&ff_vc1_if_1mv_mbmode_vlc[i], VC1_IF_1MV_MBMODE_VLC_BITS, 6,
  173. ff_vc1_if_1mv_mbmode_bits[i], 1, 1,
  174. ff_vc1_if_1mv_mbmode_codes[i], 1, 1, INIT_VLC_USE_NEW_STATIC);
  175. }
  176. done = 1;
  177. }
  178. /* Other defaults */
  179. v->pq = -1;
  180. v->mvrange = 0; /* 7.1.1.18, p80 */
  181. return 0;
  182. }
  183. /***********************************************************************/
  184. /**
  185. * @name VC-1 Bitplane decoding
  186. * @see 8.7, p56
  187. * @{
  188. */
  189. /**
  190. * Imode types
  191. * @{
  192. */
  193. enum Imode {
  194. IMODE_RAW,
  195. IMODE_NORM2,
  196. IMODE_DIFF2,
  197. IMODE_NORM6,
  198. IMODE_DIFF6,
  199. IMODE_ROWSKIP,
  200. IMODE_COLSKIP
  201. };
  202. /** @} */ //imode defines
  203. /** @} */ //Bitplane group
  204. static void vc1_put_signed_blocks_clamped(VC1Context *v)
  205. {
  206. MpegEncContext *s = &v->s;
  207. int topleft_mb_pos, top_mb_pos;
  208. int stride_y, fieldtx;
  209. int v_dist;
  210. /* The put pixels loop is always one MB row behind the decoding loop,
  211. * because we can only put pixels when overlap filtering is done, and
  212. * for filtering of the bottom edge of a MB, we need the next MB row
  213. * present as well.
  214. * Within the row, the put pixels loop is also one MB col behind the
  215. * decoding loop. The reason for this is again, because for filtering
  216. * of the right MB edge, we need the next MB present. */
  217. if (!s->first_slice_line) {
  218. if (s->mb_x) {
  219. topleft_mb_pos = (s->mb_y - 1) * s->mb_stride + s->mb_x - 1;
  220. fieldtx = v->fieldtx_plane[topleft_mb_pos];
  221. stride_y = s->linesize << fieldtx;
  222. v_dist = (16 - fieldtx) >> (fieldtx == 0);
  223. s->dsp.put_signed_pixels_clamped(v->block[v->topleft_blk_idx][0],
  224. s->dest[0] - 16 * s->linesize - 16,
  225. stride_y);
  226. s->dsp.put_signed_pixels_clamped(v->block[v->topleft_blk_idx][1],
  227. s->dest[0] - 16 * s->linesize - 8,
  228. stride_y);
  229. s->dsp.put_signed_pixels_clamped(v->block[v->topleft_blk_idx][2],
  230. s->dest[0] - v_dist * s->linesize - 16,
  231. stride_y);
  232. s->dsp.put_signed_pixels_clamped(v->block[v->topleft_blk_idx][3],
  233. s->dest[0] - v_dist * s->linesize - 8,
  234. stride_y);
  235. s->dsp.put_signed_pixels_clamped(v->block[v->topleft_blk_idx][4],
  236. s->dest[1] - 8 * s->uvlinesize - 8,
  237. s->uvlinesize);
  238. s->dsp.put_signed_pixels_clamped(v->block[v->topleft_blk_idx][5],
  239. s->dest[2] - 8 * s->uvlinesize - 8,
  240. s->uvlinesize);
  241. }
  242. if (s->mb_x == s->mb_width - 1) {
  243. top_mb_pos = (s->mb_y - 1) * s->mb_stride + s->mb_x;
  244. fieldtx = v->fieldtx_plane[top_mb_pos];
  245. stride_y = s->linesize << fieldtx;
  246. v_dist = fieldtx ? 15 : 8;
  247. s->dsp.put_signed_pixels_clamped(v->block[v->top_blk_idx][0],
  248. s->dest[0] - 16 * s->linesize,
  249. stride_y);
  250. s->dsp.put_signed_pixels_clamped(v->block[v->top_blk_idx][1],
  251. s->dest[0] - 16 * s->linesize + 8,
  252. stride_y);
  253. s->dsp.put_signed_pixels_clamped(v->block[v->top_blk_idx][2],
  254. s->dest[0] - v_dist * s->linesize,
  255. stride_y);
  256. s->dsp.put_signed_pixels_clamped(v->block[v->top_blk_idx][3],
  257. s->dest[0] - v_dist * s->linesize + 8,
  258. stride_y);
  259. s->dsp.put_signed_pixels_clamped(v->block[v->top_blk_idx][4],
  260. s->dest[1] - 8 * s->uvlinesize,
  261. s->uvlinesize);
  262. s->dsp.put_signed_pixels_clamped(v->block[v->top_blk_idx][5],
  263. s->dest[2] - 8 * s->uvlinesize,
  264. s->uvlinesize);
  265. }
  266. }
  267. #define inc_blk_idx(idx) do { \
  268. idx++; \
  269. if (idx >= v->n_allocated_blks) \
  270. idx = 0; \
  271. } while (0)
  272. inc_blk_idx(v->topleft_blk_idx);
  273. inc_blk_idx(v->top_blk_idx);
  274. inc_blk_idx(v->left_blk_idx);
  275. inc_blk_idx(v->cur_blk_idx);
  276. }
  277. static void vc1_loop_filter_iblk(VC1Context *v, int pq)
  278. {
  279. MpegEncContext *s = &v->s;
  280. int j;
  281. if (!s->first_slice_line) {
  282. v->vc1dsp.vc1_v_loop_filter16(s->dest[0], s->linesize, pq);
  283. if (s->mb_x)
  284. v->vc1dsp.vc1_h_loop_filter16(s->dest[0] - 16 * s->linesize, s->linesize, pq);
  285. v->vc1dsp.vc1_h_loop_filter16(s->dest[0] - 16 * s->linesize + 8, s->linesize, pq);
  286. for (j = 0; j < 2; j++) {
  287. v->vc1dsp.vc1_v_loop_filter8(s->dest[j + 1], s->uvlinesize, pq);
  288. if (s->mb_x)
  289. v->vc1dsp.vc1_h_loop_filter8(s->dest[j + 1] - 8 * s->uvlinesize, s->uvlinesize, pq);
  290. }
  291. }
  292. v->vc1dsp.vc1_v_loop_filter16(s->dest[0] + 8 * s->linesize, s->linesize, pq);
  293. if (s->mb_y == s->end_mb_y - 1) {
  294. if (s->mb_x) {
  295. v->vc1dsp.vc1_h_loop_filter16(s->dest[0], s->linesize, pq);
  296. v->vc1dsp.vc1_h_loop_filter8(s->dest[1], s->uvlinesize, pq);
  297. v->vc1dsp.vc1_h_loop_filter8(s->dest[2], s->uvlinesize, pq);
  298. }
  299. v->vc1dsp.vc1_h_loop_filter16(s->dest[0] + 8, s->linesize, pq);
  300. }
  301. }
  302. static void vc1_loop_filter_iblk_delayed(VC1Context *v, int pq)
  303. {
  304. MpegEncContext *s = &v->s;
  305. int j;
  306. /* The loopfilter runs 1 row and 1 column behind the overlap filter, which
  307. * means it runs two rows/cols behind the decoding loop. */
  308. if (!s->first_slice_line) {
  309. if (s->mb_x) {
  310. if (s->mb_y >= s->start_mb_y + 2) {
  311. v->vc1dsp.vc1_v_loop_filter16(s->dest[0] - 16 * s->linesize - 16, s->linesize, pq);
  312. if (s->mb_x >= 2)
  313. v->vc1dsp.vc1_h_loop_filter16(s->dest[0] - 32 * s->linesize - 16, s->linesize, pq);
  314. v->vc1dsp.vc1_h_loop_filter16(s->dest[0] - 32 * s->linesize - 8, s->linesize, pq);
  315. for (j = 0; j < 2; j++) {
  316. v->vc1dsp.vc1_v_loop_filter8(s->dest[j + 1] - 8 * s->uvlinesize - 8, s->uvlinesize, pq);
  317. if (s->mb_x >= 2) {
  318. v->vc1dsp.vc1_h_loop_filter8(s->dest[j + 1] - 16 * s->uvlinesize - 8, s->uvlinesize, pq);
  319. }
  320. }
  321. }
  322. v->vc1dsp.vc1_v_loop_filter16(s->dest[0] - 8 * s->linesize - 16, s->linesize, pq);
  323. }
  324. if (s->mb_x == s->mb_width - 1) {
  325. if (s->mb_y >= s->start_mb_y + 2) {
  326. v->vc1dsp.vc1_v_loop_filter16(s->dest[0] - 16 * s->linesize, s->linesize, pq);
  327. if (s->mb_x)
  328. v->vc1dsp.vc1_h_loop_filter16(s->dest[0] - 32 * s->linesize, s->linesize, pq);
  329. v->vc1dsp.vc1_h_loop_filter16(s->dest[0] - 32 * s->linesize + 8, s->linesize, pq);
  330. for (j = 0; j < 2; j++) {
  331. v->vc1dsp.vc1_v_loop_filter8(s->dest[j + 1] - 8 * s->uvlinesize, s->uvlinesize, pq);
  332. if (s->mb_x >= 2) {
  333. v->vc1dsp.vc1_h_loop_filter8(s->dest[j + 1] - 16 * s->uvlinesize, s->uvlinesize, pq);
  334. }
  335. }
  336. }
  337. v->vc1dsp.vc1_v_loop_filter16(s->dest[0] - 8 * s->linesize, s->linesize, pq);
  338. }
  339. if (s->mb_y == s->end_mb_y) {
  340. if (s->mb_x) {
  341. if (s->mb_x >= 2)
  342. v->vc1dsp.vc1_h_loop_filter16(s->dest[0] - 16 * s->linesize - 16, s->linesize, pq);
  343. v->vc1dsp.vc1_h_loop_filter16(s->dest[0] - 16 * s->linesize - 8, s->linesize, pq);
  344. if (s->mb_x >= 2) {
  345. for (j = 0; j < 2; j++) {
  346. v->vc1dsp.vc1_h_loop_filter8(s->dest[j + 1] - 8 * s->uvlinesize - 8, s->uvlinesize, pq);
  347. }
  348. }
  349. }
  350. if (s->mb_x == s->mb_width - 1) {
  351. if (s->mb_x)
  352. v->vc1dsp.vc1_h_loop_filter16(s->dest[0] - 16 * s->linesize, s->linesize, pq);
  353. v->vc1dsp.vc1_h_loop_filter16(s->dest[0] - 16 * s->linesize + 8, s->linesize, pq);
  354. if (s->mb_x) {
  355. for (j = 0; j < 2; j++) {
  356. v->vc1dsp.vc1_h_loop_filter8(s->dest[j + 1] - 8 * s->uvlinesize, s->uvlinesize, pq);
  357. }
  358. }
  359. }
  360. }
  361. }
  362. }
  363. static void vc1_smooth_overlap_filter_iblk(VC1Context *v)
  364. {
  365. MpegEncContext *s = &v->s;
  366. int mb_pos;
  367. if (v->condover == CONDOVER_NONE)
  368. return;
  369. mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  370. /* Within a MB, the horizontal overlap always runs before the vertical.
  371. * To accomplish that, we run the H on left and internal borders of the
  372. * currently decoded MB. Then, we wait for the next overlap iteration
  373. * to do H overlap on the right edge of this MB, before moving over and
  374. * running the V overlap. Therefore, the V overlap makes us trail by one
  375. * MB col and the H overlap filter makes us trail by one MB row. This
  376. * is reflected in the time at which we run the put_pixels loop. */
  377. if (v->condover == CONDOVER_ALL || v->pq >= 9 || v->over_flags_plane[mb_pos]) {
  378. if (s->mb_x && (v->condover == CONDOVER_ALL || v->pq >= 9 ||
  379. v->over_flags_plane[mb_pos - 1])) {
  380. v->vc1dsp.vc1_h_s_overlap(v->block[v->left_blk_idx][1],
  381. v->block[v->cur_blk_idx][0]);
  382. v->vc1dsp.vc1_h_s_overlap(v->block[v->left_blk_idx][3],
  383. v->block[v->cur_blk_idx][2]);
  384. if (!(s->flags & CODEC_FLAG_GRAY)) {
  385. v->vc1dsp.vc1_h_s_overlap(v->block[v->left_blk_idx][4],
  386. v->block[v->cur_blk_idx][4]);
  387. v->vc1dsp.vc1_h_s_overlap(v->block[v->left_blk_idx][5],
  388. v->block[v->cur_blk_idx][5]);
  389. }
  390. }
  391. v->vc1dsp.vc1_h_s_overlap(v->block[v->cur_blk_idx][0],
  392. v->block[v->cur_blk_idx][1]);
  393. v->vc1dsp.vc1_h_s_overlap(v->block[v->cur_blk_idx][2],
  394. v->block[v->cur_blk_idx][3]);
  395. if (s->mb_x == s->mb_width - 1) {
  396. if (!s->first_slice_line && (v->condover == CONDOVER_ALL || v->pq >= 9 ||
  397. v->over_flags_plane[mb_pos - s->mb_stride])) {
  398. v->vc1dsp.vc1_v_s_overlap(v->block[v->top_blk_idx][2],
  399. v->block[v->cur_blk_idx][0]);
  400. v->vc1dsp.vc1_v_s_overlap(v->block[v->top_blk_idx][3],
  401. v->block[v->cur_blk_idx][1]);
  402. if (!(s->flags & CODEC_FLAG_GRAY)) {
  403. v->vc1dsp.vc1_v_s_overlap(v->block[v->top_blk_idx][4],
  404. v->block[v->cur_blk_idx][4]);
  405. v->vc1dsp.vc1_v_s_overlap(v->block[v->top_blk_idx][5],
  406. v->block[v->cur_blk_idx][5]);
  407. }
  408. }
  409. v->vc1dsp.vc1_v_s_overlap(v->block[v->cur_blk_idx][0],
  410. v->block[v->cur_blk_idx][2]);
  411. v->vc1dsp.vc1_v_s_overlap(v->block[v->cur_blk_idx][1],
  412. v->block[v->cur_blk_idx][3]);
  413. }
  414. }
  415. if (s->mb_x && (v->condover == CONDOVER_ALL || v->over_flags_plane[mb_pos - 1])) {
  416. if (!s->first_slice_line && (v->condover == CONDOVER_ALL || v->pq >= 9 ||
  417. v->over_flags_plane[mb_pos - s->mb_stride - 1])) {
  418. v->vc1dsp.vc1_v_s_overlap(v->block[v->topleft_blk_idx][2],
  419. v->block[v->left_blk_idx][0]);
  420. v->vc1dsp.vc1_v_s_overlap(v->block[v->topleft_blk_idx][3],
  421. v->block[v->left_blk_idx][1]);
  422. if (!(s->flags & CODEC_FLAG_GRAY)) {
  423. v->vc1dsp.vc1_v_s_overlap(v->block[v->topleft_blk_idx][4],
  424. v->block[v->left_blk_idx][4]);
  425. v->vc1dsp.vc1_v_s_overlap(v->block[v->topleft_blk_idx][5],
  426. v->block[v->left_blk_idx][5]);
  427. }
  428. }
  429. v->vc1dsp.vc1_v_s_overlap(v->block[v->left_blk_idx][0],
  430. v->block[v->left_blk_idx][2]);
  431. v->vc1dsp.vc1_v_s_overlap(v->block[v->left_blk_idx][1],
  432. v->block[v->left_blk_idx][3]);
  433. }
  434. }
  435. /** Do motion compensation over 1 macroblock
  436. * Mostly adapted hpel_motion and qpel_motion from mpegvideo.c
  437. */
  438. static void vc1_mc_1mv(VC1Context *v, int dir)
  439. {
  440. MpegEncContext *s = &v->s;
  441. DSPContext *dsp = &v->s.dsp;
  442. uint8_t *srcY, *srcU, *srcV;
  443. int dxy, mx, my, uvmx, uvmy, src_x, src_y, uvsrc_x, uvsrc_y;
  444. int off, off_uv;
  445. int v_edge_pos = s->v_edge_pos >> v->field_mode;
  446. if (!v->field_mode && !v->s.last_picture.f.data[0])
  447. return;
  448. mx = s->mv[dir][0][0];
  449. my = s->mv[dir][0][1];
  450. // store motion vectors for further use in B frames
  451. if (s->pict_type == AV_PICTURE_TYPE_P) {
  452. s->current_picture.f.motion_val[1][s->block_index[0] + v->blocks_off][0] = mx;
  453. s->current_picture.f.motion_val[1][s->block_index[0] + v->blocks_off][1] = my;
  454. }
  455. uvmx = (mx + ((mx & 3) == 3)) >> 1;
  456. uvmy = (my + ((my & 3) == 3)) >> 1;
  457. v->luma_mv[s->mb_x][0] = uvmx;
  458. v->luma_mv[s->mb_x][1] = uvmy;
  459. if (v->field_mode &&
  460. v->cur_field_type != v->ref_field_type[dir]) {
  461. my = my - 2 + 4 * v->cur_field_type;
  462. uvmy = uvmy - 2 + 4 * v->cur_field_type;
  463. }
  464. // fastuvmc shall be ignored for interlaced frame picture
  465. if (v->fastuvmc && (v->fcm != ILACE_FRAME)) {
  466. uvmx = uvmx + ((uvmx < 0) ? (uvmx & 1) : -(uvmx & 1));
  467. uvmy = uvmy + ((uvmy < 0) ? (uvmy & 1) : -(uvmy & 1));
  468. }
  469. if (v->field_mode) { // interlaced field picture
  470. if (!dir) {
  471. if ((v->cur_field_type != v->ref_field_type[dir]) && v->second_field) {
  472. srcY = s->current_picture.f.data[0];
  473. srcU = s->current_picture.f.data[1];
  474. srcV = s->current_picture.f.data[2];
  475. } else {
  476. srcY = s->last_picture.f.data[0];
  477. srcU = s->last_picture.f.data[1];
  478. srcV = s->last_picture.f.data[2];
  479. }
  480. } else {
  481. srcY = s->next_picture.f.data[0];
  482. srcU = s->next_picture.f.data[1];
  483. srcV = s->next_picture.f.data[2];
  484. }
  485. } else {
  486. if (!dir) {
  487. srcY = s->last_picture.f.data[0];
  488. srcU = s->last_picture.f.data[1];
  489. srcV = s->last_picture.f.data[2];
  490. } else {
  491. srcY = s->next_picture.f.data[0];
  492. srcU = s->next_picture.f.data[1];
  493. srcV = s->next_picture.f.data[2];
  494. }
  495. }
  496. src_x = s->mb_x * 16 + (mx >> 2);
  497. src_y = s->mb_y * 16 + (my >> 2);
  498. uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
  499. uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
  500. if (v->profile != PROFILE_ADVANCED) {
  501. src_x = av_clip( src_x, -16, s->mb_width * 16);
  502. src_y = av_clip( src_y, -16, s->mb_height * 16);
  503. uvsrc_x = av_clip(uvsrc_x, -8, s->mb_width * 8);
  504. uvsrc_y = av_clip(uvsrc_y, -8, s->mb_height * 8);
  505. } else {
  506. src_x = av_clip( src_x, -17, s->avctx->coded_width);
  507. src_y = av_clip( src_y, -18, s->avctx->coded_height + 1);
  508. uvsrc_x = av_clip(uvsrc_x, -8, s->avctx->coded_width >> 1);
  509. uvsrc_y = av_clip(uvsrc_y, -8, s->avctx->coded_height >> 1);
  510. }
  511. srcY += src_y * s->linesize + src_x;
  512. srcU += uvsrc_y * s->uvlinesize + uvsrc_x;
  513. srcV += uvsrc_y * s->uvlinesize + uvsrc_x;
  514. if (v->field_mode && v->ref_field_type[dir]) {
  515. srcY += s->current_picture_ptr->f.linesize[0];
  516. srcU += s->current_picture_ptr->f.linesize[1];
  517. srcV += s->current_picture_ptr->f.linesize[2];
  518. }
  519. /* for grayscale we should not try to read from unknown area */
  520. if (s->flags & CODEC_FLAG_GRAY) {
  521. srcU = s->edge_emu_buffer + 18 * s->linesize;
  522. srcV = s->edge_emu_buffer + 18 * s->linesize;
  523. }
  524. if (v->rangeredfrm || (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  525. || (unsigned)(src_x - s->mspel) > s->h_edge_pos - (mx&3) - 16 - s->mspel * 3
  526. || (unsigned)(src_y - s->mspel) > v_edge_pos - (my&3) - 16 - s->mspel * 3) {
  527. uint8_t *uvbuf = s->edge_emu_buffer + 19 * s->linesize;
  528. srcY -= s->mspel * (1 + s->linesize);
  529. s->dsp.emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize,
  530. 17 + s->mspel * 2, 17 + s->mspel * 2,
  531. src_x - s->mspel, src_y - s->mspel,
  532. s->h_edge_pos, v_edge_pos);
  533. srcY = s->edge_emu_buffer;
  534. s->dsp.emulated_edge_mc(uvbuf , srcU, s->uvlinesize, 8 + 1, 8 + 1,
  535. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, v_edge_pos >> 1);
  536. s->dsp.emulated_edge_mc(uvbuf + 16, srcV, s->uvlinesize, 8 + 1, 8 + 1,
  537. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, v_edge_pos >> 1);
  538. srcU = uvbuf;
  539. srcV = uvbuf + 16;
  540. /* if we deal with range reduction we need to scale source blocks */
  541. if (v->rangeredfrm) {
  542. int i, j;
  543. uint8_t *src, *src2;
  544. src = srcY;
  545. for (j = 0; j < 17 + s->mspel * 2; j++) {
  546. for (i = 0; i < 17 + s->mspel * 2; i++)
  547. src[i] = ((src[i] - 128) >> 1) + 128;
  548. src += s->linesize;
  549. }
  550. src = srcU;
  551. src2 = srcV;
  552. for (j = 0; j < 9; j++) {
  553. for (i = 0; i < 9; i++) {
  554. src[i] = ((src[i] - 128) >> 1) + 128;
  555. src2[i] = ((src2[i] - 128) >> 1) + 128;
  556. }
  557. src += s->uvlinesize;
  558. src2 += s->uvlinesize;
  559. }
  560. }
  561. /* if we deal with intensity compensation we need to scale source blocks */
  562. if (v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  563. int i, j;
  564. uint8_t *src, *src2;
  565. src = srcY;
  566. for (j = 0; j < 17 + s->mspel * 2; j++) {
  567. for (i = 0; i < 17 + s->mspel * 2; i++)
  568. src[i] = v->luty[src[i]];
  569. src += s->linesize;
  570. }
  571. src = srcU;
  572. src2 = srcV;
  573. for (j = 0; j < 9; j++) {
  574. for (i = 0; i < 9; i++) {
  575. src[i] = v->lutuv[src[i]];
  576. src2[i] = v->lutuv[src2[i]];
  577. }
  578. src += s->uvlinesize;
  579. src2 += s->uvlinesize;
  580. }
  581. }
  582. srcY += s->mspel * (1 + s->linesize);
  583. }
  584. if (v->field_mode && v->second_field) {
  585. off = s->current_picture_ptr->f.linesize[0];
  586. off_uv = s->current_picture_ptr->f.linesize[1];
  587. } else {
  588. off = 0;
  589. off_uv = 0;
  590. }
  591. if (s->mspel) {
  592. dxy = ((my & 3) << 2) | (mx & 3);
  593. v->vc1dsp.put_vc1_mspel_pixels_tab[dxy](s->dest[0] + off , srcY , s->linesize, v->rnd);
  594. v->vc1dsp.put_vc1_mspel_pixels_tab[dxy](s->dest[0] + off + 8, srcY + 8, s->linesize, v->rnd);
  595. srcY += s->linesize * 8;
  596. v->vc1dsp.put_vc1_mspel_pixels_tab[dxy](s->dest[0] + off + 8 * s->linesize , srcY , s->linesize, v->rnd);
  597. v->vc1dsp.put_vc1_mspel_pixels_tab[dxy](s->dest[0] + off + 8 * s->linesize + 8, srcY + 8, s->linesize, v->rnd);
  598. } else { // hpel mc - always used for luma
  599. dxy = (my & 2) | ((mx & 2) >> 1);
  600. if (!v->rnd)
  601. dsp->put_pixels_tab[0][dxy](s->dest[0] + off, srcY, s->linesize, 16);
  602. else
  603. dsp->put_no_rnd_pixels_tab[0][dxy](s->dest[0] + off, srcY, s->linesize, 16);
  604. }
  605. if (s->flags & CODEC_FLAG_GRAY) return;
  606. /* Chroma MC always uses qpel bilinear */
  607. uvmx = (uvmx & 3) << 1;
  608. uvmy = (uvmy & 3) << 1;
  609. if (!v->rnd) {
  610. dsp->put_h264_chroma_pixels_tab[0](s->dest[1] + off_uv, srcU, s->uvlinesize, 8, uvmx, uvmy);
  611. dsp->put_h264_chroma_pixels_tab[0](s->dest[2] + off_uv, srcV, s->uvlinesize, 8, uvmx, uvmy);
  612. } else {
  613. v->vc1dsp.put_no_rnd_vc1_chroma_pixels_tab[0](s->dest[1] + off_uv, srcU, s->uvlinesize, 8, uvmx, uvmy);
  614. v->vc1dsp.put_no_rnd_vc1_chroma_pixels_tab[0](s->dest[2] + off_uv, srcV, s->uvlinesize, 8, uvmx, uvmy);
  615. }
  616. }
  617. static inline int median4(int a, int b, int c, int d)
  618. {
  619. if (a < b) {
  620. if (c < d) return (FFMIN(b, d) + FFMAX(a, c)) / 2;
  621. else return (FFMIN(b, c) + FFMAX(a, d)) / 2;
  622. } else {
  623. if (c < d) return (FFMIN(a, d) + FFMAX(b, c)) / 2;
  624. else return (FFMIN(a, c) + FFMAX(b, d)) / 2;
  625. }
  626. }
  627. /** Do motion compensation for 4-MV macroblock - luminance block
  628. */
  629. static void vc1_mc_4mv_luma(VC1Context *v, int n, int dir)
  630. {
  631. MpegEncContext *s = &v->s;
  632. DSPContext *dsp = &v->s.dsp;
  633. uint8_t *srcY;
  634. int dxy, mx, my, src_x, src_y;
  635. int off;
  636. int fieldmv = (v->fcm == ILACE_FRAME) ? v->blk_mv_type[s->block_index[n]] : 0;
  637. int v_edge_pos = s->v_edge_pos >> v->field_mode;
  638. if (!v->field_mode && !v->s.last_picture.f.data[0])
  639. return;
  640. mx = s->mv[dir][n][0];
  641. my = s->mv[dir][n][1];
  642. if (!dir) {
  643. if (v->field_mode) {
  644. if ((v->cur_field_type != v->ref_field_type[dir]) && v->second_field)
  645. srcY = s->current_picture.f.data[0];
  646. else
  647. srcY = s->last_picture.f.data[0];
  648. } else
  649. srcY = s->last_picture.f.data[0];
  650. } else
  651. srcY = s->next_picture.f.data[0];
  652. if (v->field_mode) {
  653. if (v->cur_field_type != v->ref_field_type[dir])
  654. my = my - 2 + 4 * v->cur_field_type;
  655. }
  656. if (s->pict_type == AV_PICTURE_TYPE_P && n == 3 && v->field_mode) {
  657. int same_count = 0, opp_count = 0, k;
  658. int chosen_mv[2][4][2], f;
  659. int tx, ty;
  660. for (k = 0; k < 4; k++) {
  661. f = v->mv_f[0][s->block_index[k] + v->blocks_off];
  662. chosen_mv[f][f ? opp_count : same_count][0] = s->mv[0][k][0];
  663. chosen_mv[f][f ? opp_count : same_count][1] = s->mv[0][k][1];
  664. opp_count += f;
  665. same_count += 1 - f;
  666. }
  667. f = opp_count > same_count;
  668. switch (f ? opp_count : same_count) {
  669. case 4:
  670. tx = median4(chosen_mv[f][0][0], chosen_mv[f][1][0],
  671. chosen_mv[f][2][0], chosen_mv[f][3][0]);
  672. ty = median4(chosen_mv[f][0][1], chosen_mv[f][1][1],
  673. chosen_mv[f][2][1], chosen_mv[f][3][1]);
  674. break;
  675. case 3:
  676. tx = mid_pred(chosen_mv[f][0][0], chosen_mv[f][1][0], chosen_mv[f][2][0]);
  677. ty = mid_pred(chosen_mv[f][0][1], chosen_mv[f][1][1], chosen_mv[f][2][1]);
  678. break;
  679. case 2:
  680. tx = (chosen_mv[f][0][0] + chosen_mv[f][1][0]) / 2;
  681. ty = (chosen_mv[f][0][1] + chosen_mv[f][1][1]) / 2;
  682. break;
  683. }
  684. s->current_picture.f.motion_val[1][s->block_index[0] + v->blocks_off][0] = tx;
  685. s->current_picture.f.motion_val[1][s->block_index[0] + v->blocks_off][1] = ty;
  686. for (k = 0; k < 4; k++)
  687. v->mv_f[1][s->block_index[k] + v->blocks_off] = f;
  688. }
  689. if (v->fcm == ILACE_FRAME) { // not sure if needed for other types of picture
  690. int qx, qy;
  691. int width = s->avctx->coded_width;
  692. int height = s->avctx->coded_height >> 1;
  693. qx = (s->mb_x * 16) + (mx >> 2);
  694. qy = (s->mb_y * 8) + (my >> 3);
  695. if (qx < -17)
  696. mx -= 4 * (qx + 17);
  697. else if (qx > width)
  698. mx -= 4 * (qx - width);
  699. if (qy < -18)
  700. my -= 8 * (qy + 18);
  701. else if (qy > height + 1)
  702. my -= 8 * (qy - height - 1);
  703. }
  704. if ((v->fcm == ILACE_FRAME) && fieldmv)
  705. off = ((n > 1) ? s->linesize : 0) + (n & 1) * 8;
  706. else
  707. off = s->linesize * 4 * (n & 2) + (n & 1) * 8;
  708. if (v->field_mode && v->second_field)
  709. off += s->current_picture_ptr->f.linesize[0];
  710. src_x = s->mb_x * 16 + (n & 1) * 8 + (mx >> 2);
  711. if (!fieldmv)
  712. src_y = s->mb_y * 16 + (n & 2) * 4 + (my >> 2);
  713. else
  714. src_y = s->mb_y * 16 + ((n > 1) ? 1 : 0) + (my >> 2);
  715. if (v->profile != PROFILE_ADVANCED) {
  716. src_x = av_clip(src_x, -16, s->mb_width * 16);
  717. src_y = av_clip(src_y, -16, s->mb_height * 16);
  718. } else {
  719. src_x = av_clip(src_x, -17, s->avctx->coded_width);
  720. if (v->fcm == ILACE_FRAME) {
  721. if (src_y & 1)
  722. src_y = av_clip(src_y, -17, s->avctx->coded_height + 1);
  723. else
  724. src_y = av_clip(src_y, -18, s->avctx->coded_height);
  725. } else {
  726. src_y = av_clip(src_y, -18, s->avctx->coded_height + 1);
  727. }
  728. }
  729. srcY += src_y * s->linesize + src_x;
  730. if (v->field_mode && v->ref_field_type[dir])
  731. srcY += s->current_picture_ptr->f.linesize[0];
  732. if (fieldmv && !(src_y & 1))
  733. v_edge_pos--;
  734. if (fieldmv && (src_y & 1) && src_y < 4)
  735. src_y--;
  736. if (v->rangeredfrm || (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  737. || (unsigned)(src_x - s->mspel) > s->h_edge_pos - (mx & 3) - 8 - s->mspel * 2
  738. || (unsigned)(src_y - (s->mspel << fieldmv)) > v_edge_pos - (my & 3) - ((8 + s->mspel * 2) << fieldmv)) {
  739. srcY -= s->mspel * (1 + (s->linesize << fieldmv));
  740. /* check emulate edge stride and offset */
  741. s->dsp.emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize,
  742. 9 + s->mspel * 2, (9 + s->mspel * 2) << fieldmv,
  743. src_x - s->mspel, src_y - (s->mspel << fieldmv),
  744. s->h_edge_pos, v_edge_pos);
  745. srcY = s->edge_emu_buffer;
  746. /* if we deal with range reduction we need to scale source blocks */
  747. if (v->rangeredfrm) {
  748. int i, j;
  749. uint8_t *src;
  750. src = srcY;
  751. for (j = 0; j < 9 + s->mspel * 2; j++) {
  752. for (i = 0; i < 9 + s->mspel * 2; i++)
  753. src[i] = ((src[i] - 128) >> 1) + 128;
  754. src += s->linesize << fieldmv;
  755. }
  756. }
  757. /* if we deal with intensity compensation we need to scale source blocks */
  758. if (v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  759. int i, j;
  760. uint8_t *src;
  761. src = srcY;
  762. for (j = 0; j < 9 + s->mspel * 2; j++) {
  763. for (i = 0; i < 9 + s->mspel * 2; i++)
  764. src[i] = v->luty[src[i]];
  765. src += s->linesize << fieldmv;
  766. }
  767. }
  768. srcY += s->mspel * (1 + (s->linesize << fieldmv));
  769. }
  770. if (s->mspel) {
  771. dxy = ((my & 3) << 2) | (mx & 3);
  772. v->vc1dsp.put_vc1_mspel_pixels_tab[dxy](s->dest[0] + off, srcY, s->linesize << fieldmv, v->rnd);
  773. } else { // hpel mc - always used for luma
  774. dxy = (my & 2) | ((mx & 2) >> 1);
  775. if (!v->rnd)
  776. dsp->put_pixels_tab[1][dxy](s->dest[0] + off, srcY, s->linesize, 8);
  777. else
  778. dsp->put_no_rnd_pixels_tab[1][dxy](s->dest[0] + off, srcY, s->linesize, 8);
  779. }
  780. }
  781. static av_always_inline int get_chroma_mv(int *mvx, int *mvy, int *a, int flag, int *tx, int *ty)
  782. {
  783. int idx, i;
  784. static const int count[16] = { 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4};
  785. idx = ((a[3] != flag) << 3)
  786. | ((a[2] != flag) << 2)
  787. | ((a[1] != flag) << 1)
  788. | (a[0] != flag);
  789. if (!idx) {
  790. *tx = median4(mvx[0], mvx[1], mvx[2], mvx[3]);
  791. *ty = median4(mvy[0], mvy[1], mvy[2], mvy[3]);
  792. return 4;
  793. } else if (count[idx] == 1) {
  794. switch (idx) {
  795. case 0x1:
  796. *tx = mid_pred(mvx[1], mvx[2], mvx[3]);
  797. *ty = mid_pred(mvy[1], mvy[2], mvy[3]);
  798. return 3;
  799. case 0x2:
  800. *tx = mid_pred(mvx[0], mvx[2], mvx[3]);
  801. *ty = mid_pred(mvy[0], mvy[2], mvy[3]);
  802. return 3;
  803. case 0x4:
  804. *tx = mid_pred(mvx[0], mvx[1], mvx[3]);
  805. *ty = mid_pred(mvy[0], mvy[1], mvy[3]);
  806. return 3;
  807. case 0x8:
  808. *tx = mid_pred(mvx[0], mvx[1], mvx[2]);
  809. *ty = mid_pred(mvy[0], mvy[1], mvy[2]);
  810. return 3;
  811. }
  812. } else if (count[idx] == 2) {
  813. int t1 = 0, t2 = 0;
  814. for (i = 0; i < 3; i++)
  815. if (!a[i]) {
  816. t1 = i;
  817. break;
  818. }
  819. for (i = t1 + 1; i < 4; i++)
  820. if (!a[i]) {
  821. t2 = i;
  822. break;
  823. }
  824. *tx = (mvx[t1] + mvx[t2]) / 2;
  825. *ty = (mvy[t1] + mvy[t2]) / 2;
  826. return 2;
  827. } else {
  828. return 0;
  829. }
  830. return -1;
  831. }
  832. /** Do motion compensation for 4-MV macroblock - both chroma blocks
  833. */
  834. static void vc1_mc_4mv_chroma(VC1Context *v, int dir)
  835. {
  836. MpegEncContext *s = &v->s;
  837. DSPContext *dsp = &v->s.dsp;
  838. uint8_t *srcU, *srcV;
  839. int uvmx, uvmy, uvsrc_x, uvsrc_y;
  840. int k, tx = 0, ty = 0;
  841. int mvx[4], mvy[4], intra[4], mv_f[4];
  842. int valid_count;
  843. int chroma_ref_type = v->cur_field_type, off = 0;
  844. int v_edge_pos = s->v_edge_pos >> v->field_mode;
  845. if (!v->field_mode && !v->s.last_picture.f.data[0])
  846. return;
  847. if (s->flags & CODEC_FLAG_GRAY)
  848. return;
  849. for (k = 0; k < 4; k++) {
  850. mvx[k] = s->mv[dir][k][0];
  851. mvy[k] = s->mv[dir][k][1];
  852. intra[k] = v->mb_type[0][s->block_index[k]];
  853. if (v->field_mode)
  854. mv_f[k] = v->mv_f[dir][s->block_index[k] + v->blocks_off];
  855. }
  856. /* calculate chroma MV vector from four luma MVs */
  857. if (!v->field_mode || (v->field_mode && !v->numref)) {
  858. valid_count = get_chroma_mv(mvx, mvy, intra, 0, &tx, &ty);
  859. if (!valid_count) {
  860. s->current_picture.f.motion_val[1][s->block_index[0] + v->blocks_off][0] = 0;
  861. s->current_picture.f.motion_val[1][s->block_index[0] + v->blocks_off][1] = 0;
  862. v->luma_mv[s->mb_x][0] = v->luma_mv[s->mb_x][1] = 0;
  863. return; //no need to do MC for intra blocks
  864. }
  865. } else {
  866. int dominant = 0;
  867. if (mv_f[0] + mv_f[1] + mv_f[2] + mv_f[3] > 2)
  868. dominant = 1;
  869. valid_count = get_chroma_mv(mvx, mvy, mv_f, dominant, &tx, &ty);
  870. if (dominant)
  871. chroma_ref_type = !v->cur_field_type;
  872. }
  873. s->current_picture.f.motion_val[1][s->block_index[0] + v->blocks_off][0] = tx;
  874. s->current_picture.f.motion_val[1][s->block_index[0] + v->blocks_off][1] = ty;
  875. uvmx = (tx + ((tx & 3) == 3)) >> 1;
  876. uvmy = (ty + ((ty & 3) == 3)) >> 1;
  877. v->luma_mv[s->mb_x][0] = uvmx;
  878. v->luma_mv[s->mb_x][1] = uvmy;
  879. if (v->fastuvmc) {
  880. uvmx = uvmx + ((uvmx < 0) ? (uvmx & 1) : -(uvmx & 1));
  881. uvmy = uvmy + ((uvmy < 0) ? (uvmy & 1) : -(uvmy & 1));
  882. }
  883. // Field conversion bias
  884. if (v->cur_field_type != chroma_ref_type)
  885. uvmy += 2 - 4 * chroma_ref_type;
  886. uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
  887. uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
  888. if (v->profile != PROFILE_ADVANCED) {
  889. uvsrc_x = av_clip(uvsrc_x, -8, s->mb_width * 8);
  890. uvsrc_y = av_clip(uvsrc_y, -8, s->mb_height * 8);
  891. } else {
  892. uvsrc_x = av_clip(uvsrc_x, -8, s->avctx->coded_width >> 1);
  893. uvsrc_y = av_clip(uvsrc_y, -8, s->avctx->coded_height >> 1);
  894. }
  895. if (!dir) {
  896. if (v->field_mode) {
  897. if ((v->cur_field_type != chroma_ref_type) && v->cur_field_type) {
  898. srcU = s->current_picture.f.data[1] + uvsrc_y * s->uvlinesize + uvsrc_x;
  899. srcV = s->current_picture.f.data[2] + uvsrc_y * s->uvlinesize + uvsrc_x;
  900. } else {
  901. srcU = s->last_picture.f.data[1] + uvsrc_y * s->uvlinesize + uvsrc_x;
  902. srcV = s->last_picture.f.data[2] + uvsrc_y * s->uvlinesize + uvsrc_x;
  903. }
  904. } else {
  905. srcU = s->last_picture.f.data[1] + uvsrc_y * s->uvlinesize + uvsrc_x;
  906. srcV = s->last_picture.f.data[2] + uvsrc_y * s->uvlinesize + uvsrc_x;
  907. }
  908. } else {
  909. srcU = s->next_picture.f.data[1] + uvsrc_y * s->uvlinesize + uvsrc_x;
  910. srcV = s->next_picture.f.data[2] + uvsrc_y * s->uvlinesize + uvsrc_x;
  911. }
  912. if (v->field_mode) {
  913. if (chroma_ref_type) {
  914. srcU += s->current_picture_ptr->f.linesize[1];
  915. srcV += s->current_picture_ptr->f.linesize[2];
  916. }
  917. off = v->second_field ? s->current_picture_ptr->f.linesize[1] : 0;
  918. }
  919. if (v->rangeredfrm || (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  920. || (unsigned)uvsrc_x > (s->h_edge_pos >> 1) - 9
  921. || (unsigned)uvsrc_y > (v_edge_pos >> 1) - 9) {
  922. s->dsp.emulated_edge_mc(s->edge_emu_buffer , srcU, s->uvlinesize,
  923. 8 + 1, 8 + 1, uvsrc_x, uvsrc_y,
  924. s->h_edge_pos >> 1, v_edge_pos >> 1);
  925. s->dsp.emulated_edge_mc(s->edge_emu_buffer + 16, srcV, s->uvlinesize,
  926. 8 + 1, 8 + 1, uvsrc_x, uvsrc_y,
  927. s->h_edge_pos >> 1, v_edge_pos >> 1);
  928. srcU = s->edge_emu_buffer;
  929. srcV = s->edge_emu_buffer + 16;
  930. /* if we deal with range reduction we need to scale source blocks */
  931. if (v->rangeredfrm) {
  932. int i, j;
  933. uint8_t *src, *src2;
  934. src = srcU;
  935. src2 = srcV;
  936. for (j = 0; j < 9; j++) {
  937. for (i = 0; i < 9; i++) {
  938. src[i] = ((src[i] - 128) >> 1) + 128;
  939. src2[i] = ((src2[i] - 128) >> 1) + 128;
  940. }
  941. src += s->uvlinesize;
  942. src2 += s->uvlinesize;
  943. }
  944. }
  945. /* if we deal with intensity compensation we need to scale source blocks */
  946. if (v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  947. int i, j;
  948. uint8_t *src, *src2;
  949. src = srcU;
  950. src2 = srcV;
  951. for (j = 0; j < 9; j++) {
  952. for (i = 0; i < 9; i++) {
  953. src[i] = v->lutuv[src[i]];
  954. src2[i] = v->lutuv[src2[i]];
  955. }
  956. src += s->uvlinesize;
  957. src2 += s->uvlinesize;
  958. }
  959. }
  960. }
  961. /* Chroma MC always uses qpel bilinear */
  962. uvmx = (uvmx & 3) << 1;
  963. uvmy = (uvmy & 3) << 1;
  964. if (!v->rnd) {
  965. dsp->put_h264_chroma_pixels_tab[0](s->dest[1] + off, srcU, s->uvlinesize, 8, uvmx, uvmy);
  966. dsp->put_h264_chroma_pixels_tab[0](s->dest[2] + off, srcV, s->uvlinesize, 8, uvmx, uvmy);
  967. } else {
  968. v->vc1dsp.put_no_rnd_vc1_chroma_pixels_tab[0](s->dest[1] + off, srcU, s->uvlinesize, 8, uvmx, uvmy);
  969. v->vc1dsp.put_no_rnd_vc1_chroma_pixels_tab[0](s->dest[2] + off, srcV, s->uvlinesize, 8, uvmx, uvmy);
  970. }
  971. }
  972. /** Do motion compensation for 4-MV field chroma macroblock (both U and V)
  973. */
  974. static void vc1_mc_4mv_chroma4(VC1Context *v)
  975. {
  976. MpegEncContext *s = &v->s;
  977. DSPContext *dsp = &v->s.dsp;
  978. uint8_t *srcU, *srcV;
  979. int uvsrc_x, uvsrc_y;
  980. int uvmx_field[4], uvmy_field[4];
  981. int i, off, tx, ty;
  982. int fieldmv = v->blk_mv_type[s->block_index[0]];
  983. static const int s_rndtblfield[16] = { 0, 0, 1, 2, 4, 4, 5, 6, 2, 2, 3, 8, 6, 6, 7, 12 };
  984. int v_dist = fieldmv ? 1 : 4; // vertical offset for lower sub-blocks
  985. int v_edge_pos = s->v_edge_pos >> 1;
  986. if (!v->s.last_picture.f.data[0])
  987. return;
  988. if (s->flags & CODEC_FLAG_GRAY)
  989. return;
  990. for (i = 0; i < 4; i++) {
  991. tx = s->mv[0][i][0];
  992. uvmx_field[i] = (tx + ((tx & 3) == 3)) >> 1;
  993. ty = s->mv[0][i][1];
  994. if (fieldmv)
  995. uvmy_field[i] = (ty >> 4) * 8 + s_rndtblfield[ty & 0xF];
  996. else
  997. uvmy_field[i] = (ty + ((ty & 3) == 3)) >> 1;
  998. }
  999. for (i = 0; i < 4; i++) {
  1000. off = (i & 1) * 4 + ((i & 2) ? v_dist * s->uvlinesize : 0);
  1001. uvsrc_x = s->mb_x * 8 + (i & 1) * 4 + (uvmx_field[i] >> 2);
  1002. uvsrc_y = s->mb_y * 8 + ((i & 2) ? v_dist : 0) + (uvmy_field[i] >> 2);
  1003. // FIXME: implement proper pull-back (see vc1cropmv.c, vc1CROPMV_ChromaPullBack())
  1004. uvsrc_x = av_clip(uvsrc_x, -8, s->avctx->coded_width >> 1);
  1005. uvsrc_y = av_clip(uvsrc_y, -8, s->avctx->coded_height >> 1);
  1006. srcU = s->last_picture.f.data[1] + uvsrc_y * s->uvlinesize + uvsrc_x;
  1007. srcV = s->last_picture.f.data[2] + uvsrc_y * s->uvlinesize + uvsrc_x;
  1008. uvmx_field[i] = (uvmx_field[i] & 3) << 1;
  1009. uvmy_field[i] = (uvmy_field[i] & 3) << 1;
  1010. if (fieldmv && !(uvsrc_y & 1))
  1011. v_edge_pos--;
  1012. if (fieldmv && (uvsrc_y & 1) && uvsrc_y < 2)
  1013. uvsrc_y--;
  1014. if ((v->mv_mode == MV_PMODE_INTENSITY_COMP)
  1015. || (unsigned)uvsrc_x > (s->h_edge_pos >> 1) - 5
  1016. || (unsigned)uvsrc_y > v_edge_pos - (5 << fieldmv)) {
  1017. s->dsp.emulated_edge_mc(s->edge_emu_buffer, srcU, s->uvlinesize,
  1018. 5, (5 << fieldmv), uvsrc_x, uvsrc_y,
  1019. s->h_edge_pos >> 1, v_edge_pos);
  1020. s->dsp.emulated_edge_mc(s->edge_emu_buffer + 16, srcV, s->uvlinesize,
  1021. 5, (5 << fieldmv), uvsrc_x, uvsrc_y,
  1022. s->h_edge_pos >> 1, v_edge_pos);
  1023. srcU = s->edge_emu_buffer;
  1024. srcV = s->edge_emu_buffer + 16;
  1025. /* if we deal with intensity compensation we need to scale source blocks */
  1026. if (v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  1027. int i, j;
  1028. uint8_t *src, *src2;
  1029. src = srcU;
  1030. src2 = srcV;
  1031. for (j = 0; j < 5; j++) {
  1032. for (i = 0; i < 5; i++) {
  1033. src[i] = v->lutuv[src[i]];
  1034. src2[i] = v->lutuv[src2[i]];
  1035. }
  1036. src += s->uvlinesize << 1;
  1037. src2 += s->uvlinesize << 1;
  1038. }
  1039. }
  1040. }
  1041. if (!v->rnd) {
  1042. dsp->put_h264_chroma_pixels_tab[1](s->dest[1] + off, srcU, s->uvlinesize << fieldmv, 4, uvmx_field[i], uvmy_field[i]);
  1043. dsp->put_h264_chroma_pixels_tab[1](s->dest[2] + off, srcV, s->uvlinesize << fieldmv, 4, uvmx_field[i], uvmy_field[i]);
  1044. } else {
  1045. v->vc1dsp.put_no_rnd_vc1_chroma_pixels_tab[1](s->dest[1] + off, srcU, s->uvlinesize << fieldmv, 4, uvmx_field[i], uvmy_field[i]);
  1046. v->vc1dsp.put_no_rnd_vc1_chroma_pixels_tab[1](s->dest[2] + off, srcV, s->uvlinesize << fieldmv, 4, uvmx_field[i], uvmy_field[i]);
  1047. }
  1048. }
  1049. }
  1050. /***********************************************************************/
  1051. /**
  1052. * @name VC-1 Block-level functions
  1053. * @see 7.1.4, p91 and 8.1.1.7, p(1)04
  1054. * @{
  1055. */
  1056. /**
  1057. * @def GET_MQUANT
  1058. * @brief Get macroblock-level quantizer scale
  1059. */
  1060. #define GET_MQUANT() \
  1061. if (v->dquantfrm) { \
  1062. int edges = 0; \
  1063. if (v->dqprofile == DQPROFILE_ALL_MBS) { \
  1064. if (v->dqbilevel) { \
  1065. mquant = (get_bits1(gb)) ? v->altpq : v->pq; \
  1066. } else { \
  1067. mqdiff = get_bits(gb, 3); \
  1068. if (mqdiff != 7) \
  1069. mquant = v->pq + mqdiff; \
  1070. else \
  1071. mquant = get_bits(gb, 5); \
  1072. } \
  1073. } \
  1074. if (v->dqprofile == DQPROFILE_SINGLE_EDGE) \
  1075. edges = 1 << v->dqsbedge; \
  1076. else if (v->dqprofile == DQPROFILE_DOUBLE_EDGES) \
  1077. edges = (3 << v->dqsbedge) % 15; \
  1078. else if (v->dqprofile == DQPROFILE_FOUR_EDGES) \
  1079. edges = 15; \
  1080. if ((edges&1) && !s->mb_x) \
  1081. mquant = v->altpq; \
  1082. if ((edges&2) && s->first_slice_line) \
  1083. mquant = v->altpq; \
  1084. if ((edges&4) && s->mb_x == (s->mb_width - 1)) \
  1085. mquant = v->altpq; \
  1086. if ((edges&8) && s->mb_y == (s->mb_height - 1)) \
  1087. mquant = v->altpq; \
  1088. }
  1089. /**
  1090. * @def GET_MVDATA(_dmv_x, _dmv_y)
  1091. * @brief Get MV differentials
  1092. * @see MVDATA decoding from 8.3.5.2, p(1)20
  1093. * @param _dmv_x Horizontal differential for decoded MV
  1094. * @param _dmv_y Vertical differential for decoded MV
  1095. */
  1096. #define GET_MVDATA(_dmv_x, _dmv_y) \
  1097. index = 1 + get_vlc2(gb, ff_vc1_mv_diff_vlc[s->mv_table_index].table, \
  1098. VC1_MV_DIFF_VLC_BITS, 2); \
  1099. if (index > 36) { \
  1100. mb_has_coeffs = 1; \
  1101. index -= 37; \
  1102. } else \
  1103. mb_has_coeffs = 0; \
  1104. s->mb_intra = 0; \
  1105. if (!index) { \
  1106. _dmv_x = _dmv_y = 0; \
  1107. } else if (index == 35) { \
  1108. _dmv_x = get_bits(gb, v->k_x - 1 + s->quarter_sample); \
  1109. _dmv_y = get_bits(gb, v->k_y - 1 + s->quarter_sample); \
  1110. } else if (index == 36) { \
  1111. _dmv_x = 0; \
  1112. _dmv_y = 0; \
  1113. s->mb_intra = 1; \
  1114. } else { \
  1115. index1 = index % 6; \
  1116. if (!s->quarter_sample && index1 == 5) val = 1; \
  1117. else val = 0; \
  1118. if (size_table[index1] - val > 0) \
  1119. val = get_bits(gb, size_table[index1] - val); \
  1120. else val = 0; \
  1121. sign = 0 - (val&1); \
  1122. _dmv_x = (sign ^ ((val>>1) + offset_table[index1])) - sign; \
  1123. \
  1124. index1 = index / 6; \
  1125. if (!s->quarter_sample && index1 == 5) val = 1; \
  1126. else val = 0; \
  1127. if (size_table[index1] - val > 0) \
  1128. val = get_bits(gb, size_table[index1] - val); \
  1129. else val = 0; \
  1130. sign = 0 - (val & 1); \
  1131. _dmv_y = (sign ^ ((val >> 1) + offset_table[index1])) - sign; \
  1132. }
  1133. static av_always_inline void get_mvdata_interlaced(VC1Context *v, int *dmv_x,
  1134. int *dmv_y, int *pred_flag)
  1135. {
  1136. int index, index1;
  1137. int extend_x = 0, extend_y = 0;
  1138. GetBitContext *gb = &v->s.gb;
  1139. int bits, esc;
  1140. int val, sign;
  1141. const int* offs_tab;
  1142. if (v->numref) {
  1143. bits = VC1_2REF_MVDATA_VLC_BITS;
  1144. esc = 125;
  1145. } else {
  1146. bits = VC1_1REF_MVDATA_VLC_BITS;
  1147. esc = 71;
  1148. }
  1149. switch (v->dmvrange) {
  1150. case 1:
  1151. extend_x = 1;
  1152. break;
  1153. case 2:
  1154. extend_y = 1;
  1155. break;
  1156. case 3:
  1157. extend_x = extend_y = 1;
  1158. break;
  1159. }
  1160. index = get_vlc2(gb, v->imv_vlc->table, bits, 3);
  1161. if (index == esc) {
  1162. *dmv_x = get_bits(gb, v->k_x);
  1163. *dmv_y = get_bits(gb, v->k_y);
  1164. if (v->numref) {
  1165. *pred_flag = *dmv_y & 1;
  1166. *dmv_y = (*dmv_y + *pred_flag) >> 1;
  1167. }
  1168. }
  1169. else {
  1170. if (extend_x)
  1171. offs_tab = offset_table2;
  1172. else
  1173. offs_tab = offset_table1;
  1174. index1 = (index + 1) % 9;
  1175. if (index1 != 0) {
  1176. val = get_bits(gb, index1 + extend_x);
  1177. sign = 0 -(val & 1);
  1178. *dmv_x = (sign ^ ((val >> 1) + offs_tab[index1])) - sign;
  1179. } else
  1180. *dmv_x = 0;
  1181. if (extend_y)
  1182. offs_tab = offset_table2;
  1183. else
  1184. offs_tab = offset_table1;
  1185. index1 = (index + 1) / 9;
  1186. if (index1 > v->numref) {
  1187. val = get_bits(gb, (index1 + (extend_y << v->numref)) >> v->numref);
  1188. sign = 0 - (val & 1);
  1189. *dmv_y = (sign ^ ((val >> 1) + offs_tab[index1 >> v->numref])) - sign;
  1190. } else
  1191. *dmv_y = 0;
  1192. if (v->numref)
  1193. *pred_flag = index1 & 1;
  1194. }
  1195. }
  1196. static av_always_inline int scaleforsame_x(VC1Context *v, int n /* MV */, int dir)
  1197. {
  1198. int scaledvalue, refdist;
  1199. int scalesame1, scalesame2;
  1200. int scalezone1_x, zone1offset_x;
  1201. int table_index = dir ^ v->second_field;
  1202. if (v->s.pict_type != AV_PICTURE_TYPE_B)
  1203. refdist = v->refdist;
  1204. else
  1205. refdist = dir ? v->brfd : v->frfd;
  1206. if (refdist > 3)
  1207. refdist = 3;
  1208. scalesame1 = vc1_field_mvpred_scales[table_index][1][refdist];
  1209. scalesame2 = vc1_field_mvpred_scales[table_index][2][refdist];
  1210. scalezone1_x = vc1_field_mvpred_scales[table_index][3][refdist];
  1211. zone1offset_x = vc1_field_mvpred_scales[table_index][5][refdist];
  1212. if (FFABS(n) > 255)
  1213. scaledvalue = n;
  1214. else {
  1215. if (FFABS(n) < scalezone1_x)
  1216. scaledvalue = (n * scalesame1) >> 8;
  1217. else {
  1218. if (n < 0)
  1219. scaledvalue = ((n * scalesame2) >> 8) - zone1offset_x;
  1220. else
  1221. scaledvalue = ((n * scalesame2) >> 8) + zone1offset_x;
  1222. }
  1223. }
  1224. return av_clip(scaledvalue, -v->range_x, v->range_x - 1);
  1225. }
  1226. static av_always_inline int scaleforsame_y(VC1Context *v, int i, int n /* MV */, int dir)
  1227. {
  1228. int scaledvalue, refdist;
  1229. int scalesame1, scalesame2;
  1230. int scalezone1_y, zone1offset_y;
  1231. int table_index = dir ^ v->second_field;
  1232. if (v->s.pict_type != AV_PICTURE_TYPE_B)
  1233. refdist = v->refdist;
  1234. else
  1235. refdist = dir ? v->brfd : v->frfd;
  1236. if (refdist > 3)
  1237. refdist = 3;
  1238. scalesame1 = vc1_field_mvpred_scales[table_index][1][refdist];
  1239. scalesame2 = vc1_field_mvpred_scales[table_index][2][refdist];
  1240. scalezone1_y = vc1_field_mvpred_scales[table_index][4][refdist];
  1241. zone1offset_y = vc1_field_mvpred_scales[table_index][6][refdist];
  1242. if (FFABS(n) > 63)
  1243. scaledvalue = n;
  1244. else {
  1245. if (FFABS(n) < scalezone1_y)
  1246. scaledvalue = (n * scalesame1) >> 8;
  1247. else {
  1248. if (n < 0)
  1249. scaledvalue = ((n * scalesame2) >> 8) - zone1offset_y;
  1250. else
  1251. scaledvalue = ((n * scalesame2) >> 8) + zone1offset_y;
  1252. }
  1253. }
  1254. if (v->cur_field_type && !v->ref_field_type[dir])
  1255. return av_clip(scaledvalue, -v->range_y / 2 + 1, v->range_y / 2);
  1256. else
  1257. return av_clip(scaledvalue, -v->range_y / 2, v->range_y / 2 - 1);
  1258. }
  1259. static av_always_inline int scaleforopp_x(VC1Context *v, int n /* MV */)
  1260. {
  1261. int scalezone1_x, zone1offset_x;
  1262. int scaleopp1, scaleopp2, brfd;
  1263. int scaledvalue;
  1264. brfd = FFMIN(v->brfd, 3);
  1265. scalezone1_x = vc1_b_field_mvpred_scales[3][brfd];
  1266. zone1offset_x = vc1_b_field_mvpred_scales[5][brfd];
  1267. scaleopp1 = vc1_b_field_mvpred_scales[1][brfd];
  1268. scaleopp2 = vc1_b_field_mvpred_scales[2][brfd];
  1269. if (FFABS(n) > 255)
  1270. scaledvalue = n;
  1271. else {
  1272. if (FFABS(n) < scalezone1_x)
  1273. scaledvalue = (n * scaleopp1) >> 8;
  1274. else {
  1275. if (n < 0)
  1276. scaledvalue = ((n * scaleopp2) >> 8) - zone1offset_x;
  1277. else
  1278. scaledvalue = ((n * scaleopp2) >> 8) + zone1offset_x;
  1279. }
  1280. }
  1281. return av_clip(scaledvalue, -v->range_x, v->range_x - 1);
  1282. }
  1283. static av_always_inline int scaleforopp_y(VC1Context *v, int n /* MV */, int dir)
  1284. {
  1285. int scalezone1_y, zone1offset_y;
  1286. int scaleopp1, scaleopp2, brfd;
  1287. int scaledvalue;
  1288. brfd = FFMIN(v->brfd, 3);
  1289. scalezone1_y = vc1_b_field_mvpred_scales[4][brfd];
  1290. zone1offset_y = vc1_b_field_mvpred_scales[6][brfd];
  1291. scaleopp1 = vc1_b_field_mvpred_scales[1][brfd];
  1292. scaleopp2 = vc1_b_field_mvpred_scales[2][brfd];
  1293. if (FFABS(n) > 63)
  1294. scaledvalue = n;
  1295. else {
  1296. if (FFABS(n) < scalezone1_y)
  1297. scaledvalue = (n * scaleopp1) >> 8;
  1298. else {
  1299. if (n < 0)
  1300. scaledvalue = ((n * scaleopp2) >> 8) - zone1offset_y;
  1301. else
  1302. scaledvalue = ((n * scaleopp2) >> 8) + zone1offset_y;
  1303. }
  1304. }
  1305. if (v->cur_field_type && !v->ref_field_type[dir]) {
  1306. return av_clip(scaledvalue, -v->range_y / 2 + 1, v->range_y / 2);
  1307. } else {
  1308. return av_clip(scaledvalue, -v->range_y / 2, v->range_y / 2 - 1);
  1309. }
  1310. }
  1311. static av_always_inline int scaleforsame(VC1Context *v, int i, int n /* MV */,
  1312. int dim, int dir)
  1313. {
  1314. int brfd, scalesame;
  1315. int hpel = 1 - v->s.quarter_sample;
  1316. n >>= hpel;
  1317. if (v->s.pict_type != AV_PICTURE_TYPE_B || v->second_field || !dir) {
  1318. if (dim)
  1319. n = scaleforsame_y(v, i, n, dir) << hpel;
  1320. else
  1321. n = scaleforsame_x(v, n, dir) << hpel;
  1322. return n;
  1323. }
  1324. brfd = FFMIN(v->brfd, 3);
  1325. scalesame = vc1_b_field_mvpred_scales[0][brfd];
  1326. n = (n * scalesame >> 8) << hpel;
  1327. return n;
  1328. }
  1329. static av_always_inline int scaleforopp(VC1Context *v, int n /* MV */,
  1330. int dim, int dir)
  1331. {
  1332. int refdist, scaleopp;
  1333. int hpel = 1 - v->s.quarter_sample;
  1334. n >>= hpel;
  1335. if (v->s.pict_type == AV_PICTURE_TYPE_B && !v->second_field && dir == 1) {
  1336. if (dim)
  1337. n = scaleforopp_y(v, n, dir) << hpel;
  1338. else
  1339. n = scaleforopp_x(v, n) << hpel;
  1340. return n;
  1341. }
  1342. if (v->s.pict_type != AV_PICTURE_TYPE_B)
  1343. refdist = FFMIN(v->refdist, 3);
  1344. else
  1345. refdist = dir ? v->brfd : v->frfd;
  1346. scaleopp = vc1_field_mvpred_scales[dir ^ v->second_field][0][refdist];
  1347. n = (n * scaleopp >> 8) << hpel;
  1348. return n;
  1349. }
  1350. /** Predict and set motion vector
  1351. */
  1352. static inline void vc1_pred_mv(VC1Context *v, int n, int dmv_x, int dmv_y,
  1353. int mv1, int r_x, int r_y, uint8_t* is_intra,
  1354. int pred_flag, int dir)
  1355. {
  1356. MpegEncContext *s = &v->s;
  1357. int xy, wrap, off = 0;
  1358. int16_t *A, *B, *C;
  1359. int px, py;
  1360. int sum;
  1361. int mixedmv_pic, num_samefield = 0, num_oppfield = 0;
  1362. int opposit, a_f, b_f, c_f;
  1363. int16_t field_predA[2];
  1364. int16_t field_predB[2];
  1365. int16_t field_predC[2];
  1366. int a_valid, b_valid, c_valid;
  1367. int hybridmv_thresh, y_bias = 0;
  1368. if (v->mv_mode == MV_PMODE_MIXED_MV ||
  1369. ((v->mv_mode == MV_PMODE_INTENSITY_COMP) && (v->mv_mode2 == MV_PMODE_MIXED_MV)))
  1370. mixedmv_pic = 1;
  1371. else
  1372. mixedmv_pic = 0;
  1373. /* scale MV difference to be quad-pel */
  1374. dmv_x <<= 1 - s->quarter_sample;
  1375. dmv_y <<= 1 - s->quarter_sample;
  1376. wrap = s->b8_stride;
  1377. xy = s->block_index[n];
  1378. if (s->mb_intra) {
  1379. s->mv[0][n][0] = s->current_picture.f.motion_val[0][xy + v->blocks_off][0] = 0;
  1380. s->mv[0][n][1] = s->current_picture.f.motion_val[0][xy + v->blocks_off][1] = 0;
  1381. s->current_picture.f.motion_val[1][xy + v->blocks_off][0] = 0;
  1382. s->current_picture.f.motion_val[1][xy + v->blocks_off][1] = 0;
  1383. if (mv1) { /* duplicate motion data for 1-MV block */
  1384. s->current_picture.f.motion_val[0][xy + 1 + v->blocks_off][0] = 0;
  1385. s->current_picture.f.motion_val[0][xy + 1 + v->blocks_off][1] = 0;
  1386. s->current_picture.f.motion_val[0][xy + wrap + v->blocks_off][0] = 0;
  1387. s->current_picture.f.motion_val[0][xy + wrap + v->blocks_off][1] = 0;
  1388. s->current_picture.f.motion_val[0][xy + wrap + 1 + v->blocks_off][0] = 0;
  1389. s->current_picture.f.motion_val[0][xy + wrap + 1 + v->blocks_off][1] = 0;
  1390. v->luma_mv[s->mb_x][0] = v->luma_mv[s->mb_x][1] = 0;
  1391. s->current_picture.f.motion_val[1][xy + 1 + v->blocks_off][0] = 0;
  1392. s->current_picture.f.motion_val[1][xy + 1 + v->blocks_off][1] = 0;
  1393. s->current_picture.f.motion_val[1][xy + wrap][0] = 0;
  1394. s->current_picture.f.motion_val[1][xy + wrap + v->blocks_off][1] = 0;
  1395. s->current_picture.f.motion_val[1][xy + wrap + 1 + v->blocks_off][0] = 0;
  1396. s->current_picture.f.motion_val[1][xy + wrap + 1 + v->blocks_off][1] = 0;
  1397. }
  1398. return;
  1399. }
  1400. C = s->current_picture.f.motion_val[dir][xy - 1 + v->blocks_off];
  1401. A = s->current_picture.f.motion_val[dir][xy - wrap + v->blocks_off];
  1402. if (mv1) {
  1403. if (v->field_mode && mixedmv_pic)
  1404. off = (s->mb_x == (s->mb_width - 1)) ? -2 : 2;
  1405. else
  1406. off = (s->mb_x == (s->mb_width - 1)) ? -1 : 2;
  1407. } else {
  1408. //in 4-MV mode different blocks have different B predictor position
  1409. switch (n) {
  1410. case 0:
  1411. off = (s->mb_x > 0) ? -1 : 1;
  1412. break;
  1413. case 1:
  1414. off = (s->mb_x == (s->mb_width - 1)) ? -1 : 1;
  1415. break;
  1416. case 2:
  1417. off = 1;
  1418. break;
  1419. case 3:
  1420. off = -1;
  1421. }
  1422. }
  1423. B = s->current_picture.f.motion_val[dir][xy - wrap + off + v->blocks_off];
  1424. a_valid = !s->first_slice_line || (n == 2 || n == 3);
  1425. b_valid = a_valid && (s->mb_width > 1);
  1426. c_valid = s->mb_x || (n == 1 || n == 3);
  1427. if (v->field_mode) {
  1428. a_valid = a_valid && !is_intra[xy - wrap];
  1429. b_valid = b_valid && !is_intra[xy - wrap + off];
  1430. c_valid = c_valid && !is_intra[xy - 1];
  1431. }
  1432. if (a_valid) {
  1433. a_f = v->mv_f[dir][xy - wrap + v->blocks_off];
  1434. num_oppfield += a_f;
  1435. num_samefield += 1 - a_f;
  1436. field_predA[0] = A[0];
  1437. field_predA[1] = A[1];
  1438. } else {
  1439. field_predA[0] = field_predA[1] = 0;
  1440. a_f = 0;
  1441. }
  1442. if (b_valid) {
  1443. b_f = v->mv_f[dir][xy - wrap + off + v->blocks_off];
  1444. num_oppfield += b_f;
  1445. num_samefield += 1 - b_f;
  1446. field_predB[0] = B[0];
  1447. field_predB[1] = B[1];
  1448. } else {
  1449. field_predB[0] = field_predB[1] = 0;
  1450. b_f = 0;
  1451. }
  1452. if (c_valid) {
  1453. c_f = v->mv_f[dir][xy - 1 + v->blocks_off];
  1454. num_oppfield += c_f;
  1455. num_samefield += 1 - c_f;
  1456. field_predC[0] = C[0];
  1457. field_predC[1] = C[1];
  1458. } else {
  1459. field_predC[0] = field_predC[1] = 0;
  1460. c_f = 0;
  1461. }
  1462. if (v->field_mode) {
  1463. if (num_samefield <= num_oppfield)
  1464. opposit = 1 - pred_flag;
  1465. else
  1466. opposit = pred_flag;
  1467. } else
  1468. opposit = 0;
  1469. if (opposit) {
  1470. if (a_valid && !a_f) {
  1471. field_predA[0] = scaleforopp(v, field_predA[0], 0, dir);
  1472. field_predA[1] = scaleforopp(v, field_predA[1], 1, dir);
  1473. }
  1474. if (b_valid && !b_f) {
  1475. field_predB[0] = scaleforopp(v, field_predB[0], 0, dir);
  1476. field_predB[1] = scaleforopp(v, field_predB[1], 1, dir);
  1477. }
  1478. if (c_valid && !c_f) {
  1479. field_predC[0] = scaleforopp(v, field_predC[0], 0, dir);
  1480. field_predC[1] = scaleforopp(v, field_predC[1], 1, dir);
  1481. }
  1482. v->mv_f[dir][xy + v->blocks_off] = 1;
  1483. v->ref_field_type[dir] = !v->cur_field_type;
  1484. } else {
  1485. if (a_valid && a_f) {
  1486. field_predA[0] = scaleforsame(v, n, field_predA[0], 0, dir);
  1487. field_predA[1] = scaleforsame(v, n, field_predA[1], 1, dir);
  1488. }
  1489. if (b_valid && b_f) {
  1490. field_predB[0] = scaleforsame(v, n, field_predB[0], 0, dir);
  1491. field_predB[1] = scaleforsame(v, n, field_predB[1], 1, dir);
  1492. }
  1493. if (c_valid && c_f) {
  1494. field_predC[0] = scaleforsame(v, n, field_predC[0], 0, dir);
  1495. field_predC[1] = scaleforsame(v, n, field_predC[1], 1, dir);
  1496. }
  1497. v->mv_f[dir][xy + v->blocks_off] = 0;
  1498. v->ref_field_type[dir] = v->cur_field_type;
  1499. }
  1500. if (a_valid) {
  1501. px = field_predA[0];
  1502. py = field_predA[1];
  1503. } else if (c_valid) {
  1504. px = field_predC[0];
  1505. py = field_predC[1];
  1506. } else if (b_valid) {
  1507. px = field_predB[0];
  1508. py = field_predB[1];
  1509. } else {
  1510. px = 0;
  1511. py = 0;
  1512. }
  1513. if (num_samefield + num_oppfield > 1) {
  1514. px = mid_pred(field_predA[0], field_predB[0], field_predC[0]);
  1515. py = mid_pred(field_predA[1], field_predB[1], field_predC[1]);
  1516. }
  1517. /* Pullback MV as specified in 8.3.5.3.4 */
  1518. if (!v->field_mode) {
  1519. int qx, qy, X, Y;
  1520. qx = (s->mb_x << 6) + ((n == 1 || n == 3) ? 32 : 0);
  1521. qy = (s->mb_y << 6) + ((n == 2 || n == 3) ? 32 : 0);
  1522. X = (s->mb_width << 6) - 4;
  1523. Y = (s->mb_height << 6) - 4;
  1524. if (mv1) {
  1525. if (qx + px < -60) px = -60 - qx;
  1526. if (qy + py < -60) py = -60 - qy;
  1527. } else {
  1528. if (qx + px < -28) px = -28 - qx;
  1529. if (qy + py < -28) py = -28 - qy;
  1530. }
  1531. if (qx + px > X) px = X - qx;
  1532. if (qy + py > Y) py = Y - qy;
  1533. }
  1534. if (!v->field_mode || s->pict_type != AV_PICTURE_TYPE_B) {
  1535. /* Calculate hybrid prediction as specified in 8.3.5.3.5 (also 10.3.5.4.3.5) */
  1536. hybridmv_thresh = 32;
  1537. if (a_valid && c_valid) {
  1538. if (is_intra[xy - wrap])
  1539. sum = FFABS(px) + FFABS(py);
  1540. else
  1541. sum = FFABS(px - field_predA[0]) + FFABS(py - field_predA[1]);
  1542. if (sum > hybridmv_thresh) {
  1543. if (get_bits1(&s->gb)) { // read HYBRIDPRED bit
  1544. px = field_predA[0];
  1545. py = field_predA[1];
  1546. } else {
  1547. px = field_predC[0];
  1548. py = field_predC[1];
  1549. }
  1550. } else {
  1551. if (is_intra[xy - 1])
  1552. sum = FFABS(px) + FFABS(py);
  1553. else
  1554. sum = FFABS(px - field_predC[0]) + FFABS(py - field_predC[1]);
  1555. if (sum > hybridmv_thresh) {
  1556. if (get_bits1(&s->gb)) {
  1557. px = field_predA[0];
  1558. py = field_predA[1];
  1559. } else {
  1560. px = field_predC[0];
  1561. py = field_predC[1];
  1562. }
  1563. }
  1564. }
  1565. }
  1566. }
  1567. if (v->field_mode && !s->quarter_sample) {
  1568. r_x <<= 1;
  1569. r_y <<= 1;
  1570. }
  1571. if (v->field_mode && v->numref)
  1572. r_y >>= 1;
  1573. if (v->field_mode && v->cur_field_type && v->ref_field_type[dir] == 0)
  1574. y_bias = 1;
  1575. /* store MV using signed modulus of MV range defined in 4.11 */
  1576. s->mv[dir][n][0] = s->current_picture.f.motion_val[dir][xy + v->blocks_off][0] = ((px + dmv_x + r_x) & ((r_x << 1) - 1)) - r_x;
  1577. s->mv[dir][n][1] = s->current_picture.f.motion_val[dir][xy + v->blocks_off][1] = ((py + dmv_y + r_y - y_bias) & ((r_y << 1) - 1)) - r_y + y_bias;
  1578. if (mv1) { /* duplicate motion data for 1-MV block */
  1579. s->current_picture.f.motion_val[dir][xy + 1 + v->blocks_off][0] = s->current_picture.f.motion_val[dir][xy + v->blocks_off][0];
  1580. s->current_picture.f.motion_val[dir][xy + 1 + v->blocks_off][1] = s->current_picture.f.motion_val[dir][xy + v->blocks_off][1];
  1581. s->current_picture.f.motion_val[dir][xy + wrap + v->blocks_off][0] = s->current_picture.f.motion_val[dir][xy + v->blocks_off][0];
  1582. s->current_picture.f.motion_val[dir][xy + wrap + v->blocks_off][1] = s->current_picture.f.motion_val[dir][xy + v->blocks_off][1];
  1583. s->current_picture.f.motion_val[dir][xy + wrap + 1 + v->blocks_off][0] = s->current_picture.f.motion_val[dir][xy + v->blocks_off][0];
  1584. s->current_picture.f.motion_val[dir][xy + wrap + 1 + v->blocks_off][1] = s->current_picture.f.motion_val[dir][xy + v->blocks_off][1];
  1585. v->mv_f[dir][xy + 1 + v->blocks_off] = v->mv_f[dir][xy + v->blocks_off];
  1586. v->mv_f[dir][xy + wrap + v->blocks_off] = v->mv_f[dir][xy + wrap + 1 + v->blocks_off] = v->mv_f[dir][xy + v->blocks_off];
  1587. }
  1588. }
  1589. /** Predict and set motion vector for interlaced frame picture MBs
  1590. */
  1591. static inline void vc1_pred_mv_intfr(VC1Context *v, int n, int dmv_x, int dmv_y,
  1592. int mvn, int r_x, int r_y, uint8_t* is_intra)
  1593. {
  1594. MpegEncContext *s = &v->s;
  1595. int xy, wrap, off = 0;
  1596. int A[2], B[2], C[2];
  1597. int px, py;
  1598. int a_valid = 0, b_valid = 0, c_valid = 0;
  1599. int field_a, field_b, field_c; // 0: same, 1: opposit
  1600. int total_valid, num_samefield, num_oppfield;
  1601. int pos_c, pos_b, n_adj;
  1602. wrap = s->b8_stride;
  1603. xy = s->block_index[n];
  1604. if (s->mb_intra) {
  1605. s->mv[0][n][0] = s->current_picture.f.motion_val[0][xy][0] = 0;
  1606. s->mv[0][n][1] = s->current_picture.f.motion_val[0][xy][1] = 0;
  1607. s->current_picture.f.motion_val[1][xy][0] = 0;
  1608. s->current_picture.f.motion_val[1][xy][1] = 0;
  1609. if (mvn == 1) { /* duplicate motion data for 1-MV block */
  1610. s->current_picture.f.motion_val[0][xy + 1][0] = 0;
  1611. s->current_picture.f.motion_val[0][xy + 1][1] = 0;
  1612. s->current_picture.f.motion_val[0][xy + wrap][0] = 0;
  1613. s->current_picture.f.motion_val[0][xy + wrap][1] = 0;
  1614. s->current_picture.f.motion_val[0][xy + wrap + 1][0] = 0;
  1615. s->current_picture.f.motion_val[0][xy + wrap + 1][1] = 0;
  1616. v->luma_mv[s->mb_x][0] = v->luma_mv[s->mb_x][1] = 0;
  1617. s->current_picture.f.motion_val[1][xy + 1][0] = 0;
  1618. s->current_picture.f.motion_val[1][xy + 1][1] = 0;
  1619. s->current_picture.f.motion_val[1][xy + wrap][0] = 0;
  1620. s->current_picture.f.motion_val[1][xy + wrap][1] = 0;
  1621. s->current_picture.f.motion_val[1][xy + wrap + 1][0] = 0;
  1622. s->current_picture.f.motion_val[1][xy + wrap + 1][1] = 0;
  1623. }
  1624. return;
  1625. }
  1626. off = ((n == 0) || (n == 1)) ? 1 : -1;
  1627. /* predict A */
  1628. if (s->mb_x || (n == 1) || (n == 3)) {
  1629. if ((v->blk_mv_type[xy]) // current block (MB) has a field MV
  1630. || (!v->blk_mv_type[xy] && !v->blk_mv_type[xy - 1])) { // or both have frame MV
  1631. A[0] = s->current_picture.f.motion_val[0][xy - 1][0];
  1632. A[1] = s->current_picture.f.motion_val[0][xy - 1][1];
  1633. a_valid = 1;
  1634. } else { // current block has frame mv and cand. has field MV (so average)
  1635. A[0] = (s->current_picture.f.motion_val[0][xy - 1][0]
  1636. + s->current_picture.f.motion_val[0][xy - 1 + off * wrap][0] + 1) >> 1;
  1637. A[1] = (s->current_picture.f.motion_val[0][xy - 1][1]
  1638. + s->current_picture.f.motion_val[0][xy - 1 + off * wrap][1] + 1) >> 1;
  1639. a_valid = 1;
  1640. }
  1641. if (!(n & 1) && v->is_intra[s->mb_x - 1]) {
  1642. a_valid = 0;
  1643. A[0] = A[1] = 0;
  1644. }
  1645. } else
  1646. A[0] = A[1] = 0;
  1647. /* Predict B and C */
  1648. B[0] = B[1] = C[0] = C[1] = 0;
  1649. if (n == 0 || n == 1 || v->blk_mv_type[xy]) {
  1650. if (!s->first_slice_line) {
  1651. if (!v->is_intra[s->mb_x - s->mb_stride]) {
  1652. b_valid = 1;
  1653. n_adj = n | 2;
  1654. pos_b = s->block_index[n_adj] - 2 * wrap;
  1655. if (v->blk_mv_type[pos_b] && v->blk_mv_type[xy]) {
  1656. n_adj = (n & 2) | (n & 1);
  1657. }
  1658. B[0] = s->current_picture.f.motion_val[0][s->block_index[n_adj] - 2 * wrap][0];
  1659. B[1] = s->current_picture.f.motion_val[0][s->block_index[n_adj] - 2 * wrap][1];
  1660. if (v->blk_mv_type[pos_b] && !v->blk_mv_type[xy]) {
  1661. B[0] = (B[0] + s->current_picture.f.motion_val[0][s->block_index[n_adj ^ 2] - 2 * wrap][0] + 1) >> 1;
  1662. B[1] = (B[1] + s->current_picture.f.motion_val[0][s->block_index[n_adj ^ 2] - 2 * wrap][1] + 1) >> 1;
  1663. }
  1664. }
  1665. if (s->mb_width > 1) {
  1666. if (!v->is_intra[s->mb_x - s->mb_stride + 1]) {
  1667. c_valid = 1;
  1668. n_adj = 2;
  1669. pos_c = s->block_index[2] - 2 * wrap + 2;
  1670. if (v->blk_mv_type[pos_c] && v->blk_mv_type[xy]) {
  1671. n_adj = n & 2;
  1672. }
  1673. C[0] = s->current_picture.f.motion_val[0][s->block_index[n_adj] - 2 * wrap + 2][0];
  1674. C[1] = s->current_picture.f.motion_val[0][s->block_index[n_adj] - 2 * wrap + 2][1];
  1675. if (v->blk_mv_type[pos_c] && !v->blk_mv_type[xy]) {
  1676. C[0] = (1 + C[0] + (s->current_picture.f.motion_val[0][s->block_index[n_adj ^ 2] - 2 * wrap + 2][0])) >> 1;
  1677. C[1] = (1 + C[1] + (s->current_picture.f.motion_val[0][s->block_index[n_adj ^ 2] - 2 * wrap + 2][1])) >> 1;
  1678. }
  1679. if (s->mb_x == s->mb_width - 1) {
  1680. if (!v->is_intra[s->mb_x - s->mb_stride - 1]) {
  1681. c_valid = 1;
  1682. n_adj = 3;
  1683. pos_c = s->block_index[3] - 2 * wrap - 2;
  1684. if (v->blk_mv_type[pos_c] && v->blk_mv_type[xy]) {
  1685. n_adj = n | 1;
  1686. }
  1687. C[0] = s->current_picture.f.motion_val[0][s->block_index[n_adj] - 2 * wrap - 2][0];
  1688. C[1] = s->current_picture.f.motion_val[0][s->block_index[n_adj] - 2 * wrap - 2][1];
  1689. if (v->blk_mv_type[pos_c] && !v->blk_mv_type[xy]) {
  1690. C[0] = (1 + C[0] + s->current_picture.f.motion_val[0][s->block_index[1] - 2 * wrap - 2][0]) >> 1;
  1691. C[1] = (1 + C[1] + s->current_picture.f.motion_val[0][s->block_index[1] - 2 * wrap - 2][1]) >> 1;
  1692. }
  1693. } else
  1694. c_valid = 0;
  1695. }
  1696. }
  1697. }
  1698. }
  1699. } else {
  1700. pos_b = s->block_index[1];
  1701. b_valid = 1;
  1702. B[0] = s->current_picture.f.motion_val[0][pos_b][0];
  1703. B[1] = s->current_picture.f.motion_val[0][pos_b][1];
  1704. pos_c = s->block_index[0];
  1705. c_valid = 1;
  1706. C[0] = s->current_picture.f.motion_val[0][pos_c][0];
  1707. C[1] = s->current_picture.f.motion_val[0][pos_c][1];
  1708. }
  1709. total_valid = a_valid + b_valid + c_valid;
  1710. // check if predictor A is out of bounds
  1711. if (!s->mb_x && !(n == 1 || n == 3)) {
  1712. A[0] = A[1] = 0;
  1713. }
  1714. // check if predictor B is out of bounds
  1715. if ((s->first_slice_line && v->blk_mv_type[xy]) || (s->first_slice_line && !(n & 2))) {
  1716. B[0] = B[1] = C[0] = C[1] = 0;
  1717. }
  1718. if (!v->blk_mv_type[xy]) {
  1719. if (s->mb_width == 1) {
  1720. px = B[0];
  1721. py = B[1];
  1722. } else {
  1723. if (total_valid >= 2) {
  1724. px = mid_pred(A[0], B[0], C[0]);
  1725. py = mid_pred(A[1], B[1], C[1]);
  1726. } else if (total_valid) {
  1727. if (a_valid) { px = A[0]; py = A[1]; }
  1728. if (b_valid) { px = B[0]; py = B[1]; }
  1729. if (c_valid) { px = C[0]; py = C[1]; }
  1730. } else
  1731. px = py = 0;
  1732. }
  1733. } else {
  1734. if (a_valid)
  1735. field_a = (A[1] & 4) ? 1 : 0;
  1736. else
  1737. field_a = 0;
  1738. if (b_valid)
  1739. field_b = (B[1] & 4) ? 1 : 0;
  1740. else
  1741. field_b = 0;
  1742. if (c_valid)
  1743. field_c = (C[1] & 4) ? 1 : 0;
  1744. else
  1745. field_c = 0;
  1746. num_oppfield = field_a + field_b + field_c;
  1747. num_samefield = total_valid - num_oppfield;
  1748. if (total_valid == 3) {
  1749. if ((num_samefield == 3) || (num_oppfield == 3)) {
  1750. px = mid_pred(A[0], B[0], C[0]);
  1751. py = mid_pred(A[1], B[1], C[1]);
  1752. } else if (num_samefield >= num_oppfield) {
  1753. /* take one MV from same field set depending on priority
  1754. the check for B may not be necessary */
  1755. px = !field_a ? A[0] : B[0];
  1756. py = !field_a ? A[1] : B[1];
  1757. } else {
  1758. px = field_a ? A[0] : B[0];
  1759. py = field_a ? A[1] : B[1];
  1760. }
  1761. } else if (total_valid == 2) {
  1762. if (num_samefield >= num_oppfield) {
  1763. if (!field_a && a_valid) {
  1764. px = A[0];
  1765. py = A[1];
  1766. } else if (!field_b && b_valid) {
  1767. px = B[0];
  1768. py = B[1];
  1769. } else if (c_valid) {
  1770. px = C[0];
  1771. py = C[1];
  1772. } else px = py = 0;
  1773. } else {
  1774. if (field_a && a_valid) {
  1775. px = A[0];
  1776. py = A[1];
  1777. } else if (field_b && b_valid) {
  1778. px = B[0];
  1779. py = B[1];
  1780. } else if (c_valid) {
  1781. px = C[0];
  1782. py = C[1];
  1783. }
  1784. }
  1785. } else if (total_valid == 1) {
  1786. px = (a_valid) ? A[0] : ((b_valid) ? B[0] : C[0]);
  1787. py = (a_valid) ? A[1] : ((b_valid) ? B[1] : C[1]);
  1788. } else
  1789. px = py = 0;
  1790. }
  1791. /* store MV using signed modulus of MV range defined in 4.11 */
  1792. s->mv[0][n][0] = s->current_picture.f.motion_val[0][xy][0] = ((px + dmv_x + r_x) & ((r_x << 1) - 1)) - r_x;
  1793. s->mv[0][n][1] = s->current_picture.f.motion_val[0][xy][1] = ((py + dmv_y + r_y) & ((r_y << 1) - 1)) - r_y;
  1794. if (mvn == 1) { /* duplicate motion data for 1-MV block */
  1795. s->current_picture.f.motion_val[0][xy + 1 ][0] = s->current_picture.f.motion_val[0][xy][0];
  1796. s->current_picture.f.motion_val[0][xy + 1 ][1] = s->current_picture.f.motion_val[0][xy][1];
  1797. s->current_picture.f.motion_val[0][xy + wrap ][0] = s->current_picture.f.motion_val[0][xy][0];
  1798. s->current_picture.f.motion_val[0][xy + wrap ][1] = s->current_picture.f.motion_val[0][xy][1];
  1799. s->current_picture.f.motion_val[0][xy + wrap + 1][0] = s->current_picture.f.motion_val[0][xy][0];
  1800. s->current_picture.f.motion_val[0][xy + wrap + 1][1] = s->current_picture.f.motion_val[0][xy][1];
  1801. } else if (mvn == 2) { /* duplicate motion data for 2-Field MV block */
  1802. s->current_picture.f.motion_val[0][xy + 1][0] = s->current_picture.f.motion_val[0][xy][0];
  1803. s->current_picture.f.motion_val[0][xy + 1][1] = s->current_picture.f.motion_val[0][xy][1];
  1804. s->mv[0][n + 1][0] = s->mv[0][n][0];
  1805. s->mv[0][n + 1][1] = s->mv[0][n][1];
  1806. }
  1807. }
  1808. /** Motion compensation for direct or interpolated blocks in B-frames
  1809. */
  1810. static void vc1_interp_mc(VC1Context *v)
  1811. {
  1812. MpegEncContext *s = &v->s;
  1813. DSPContext *dsp = &v->s.dsp;
  1814. uint8_t *srcY, *srcU, *srcV;
  1815. int dxy, mx, my, uvmx, uvmy, src_x, src_y, uvsrc_x, uvsrc_y;
  1816. int off, off_uv;
  1817. int v_edge_pos = s->v_edge_pos >> v->field_mode;
  1818. if (!v->field_mode && !v->s.next_picture.f.data[0])
  1819. return;
  1820. mx = s->mv[1][0][0];
  1821. my = s->mv[1][0][1];
  1822. uvmx = (mx + ((mx & 3) == 3)) >> 1;
  1823. uvmy = (my + ((my & 3) == 3)) >> 1;
  1824. if (v->field_mode) {
  1825. if (v->cur_field_type != v->ref_field_type[1])
  1826. my = my - 2 + 4 * v->cur_field_type;
  1827. uvmy = uvmy - 2 + 4 * v->cur_field_type;
  1828. }
  1829. if (v->fastuvmc) {
  1830. uvmx = uvmx + ((uvmx < 0) ? -(uvmx & 1) : (uvmx & 1));
  1831. uvmy = uvmy + ((uvmy < 0) ? -(uvmy & 1) : (uvmy & 1));
  1832. }
  1833. srcY = s->next_picture.f.data[0];
  1834. srcU = s->next_picture.f.data[1];
  1835. srcV = s->next_picture.f.data[2];
  1836. src_x = s->mb_x * 16 + (mx >> 2);
  1837. src_y = s->mb_y * 16 + (my >> 2);
  1838. uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
  1839. uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
  1840. if (v->profile != PROFILE_ADVANCED) {
  1841. src_x = av_clip( src_x, -16, s->mb_width * 16);
  1842. src_y = av_clip( src_y, -16, s->mb_height * 16);
  1843. uvsrc_x = av_clip(uvsrc_x, -8, s->mb_width * 8);
  1844. uvsrc_y = av_clip(uvsrc_y, -8, s->mb_height * 8);
  1845. } else {
  1846. src_x = av_clip( src_x, -17, s->avctx->coded_width);
  1847. src_y = av_clip( src_y, -18, s->avctx->coded_height + 1);
  1848. uvsrc_x = av_clip(uvsrc_x, -8, s->avctx->coded_width >> 1);
  1849. uvsrc_y = av_clip(uvsrc_y, -8, s->avctx->coded_height >> 1);
  1850. }
  1851. srcY += src_y * s->linesize + src_x;
  1852. srcU += uvsrc_y * s->uvlinesize + uvsrc_x;
  1853. srcV += uvsrc_y * s->uvlinesize + uvsrc_x;
  1854. if (v->field_mode && v->ref_field_type[1]) {
  1855. srcY += s->current_picture_ptr->f.linesize[0];
  1856. srcU += s->current_picture_ptr->f.linesize[1];
  1857. srcV += s->current_picture_ptr->f.linesize[2];
  1858. }
  1859. /* for grayscale we should not try to read from unknown area */
  1860. if (s->flags & CODEC_FLAG_GRAY) {
  1861. srcU = s->edge_emu_buffer + 18 * s->linesize;
  1862. srcV = s->edge_emu_buffer + 18 * s->linesize;
  1863. }
  1864. if (v->rangeredfrm
  1865. || (unsigned)(src_x - s->mspel) > s->h_edge_pos - (mx & 3) - 16 - s->mspel * 3
  1866. || (unsigned)(src_y - s->mspel) > v_edge_pos - (my & 3) - 16 - s->mspel * 3) {
  1867. uint8_t *uvbuf = s->edge_emu_buffer + 19 * s->linesize;
  1868. srcY -= s->mspel * (1 + s->linesize);
  1869. s->dsp.emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize,
  1870. 17 + s->mspel * 2, 17 + s->mspel * 2,
  1871. src_x - s->mspel, src_y - s->mspel,
  1872. s->h_edge_pos, v_edge_pos);
  1873. srcY = s->edge_emu_buffer;
  1874. s->dsp.emulated_edge_mc(uvbuf , srcU, s->uvlinesize, 8 + 1, 8 + 1,
  1875. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, v_edge_pos >> 1);
  1876. s->dsp.emulated_edge_mc(uvbuf + 16, srcV, s->uvlinesize, 8 + 1, 8 + 1,
  1877. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, v_edge_pos >> 1);
  1878. srcU = uvbuf;
  1879. srcV = uvbuf + 16;
  1880. /* if we deal with range reduction we need to scale source blocks */
  1881. if (v->rangeredfrm) {
  1882. int i, j;
  1883. uint8_t *src, *src2;
  1884. src = srcY;
  1885. for (j = 0; j < 17 + s->mspel * 2; j++) {
  1886. for (i = 0; i < 17 + s->mspel * 2; i++)
  1887. src[i] = ((src[i] - 128) >> 1) + 128;
  1888. src += s->linesize;
  1889. }
  1890. src = srcU;
  1891. src2 = srcV;
  1892. for (j = 0; j < 9; j++) {
  1893. for (i = 0; i < 9; i++) {
  1894. src[i] = ((src[i] - 128) >> 1) + 128;
  1895. src2[i] = ((src2[i] - 128) >> 1) + 128;
  1896. }
  1897. src += s->uvlinesize;
  1898. src2 += s->uvlinesize;
  1899. }
  1900. }
  1901. srcY += s->mspel * (1 + s->linesize);
  1902. }
  1903. if (v->field_mode && v->second_field) {
  1904. off = s->current_picture_ptr->f.linesize[0];
  1905. off_uv = s->current_picture_ptr->f.linesize[1];
  1906. } else {
  1907. off = 0;
  1908. off_uv = 0;
  1909. }
  1910. if (s->mspel) {
  1911. dxy = ((my & 3) << 2) | (mx & 3);
  1912. v->vc1dsp.avg_vc1_mspel_pixels_tab[dxy](s->dest[0] + off , srcY , s->linesize, v->rnd);
  1913. v->vc1dsp.avg_vc1_mspel_pixels_tab[dxy](s->dest[0] + off + 8, srcY + 8, s->linesize, v->rnd);
  1914. srcY += s->linesize * 8;
  1915. v->vc1dsp.avg_vc1_mspel_pixels_tab[dxy](s->dest[0] + off + 8 * s->linesize , srcY , s->linesize, v->rnd);
  1916. v->vc1dsp.avg_vc1_mspel_pixels_tab[dxy](s->dest[0] + off + 8 * s->linesize + 8, srcY + 8, s->linesize, v->rnd);
  1917. } else { // hpel mc
  1918. dxy = (my & 2) | ((mx & 2) >> 1);
  1919. if (!v->rnd)
  1920. dsp->avg_pixels_tab[0][dxy](s->dest[0] + off, srcY, s->linesize, 16);
  1921. else
  1922. dsp->avg_no_rnd_pixels_tab[0][dxy](s->dest[0] + off, srcY, s->linesize, 16);
  1923. }
  1924. if (s->flags & CODEC_FLAG_GRAY) return;
  1925. /* Chroma MC always uses qpel blilinear */
  1926. uvmx = (uvmx & 3) << 1;
  1927. uvmy = (uvmy & 3) << 1;
  1928. if (!v->rnd) {
  1929. dsp->avg_h264_chroma_pixels_tab[0](s->dest[1] + off_uv, srcU, s->uvlinesize, 8, uvmx, uvmy);
  1930. dsp->avg_h264_chroma_pixels_tab[0](s->dest[2] + off_uv, srcV, s->uvlinesize, 8, uvmx, uvmy);
  1931. } else {
  1932. v->vc1dsp.avg_no_rnd_vc1_chroma_pixels_tab[0](s->dest[1] + off_uv, srcU, s->uvlinesize, 8, uvmx, uvmy);
  1933. v->vc1dsp.avg_no_rnd_vc1_chroma_pixels_tab[0](s->dest[2] + off_uv, srcV, s->uvlinesize, 8, uvmx, uvmy);
  1934. }
  1935. }
  1936. static av_always_inline int scale_mv(int value, int bfrac, int inv, int qs)
  1937. {
  1938. int n = bfrac;
  1939. #if B_FRACTION_DEN==256
  1940. if (inv)
  1941. n -= 256;
  1942. if (!qs)
  1943. return 2 * ((value * n + 255) >> 9);
  1944. return (value * n + 128) >> 8;
  1945. #else
  1946. if (inv)
  1947. n -= B_FRACTION_DEN;
  1948. if (!qs)
  1949. return 2 * ((value * n + B_FRACTION_DEN - 1) / (2 * B_FRACTION_DEN));
  1950. return (value * n + B_FRACTION_DEN/2) / B_FRACTION_DEN;
  1951. #endif
  1952. }
  1953. static av_always_inline int scale_mv_intfi(int value, int bfrac, int inv,
  1954. int qs, int qs_last)
  1955. {
  1956. int n = bfrac;
  1957. if (inv)
  1958. n -= 256;
  1959. n <<= !qs_last;
  1960. if (!qs)
  1961. return (value * n + 255) >> 9;
  1962. else
  1963. return (value * n + 128) >> 8;
  1964. }
  1965. /** Reconstruct motion vector for B-frame and do motion compensation
  1966. */
  1967. static inline void vc1_b_mc(VC1Context *v, int dmv_x[2], int dmv_y[2],
  1968. int direct, int mode)
  1969. {
  1970. if (v->use_ic) {
  1971. v->mv_mode2 = v->mv_mode;
  1972. v->mv_mode = MV_PMODE_INTENSITY_COMP;
  1973. }
  1974. if (direct) {
  1975. vc1_mc_1mv(v, 0);
  1976. vc1_interp_mc(v);
  1977. if (v->use_ic)
  1978. v->mv_mode = v->mv_mode2;
  1979. return;
  1980. }
  1981. if (mode == BMV_TYPE_INTERPOLATED) {
  1982. vc1_mc_1mv(v, 0);
  1983. vc1_interp_mc(v);
  1984. if (v->use_ic)
  1985. v->mv_mode = v->mv_mode2;
  1986. return;
  1987. }
  1988. if (v->use_ic && (mode == BMV_TYPE_BACKWARD))
  1989. v->mv_mode = v->mv_mode2;
  1990. vc1_mc_1mv(v, (mode == BMV_TYPE_BACKWARD));
  1991. if (v->use_ic)
  1992. v->mv_mode = v->mv_mode2;
  1993. }
  1994. static inline void vc1_pred_b_mv(VC1Context *v, int dmv_x[2], int dmv_y[2],
  1995. int direct, int mvtype)
  1996. {
  1997. MpegEncContext *s = &v->s;
  1998. int xy, wrap, off = 0;
  1999. int16_t *A, *B, *C;
  2000. int px, py;
  2001. int sum;
  2002. int r_x, r_y;
  2003. const uint8_t *is_intra = v->mb_type[0];
  2004. r_x = v->range_x;
  2005. r_y = v->range_y;
  2006. /* scale MV difference to be quad-pel */
  2007. dmv_x[0] <<= 1 - s->quarter_sample;
  2008. dmv_y[0] <<= 1 - s->quarter_sample;
  2009. dmv_x[1] <<= 1 - s->quarter_sample;
  2010. dmv_y[1] <<= 1 - s->quarter_sample;
  2011. wrap = s->b8_stride;
  2012. xy = s->block_index[0];
  2013. if (s->mb_intra) {
  2014. s->current_picture.f.motion_val[0][xy + v->blocks_off][0] =
  2015. s->current_picture.f.motion_val[0][xy + v->blocks_off][1] =
  2016. s->current_picture.f.motion_val[1][xy + v->blocks_off][0] =
  2017. s->current_picture.f.motion_val[1][xy + v->blocks_off][1] = 0;
  2018. return;
  2019. }
  2020. if (!v->field_mode) {
  2021. s->mv[0][0][0] = scale_mv(s->next_picture.f.motion_val[1][xy][0], v->bfraction, 0, s->quarter_sample);
  2022. s->mv[0][0][1] = scale_mv(s->next_picture.f.motion_val[1][xy][1], v->bfraction, 0, s->quarter_sample);
  2023. s->mv[1][0][0] = scale_mv(s->next_picture.f.motion_val[1][xy][0], v->bfraction, 1, s->quarter_sample);
  2024. s->mv[1][0][1] = scale_mv(s->next_picture.f.motion_val[1][xy][1], v->bfraction, 1, s->quarter_sample);
  2025. /* Pullback predicted motion vectors as specified in 8.4.5.4 */
  2026. s->mv[0][0][0] = av_clip(s->mv[0][0][0], -60 - (s->mb_x << 6), (s->mb_width << 6) - 4 - (s->mb_x << 6));
  2027. s->mv[0][0][1] = av_clip(s->mv[0][0][1], -60 - (s->mb_y << 6), (s->mb_height << 6) - 4 - (s->mb_y << 6));
  2028. s->mv[1][0][0] = av_clip(s->mv[1][0][0], -60 - (s->mb_x << 6), (s->mb_width << 6) - 4 - (s->mb_x << 6));
  2029. s->mv[1][0][1] = av_clip(s->mv[1][0][1], -60 - (s->mb_y << 6), (s->mb_height << 6) - 4 - (s->mb_y << 6));
  2030. }
  2031. if (direct) {
  2032. s->current_picture.f.motion_val[0][xy + v->blocks_off][0] = s->mv[0][0][0];
  2033. s->current_picture.f.motion_val[0][xy + v->blocks_off][1] = s->mv[0][0][1];
  2034. s->current_picture.f.motion_val[1][xy + v->blocks_off][0] = s->mv[1][0][0];
  2035. s->current_picture.f.motion_val[1][xy + v->blocks_off][1] = s->mv[1][0][1];
  2036. return;
  2037. }
  2038. if ((mvtype == BMV_TYPE_FORWARD) || (mvtype == BMV_TYPE_INTERPOLATED)) {
  2039. C = s->current_picture.f.motion_val[0][xy - 2];
  2040. A = s->current_picture.f.motion_val[0][xy - wrap * 2];
  2041. off = (s->mb_x == (s->mb_width - 1)) ? -2 : 2;
  2042. B = s->current_picture.f.motion_val[0][xy - wrap * 2 + off];
  2043. if (!s->mb_x) C[0] = C[1] = 0;
  2044. if (!s->first_slice_line) { // predictor A is not out of bounds
  2045. if (s->mb_width == 1) {
  2046. px = A[0];
  2047. py = A[1];
  2048. } else {
  2049. px = mid_pred(A[0], B[0], C[0]);
  2050. py = mid_pred(A[1], B[1], C[1]);
  2051. }
  2052. } else if (s->mb_x) { // predictor C is not out of bounds
  2053. px = C[0];
  2054. py = C[1];
  2055. } else {
  2056. px = py = 0;
  2057. }
  2058. /* Pullback MV as specified in 8.3.5.3.4 */
  2059. {
  2060. int qx, qy, X, Y;
  2061. if (v->profile < PROFILE_ADVANCED) {
  2062. qx = (s->mb_x << 5);
  2063. qy = (s->mb_y << 5);
  2064. X = (s->mb_width << 5) - 4;
  2065. Y = (s->mb_height << 5) - 4;
  2066. if (qx + px < -28) px = -28 - qx;
  2067. if (qy + py < -28) py = -28 - qy;
  2068. if (qx + px > X) px = X - qx;
  2069. if (qy + py > Y) py = Y - qy;
  2070. } else {
  2071. qx = (s->mb_x << 6);
  2072. qy = (s->mb_y << 6);
  2073. X = (s->mb_width << 6) - 4;
  2074. Y = (s->mb_height << 6) - 4;
  2075. if (qx + px < -60) px = -60 - qx;
  2076. if (qy + py < -60) py = -60 - qy;
  2077. if (qx + px > X) px = X - qx;
  2078. if (qy + py > Y) py = Y - qy;
  2079. }
  2080. }
  2081. /* Calculate hybrid prediction as specified in 8.3.5.3.5 */
  2082. if (0 && !s->first_slice_line && s->mb_x) {
  2083. if (is_intra[xy - wrap])
  2084. sum = FFABS(px) + FFABS(py);
  2085. else
  2086. sum = FFABS(px - A[0]) + FFABS(py - A[1]);
  2087. if (sum > 32) {
  2088. if (get_bits1(&s->gb)) {
  2089. px = A[0];
  2090. py = A[1];
  2091. } else {
  2092. px = C[0];
  2093. py = C[1];
  2094. }
  2095. } else {
  2096. if (is_intra[xy - 2])
  2097. sum = FFABS(px) + FFABS(py);
  2098. else
  2099. sum = FFABS(px - C[0]) + FFABS(py - C[1]);
  2100. if (sum > 32) {
  2101. if (get_bits1(&s->gb)) {
  2102. px = A[0];
  2103. py = A[1];
  2104. } else {
  2105. px = C[0];
  2106. py = C[1];
  2107. }
  2108. }
  2109. }
  2110. }
  2111. /* store MV using signed modulus of MV range defined in 4.11 */
  2112. s->mv[0][0][0] = ((px + dmv_x[0] + r_x) & ((r_x << 1) - 1)) - r_x;
  2113. s->mv[0][0][1] = ((py + dmv_y[0] + r_y) & ((r_y << 1) - 1)) - r_y;
  2114. }
  2115. if ((mvtype == BMV_TYPE_BACKWARD) || (mvtype == BMV_TYPE_INTERPOLATED)) {
  2116. C = s->current_picture.f.motion_val[1][xy - 2];
  2117. A = s->current_picture.f.motion_val[1][xy - wrap * 2];
  2118. off = (s->mb_x == (s->mb_width - 1)) ? -2 : 2;
  2119. B = s->current_picture.f.motion_val[1][xy - wrap * 2 + off];
  2120. if (!s->mb_x)
  2121. C[0] = C[1] = 0;
  2122. if (!s->first_slice_line) { // predictor A is not out of bounds
  2123. if (s->mb_width == 1) {
  2124. px = A[0];
  2125. py = A[1];
  2126. } else {
  2127. px = mid_pred(A[0], B[0], C[0]);
  2128. py = mid_pred(A[1], B[1], C[1]);
  2129. }
  2130. } else if (s->mb_x) { // predictor C is not out of bounds
  2131. px = C[0];
  2132. py = C[1];
  2133. } else {
  2134. px = py = 0;
  2135. }
  2136. /* Pullback MV as specified in 8.3.5.3.4 */
  2137. {
  2138. int qx, qy, X, Y;
  2139. if (v->profile < PROFILE_ADVANCED) {
  2140. qx = (s->mb_x << 5);
  2141. qy = (s->mb_y << 5);
  2142. X = (s->mb_width << 5) - 4;
  2143. Y = (s->mb_height << 5) - 4;
  2144. if (qx + px < -28) px = -28 - qx;
  2145. if (qy + py < -28) py = -28 - qy;
  2146. if (qx + px > X) px = X - qx;
  2147. if (qy + py > Y) py = Y - qy;
  2148. } else {
  2149. qx = (s->mb_x << 6);
  2150. qy = (s->mb_y << 6);
  2151. X = (s->mb_width << 6) - 4;
  2152. Y = (s->mb_height << 6) - 4;
  2153. if (qx + px < -60) px = -60 - qx;
  2154. if (qy + py < -60) py = -60 - qy;
  2155. if (qx + px > X) px = X - qx;
  2156. if (qy + py > Y) py = Y - qy;
  2157. }
  2158. }
  2159. /* Calculate hybrid prediction as specified in 8.3.5.3.5 */
  2160. if (0 && !s->first_slice_line && s->mb_x) {
  2161. if (is_intra[xy - wrap])
  2162. sum = FFABS(px) + FFABS(py);
  2163. else
  2164. sum = FFABS(px - A[0]) + FFABS(py - A[1]);
  2165. if (sum > 32) {
  2166. if (get_bits1(&s->gb)) {
  2167. px = A[0];
  2168. py = A[1];
  2169. } else {
  2170. px = C[0];
  2171. py = C[1];
  2172. }
  2173. } else {
  2174. if (is_intra[xy - 2])
  2175. sum = FFABS(px) + FFABS(py);
  2176. else
  2177. sum = FFABS(px - C[0]) + FFABS(py - C[1]);
  2178. if (sum > 32) {
  2179. if (get_bits1(&s->gb)) {
  2180. px = A[0];
  2181. py = A[1];
  2182. } else {
  2183. px = C[0];
  2184. py = C[1];
  2185. }
  2186. }
  2187. }
  2188. }
  2189. /* store MV using signed modulus of MV range defined in 4.11 */
  2190. s->mv[1][0][0] = ((px + dmv_x[1] + r_x) & ((r_x << 1) - 1)) - r_x;
  2191. s->mv[1][0][1] = ((py + dmv_y[1] + r_y) & ((r_y << 1) - 1)) - r_y;
  2192. }
  2193. s->current_picture.f.motion_val[0][xy][0] = s->mv[0][0][0];
  2194. s->current_picture.f.motion_val[0][xy][1] = s->mv[0][0][1];
  2195. s->current_picture.f.motion_val[1][xy][0] = s->mv[1][0][0];
  2196. s->current_picture.f.motion_val[1][xy][1] = s->mv[1][0][1];
  2197. }
  2198. static inline void vc1_pred_b_mv_intfi(VC1Context *v, int n, int *dmv_x, int *dmv_y, int mv1, int *pred_flag)
  2199. {
  2200. int dir = (v->bmvtype == BMV_TYPE_BACKWARD) ? 1 : 0;
  2201. MpegEncContext *s = &v->s;
  2202. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  2203. if (v->bmvtype == BMV_TYPE_DIRECT) {
  2204. int total_opp, k, f;
  2205. if (s->next_picture.f.mb_type[mb_pos + v->mb_off] != MB_TYPE_INTRA) {
  2206. s->mv[0][0][0] = scale_mv_intfi(s->next_picture.f.motion_val[1][s->block_index[0] + v->blocks_off][0],
  2207. v->bfraction, 0, s->quarter_sample, v->qs_last);
  2208. s->mv[0][0][1] = scale_mv_intfi(s->next_picture.f.motion_val[1][s->block_index[0] + v->blocks_off][1],
  2209. v->bfraction, 0, s->quarter_sample, v->qs_last);
  2210. s->mv[1][0][0] = scale_mv_intfi(s->next_picture.f.motion_val[1][s->block_index[0] + v->blocks_off][0],
  2211. v->bfraction, 1, s->quarter_sample, v->qs_last);
  2212. s->mv[1][0][1] = scale_mv_intfi(s->next_picture.f.motion_val[1][s->block_index[0] + v->blocks_off][1],
  2213. v->bfraction, 1, s->quarter_sample, v->qs_last);
  2214. total_opp = v->mv_f_next[0][s->block_index[0] + v->blocks_off]
  2215. + v->mv_f_next[0][s->block_index[1] + v->blocks_off]
  2216. + v->mv_f_next[0][s->block_index[2] + v->blocks_off]
  2217. + v->mv_f_next[0][s->block_index[3] + v->blocks_off];
  2218. f = (total_opp > 2) ? 1 : 0;
  2219. } else {
  2220. s->mv[0][0][0] = s->mv[0][0][1] = 0;
  2221. s->mv[1][0][0] = s->mv[1][0][1] = 0;
  2222. f = 0;
  2223. }
  2224. v->ref_field_type[0] = v->ref_field_type[1] = v->cur_field_type ^ f;
  2225. for (k = 0; k < 4; k++) {
  2226. s->current_picture.f.motion_val[0][s->block_index[k] + v->blocks_off][0] = s->mv[0][0][0];
  2227. s->current_picture.f.motion_val[0][s->block_index[k] + v->blocks_off][1] = s->mv[0][0][1];
  2228. s->current_picture.f.motion_val[1][s->block_index[k] + v->blocks_off][0] = s->mv[1][0][0];
  2229. s->current_picture.f.motion_val[1][s->block_index[k] + v->blocks_off][1] = s->mv[1][0][1];
  2230. v->mv_f[0][s->block_index[k] + v->blocks_off] = f;
  2231. v->mv_f[1][s->block_index[k] + v->blocks_off] = f;
  2232. }
  2233. return;
  2234. }
  2235. if (v->bmvtype == BMV_TYPE_INTERPOLATED) {
  2236. vc1_pred_mv(v, 0, dmv_x[0], dmv_y[0], 1, v->range_x, v->range_y, v->mb_type[0], pred_flag[0], 0);
  2237. vc1_pred_mv(v, 0, dmv_x[1], dmv_y[1], 1, v->range_x, v->range_y, v->mb_type[0], pred_flag[1], 1);
  2238. return;
  2239. }
  2240. if (dir) { // backward
  2241. vc1_pred_mv(v, n, dmv_x[1], dmv_y[1], mv1, v->range_x, v->range_y, v->mb_type[0], pred_flag[1], 1);
  2242. if (n == 3 || mv1) {
  2243. vc1_pred_mv(v, 0, dmv_x[0], dmv_y[0], 1, v->range_x, v->range_y, v->mb_type[0], 0, 0);
  2244. }
  2245. } else { // forward
  2246. vc1_pred_mv(v, n, dmv_x[0], dmv_y[0], mv1, v->range_x, v->range_y, v->mb_type[0], pred_flag[0], 0);
  2247. if (n == 3 || mv1) {
  2248. vc1_pred_mv(v, 0, dmv_x[1], dmv_y[1], 1, v->range_x, v->range_y, v->mb_type[0], 0, 1);
  2249. }
  2250. }
  2251. }
  2252. /** Get predicted DC value for I-frames only
  2253. * prediction dir: left=0, top=1
  2254. * @param s MpegEncContext
  2255. * @param overlap flag indicating that overlap filtering is used
  2256. * @param pq integer part of picture quantizer
  2257. * @param[in] n block index in the current MB
  2258. * @param dc_val_ptr Pointer to DC predictor
  2259. * @param dir_ptr Prediction direction for use in AC prediction
  2260. */
  2261. static inline int vc1_i_pred_dc(MpegEncContext *s, int overlap, int pq, int n,
  2262. int16_t **dc_val_ptr, int *dir_ptr)
  2263. {
  2264. int a, b, c, wrap, pred, scale;
  2265. int16_t *dc_val;
  2266. static const uint16_t dcpred[32] = {
  2267. -1, 1024, 512, 341, 256, 205, 171, 146, 128,
  2268. 114, 102, 93, 85, 79, 73, 68, 64,
  2269. 60, 57, 54, 51, 49, 47, 45, 43,
  2270. 41, 39, 38, 37, 35, 34, 33
  2271. };
  2272. /* find prediction - wmv3_dc_scale always used here in fact */
  2273. if (n < 4) scale = s->y_dc_scale;
  2274. else scale = s->c_dc_scale;
  2275. wrap = s->block_wrap[n];
  2276. dc_val = s->dc_val[0] + s->block_index[n];
  2277. /* B A
  2278. * C X
  2279. */
  2280. c = dc_val[ - 1];
  2281. b = dc_val[ - 1 - wrap];
  2282. a = dc_val[ - wrap];
  2283. if (pq < 9 || !overlap) {
  2284. /* Set outer values */
  2285. if (s->first_slice_line && (n != 2 && n != 3))
  2286. b = a = dcpred[scale];
  2287. if (s->mb_x == 0 && (n != 1 && n != 3))
  2288. b = c = dcpred[scale];
  2289. } else {
  2290. /* Set outer values */
  2291. if (s->first_slice_line && (n != 2 && n != 3))
  2292. b = a = 0;
  2293. if (s->mb_x == 0 && (n != 1 && n != 3))
  2294. b = c = 0;
  2295. }
  2296. if (abs(a - b) <= abs(b - c)) {
  2297. pred = c;
  2298. *dir_ptr = 1; // left
  2299. } else {
  2300. pred = a;
  2301. *dir_ptr = 0; // top
  2302. }
  2303. /* update predictor */
  2304. *dc_val_ptr = &dc_val[0];
  2305. return pred;
  2306. }
  2307. /** Get predicted DC value
  2308. * prediction dir: left=0, top=1
  2309. * @param s MpegEncContext
  2310. * @param overlap flag indicating that overlap filtering is used
  2311. * @param pq integer part of picture quantizer
  2312. * @param[in] n block index in the current MB
  2313. * @param a_avail flag indicating top block availability
  2314. * @param c_avail flag indicating left block availability
  2315. * @param dc_val_ptr Pointer to DC predictor
  2316. * @param dir_ptr Prediction direction for use in AC prediction
  2317. */
  2318. static inline int vc1_pred_dc(MpegEncContext *s, int overlap, int pq, int n,
  2319. int a_avail, int c_avail,
  2320. int16_t **dc_val_ptr, int *dir_ptr)
  2321. {
  2322. int a, b, c, wrap, pred;
  2323. int16_t *dc_val;
  2324. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  2325. int q1, q2 = 0;
  2326. wrap = s->block_wrap[n];
  2327. dc_val = s->dc_val[0] + s->block_index[n];
  2328. /* B A
  2329. * C X
  2330. */
  2331. c = dc_val[ - 1];
  2332. b = dc_val[ - 1 - wrap];
  2333. a = dc_val[ - wrap];
  2334. /* scale predictors if needed */
  2335. q1 = s->current_picture.f.qscale_table[mb_pos];
  2336. if (c_avail && (n != 1 && n != 3)) {
  2337. q2 = s->current_picture.f.qscale_table[mb_pos - 1];
  2338. if (q2 && q2 != q1)
  2339. c = (c * s->y_dc_scale_table[q2] * ff_vc1_dqscale[s->y_dc_scale_table[q1] - 1] + 0x20000) >> 18;
  2340. }
  2341. if (a_avail && (n != 2 && n != 3)) {
  2342. q2 = s->current_picture.f.qscale_table[mb_pos - s->mb_stride];
  2343. if (q2 && q2 != q1)
  2344. a = (a * s->y_dc_scale_table[q2] * ff_vc1_dqscale[s->y_dc_scale_table[q1] - 1] + 0x20000) >> 18;
  2345. }
  2346. if (a_avail && c_avail && (n != 3)) {
  2347. int off = mb_pos;
  2348. if (n != 1)
  2349. off--;
  2350. if (n != 2)
  2351. off -= s->mb_stride;
  2352. q2 = s->current_picture.f.qscale_table[off];
  2353. if (q2 && q2 != q1)
  2354. b = (b * s->y_dc_scale_table[q2] * ff_vc1_dqscale[s->y_dc_scale_table[q1] - 1] + 0x20000) >> 18;
  2355. }
  2356. if (a_avail && c_avail) {
  2357. if (abs(a - b) <= abs(b - c)) {
  2358. pred = c;
  2359. *dir_ptr = 1; // left
  2360. } else {
  2361. pred = a;
  2362. *dir_ptr = 0; // top
  2363. }
  2364. } else if (a_avail) {
  2365. pred = a;
  2366. *dir_ptr = 0; // top
  2367. } else if (c_avail) {
  2368. pred = c;
  2369. *dir_ptr = 1; // left
  2370. } else {
  2371. pred = 0;
  2372. *dir_ptr = 1; // left
  2373. }
  2374. /* update predictor */
  2375. *dc_val_ptr = &dc_val[0];
  2376. return pred;
  2377. }
  2378. /** @} */ // Block group
  2379. /**
  2380. * @name VC1 Macroblock-level functions in Simple/Main Profiles
  2381. * @see 7.1.4, p91 and 8.1.1.7, p(1)04
  2382. * @{
  2383. */
  2384. static inline int vc1_coded_block_pred(MpegEncContext * s, int n,
  2385. uint8_t **coded_block_ptr)
  2386. {
  2387. int xy, wrap, pred, a, b, c;
  2388. xy = s->block_index[n];
  2389. wrap = s->b8_stride;
  2390. /* B C
  2391. * A X
  2392. */
  2393. a = s->coded_block[xy - 1 ];
  2394. b = s->coded_block[xy - 1 - wrap];
  2395. c = s->coded_block[xy - wrap];
  2396. if (b == c) {
  2397. pred = a;
  2398. } else {
  2399. pred = c;
  2400. }
  2401. /* store value */
  2402. *coded_block_ptr = &s->coded_block[xy];
  2403. return pred;
  2404. }
  2405. /**
  2406. * Decode one AC coefficient
  2407. * @param v The VC1 context
  2408. * @param last Last coefficient
  2409. * @param skip How much zero coefficients to skip
  2410. * @param value Decoded AC coefficient value
  2411. * @param codingset set of VLC to decode data
  2412. * @see 8.1.3.4
  2413. */
  2414. static void vc1_decode_ac_coeff(VC1Context *v, int *last, int *skip,
  2415. int *value, int codingset)
  2416. {
  2417. GetBitContext *gb = &v->s.gb;
  2418. int index, escape, run = 0, level = 0, lst = 0;
  2419. index = get_vlc2(gb, ff_vc1_ac_coeff_table[codingset].table, AC_VLC_BITS, 3);
  2420. if (index != vc1_ac_sizes[codingset] - 1) {
  2421. run = vc1_index_decode_table[codingset][index][0];
  2422. level = vc1_index_decode_table[codingset][index][1];
  2423. lst = index >= vc1_last_decode_table[codingset] || get_bits_left(gb) < 0;
  2424. if (get_bits1(gb))
  2425. level = -level;
  2426. } else {
  2427. escape = decode210(gb);
  2428. if (escape != 2) {
  2429. index = get_vlc2(gb, ff_vc1_ac_coeff_table[codingset].table, AC_VLC_BITS, 3);
  2430. run = vc1_index_decode_table[codingset][index][0];
  2431. level = vc1_index_decode_table[codingset][index][1];
  2432. lst = index >= vc1_last_decode_table[codingset];
  2433. if (escape == 0) {
  2434. if (lst)
  2435. level += vc1_last_delta_level_table[codingset][run];
  2436. else
  2437. level += vc1_delta_level_table[codingset][run];
  2438. } else {
  2439. if (lst)
  2440. run += vc1_last_delta_run_table[codingset][level] + 1;
  2441. else
  2442. run += vc1_delta_run_table[codingset][level] + 1;
  2443. }
  2444. if (get_bits1(gb))
  2445. level = -level;
  2446. } else {
  2447. int sign;
  2448. lst = get_bits1(gb);
  2449. if (v->s.esc3_level_length == 0) {
  2450. if (v->pq < 8 || v->dquantfrm) { // table 59
  2451. v->s.esc3_level_length = get_bits(gb, 3);
  2452. if (!v->s.esc3_level_length)
  2453. v->s.esc3_level_length = get_bits(gb, 2) + 8;
  2454. } else { // table 60
  2455. v->s.esc3_level_length = get_unary(gb, 1, 6) + 2;
  2456. }
  2457. v->s.esc3_run_length = 3 + get_bits(gb, 2);
  2458. }
  2459. run = get_bits(gb, v->s.esc3_run_length);
  2460. sign = get_bits1(gb);
  2461. level = get_bits(gb, v->s.esc3_level_length);
  2462. if (sign)
  2463. level = -level;
  2464. }
  2465. }
  2466. *last = lst;
  2467. *skip = run;
  2468. *value = level;
  2469. }
  2470. /** Decode intra block in intra frames - should be faster than decode_intra_block
  2471. * @param v VC1Context
  2472. * @param block block to decode
  2473. * @param[in] n subblock index
  2474. * @param coded are AC coeffs present or not
  2475. * @param codingset set of VLC to decode data
  2476. */
  2477. static int vc1_decode_i_block(VC1Context *v, DCTELEM block[64], int n,
  2478. int coded, int codingset)
  2479. {
  2480. GetBitContext *gb = &v->s.gb;
  2481. MpegEncContext *s = &v->s;
  2482. int dc_pred_dir = 0; /* Direction of the DC prediction used */
  2483. int i;
  2484. int16_t *dc_val;
  2485. int16_t *ac_val, *ac_val2;
  2486. int dcdiff;
  2487. /* Get DC differential */
  2488. if (n < 4) {
  2489. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2490. } else {
  2491. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2492. }
  2493. if (dcdiff < 0) {
  2494. av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
  2495. return -1;
  2496. }
  2497. if (dcdiff) {
  2498. if (dcdiff == 119 /* ESC index value */) {
  2499. /* TODO: Optimize */
  2500. if (v->pq == 1) dcdiff = get_bits(gb, 10);
  2501. else if (v->pq == 2) dcdiff = get_bits(gb, 9);
  2502. else dcdiff = get_bits(gb, 8);
  2503. } else {
  2504. if (v->pq == 1)
  2505. dcdiff = (dcdiff << 2) + get_bits(gb, 2) - 3;
  2506. else if (v->pq == 2)
  2507. dcdiff = (dcdiff << 1) + get_bits1(gb) - 1;
  2508. }
  2509. if (get_bits1(gb))
  2510. dcdiff = -dcdiff;
  2511. }
  2512. /* Prediction */
  2513. dcdiff += vc1_i_pred_dc(&v->s, v->overlap, v->pq, n, &dc_val, &dc_pred_dir);
  2514. *dc_val = dcdiff;
  2515. /* Store the quantized DC coeff, used for prediction */
  2516. if (n < 4) {
  2517. block[0] = dcdiff * s->y_dc_scale;
  2518. } else {
  2519. block[0] = dcdiff * s->c_dc_scale;
  2520. }
  2521. /* Skip ? */
  2522. if (!coded) {
  2523. goto not_coded;
  2524. }
  2525. // AC Decoding
  2526. i = 1;
  2527. {
  2528. int last = 0, skip, value;
  2529. const uint8_t *zz_table;
  2530. int scale;
  2531. int k;
  2532. scale = v->pq * 2 + v->halfpq;
  2533. if (v->s.ac_pred) {
  2534. if (!dc_pred_dir)
  2535. zz_table = v->zz_8x8[2];
  2536. else
  2537. zz_table = v->zz_8x8[3];
  2538. } else
  2539. zz_table = v->zz_8x8[1];
  2540. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  2541. ac_val2 = ac_val;
  2542. if (dc_pred_dir) // left
  2543. ac_val -= 16;
  2544. else // top
  2545. ac_val -= 16 * s->block_wrap[n];
  2546. while (!last) {
  2547. vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
  2548. i += skip;
  2549. if (i > 63)
  2550. break;
  2551. block[zz_table[i++]] = value;
  2552. }
  2553. /* apply AC prediction if needed */
  2554. if (s->ac_pred) {
  2555. if (dc_pred_dir) { // left
  2556. for (k = 1; k < 8; k++)
  2557. block[k << v->left_blk_sh] += ac_val[k];
  2558. } else { // top
  2559. for (k = 1; k < 8; k++)
  2560. block[k << v->top_blk_sh] += ac_val[k + 8];
  2561. }
  2562. }
  2563. /* save AC coeffs for further prediction */
  2564. for (k = 1; k < 8; k++) {
  2565. ac_val2[k] = block[k << v->left_blk_sh];
  2566. ac_val2[k + 8] = block[k << v->top_blk_sh];
  2567. }
  2568. /* scale AC coeffs */
  2569. for (k = 1; k < 64; k++)
  2570. if (block[k]) {
  2571. block[k] *= scale;
  2572. if (!v->pquantizer)
  2573. block[k] += (block[k] < 0) ? -v->pq : v->pq;
  2574. }
  2575. if (s->ac_pred) i = 63;
  2576. }
  2577. not_coded:
  2578. if (!coded) {
  2579. int k, scale;
  2580. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  2581. ac_val2 = ac_val;
  2582. i = 0;
  2583. scale = v->pq * 2 + v->halfpq;
  2584. memset(ac_val2, 0, 16 * 2);
  2585. if (dc_pred_dir) { // left
  2586. ac_val -= 16;
  2587. if (s->ac_pred)
  2588. memcpy(ac_val2, ac_val, 8 * 2);
  2589. } else { // top
  2590. ac_val -= 16 * s->block_wrap[n];
  2591. if (s->ac_pred)
  2592. memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
  2593. }
  2594. /* apply AC prediction if needed */
  2595. if (s->ac_pred) {
  2596. if (dc_pred_dir) { //left
  2597. for (k = 1; k < 8; k++) {
  2598. block[k << v->left_blk_sh] = ac_val[k] * scale;
  2599. if (!v->pquantizer && block[k << v->left_blk_sh])
  2600. block[k << v->left_blk_sh] += (block[k << v->left_blk_sh] < 0) ? -v->pq : v->pq;
  2601. }
  2602. } else { // top
  2603. for (k = 1; k < 8; k++) {
  2604. block[k << v->top_blk_sh] = ac_val[k + 8] * scale;
  2605. if (!v->pquantizer && block[k << v->top_blk_sh])
  2606. block[k << v->top_blk_sh] += (block[k << v->top_blk_sh] < 0) ? -v->pq : v->pq;
  2607. }
  2608. }
  2609. i = 63;
  2610. }
  2611. }
  2612. s->block_last_index[n] = i;
  2613. return 0;
  2614. }
  2615. /** Decode intra block in intra frames - should be faster than decode_intra_block
  2616. * @param v VC1Context
  2617. * @param block block to decode
  2618. * @param[in] n subblock number
  2619. * @param coded are AC coeffs present or not
  2620. * @param codingset set of VLC to decode data
  2621. * @param mquant quantizer value for this macroblock
  2622. */
  2623. static int vc1_decode_i_block_adv(VC1Context *v, DCTELEM block[64], int n,
  2624. int coded, int codingset, int mquant)
  2625. {
  2626. GetBitContext *gb = &v->s.gb;
  2627. MpegEncContext *s = &v->s;
  2628. int dc_pred_dir = 0; /* Direction of the DC prediction used */
  2629. int i;
  2630. int16_t *dc_val;
  2631. int16_t *ac_val, *ac_val2;
  2632. int dcdiff;
  2633. int a_avail = v->a_avail, c_avail = v->c_avail;
  2634. int use_pred = s->ac_pred;
  2635. int scale;
  2636. int q1, q2 = 0;
  2637. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  2638. /* Get DC differential */
  2639. if (n < 4) {
  2640. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2641. } else {
  2642. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2643. }
  2644. if (dcdiff < 0) {
  2645. av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
  2646. return -1;
  2647. }
  2648. if (dcdiff) {
  2649. if (dcdiff == 119 /* ESC index value */) {
  2650. /* TODO: Optimize */
  2651. if (mquant == 1) dcdiff = get_bits(gb, 10);
  2652. else if (mquant == 2) dcdiff = get_bits(gb, 9);
  2653. else dcdiff = get_bits(gb, 8);
  2654. } else {
  2655. if (mquant == 1)
  2656. dcdiff = (dcdiff << 2) + get_bits(gb, 2) - 3;
  2657. else if (mquant == 2)
  2658. dcdiff = (dcdiff << 1) + get_bits1(gb) - 1;
  2659. }
  2660. if (get_bits1(gb))
  2661. dcdiff = -dcdiff;
  2662. }
  2663. /* Prediction */
  2664. dcdiff += vc1_pred_dc(&v->s, v->overlap, mquant, n, v->a_avail, v->c_avail, &dc_val, &dc_pred_dir);
  2665. *dc_val = dcdiff;
  2666. /* Store the quantized DC coeff, used for prediction */
  2667. if (n < 4) {
  2668. block[0] = dcdiff * s->y_dc_scale;
  2669. } else {
  2670. block[0] = dcdiff * s->c_dc_scale;
  2671. }
  2672. //AC Decoding
  2673. i = 1;
  2674. /* check if AC is needed at all */
  2675. if (!a_avail && !c_avail)
  2676. use_pred = 0;
  2677. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  2678. ac_val2 = ac_val;
  2679. scale = mquant * 2 + ((mquant == v->pq) ? v->halfpq : 0);
  2680. if (dc_pred_dir) // left
  2681. ac_val -= 16;
  2682. else // top
  2683. ac_val -= 16 * s->block_wrap[n];
  2684. q1 = s->current_picture.f.qscale_table[mb_pos];
  2685. if ( dc_pred_dir && c_avail && mb_pos)
  2686. q2 = s->current_picture.f.qscale_table[mb_pos - 1];
  2687. if (!dc_pred_dir && a_avail && mb_pos >= s->mb_stride)
  2688. q2 = s->current_picture.f.qscale_table[mb_pos - s->mb_stride];
  2689. if ( dc_pred_dir && n == 1)
  2690. q2 = q1;
  2691. if (!dc_pred_dir && n == 2)
  2692. q2 = q1;
  2693. if (n == 3)
  2694. q2 = q1;
  2695. if (coded) {
  2696. int last = 0, skip, value;
  2697. const uint8_t *zz_table;
  2698. int k;
  2699. if (v->s.ac_pred) {
  2700. if (!use_pred && v->fcm == ILACE_FRAME) {
  2701. zz_table = v->zzi_8x8;
  2702. } else {
  2703. if (!dc_pred_dir) // top
  2704. zz_table = v->zz_8x8[2];
  2705. else // left
  2706. zz_table = v->zz_8x8[3];
  2707. }
  2708. } else {
  2709. if (v->fcm != ILACE_FRAME)
  2710. zz_table = v->zz_8x8[1];
  2711. else
  2712. zz_table = v->zzi_8x8;
  2713. }
  2714. while (!last) {
  2715. vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
  2716. i += skip;
  2717. if (i > 63)
  2718. break;
  2719. block[zz_table[i++]] = value;
  2720. }
  2721. /* apply AC prediction if needed */
  2722. if (use_pred) {
  2723. /* scale predictors if needed*/
  2724. if (q2 && q1 != q2) {
  2725. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2726. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2727. if (dc_pred_dir) { // left
  2728. for (k = 1; k < 8; k++)
  2729. block[k << v->left_blk_sh] += (ac_val[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2730. } else { // top
  2731. for (k = 1; k < 8; k++)
  2732. block[k << v->top_blk_sh] += (ac_val[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2733. }
  2734. } else {
  2735. if (dc_pred_dir) { //left
  2736. for (k = 1; k < 8; k++)
  2737. block[k << v->left_blk_sh] += ac_val[k];
  2738. } else { //top
  2739. for (k = 1; k < 8; k++)
  2740. block[k << v->top_blk_sh] += ac_val[k + 8];
  2741. }
  2742. }
  2743. }
  2744. /* save AC coeffs for further prediction */
  2745. for (k = 1; k < 8; k++) {
  2746. ac_val2[k ] = block[k << v->left_blk_sh];
  2747. ac_val2[k + 8] = block[k << v->top_blk_sh];
  2748. }
  2749. /* scale AC coeffs */
  2750. for (k = 1; k < 64; k++)
  2751. if (block[k]) {
  2752. block[k] *= scale;
  2753. if (!v->pquantizer)
  2754. block[k] += (block[k] < 0) ? -mquant : mquant;
  2755. }
  2756. if (use_pred) i = 63;
  2757. } else { // no AC coeffs
  2758. int k;
  2759. memset(ac_val2, 0, 16 * 2);
  2760. if (dc_pred_dir) { // left
  2761. if (use_pred) {
  2762. memcpy(ac_val2, ac_val, 8 * 2);
  2763. if (q2 && q1 != q2) {
  2764. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2765. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2766. for (k = 1; k < 8; k++)
  2767. ac_val2[k] = (ac_val2[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2768. }
  2769. }
  2770. } else { // top
  2771. if (use_pred) {
  2772. memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
  2773. if (q2 && q1 != q2) {
  2774. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2775. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2776. for (k = 1; k < 8; k++)
  2777. ac_val2[k + 8] = (ac_val2[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2778. }
  2779. }
  2780. }
  2781. /* apply AC prediction if needed */
  2782. if (use_pred) {
  2783. if (dc_pred_dir) { // left
  2784. for (k = 1; k < 8; k++) {
  2785. block[k << v->left_blk_sh] = ac_val2[k] * scale;
  2786. if (!v->pquantizer && block[k << v->left_blk_sh])
  2787. block[k << v->left_blk_sh] += (block[k << v->left_blk_sh] < 0) ? -mquant : mquant;
  2788. }
  2789. } else { // top
  2790. for (k = 1; k < 8; k++) {
  2791. block[k << v->top_blk_sh] = ac_val2[k + 8] * scale;
  2792. if (!v->pquantizer && block[k << v->top_blk_sh])
  2793. block[k << v->top_blk_sh] += (block[k << v->top_blk_sh] < 0) ? -mquant : mquant;
  2794. }
  2795. }
  2796. i = 63;
  2797. }
  2798. }
  2799. s->block_last_index[n] = i;
  2800. return 0;
  2801. }
  2802. /** Decode intra block in inter frames - more generic version than vc1_decode_i_block
  2803. * @param v VC1Context
  2804. * @param block block to decode
  2805. * @param[in] n subblock index
  2806. * @param coded are AC coeffs present or not
  2807. * @param mquant block quantizer
  2808. * @param codingset set of VLC to decode data
  2809. */
  2810. static int vc1_decode_intra_block(VC1Context *v, DCTELEM block[64], int n,
  2811. int coded, int mquant, int codingset)
  2812. {
  2813. GetBitContext *gb = &v->s.gb;
  2814. MpegEncContext *s = &v->s;
  2815. int dc_pred_dir = 0; /* Direction of the DC prediction used */
  2816. int i;
  2817. int16_t *dc_val;
  2818. int16_t *ac_val, *ac_val2;
  2819. int dcdiff;
  2820. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  2821. int a_avail = v->a_avail, c_avail = v->c_avail;
  2822. int use_pred = s->ac_pred;
  2823. int scale;
  2824. int q1, q2 = 0;
  2825. s->dsp.clear_block(block);
  2826. /* XXX: Guard against dumb values of mquant */
  2827. mquant = (mquant < 1) ? 0 : ((mquant > 31) ? 31 : mquant);
  2828. /* Set DC scale - y and c use the same */
  2829. s->y_dc_scale = s->y_dc_scale_table[mquant];
  2830. s->c_dc_scale = s->c_dc_scale_table[mquant];
  2831. /* Get DC differential */
  2832. if (n < 4) {
  2833. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2834. } else {
  2835. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2836. }
  2837. if (dcdiff < 0) {
  2838. av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
  2839. return -1;
  2840. }
  2841. if (dcdiff) {
  2842. if (dcdiff == 119 /* ESC index value */) {
  2843. /* TODO: Optimize */
  2844. if (mquant == 1) dcdiff = get_bits(gb, 10);
  2845. else if (mquant == 2) dcdiff = get_bits(gb, 9);
  2846. else dcdiff = get_bits(gb, 8);
  2847. } else {
  2848. if (mquant == 1)
  2849. dcdiff = (dcdiff << 2) + get_bits(gb, 2) - 3;
  2850. else if (mquant == 2)
  2851. dcdiff = (dcdiff << 1) + get_bits1(gb) - 1;
  2852. }
  2853. if (get_bits1(gb))
  2854. dcdiff = -dcdiff;
  2855. }
  2856. /* Prediction */
  2857. dcdiff += vc1_pred_dc(&v->s, v->overlap, mquant, n, a_avail, c_avail, &dc_val, &dc_pred_dir);
  2858. *dc_val = dcdiff;
  2859. /* Store the quantized DC coeff, used for prediction */
  2860. if (n < 4) {
  2861. block[0] = dcdiff * s->y_dc_scale;
  2862. } else {
  2863. block[0] = dcdiff * s->c_dc_scale;
  2864. }
  2865. //AC Decoding
  2866. i = 1;
  2867. /* check if AC is needed at all and adjust direction if needed */
  2868. if (!a_avail) dc_pred_dir = 1;
  2869. if (!c_avail) dc_pred_dir = 0;
  2870. if (!a_avail && !c_avail) use_pred = 0;
  2871. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  2872. ac_val2 = ac_val;
  2873. scale = mquant * 2 + v->halfpq;
  2874. if (dc_pred_dir) //left
  2875. ac_val -= 16;
  2876. else //top
  2877. ac_val -= 16 * s->block_wrap[n];
  2878. q1 = s->current_picture.f.qscale_table[mb_pos];
  2879. if (dc_pred_dir && c_avail && mb_pos)
  2880. q2 = s->current_picture.f.qscale_table[mb_pos - 1];
  2881. if (!dc_pred_dir && a_avail && mb_pos >= s->mb_stride)
  2882. q2 = s->current_picture.f.qscale_table[mb_pos - s->mb_stride];
  2883. if ( dc_pred_dir && n == 1)
  2884. q2 = q1;
  2885. if (!dc_pred_dir && n == 2)
  2886. q2 = q1;
  2887. if (n == 3) q2 = q1;
  2888. if (coded) {
  2889. int last = 0, skip, value;
  2890. int k;
  2891. while (!last) {
  2892. vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
  2893. i += skip;
  2894. if (i > 63)
  2895. break;
  2896. if (v->fcm == PROGRESSIVE)
  2897. block[v->zz_8x8[0][i++]] = value;
  2898. else {
  2899. if (use_pred && (v->fcm == ILACE_FRAME)) {
  2900. if (!dc_pred_dir) // top
  2901. block[v->zz_8x8[2][i++]] = value;
  2902. else // left
  2903. block[v->zz_8x8[3][i++]] = value;
  2904. } else {
  2905. block[v->zzi_8x8[i++]] = value;
  2906. }
  2907. }
  2908. }
  2909. /* apply AC prediction if needed */
  2910. if (use_pred) {
  2911. /* scale predictors if needed*/
  2912. if (q2 && q1 != q2) {
  2913. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2914. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2915. if (dc_pred_dir) { // left
  2916. for (k = 1; k < 8; k++)
  2917. block[k << v->left_blk_sh] += (ac_val[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2918. } else { //top
  2919. for (k = 1; k < 8; k++)
  2920. block[k << v->top_blk_sh] += (ac_val[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2921. }
  2922. } else {
  2923. if (dc_pred_dir) { // left
  2924. for (k = 1; k < 8; k++)
  2925. block[k << v->left_blk_sh] += ac_val[k];
  2926. } else { // top
  2927. for (k = 1; k < 8; k++)
  2928. block[k << v->top_blk_sh] += ac_val[k + 8];
  2929. }
  2930. }
  2931. }
  2932. /* save AC coeffs for further prediction */
  2933. for (k = 1; k < 8; k++) {
  2934. ac_val2[k ] = block[k << v->left_blk_sh];
  2935. ac_val2[k + 8] = block[k << v->top_blk_sh];
  2936. }
  2937. /* scale AC coeffs */
  2938. for (k = 1; k < 64; k++)
  2939. if (block[k]) {
  2940. block[k] *= scale;
  2941. if (!v->pquantizer)
  2942. block[k] += (block[k] < 0) ? -mquant : mquant;
  2943. }
  2944. if (use_pred) i = 63;
  2945. } else { // no AC coeffs
  2946. int k;
  2947. memset(ac_val2, 0, 16 * 2);
  2948. if (dc_pred_dir) { // left
  2949. if (use_pred) {
  2950. memcpy(ac_val2, ac_val, 8 * 2);
  2951. if (q2 && q1 != q2) {
  2952. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2953. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2954. for (k = 1; k < 8; k++)
  2955. ac_val2[k] = (ac_val2[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2956. }
  2957. }
  2958. } else { // top
  2959. if (use_pred) {
  2960. memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
  2961. if (q2 && q1 != q2) {
  2962. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2963. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2964. for (k = 1; k < 8; k++)
  2965. ac_val2[k + 8] = (ac_val2[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2966. }
  2967. }
  2968. }
  2969. /* apply AC prediction if needed */
  2970. if (use_pred) {
  2971. if (dc_pred_dir) { // left
  2972. for (k = 1; k < 8; k++) {
  2973. block[k << v->left_blk_sh] = ac_val2[k] * scale;
  2974. if (!v->pquantizer && block[k << v->left_blk_sh])
  2975. block[k << v->left_blk_sh] += (block[k << v->left_blk_sh] < 0) ? -mquant : mquant;
  2976. }
  2977. } else { // top
  2978. for (k = 1; k < 8; k++) {
  2979. block[k << v->top_blk_sh] = ac_val2[k + 8] * scale;
  2980. if (!v->pquantizer && block[k << v->top_blk_sh])
  2981. block[k << v->top_blk_sh] += (block[k << v->top_blk_sh] < 0) ? -mquant : mquant;
  2982. }
  2983. }
  2984. i = 63;
  2985. }
  2986. }
  2987. s->block_last_index[n] = i;
  2988. return 0;
  2989. }
  2990. /** Decode P block
  2991. */
  2992. static int vc1_decode_p_block(VC1Context *v, DCTELEM block[64], int n,
  2993. int mquant, int ttmb, int first_block,
  2994. uint8_t *dst, int linesize, int skip_block,
  2995. int *ttmb_out)
  2996. {
  2997. MpegEncContext *s = &v->s;
  2998. GetBitContext *gb = &s->gb;
  2999. int i, j;
  3000. int subblkpat = 0;
  3001. int scale, off, idx, last, skip, value;
  3002. int ttblk = ttmb & 7;
  3003. int pat = 0;
  3004. s->dsp.clear_block(block);
  3005. if (ttmb == -1) {
  3006. ttblk = ff_vc1_ttblk_to_tt[v->tt_index][get_vlc2(gb, ff_vc1_ttblk_vlc[v->tt_index].table, VC1_TTBLK_VLC_BITS, 1)];
  3007. }
  3008. if (ttblk == TT_4X4) {
  3009. subblkpat = ~(get_vlc2(gb, ff_vc1_subblkpat_vlc[v->tt_index].table, VC1_SUBBLKPAT_VLC_BITS, 1) + 1);
  3010. }
  3011. if ((ttblk != TT_8X8 && ttblk != TT_4X4)
  3012. && ((v->ttmbf || (ttmb != -1 && (ttmb & 8) && !first_block))
  3013. || (!v->res_rtm_flag && !first_block))) {
  3014. subblkpat = decode012(gb);
  3015. if (subblkpat)
  3016. subblkpat ^= 3; // swap decoded pattern bits
  3017. if (ttblk == TT_8X4_TOP || ttblk == TT_8X4_BOTTOM)
  3018. ttblk = TT_8X4;
  3019. if (ttblk == TT_4X8_RIGHT || ttblk == TT_4X8_LEFT)
  3020. ttblk = TT_4X8;
  3021. }
  3022. scale = 2 * mquant + ((v->pq == mquant) ? v->halfpq : 0);
  3023. // convert transforms like 8X4_TOP to generic TT and SUBBLKPAT
  3024. if (ttblk == TT_8X4_TOP || ttblk == TT_8X4_BOTTOM) {
  3025. subblkpat = 2 - (ttblk == TT_8X4_TOP);
  3026. ttblk = TT_8X4;
  3027. }
  3028. if (ttblk == TT_4X8_RIGHT || ttblk == TT_4X8_LEFT) {
  3029. subblkpat = 2 - (ttblk == TT_4X8_LEFT);
  3030. ttblk = TT_4X8;
  3031. }
  3032. switch (ttblk) {
  3033. case TT_8X8:
  3034. pat = 0xF;
  3035. i = 0;
  3036. last = 0;
  3037. while (!last) {
  3038. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  3039. i += skip;
  3040. if (i > 63)
  3041. break;
  3042. if (!v->fcm)
  3043. idx = v->zz_8x8[0][i++];
  3044. else
  3045. idx = v->zzi_8x8[i++];
  3046. block[idx] = value * scale;
  3047. if (!v->pquantizer)
  3048. block[idx] += (block[idx] < 0) ? -mquant : mquant;
  3049. }
  3050. if (!skip_block) {
  3051. if (i == 1)
  3052. v->vc1dsp.vc1_inv_trans_8x8_dc(dst, linesize, block);
  3053. else {
  3054. v->vc1dsp.vc1_inv_trans_8x8(block);
  3055. s->dsp.add_pixels_clamped(block, dst, linesize);
  3056. }
  3057. }
  3058. break;
  3059. case TT_4X4:
  3060. pat = ~subblkpat & 0xF;
  3061. for (j = 0; j < 4; j++) {
  3062. last = subblkpat & (1 << (3 - j));
  3063. i = 0;
  3064. off = (j & 1) * 4 + (j & 2) * 16;
  3065. while (!last) {
  3066. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  3067. i += skip;
  3068. if (i > 15)
  3069. break;
  3070. if (!v->fcm)
  3071. idx = ff_vc1_simple_progressive_4x4_zz[i++];
  3072. else
  3073. idx = ff_vc1_adv_interlaced_4x4_zz[i++];
  3074. block[idx + off] = value * scale;
  3075. if (!v->pquantizer)
  3076. block[idx + off] += (block[idx + off] < 0) ? -mquant : mquant;
  3077. }
  3078. if (!(subblkpat & (1 << (3 - j))) && !skip_block) {
  3079. if (i == 1)
  3080. v->vc1dsp.vc1_inv_trans_4x4_dc(dst + (j & 1) * 4 + (j & 2) * 2 * linesize, linesize, block + off);
  3081. else
  3082. v->vc1dsp.vc1_inv_trans_4x4(dst + (j & 1) * 4 + (j & 2) * 2 * linesize, linesize, block + off);
  3083. }
  3084. }
  3085. break;
  3086. case TT_8X4:
  3087. pat = ~((subblkpat & 2) * 6 + (subblkpat & 1) * 3) & 0xF;
  3088. for (j = 0; j < 2; j++) {
  3089. last = subblkpat & (1 << (1 - j));
  3090. i = 0;
  3091. off = j * 32;
  3092. while (!last) {
  3093. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  3094. i += skip;
  3095. if (i > 31)
  3096. break;
  3097. if (!v->fcm)
  3098. idx = v->zz_8x4[i++] + off;
  3099. else
  3100. idx = ff_vc1_adv_interlaced_8x4_zz[i++] + off;
  3101. block[idx] = value * scale;
  3102. if (!v->pquantizer)
  3103. block[idx] += (block[idx] < 0) ? -mquant : mquant;
  3104. }
  3105. if (!(subblkpat & (1 << (1 - j))) && !skip_block) {
  3106. if (i == 1)
  3107. v->vc1dsp.vc1_inv_trans_8x4_dc(dst + j * 4 * linesize, linesize, block + off);
  3108. else
  3109. v->vc1dsp.vc1_inv_trans_8x4(dst + j * 4 * linesize, linesize, block + off);
  3110. }
  3111. }
  3112. break;
  3113. case TT_4X8:
  3114. pat = ~(subblkpat * 5) & 0xF;
  3115. for (j = 0; j < 2; j++) {
  3116. last = subblkpat & (1 << (1 - j));
  3117. i = 0;
  3118. off = j * 4;
  3119. while (!last) {
  3120. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  3121. i += skip;
  3122. if (i > 31)
  3123. break;
  3124. if (!v->fcm)
  3125. idx = v->zz_4x8[i++] + off;
  3126. else
  3127. idx = ff_vc1_adv_interlaced_4x8_zz[i++] + off;
  3128. block[idx] = value * scale;
  3129. if (!v->pquantizer)
  3130. block[idx] += (block[idx] < 0) ? -mquant : mquant;
  3131. }
  3132. if (!(subblkpat & (1 << (1 - j))) && !skip_block) {
  3133. if (i == 1)
  3134. v->vc1dsp.vc1_inv_trans_4x8_dc(dst + j * 4, linesize, block + off);
  3135. else
  3136. v->vc1dsp.vc1_inv_trans_4x8(dst + j*4, linesize, block + off);
  3137. }
  3138. }
  3139. break;
  3140. }
  3141. if (ttmb_out)
  3142. *ttmb_out |= ttblk << (n * 4);
  3143. return pat;
  3144. }
  3145. /** @} */ // Macroblock group
  3146. static const int size_table [6] = { 0, 2, 3, 4, 5, 8 };
  3147. static const int offset_table[6] = { 0, 1, 3, 7, 15, 31 };
  3148. static av_always_inline void vc1_apply_p_v_loop_filter(VC1Context *v, int block_num)
  3149. {
  3150. MpegEncContext *s = &v->s;
  3151. int mb_cbp = v->cbp[s->mb_x - s->mb_stride],
  3152. block_cbp = mb_cbp >> (block_num * 4), bottom_cbp,
  3153. mb_is_intra = v->is_intra[s->mb_x - s->mb_stride],
  3154. block_is_intra = mb_is_intra >> (block_num * 4), bottom_is_intra;
  3155. int idx, linesize = block_num > 3 ? s->uvlinesize : s->linesize, ttblk;
  3156. uint8_t *dst;
  3157. if (block_num > 3) {
  3158. dst = s->dest[block_num - 3];
  3159. } else {
  3160. dst = s->dest[0] + (block_num & 1) * 8 + ((block_num & 2) * 4 - 8) * linesize;
  3161. }
  3162. if (s->mb_y != s->end_mb_y || block_num < 2) {
  3163. int16_t (*mv)[2];
  3164. int mv_stride;
  3165. if (block_num > 3) {
  3166. bottom_cbp = v->cbp[s->mb_x] >> (block_num * 4);
  3167. bottom_is_intra = v->is_intra[s->mb_x] >> (block_num * 4);
  3168. mv = &v->luma_mv[s->mb_x - s->mb_stride];
  3169. mv_stride = s->mb_stride;
  3170. } else {
  3171. bottom_cbp = (block_num < 2) ? (mb_cbp >> ((block_num + 2) * 4))
  3172. : (v->cbp[s->mb_x] >> ((block_num - 2) * 4));
  3173. bottom_is_intra = (block_num < 2) ? (mb_is_intra >> ((block_num + 2) * 4))
  3174. : (v->is_intra[s->mb_x] >> ((block_num - 2) * 4));
  3175. mv_stride = s->b8_stride;
  3176. mv = &s->current_picture.f.motion_val[0][s->block_index[block_num] - 2 * mv_stride];
  3177. }
  3178. if (bottom_is_intra & 1 || block_is_intra & 1 ||
  3179. mv[0][0] != mv[mv_stride][0] || mv[0][1] != mv[mv_stride][1]) {
  3180. v->vc1dsp.vc1_v_loop_filter8(dst, linesize, v->pq);
  3181. } else {
  3182. idx = ((bottom_cbp >> 2) | block_cbp) & 3;
  3183. if (idx == 3) {
  3184. v->vc1dsp.vc1_v_loop_filter8(dst, linesize, v->pq);
  3185. } else if (idx) {
  3186. if (idx == 1)
  3187. v->vc1dsp.vc1_v_loop_filter4(dst + 4, linesize, v->pq);
  3188. else
  3189. v->vc1dsp.vc1_v_loop_filter4(dst, linesize, v->pq);
  3190. }
  3191. }
  3192. }
  3193. dst -= 4 * linesize;
  3194. ttblk = (v->ttblk[s->mb_x - s->mb_stride] >> (block_num * 4)) & 0xF;
  3195. if (ttblk == TT_4X4 || ttblk == TT_8X4) {
  3196. idx = (block_cbp | (block_cbp >> 2)) & 3;
  3197. if (idx == 3) {
  3198. v->vc1dsp.vc1_v_loop_filter8(dst, linesize, v->pq);
  3199. } else if (idx) {
  3200. if (idx == 1)
  3201. v->vc1dsp.vc1_v_loop_filter4(dst + 4, linesize, v->pq);
  3202. else
  3203. v->vc1dsp.vc1_v_loop_filter4(dst, linesize, v->pq);
  3204. }
  3205. }
  3206. }
  3207. static av_always_inline void vc1_apply_p_h_loop_filter(VC1Context *v, int block_num)
  3208. {
  3209. MpegEncContext *s = &v->s;
  3210. int mb_cbp = v->cbp[s->mb_x - 1 - s->mb_stride],
  3211. block_cbp = mb_cbp >> (block_num * 4), right_cbp,
  3212. mb_is_intra = v->is_intra[s->mb_x - 1 - s->mb_stride],
  3213. block_is_intra = mb_is_intra >> (block_num * 4), right_is_intra;
  3214. int idx, linesize = block_num > 3 ? s->uvlinesize : s->linesize, ttblk;
  3215. uint8_t *dst;
  3216. if (block_num > 3) {
  3217. dst = s->dest[block_num - 3] - 8 * linesize;
  3218. } else {
  3219. dst = s->dest[0] + (block_num & 1) * 8 + ((block_num & 2) * 4 - 16) * linesize - 8;
  3220. }
  3221. if (s->mb_x != s->mb_width || !(block_num & 5)) {
  3222. int16_t (*mv)[2];
  3223. if (block_num > 3) {
  3224. right_cbp = v->cbp[s->mb_x - s->mb_stride] >> (block_num * 4);
  3225. right_is_intra = v->is_intra[s->mb_x - s->mb_stride] >> (block_num * 4);
  3226. mv = &v->luma_mv[s->mb_x - s->mb_stride - 1];
  3227. } else {
  3228. right_cbp = (block_num & 1) ? (v->cbp[s->mb_x - s->mb_stride] >> ((block_num - 1) * 4))
  3229. : (mb_cbp >> ((block_num + 1) * 4));
  3230. right_is_intra = (block_num & 1) ? (v->is_intra[s->mb_x - s->mb_stride] >> ((block_num - 1) * 4))
  3231. : (mb_is_intra >> ((block_num + 1) * 4));
  3232. mv = &s->current_picture.f.motion_val[0][s->block_index[block_num] - s->b8_stride * 2 - 2];
  3233. }
  3234. if (block_is_intra & 1 || right_is_intra & 1 || mv[0][0] != mv[1][0] || mv[0][1] != mv[1][1]) {
  3235. v->vc1dsp.vc1_h_loop_filter8(dst, linesize, v->pq);
  3236. } else {
  3237. idx = ((right_cbp >> 1) | block_cbp) & 5; // FIXME check
  3238. if (idx == 5) {
  3239. v->vc1dsp.vc1_h_loop_filter8(dst, linesize, v->pq);
  3240. } else if (idx) {
  3241. if (idx == 1)
  3242. v->vc1dsp.vc1_h_loop_filter4(dst + 4 * linesize, linesize, v->pq);
  3243. else
  3244. v->vc1dsp.vc1_h_loop_filter4(dst, linesize, v->pq);
  3245. }
  3246. }
  3247. }
  3248. dst -= 4;
  3249. ttblk = (v->ttblk[s->mb_x - s->mb_stride - 1] >> (block_num * 4)) & 0xf;
  3250. if (ttblk == TT_4X4 || ttblk == TT_4X8) {
  3251. idx = (block_cbp | (block_cbp >> 1)) & 5;
  3252. if (idx == 5) {
  3253. v->vc1dsp.vc1_h_loop_filter8(dst, linesize, v->pq);
  3254. } else if (idx) {
  3255. if (idx == 1)
  3256. v->vc1dsp.vc1_h_loop_filter4(dst + linesize * 4, linesize, v->pq);
  3257. else
  3258. v->vc1dsp.vc1_h_loop_filter4(dst, linesize, v->pq);
  3259. }
  3260. }
  3261. }
  3262. static void vc1_apply_p_loop_filter(VC1Context *v)
  3263. {
  3264. MpegEncContext *s = &v->s;
  3265. int i;
  3266. for (i = 0; i < 6; i++) {
  3267. vc1_apply_p_v_loop_filter(v, i);
  3268. }
  3269. /* V always precedes H, therefore we run H one MB before V;
  3270. * at the end of a row, we catch up to complete the row */
  3271. if (s->mb_x) {
  3272. for (i = 0; i < 6; i++) {
  3273. vc1_apply_p_h_loop_filter(v, i);
  3274. }
  3275. if (s->mb_x == s->mb_width - 1) {
  3276. s->mb_x++;
  3277. ff_update_block_index(s);
  3278. for (i = 0; i < 6; i++) {
  3279. vc1_apply_p_h_loop_filter(v, i);
  3280. }
  3281. }
  3282. }
  3283. }
  3284. /** Decode one P-frame MB
  3285. */
  3286. static int vc1_decode_p_mb(VC1Context *v)
  3287. {
  3288. MpegEncContext *s = &v->s;
  3289. GetBitContext *gb = &s->gb;
  3290. int i, j;
  3291. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  3292. int cbp; /* cbp decoding stuff */
  3293. int mqdiff, mquant; /* MB quantization */
  3294. int ttmb = v->ttfrm; /* MB Transform type */
  3295. int mb_has_coeffs = 1; /* last_flag */
  3296. int dmv_x, dmv_y; /* Differential MV components */
  3297. int index, index1; /* LUT indexes */
  3298. int val, sign; /* temp values */
  3299. int first_block = 1;
  3300. int dst_idx, off;
  3301. int skipped, fourmv;
  3302. int block_cbp = 0, pat, block_tt = 0, block_intra = 0;
  3303. mquant = v->pq; /* lossy initialization */
  3304. if (v->mv_type_is_raw)
  3305. fourmv = get_bits1(gb);
  3306. else
  3307. fourmv = v->mv_type_mb_plane[mb_pos];
  3308. if (v->skip_is_raw)
  3309. skipped = get_bits1(gb);
  3310. else
  3311. skipped = v->s.mbskip_table[mb_pos];
  3312. if (!fourmv) { /* 1MV mode */
  3313. if (!skipped) {
  3314. GET_MVDATA(dmv_x, dmv_y);
  3315. if (s->mb_intra) {
  3316. s->current_picture.f.motion_val[1][s->block_index[0]][0] = 0;
  3317. s->current_picture.f.motion_val[1][s->block_index[0]][1] = 0;
  3318. }
  3319. s->current_picture.f.mb_type[mb_pos] = s->mb_intra ? MB_TYPE_INTRA : MB_TYPE_16x16;
  3320. vc1_pred_mv(v, 0, dmv_x, dmv_y, 1, v->range_x, v->range_y, v->mb_type[0], 0, 0);
  3321. /* FIXME Set DC val for inter block ? */
  3322. if (s->mb_intra && !mb_has_coeffs) {
  3323. GET_MQUANT();
  3324. s->ac_pred = get_bits1(gb);
  3325. cbp = 0;
  3326. } else if (mb_has_coeffs) {
  3327. if (s->mb_intra)
  3328. s->ac_pred = get_bits1(gb);
  3329. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  3330. GET_MQUANT();
  3331. } else {
  3332. mquant = v->pq;
  3333. cbp = 0;
  3334. }
  3335. s->current_picture.f.qscale_table[mb_pos] = mquant;
  3336. if (!v->ttmbf && !s->mb_intra && mb_has_coeffs)
  3337. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table,
  3338. VC1_TTMB_VLC_BITS, 2);
  3339. if (!s->mb_intra) vc1_mc_1mv(v, 0);
  3340. dst_idx = 0;
  3341. for (i = 0; i < 6; i++) {
  3342. s->dc_val[0][s->block_index[i]] = 0;
  3343. dst_idx += i >> 2;
  3344. val = ((cbp >> (5 - i)) & 1);
  3345. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  3346. v->mb_type[0][s->block_index[i]] = s->mb_intra;
  3347. if (s->mb_intra) {
  3348. /* check if prediction blocks A and C are available */
  3349. v->a_avail = v->c_avail = 0;
  3350. if (i == 2 || i == 3 || !s->first_slice_line)
  3351. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  3352. if (i == 1 || i == 3 || s->mb_x)
  3353. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  3354. vc1_decode_intra_block(v, s->block[i], i, val, mquant,
  3355. (i & 4) ? v->codingset2 : v->codingset);
  3356. if ((i>3) && (s->flags & CODEC_FLAG_GRAY))
  3357. continue;
  3358. v->vc1dsp.vc1_inv_trans_8x8(s->block[i]);
  3359. if (v->rangeredfrm)
  3360. for (j = 0; j < 64; j++)
  3361. s->block[i][j] <<= 1;
  3362. s->dsp.put_signed_pixels_clamped(s->block[i], s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize);
  3363. if (v->pq >= 9 && v->overlap) {
  3364. if (v->c_avail)
  3365. v->vc1dsp.vc1_h_overlap(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize);
  3366. if (v->a_avail)
  3367. v->vc1dsp.vc1_v_overlap(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize);
  3368. }
  3369. block_cbp |= 0xF << (i << 2);
  3370. block_intra |= 1 << i;
  3371. } else if (val) {
  3372. pat = vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block,
  3373. s->dest[dst_idx] + off, (i & 4) ? s->uvlinesize : s->linesize,
  3374. (i & 4) && (s->flags & CODEC_FLAG_GRAY), &block_tt);
  3375. block_cbp |= pat << (i << 2);
  3376. if (!v->ttmbf && ttmb < 8)
  3377. ttmb = -1;
  3378. first_block = 0;
  3379. }
  3380. }
  3381. } else { // skipped
  3382. s->mb_intra = 0;
  3383. for (i = 0; i < 6; i++) {
  3384. v->mb_type[0][s->block_index[i]] = 0;
  3385. s->dc_val[0][s->block_index[i]] = 0;
  3386. }
  3387. s->current_picture.f.mb_type[mb_pos] = MB_TYPE_SKIP;
  3388. s->current_picture.f.qscale_table[mb_pos] = 0;
  3389. vc1_pred_mv(v, 0, 0, 0, 1, v->range_x, v->range_y, v->mb_type[0], 0, 0);
  3390. vc1_mc_1mv(v, 0);
  3391. }
  3392. } else { // 4MV mode
  3393. if (!skipped /* unskipped MB */) {
  3394. int intra_count = 0, coded_inter = 0;
  3395. int is_intra[6], is_coded[6];
  3396. /* Get CBPCY */
  3397. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  3398. for (i = 0; i < 6; i++) {
  3399. val = ((cbp >> (5 - i)) & 1);
  3400. s->dc_val[0][s->block_index[i]] = 0;
  3401. s->mb_intra = 0;
  3402. if (i < 4) {
  3403. dmv_x = dmv_y = 0;
  3404. s->mb_intra = 0;
  3405. mb_has_coeffs = 0;
  3406. if (val) {
  3407. GET_MVDATA(dmv_x, dmv_y);
  3408. }
  3409. vc1_pred_mv(v, i, dmv_x, dmv_y, 0, v->range_x, v->range_y, v->mb_type[0], 0, 0);
  3410. if (!s->mb_intra)
  3411. vc1_mc_4mv_luma(v, i, 0);
  3412. intra_count += s->mb_intra;
  3413. is_intra[i] = s->mb_intra;
  3414. is_coded[i] = mb_has_coeffs;
  3415. }
  3416. if (i & 4) {
  3417. is_intra[i] = (intra_count >= 3);
  3418. is_coded[i] = val;
  3419. }
  3420. if (i == 4)
  3421. vc1_mc_4mv_chroma(v, 0);
  3422. v->mb_type[0][s->block_index[i]] = is_intra[i];
  3423. if (!coded_inter)
  3424. coded_inter = !is_intra[i] & is_coded[i];
  3425. }
  3426. // if there are no coded blocks then don't do anything more
  3427. dst_idx = 0;
  3428. if (!intra_count && !coded_inter)
  3429. goto end;
  3430. GET_MQUANT();
  3431. s->current_picture.f.qscale_table[mb_pos] = mquant;
  3432. /* test if block is intra and has pred */
  3433. {
  3434. int intrapred = 0;
  3435. for (i = 0; i < 6; i++)
  3436. if (is_intra[i]) {
  3437. if (((!s->first_slice_line || (i == 2 || i == 3)) && v->mb_type[0][s->block_index[i] - s->block_wrap[i]])
  3438. || ((s->mb_x || (i == 1 || i == 3)) && v->mb_type[0][s->block_index[i] - 1])) {
  3439. intrapred = 1;
  3440. break;
  3441. }
  3442. }
  3443. if (intrapred)
  3444. s->ac_pred = get_bits1(gb);
  3445. else
  3446. s->ac_pred = 0;
  3447. }
  3448. if (!v->ttmbf && coded_inter)
  3449. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  3450. for (i = 0; i < 6; i++) {
  3451. dst_idx += i >> 2;
  3452. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  3453. s->mb_intra = is_intra[i];
  3454. if (is_intra[i]) {
  3455. /* check if prediction blocks A and C are available */
  3456. v->a_avail = v->c_avail = 0;
  3457. if (i == 2 || i == 3 || !s->first_slice_line)
  3458. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  3459. if (i == 1 || i == 3 || s->mb_x)
  3460. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  3461. vc1_decode_intra_block(v, s->block[i], i, is_coded[i], mquant,
  3462. (i & 4) ? v->codingset2 : v->codingset);
  3463. if ((i>3) && (s->flags & CODEC_FLAG_GRAY))
  3464. continue;
  3465. v->vc1dsp.vc1_inv_trans_8x8(s->block[i]);
  3466. if (v->rangeredfrm)
  3467. for (j = 0; j < 64; j++)
  3468. s->block[i][j] <<= 1;
  3469. s->dsp.put_signed_pixels_clamped(s->block[i], s->dest[dst_idx] + off,
  3470. (i & 4) ? s->uvlinesize : s->linesize);
  3471. if (v->pq >= 9 && v->overlap) {
  3472. if (v->c_avail)
  3473. v->vc1dsp.vc1_h_overlap(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize);
  3474. if (v->a_avail)
  3475. v->vc1dsp.vc1_v_overlap(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize);
  3476. }
  3477. block_cbp |= 0xF << (i << 2);
  3478. block_intra |= 1 << i;
  3479. } else if (is_coded[i]) {
  3480. pat = vc1_decode_p_block(v, s->block[i], i, mquant, ttmb,
  3481. first_block, s->dest[dst_idx] + off,
  3482. (i & 4) ? s->uvlinesize : s->linesize,
  3483. (i & 4) && (s->flags & CODEC_FLAG_GRAY),
  3484. &block_tt);
  3485. block_cbp |= pat << (i << 2);
  3486. if (!v->ttmbf && ttmb < 8)
  3487. ttmb = -1;
  3488. first_block = 0;
  3489. }
  3490. }
  3491. } else { // skipped MB
  3492. s->mb_intra = 0;
  3493. s->current_picture.f.qscale_table[mb_pos] = 0;
  3494. for (i = 0; i < 6; i++) {
  3495. v->mb_type[0][s->block_index[i]] = 0;
  3496. s->dc_val[0][s->block_index[i]] = 0;
  3497. }
  3498. for (i = 0; i < 4; i++) {
  3499. vc1_pred_mv(v, i, 0, 0, 0, v->range_x, v->range_y, v->mb_type[0], 0, 0);
  3500. vc1_mc_4mv_luma(v, i, 0);
  3501. }
  3502. vc1_mc_4mv_chroma(v, 0);
  3503. s->current_picture.f.qscale_table[mb_pos] = 0;
  3504. }
  3505. }
  3506. end:
  3507. v->cbp[s->mb_x] = block_cbp;
  3508. v->ttblk[s->mb_x] = block_tt;
  3509. v->is_intra[s->mb_x] = block_intra;
  3510. return 0;
  3511. }
  3512. /* Decode one macroblock in an interlaced frame p picture */
  3513. static int vc1_decode_p_mb_intfr(VC1Context *v)
  3514. {
  3515. MpegEncContext *s = &v->s;
  3516. GetBitContext *gb = &s->gb;
  3517. int i;
  3518. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  3519. int cbp = 0; /* cbp decoding stuff */
  3520. int mqdiff, mquant; /* MB quantization */
  3521. int ttmb = v->ttfrm; /* MB Transform type */
  3522. int mb_has_coeffs = 1; /* last_flag */
  3523. int dmv_x, dmv_y; /* Differential MV components */
  3524. int val; /* temp value */
  3525. int first_block = 1;
  3526. int dst_idx, off;
  3527. int skipped, fourmv = 0, twomv = 0;
  3528. int block_cbp = 0, pat, block_tt = 0;
  3529. int idx_mbmode = 0, mvbp;
  3530. int stride_y, fieldtx;
  3531. mquant = v->pq; /* Loosy initialization */
  3532. if (v->skip_is_raw)
  3533. skipped = get_bits1(gb);
  3534. else
  3535. skipped = v->s.mbskip_table[mb_pos];
  3536. if (!skipped) {
  3537. if (v->fourmvswitch)
  3538. idx_mbmode = get_vlc2(gb, v->mbmode_vlc->table, VC1_INTFR_4MV_MBMODE_VLC_BITS, 2); // try getting this done
  3539. else
  3540. idx_mbmode = get_vlc2(gb, v->mbmode_vlc->table, VC1_INTFR_NON4MV_MBMODE_VLC_BITS, 2); // in a single line
  3541. switch (ff_vc1_mbmode_intfrp[v->fourmvswitch][idx_mbmode][0]) {
  3542. /* store the motion vector type in a flag (useful later) */
  3543. case MV_PMODE_INTFR_4MV:
  3544. fourmv = 1;
  3545. v->blk_mv_type[s->block_index[0]] = 0;
  3546. v->blk_mv_type[s->block_index[1]] = 0;
  3547. v->blk_mv_type[s->block_index[2]] = 0;
  3548. v->blk_mv_type[s->block_index[3]] = 0;
  3549. break;
  3550. case MV_PMODE_INTFR_4MV_FIELD:
  3551. fourmv = 1;
  3552. v->blk_mv_type[s->block_index[0]] = 1;
  3553. v->blk_mv_type[s->block_index[1]] = 1;
  3554. v->blk_mv_type[s->block_index[2]] = 1;
  3555. v->blk_mv_type[s->block_index[3]] = 1;
  3556. break;
  3557. case MV_PMODE_INTFR_2MV_FIELD:
  3558. twomv = 1;
  3559. v->blk_mv_type[s->block_index[0]] = 1;
  3560. v->blk_mv_type[s->block_index[1]] = 1;
  3561. v->blk_mv_type[s->block_index[2]] = 1;
  3562. v->blk_mv_type[s->block_index[3]] = 1;
  3563. break;
  3564. case MV_PMODE_INTFR_1MV:
  3565. v->blk_mv_type[s->block_index[0]] = 0;
  3566. v->blk_mv_type[s->block_index[1]] = 0;
  3567. v->blk_mv_type[s->block_index[2]] = 0;
  3568. v->blk_mv_type[s->block_index[3]] = 0;
  3569. break;
  3570. }
  3571. if (ff_vc1_mbmode_intfrp[v->fourmvswitch][idx_mbmode][0] == MV_PMODE_INTFR_INTRA) { // intra MB
  3572. s->current_picture.f.motion_val[1][s->block_index[0]][0] = 0;
  3573. s->current_picture.f.motion_val[1][s->block_index[0]][1] = 0;
  3574. s->current_picture.f.mb_type[mb_pos] = MB_TYPE_INTRA;
  3575. s->mb_intra = v->is_intra[s->mb_x] = 1;
  3576. for (i = 0; i < 6; i++)
  3577. v->mb_type[0][s->block_index[i]] = 1;
  3578. fieldtx = v->fieldtx_plane[mb_pos] = get_bits1(gb);
  3579. mb_has_coeffs = get_bits1(gb);
  3580. if (mb_has_coeffs)
  3581. cbp = 1 + get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  3582. v->s.ac_pred = v->acpred_plane[mb_pos] = get_bits1(gb);
  3583. GET_MQUANT();
  3584. s->current_picture.f.qscale_table[mb_pos] = mquant;
  3585. /* Set DC scale - y and c use the same (not sure if necessary here) */
  3586. s->y_dc_scale = s->y_dc_scale_table[mquant];
  3587. s->c_dc_scale = s->c_dc_scale_table[mquant];
  3588. dst_idx = 0;
  3589. for (i = 0; i < 6; i++) {
  3590. s->dc_val[0][s->block_index[i]] = 0;
  3591. dst_idx += i >> 2;
  3592. val = ((cbp >> (5 - i)) & 1);
  3593. v->mb_type[0][s->block_index[i]] = s->mb_intra;
  3594. v->a_avail = v->c_avail = 0;
  3595. if (i == 2 || i == 3 || !s->first_slice_line)
  3596. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  3597. if (i == 1 || i == 3 || s->mb_x)
  3598. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  3599. vc1_decode_intra_block(v, s->block[i], i, val, mquant,
  3600. (i & 4) ? v->codingset2 : v->codingset);
  3601. if ((i>3) && (s->flags & CODEC_FLAG_GRAY)) continue;
  3602. v->vc1dsp.vc1_inv_trans_8x8(s->block[i]);
  3603. if (i < 4) {
  3604. stride_y = s->linesize << fieldtx;
  3605. off = (fieldtx) ? ((i & 1) * 8) + ((i & 2) >> 1) * s->linesize : (i & 1) * 8 + 4 * (i & 2) * s->linesize;
  3606. } else {
  3607. stride_y = s->uvlinesize;
  3608. off = 0;
  3609. }
  3610. s->dsp.put_signed_pixels_clamped(s->block[i], s->dest[dst_idx] + off, stride_y);
  3611. //TODO: loop filter
  3612. }
  3613. } else { // inter MB
  3614. mb_has_coeffs = ff_vc1_mbmode_intfrp[v->fourmvswitch][idx_mbmode][3];
  3615. if (mb_has_coeffs)
  3616. cbp = 1 + get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  3617. if (ff_vc1_mbmode_intfrp[v->fourmvswitch][idx_mbmode][0] == MV_PMODE_INTFR_2MV_FIELD) {
  3618. v->twomvbp = get_vlc2(gb, v->twomvbp_vlc->table, VC1_2MV_BLOCK_PATTERN_VLC_BITS, 1);
  3619. } else {
  3620. if ((ff_vc1_mbmode_intfrp[v->fourmvswitch][idx_mbmode][0] == MV_PMODE_INTFR_4MV)
  3621. || (ff_vc1_mbmode_intfrp[v->fourmvswitch][idx_mbmode][0] == MV_PMODE_INTFR_4MV_FIELD)) {
  3622. v->fourmvbp = get_vlc2(gb, v->fourmvbp_vlc->table, VC1_4MV_BLOCK_PATTERN_VLC_BITS, 1);
  3623. }
  3624. }
  3625. s->mb_intra = v->is_intra[s->mb_x] = 0;
  3626. for (i = 0; i < 6; i++)
  3627. v->mb_type[0][s->block_index[i]] = 0;
  3628. fieldtx = v->fieldtx_plane[mb_pos] = ff_vc1_mbmode_intfrp[v->fourmvswitch][idx_mbmode][1];
  3629. /* for all motion vector read MVDATA and motion compensate each block */
  3630. dst_idx = 0;
  3631. if (fourmv) {
  3632. mvbp = v->fourmvbp;
  3633. for (i = 0; i < 6; i++) {
  3634. if (i < 4) {
  3635. dmv_x = dmv_y = 0;
  3636. val = ((mvbp >> (3 - i)) & 1);
  3637. if (val) {
  3638. get_mvdata_interlaced(v, &dmv_x, &dmv_y, 0);
  3639. }
  3640. vc1_pred_mv_intfr(v, i, dmv_x, dmv_y, 0, v->range_x, v->range_y, v->mb_type[0]);
  3641. vc1_mc_4mv_luma(v, i, 0);
  3642. } else if (i == 4) {
  3643. vc1_mc_4mv_chroma4(v);
  3644. }
  3645. }
  3646. } else if (twomv) {
  3647. mvbp = v->twomvbp;
  3648. dmv_x = dmv_y = 0;
  3649. if (mvbp & 2) {
  3650. get_mvdata_interlaced(v, &dmv_x, &dmv_y, 0);
  3651. }
  3652. vc1_pred_mv_intfr(v, 0, dmv_x, dmv_y, 2, v->range_x, v->range_y, v->mb_type[0]);
  3653. vc1_mc_4mv_luma(v, 0, 0);
  3654. vc1_mc_4mv_luma(v, 1, 0);
  3655. dmv_x = dmv_y = 0;
  3656. if (mvbp & 1) {
  3657. get_mvdata_interlaced(v, &dmv_x, &dmv_y, 0);
  3658. }
  3659. vc1_pred_mv_intfr(v, 2, dmv_x, dmv_y, 2, v->range_x, v->range_y, v->mb_type[0]);
  3660. vc1_mc_4mv_luma(v, 2, 0);
  3661. vc1_mc_4mv_luma(v, 3, 0);
  3662. vc1_mc_4mv_chroma4(v);
  3663. } else {
  3664. mvbp = ff_vc1_mbmode_intfrp[v->fourmvswitch][idx_mbmode][2];
  3665. if (mvbp) {
  3666. get_mvdata_interlaced(v, &dmv_x, &dmv_y, 0);
  3667. }
  3668. vc1_pred_mv_intfr(v, 0, dmv_x, dmv_y, 1, v->range_x, v->range_y, v->mb_type[0]);
  3669. vc1_mc_1mv(v, 0);
  3670. }
  3671. if (cbp)
  3672. GET_MQUANT(); // p. 227
  3673. s->current_picture.f.qscale_table[mb_pos] = mquant;
  3674. if (!v->ttmbf && cbp)
  3675. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  3676. for (i = 0; i < 6; i++) {
  3677. s->dc_val[0][s->block_index[i]] = 0;
  3678. dst_idx += i >> 2;
  3679. val = ((cbp >> (5 - i)) & 1);
  3680. if (!fieldtx)
  3681. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  3682. else
  3683. off = (i & 4) ? 0 : ((i & 1) * 8 + ((i > 1) * s->linesize));
  3684. if (val) {
  3685. pat = vc1_decode_p_block(v, s->block[i], i, mquant, ttmb,
  3686. first_block, s->dest[dst_idx] + off,
  3687. (i & 4) ? s->uvlinesize : (s->linesize << fieldtx),
  3688. (i & 4) && (s->flags & CODEC_FLAG_GRAY), &block_tt);
  3689. block_cbp |= pat << (i << 2);
  3690. if (!v->ttmbf && ttmb < 8)
  3691. ttmb = -1;
  3692. first_block = 0;
  3693. }
  3694. }
  3695. }
  3696. } else { // skipped
  3697. s->mb_intra = v->is_intra[s->mb_x] = 0;
  3698. for (i = 0; i < 6; i++) {
  3699. v->mb_type[0][s->block_index[i]] = 0;
  3700. s->dc_val[0][s->block_index[i]] = 0;
  3701. }
  3702. s->current_picture.f.mb_type[mb_pos] = MB_TYPE_SKIP;
  3703. s->current_picture.f.qscale_table[mb_pos] = 0;
  3704. v->blk_mv_type[s->block_index[0]] = 0;
  3705. v->blk_mv_type[s->block_index[1]] = 0;
  3706. v->blk_mv_type[s->block_index[2]] = 0;
  3707. v->blk_mv_type[s->block_index[3]] = 0;
  3708. vc1_pred_mv_intfr(v, 0, 0, 0, 1, v->range_x, v->range_y, v->mb_type[0]);
  3709. vc1_mc_1mv(v, 0);
  3710. }
  3711. if (s->mb_x == s->mb_width - 1)
  3712. memmove(v->is_intra_base, v->is_intra, sizeof(v->is_intra_base[0])*s->mb_stride);
  3713. return 0;
  3714. }
  3715. static int vc1_decode_p_mb_intfi(VC1Context *v)
  3716. {
  3717. MpegEncContext *s = &v->s;
  3718. GetBitContext *gb = &s->gb;
  3719. int i;
  3720. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  3721. int cbp = 0; /* cbp decoding stuff */
  3722. int mqdiff, mquant; /* MB quantization */
  3723. int ttmb = v->ttfrm; /* MB Transform type */
  3724. int mb_has_coeffs = 1; /* last_flag */
  3725. int dmv_x, dmv_y; /* Differential MV components */
  3726. int val; /* temp values */
  3727. int first_block = 1;
  3728. int dst_idx, off;
  3729. int pred_flag;
  3730. int block_cbp = 0, pat, block_tt = 0;
  3731. int idx_mbmode = 0;
  3732. mquant = v->pq; /* Loosy initialization */
  3733. idx_mbmode = get_vlc2(gb, v->mbmode_vlc->table, VC1_IF_MBMODE_VLC_BITS, 2);
  3734. if (idx_mbmode <= 1) { // intra MB
  3735. s->mb_intra = v->is_intra[s->mb_x] = 1;
  3736. s->current_picture.f.motion_val[1][s->block_index[0] + v->blocks_off][0] = 0;
  3737. s->current_picture.f.motion_val[1][s->block_index[0] + v->blocks_off][1] = 0;
  3738. s->current_picture.f.mb_type[mb_pos + v->mb_off] = MB_TYPE_INTRA;
  3739. GET_MQUANT();
  3740. s->current_picture.f.qscale_table[mb_pos] = mquant;
  3741. /* Set DC scale - y and c use the same (not sure if necessary here) */
  3742. s->y_dc_scale = s->y_dc_scale_table[mquant];
  3743. s->c_dc_scale = s->c_dc_scale_table[mquant];
  3744. v->s.ac_pred = v->acpred_plane[mb_pos] = get_bits1(gb);
  3745. mb_has_coeffs = idx_mbmode & 1;
  3746. if (mb_has_coeffs)
  3747. cbp = 1 + get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_ICBPCY_VLC_BITS, 2);
  3748. dst_idx = 0;
  3749. for (i = 0; i < 6; i++) {
  3750. s->dc_val[0][s->block_index[i]] = 0;
  3751. v->mb_type[0][s->block_index[i]] = 1;
  3752. dst_idx += i >> 2;
  3753. val = ((cbp >> (5 - i)) & 1);
  3754. v->a_avail = v->c_avail = 0;
  3755. if (i == 2 || i == 3 || !s->first_slice_line)
  3756. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  3757. if (i == 1 || i == 3 || s->mb_x)
  3758. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  3759. vc1_decode_intra_block(v, s->block[i], i, val, mquant,
  3760. (i & 4) ? v->codingset2 : v->codingset);
  3761. if ((i>3) && (s->flags & CODEC_FLAG_GRAY))
  3762. continue;
  3763. v->vc1dsp.vc1_inv_trans_8x8(s->block[i]);
  3764. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  3765. off += v->second_field ? ((i & 4) ? s->current_picture_ptr->f.linesize[1] : s->current_picture_ptr->f.linesize[0]) : 0;
  3766. s->dsp.put_signed_pixels_clamped(s->block[i], s->dest[dst_idx] + off, (i & 4) ? s->uvlinesize : s->linesize);
  3767. // TODO: loop filter
  3768. }
  3769. } else {
  3770. s->mb_intra = v->is_intra[s->mb_x] = 0;
  3771. s->current_picture.f.mb_type[mb_pos + v->mb_off] = MB_TYPE_16x16;
  3772. for (i = 0; i < 6; i++) v->mb_type[0][s->block_index[i]] = 0;
  3773. if (idx_mbmode <= 5) { // 1-MV
  3774. dmv_x = dmv_y = 0;
  3775. if (idx_mbmode & 1) {
  3776. get_mvdata_interlaced(v, &dmv_x, &dmv_y, &pred_flag);
  3777. }
  3778. vc1_pred_mv(v, 0, dmv_x, dmv_y, 1, v->range_x, v->range_y, v->mb_type[0], pred_flag, 0);
  3779. vc1_mc_1mv(v, 0);
  3780. mb_has_coeffs = !(idx_mbmode & 2);
  3781. } else { // 4-MV
  3782. v->fourmvbp = get_vlc2(gb, v->fourmvbp_vlc->table, VC1_4MV_BLOCK_PATTERN_VLC_BITS, 1);
  3783. for (i = 0; i < 6; i++) {
  3784. if (i < 4) {
  3785. dmv_x = dmv_y = pred_flag = 0;
  3786. val = ((v->fourmvbp >> (3 - i)) & 1);
  3787. if (val) {
  3788. get_mvdata_interlaced(v, &dmv_x, &dmv_y, &pred_flag);
  3789. }
  3790. vc1_pred_mv(v, i, dmv_x, dmv_y, 0, v->range_x, v->range_y, v->mb_type[0], pred_flag, 0);
  3791. vc1_mc_4mv_luma(v, i, 0);
  3792. } else if (i == 4)
  3793. vc1_mc_4mv_chroma(v, 0);
  3794. }
  3795. mb_has_coeffs = idx_mbmode & 1;
  3796. }
  3797. if (mb_has_coeffs)
  3798. cbp = 1 + get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  3799. if (cbp) {
  3800. GET_MQUANT();
  3801. }
  3802. s->current_picture.f.qscale_table[mb_pos] = mquant;
  3803. if (!v->ttmbf && cbp) {
  3804. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  3805. }
  3806. dst_idx = 0;
  3807. for (i = 0; i < 6; i++) {
  3808. s->dc_val[0][s->block_index[i]] = 0;
  3809. dst_idx += i >> 2;
  3810. val = ((cbp >> (5 - i)) & 1);
  3811. off = (i & 4) ? 0 : (i & 1) * 8 + (i & 2) * 4 * s->linesize;
  3812. if (v->second_field)
  3813. off += (i & 4) ? s->current_picture_ptr->f.linesize[1] : s->current_picture_ptr->f.linesize[0];
  3814. if (val) {
  3815. pat = vc1_decode_p_block(v, s->block[i], i, mquant, ttmb,
  3816. first_block, s->dest[dst_idx] + off,
  3817. (i & 4) ? s->uvlinesize : s->linesize,
  3818. (i & 4) && (s->flags & CODEC_FLAG_GRAY),
  3819. &block_tt);
  3820. block_cbp |= pat << (i << 2);
  3821. if (!v->ttmbf && ttmb < 8) ttmb = -1;
  3822. first_block = 0;
  3823. }
  3824. }
  3825. }
  3826. if (s->mb_x == s->mb_width - 1)
  3827. memmove(v->is_intra_base, v->is_intra, sizeof(v->is_intra_base[0]) * s->mb_stride);
  3828. return 0;
  3829. }
  3830. /** Decode one B-frame MB (in Main profile)
  3831. */
  3832. static void vc1_decode_b_mb(VC1Context *v)
  3833. {
  3834. MpegEncContext *s = &v->s;
  3835. GetBitContext *gb = &s->gb;
  3836. int i, j;
  3837. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  3838. int cbp = 0; /* cbp decoding stuff */
  3839. int mqdiff, mquant; /* MB quantization */
  3840. int ttmb = v->ttfrm; /* MB Transform type */
  3841. int mb_has_coeffs = 0; /* last_flag */
  3842. int index, index1; /* LUT indexes */
  3843. int val, sign; /* temp values */
  3844. int first_block = 1;
  3845. int dst_idx, off;
  3846. int skipped, direct;
  3847. int dmv_x[2], dmv_y[2];
  3848. int bmvtype = BMV_TYPE_BACKWARD;
  3849. mquant = v->pq; /* lossy initialization */
  3850. s->mb_intra = 0;
  3851. if (v->dmb_is_raw)
  3852. direct = get_bits1(gb);
  3853. else
  3854. direct = v->direct_mb_plane[mb_pos];
  3855. if (v->skip_is_raw)
  3856. skipped = get_bits1(gb);
  3857. else
  3858. skipped = v->s.mbskip_table[mb_pos];
  3859. dmv_x[0] = dmv_x[1] = dmv_y[0] = dmv_y[1] = 0;
  3860. for (i = 0; i < 6; i++) {
  3861. v->mb_type[0][s->block_index[i]] = 0;
  3862. s->dc_val[0][s->block_index[i]] = 0;
  3863. }
  3864. s->current_picture.f.qscale_table[mb_pos] = 0;
  3865. if (!direct) {
  3866. if (!skipped) {
  3867. GET_MVDATA(dmv_x[0], dmv_y[0]);
  3868. dmv_x[1] = dmv_x[0];
  3869. dmv_y[1] = dmv_y[0];
  3870. }
  3871. if (skipped || !s->mb_intra) {
  3872. bmvtype = decode012(gb);
  3873. switch (bmvtype) {
  3874. case 0:
  3875. bmvtype = (v->bfraction >= (B_FRACTION_DEN/2)) ? BMV_TYPE_BACKWARD : BMV_TYPE_FORWARD;
  3876. break;
  3877. case 1:
  3878. bmvtype = (v->bfraction >= (B_FRACTION_DEN/2)) ? BMV_TYPE_FORWARD : BMV_TYPE_BACKWARD;
  3879. break;
  3880. case 2:
  3881. bmvtype = BMV_TYPE_INTERPOLATED;
  3882. dmv_x[0] = dmv_y[0] = 0;
  3883. }
  3884. }
  3885. }
  3886. for (i = 0; i < 6; i++)
  3887. v->mb_type[0][s->block_index[i]] = s->mb_intra;
  3888. if (skipped) {
  3889. if (direct)
  3890. bmvtype = BMV_TYPE_INTERPOLATED;
  3891. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3892. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  3893. return;
  3894. }
  3895. if (direct) {
  3896. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  3897. GET_MQUANT();
  3898. s->mb_intra = 0;
  3899. s->current_picture.f.qscale_table[mb_pos] = mquant;
  3900. if (!v->ttmbf)
  3901. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  3902. dmv_x[0] = dmv_y[0] = dmv_x[1] = dmv_y[1] = 0;
  3903. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3904. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  3905. } else {
  3906. if (!mb_has_coeffs && !s->mb_intra) {
  3907. /* no coded blocks - effectively skipped */
  3908. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3909. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  3910. return;
  3911. }
  3912. if (s->mb_intra && !mb_has_coeffs) {
  3913. GET_MQUANT();
  3914. s->current_picture.f.qscale_table[mb_pos] = mquant;
  3915. s->ac_pred = get_bits1(gb);
  3916. cbp = 0;
  3917. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3918. } else {
  3919. if (bmvtype == BMV_TYPE_INTERPOLATED) {
  3920. GET_MVDATA(dmv_x[0], dmv_y[0]);
  3921. if (!mb_has_coeffs) {
  3922. /* interpolated skipped block */
  3923. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3924. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  3925. return;
  3926. }
  3927. }
  3928. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3929. if (!s->mb_intra) {
  3930. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  3931. }
  3932. if (s->mb_intra)
  3933. s->ac_pred = get_bits1(gb);
  3934. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  3935. GET_MQUANT();
  3936. s->current_picture.f.qscale_table[mb_pos] = mquant;
  3937. if (!v->ttmbf && !s->mb_intra && mb_has_coeffs)
  3938. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  3939. }
  3940. }
  3941. dst_idx = 0;
  3942. for (i = 0; i < 6; i++) {
  3943. s->dc_val[0][s->block_index[i]] = 0;
  3944. dst_idx += i >> 2;
  3945. val = ((cbp >> (5 - i)) & 1);
  3946. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  3947. v->mb_type[0][s->block_index[i]] = s->mb_intra;
  3948. if (s->mb_intra) {
  3949. /* check if prediction blocks A and C are available */
  3950. v->a_avail = v->c_avail = 0;
  3951. if (i == 2 || i == 3 || !s->first_slice_line)
  3952. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  3953. if (i == 1 || i == 3 || s->mb_x)
  3954. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  3955. vc1_decode_intra_block(v, s->block[i], i, val, mquant,
  3956. (i & 4) ? v->codingset2 : v->codingset);
  3957. if ((i>3) && (s->flags & CODEC_FLAG_GRAY))
  3958. continue;
  3959. v->vc1dsp.vc1_inv_trans_8x8(s->block[i]);
  3960. if (v->rangeredfrm)
  3961. for (j = 0; j < 64; j++)
  3962. s->block[i][j] <<= 1;
  3963. s->dsp.put_signed_pixels_clamped(s->block[i], s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize);
  3964. } else if (val) {
  3965. vc1_decode_p_block(v, s->block[i], i, mquant, ttmb,
  3966. first_block, s->dest[dst_idx] + off,
  3967. (i & 4) ? s->uvlinesize : s->linesize,
  3968. (i & 4) && (s->flags & CODEC_FLAG_GRAY), NULL);
  3969. if (!v->ttmbf && ttmb < 8)
  3970. ttmb = -1;
  3971. first_block = 0;
  3972. }
  3973. }
  3974. }
  3975. /** Decode one B-frame MB (in interlaced field B picture)
  3976. */
  3977. static void vc1_decode_b_mb_intfi(VC1Context *v)
  3978. {
  3979. MpegEncContext *s = &v->s;
  3980. GetBitContext *gb = &s->gb;
  3981. int i, j;
  3982. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  3983. int cbp = 0; /* cbp decoding stuff */
  3984. int mqdiff, mquant; /* MB quantization */
  3985. int ttmb = v->ttfrm; /* MB Transform type */
  3986. int mb_has_coeffs = 0; /* last_flag */
  3987. int val; /* temp value */
  3988. int first_block = 1;
  3989. int dst_idx, off;
  3990. int fwd;
  3991. int dmv_x[2], dmv_y[2], pred_flag[2];
  3992. int bmvtype = BMV_TYPE_BACKWARD;
  3993. int idx_mbmode, interpmvp;
  3994. mquant = v->pq; /* Loosy initialization */
  3995. s->mb_intra = 0;
  3996. idx_mbmode = get_vlc2(gb, v->mbmode_vlc->table, VC1_IF_MBMODE_VLC_BITS, 2);
  3997. if (idx_mbmode <= 1) { // intra MB
  3998. s->mb_intra = v->is_intra[s->mb_x] = 1;
  3999. s->current_picture.f.motion_val[1][s->block_index[0]][0] = 0;
  4000. s->current_picture.f.motion_val[1][s->block_index[0]][1] = 0;
  4001. s->current_picture.f.mb_type[mb_pos + v->mb_off] = MB_TYPE_INTRA;
  4002. GET_MQUANT();
  4003. s->current_picture.f.qscale_table[mb_pos] = mquant;
  4004. /* Set DC scale - y and c use the same (not sure if necessary here) */
  4005. s->y_dc_scale = s->y_dc_scale_table[mquant];
  4006. s->c_dc_scale = s->c_dc_scale_table[mquant];
  4007. v->s.ac_pred = v->acpred_plane[mb_pos] = get_bits1(gb);
  4008. mb_has_coeffs = idx_mbmode & 1;
  4009. if (mb_has_coeffs)
  4010. cbp = 1 + get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_ICBPCY_VLC_BITS, 2);
  4011. dst_idx = 0;
  4012. for (i = 0; i < 6; i++) {
  4013. s->dc_val[0][s->block_index[i]] = 0;
  4014. dst_idx += i >> 2;
  4015. val = ((cbp >> (5 - i)) & 1);
  4016. v->mb_type[0][s->block_index[i]] = s->mb_intra;
  4017. v->a_avail = v->c_avail = 0;
  4018. if (i == 2 || i == 3 || !s->first_slice_line)
  4019. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  4020. if (i == 1 || i == 3 || s->mb_x)
  4021. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  4022. vc1_decode_intra_block(v, s->block[i], i, val, mquant,
  4023. (i & 4) ? v->codingset2 : v->codingset);
  4024. if ((i>3) && (s->flags & CODEC_FLAG_GRAY))
  4025. continue;
  4026. v->vc1dsp.vc1_inv_trans_8x8(s->block[i]);
  4027. if (v->rangeredfrm)
  4028. for (j = 0; j < 64; j++)
  4029. s->block[i][j] <<= 1;
  4030. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  4031. off += v->second_field ? ((i & 4) ? s->current_picture_ptr->f.linesize[1] : s->current_picture_ptr->f.linesize[0]) : 0;
  4032. s->dsp.put_signed_pixels_clamped(s->block[i], s->dest[dst_idx] + off, (i & 4) ? s->uvlinesize : s->linesize);
  4033. // TODO: yet to perform loop filter
  4034. }
  4035. } else {
  4036. s->mb_intra = v->is_intra[s->mb_x] = 0;
  4037. s->current_picture.f.mb_type[mb_pos + v->mb_off] = MB_TYPE_16x16;
  4038. for (i = 0; i < 6; i++) v->mb_type[0][s->block_index[i]] = 0;
  4039. if (v->fmb_is_raw)
  4040. fwd = v->forward_mb_plane[mb_pos] = get_bits1(gb);
  4041. else
  4042. fwd = v->forward_mb_plane[mb_pos];
  4043. if (idx_mbmode <= 5) { // 1-MV
  4044. dmv_x[0] = dmv_x[1] = dmv_y[0] = dmv_y[1] = 0;
  4045. pred_flag[0] = pred_flag[1] = 0;
  4046. if (fwd)
  4047. bmvtype = BMV_TYPE_FORWARD;
  4048. else {
  4049. bmvtype = decode012(gb);
  4050. switch (bmvtype) {
  4051. case 0:
  4052. bmvtype = BMV_TYPE_BACKWARD;
  4053. break;
  4054. case 1:
  4055. bmvtype = BMV_TYPE_DIRECT;
  4056. break;
  4057. case 2:
  4058. bmvtype = BMV_TYPE_INTERPOLATED;
  4059. interpmvp = get_bits1(gb);
  4060. }
  4061. }
  4062. v->bmvtype = bmvtype;
  4063. if (bmvtype != BMV_TYPE_DIRECT && idx_mbmode & 1) {
  4064. get_mvdata_interlaced(v, &dmv_x[bmvtype == BMV_TYPE_BACKWARD], &dmv_y[bmvtype == BMV_TYPE_BACKWARD], &pred_flag[bmvtype == BMV_TYPE_BACKWARD]);
  4065. }
  4066. if (bmvtype == BMV_TYPE_INTERPOLATED && interpmvp) {
  4067. get_mvdata_interlaced(v, &dmv_x[1], &dmv_y[1], &pred_flag[1]);
  4068. }
  4069. if (bmvtype == BMV_TYPE_DIRECT) {
  4070. dmv_x[0] = dmv_y[0] = pred_flag[0] = 0;
  4071. dmv_x[1] = dmv_y[1] = pred_flag[0] = 0;
  4072. }
  4073. vc1_pred_b_mv_intfi(v, 0, dmv_x, dmv_y, 1, pred_flag);
  4074. vc1_b_mc(v, dmv_x, dmv_y, (bmvtype == BMV_TYPE_DIRECT), bmvtype);
  4075. mb_has_coeffs = !(idx_mbmode & 2);
  4076. } else { // 4-MV
  4077. if (fwd)
  4078. bmvtype = BMV_TYPE_FORWARD;
  4079. v->bmvtype = bmvtype;
  4080. v->fourmvbp = get_vlc2(gb, v->fourmvbp_vlc->table, VC1_4MV_BLOCK_PATTERN_VLC_BITS, 1);
  4081. for (i = 0; i < 6; i++) {
  4082. if (i < 4) {
  4083. dmv_x[0] = dmv_y[0] = pred_flag[0] = 0;
  4084. dmv_x[1] = dmv_y[1] = pred_flag[1] = 0;
  4085. val = ((v->fourmvbp >> (3 - i)) & 1);
  4086. if (val) {
  4087. get_mvdata_interlaced(v, &dmv_x[bmvtype == BMV_TYPE_BACKWARD],
  4088. &dmv_y[bmvtype == BMV_TYPE_BACKWARD],
  4089. &pred_flag[bmvtype == BMV_TYPE_BACKWARD]);
  4090. }
  4091. vc1_pred_b_mv_intfi(v, i, dmv_x, dmv_y, 0, pred_flag);
  4092. vc1_mc_4mv_luma(v, i, bmvtype == BMV_TYPE_BACKWARD);
  4093. } else if (i == 4)
  4094. vc1_mc_4mv_chroma(v, bmvtype == BMV_TYPE_BACKWARD);
  4095. }
  4096. mb_has_coeffs = idx_mbmode & 1;
  4097. }
  4098. if (mb_has_coeffs)
  4099. cbp = 1 + get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  4100. if (cbp) {
  4101. GET_MQUANT();
  4102. }
  4103. s->current_picture.f.qscale_table[mb_pos] = mquant;
  4104. if (!v->ttmbf && cbp) {
  4105. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  4106. }
  4107. dst_idx = 0;
  4108. for (i = 0; i < 6; i++) {
  4109. s->dc_val[0][s->block_index[i]] = 0;
  4110. dst_idx += i >> 2;
  4111. val = ((cbp >> (5 - i)) & 1);
  4112. off = (i & 4) ? 0 : (i & 1) * 8 + (i & 2) * 4 * s->linesize;
  4113. if (v->second_field)
  4114. off += (i & 4) ? s->current_picture_ptr->f.linesize[1] : s->current_picture_ptr->f.linesize[0];
  4115. if (val) {
  4116. vc1_decode_p_block(v, s->block[i], i, mquant, ttmb,
  4117. first_block, s->dest[dst_idx] + off,
  4118. (i & 4) ? s->uvlinesize : s->linesize,
  4119. (i & 4) && (s->flags & CODEC_FLAG_GRAY), NULL);
  4120. if (!v->ttmbf && ttmb < 8)
  4121. ttmb = -1;
  4122. first_block = 0;
  4123. }
  4124. }
  4125. }
  4126. }
  4127. /** Decode blocks of I-frame
  4128. */
  4129. static void vc1_decode_i_blocks(VC1Context *v)
  4130. {
  4131. int k, j;
  4132. MpegEncContext *s = &v->s;
  4133. int cbp, val;
  4134. uint8_t *coded_val;
  4135. int mb_pos;
  4136. /* select codingmode used for VLC tables selection */
  4137. switch (v->y_ac_table_index) {
  4138. case 0:
  4139. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  4140. break;
  4141. case 1:
  4142. v->codingset = CS_HIGH_MOT_INTRA;
  4143. break;
  4144. case 2:
  4145. v->codingset = CS_MID_RATE_INTRA;
  4146. break;
  4147. }
  4148. switch (v->c_ac_table_index) {
  4149. case 0:
  4150. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  4151. break;
  4152. case 1:
  4153. v->codingset2 = CS_HIGH_MOT_INTER;
  4154. break;
  4155. case 2:
  4156. v->codingset2 = CS_MID_RATE_INTER;
  4157. break;
  4158. }
  4159. /* Set DC scale - y and c use the same */
  4160. s->y_dc_scale = s->y_dc_scale_table[v->pq];
  4161. s->c_dc_scale = s->c_dc_scale_table[v->pq];
  4162. //do frame decode
  4163. s->mb_x = s->mb_y = 0;
  4164. s->mb_intra = 1;
  4165. s->first_slice_line = 1;
  4166. for (s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  4167. s->mb_x = 0;
  4168. ff_init_block_index(s);
  4169. for (; s->mb_x < s->mb_width; s->mb_x++) {
  4170. uint8_t *dst[6];
  4171. ff_update_block_index(s);
  4172. dst[0] = s->dest[0];
  4173. dst[1] = dst[0] + 8;
  4174. dst[2] = s->dest[0] + s->linesize * 8;
  4175. dst[3] = dst[2] + 8;
  4176. dst[4] = s->dest[1];
  4177. dst[5] = s->dest[2];
  4178. s->dsp.clear_blocks(s->block[0]);
  4179. mb_pos = s->mb_x + s->mb_y * s->mb_width;
  4180. s->current_picture.f.mb_type[mb_pos] = MB_TYPE_INTRA;
  4181. s->current_picture.f.qscale_table[mb_pos] = v->pq;
  4182. s->current_picture.f.motion_val[1][s->block_index[0]][0] = 0;
  4183. s->current_picture.f.motion_val[1][s->block_index[0]][1] = 0;
  4184. // do actual MB decoding and displaying
  4185. cbp = get_vlc2(&v->s.gb, ff_msmp4_mb_i_vlc.table, MB_INTRA_VLC_BITS, 2);
  4186. v->s.ac_pred = get_bits1(&v->s.gb);
  4187. for (k = 0; k < 6; k++) {
  4188. val = ((cbp >> (5 - k)) & 1);
  4189. if (k < 4) {
  4190. int pred = vc1_coded_block_pred(&v->s, k, &coded_val);
  4191. val = val ^ pred;
  4192. *coded_val = val;
  4193. }
  4194. cbp |= val << (5 - k);
  4195. vc1_decode_i_block(v, s->block[k], k, val, (k < 4) ? v->codingset : v->codingset2);
  4196. if (k > 3 && (s->flags & CODEC_FLAG_GRAY))
  4197. continue;
  4198. v->vc1dsp.vc1_inv_trans_8x8(s->block[k]);
  4199. if (v->pq >= 9 && v->overlap) {
  4200. if (v->rangeredfrm)
  4201. for (j = 0; j < 64; j++)
  4202. s->block[k][j] <<= 1;
  4203. s->dsp.put_signed_pixels_clamped(s->block[k], dst[k], k & 4 ? s->uvlinesize : s->linesize);
  4204. } else {
  4205. if (v->rangeredfrm)
  4206. for (j = 0; j < 64; j++)
  4207. s->block[k][j] = (s->block[k][j] - 64) << 1;
  4208. s->dsp.put_pixels_clamped(s->block[k], dst[k], k & 4 ? s->uvlinesize : s->linesize);
  4209. }
  4210. }
  4211. if (v->pq >= 9 && v->overlap) {
  4212. if (s->mb_x) {
  4213. v->vc1dsp.vc1_h_overlap(s->dest[0], s->linesize);
  4214. v->vc1dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
  4215. if (!(s->flags & CODEC_FLAG_GRAY)) {
  4216. v->vc1dsp.vc1_h_overlap(s->dest[1], s->uvlinesize);
  4217. v->vc1dsp.vc1_h_overlap(s->dest[2], s->uvlinesize);
  4218. }
  4219. }
  4220. v->vc1dsp.vc1_h_overlap(s->dest[0] + 8, s->linesize);
  4221. v->vc1dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
  4222. if (!s->first_slice_line) {
  4223. v->vc1dsp.vc1_v_overlap(s->dest[0], s->linesize);
  4224. v->vc1dsp.vc1_v_overlap(s->dest[0] + 8, s->linesize);
  4225. if (!(s->flags & CODEC_FLAG_GRAY)) {
  4226. v->vc1dsp.vc1_v_overlap(s->dest[1], s->uvlinesize);
  4227. v->vc1dsp.vc1_v_overlap(s->dest[2], s->uvlinesize);
  4228. }
  4229. }
  4230. v->vc1dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
  4231. v->vc1dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
  4232. }
  4233. if (v->s.loop_filter) vc1_loop_filter_iblk(v, v->pq);
  4234. if (get_bits_count(&s->gb) > v->bits) {
  4235. ff_er_add_slice(s, 0, 0, s->mb_x, s->mb_y, ER_MB_ERROR);
  4236. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i\n",
  4237. get_bits_count(&s->gb), v->bits);
  4238. return;
  4239. }
  4240. }
  4241. if (!v->s.loop_filter)
  4242. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  4243. else if (s->mb_y)
  4244. ff_draw_horiz_band(s, (s->mb_y - 1) * 16, 16);
  4245. s->first_slice_line = 0;
  4246. }
  4247. if (v->s.loop_filter)
  4248. ff_draw_horiz_band(s, (s->mb_height - 1) * 16, 16);
  4249. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, ER_MB_END);
  4250. }
  4251. /** Decode blocks of I-frame for advanced profile
  4252. */
  4253. static void vc1_decode_i_blocks_adv(VC1Context *v)
  4254. {
  4255. int k;
  4256. MpegEncContext *s = &v->s;
  4257. int cbp, val;
  4258. uint8_t *coded_val;
  4259. int mb_pos;
  4260. int mquant = v->pq;
  4261. int mqdiff;
  4262. GetBitContext *gb = &s->gb;
  4263. /* select codingmode used for VLC tables selection */
  4264. switch (v->y_ac_table_index) {
  4265. case 0:
  4266. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  4267. break;
  4268. case 1:
  4269. v->codingset = CS_HIGH_MOT_INTRA;
  4270. break;
  4271. case 2:
  4272. v->codingset = CS_MID_RATE_INTRA;
  4273. break;
  4274. }
  4275. switch (v->c_ac_table_index) {
  4276. case 0:
  4277. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  4278. break;
  4279. case 1:
  4280. v->codingset2 = CS_HIGH_MOT_INTER;
  4281. break;
  4282. case 2:
  4283. v->codingset2 = CS_MID_RATE_INTER;
  4284. break;
  4285. }
  4286. // do frame decode
  4287. s->mb_x = s->mb_y = 0;
  4288. s->mb_intra = 1;
  4289. s->first_slice_line = 1;
  4290. s->mb_y = s->start_mb_y;
  4291. if (s->start_mb_y) {
  4292. s->mb_x = 0;
  4293. ff_init_block_index(s);
  4294. memset(&s->coded_block[s->block_index[0] - s->b8_stride], 0,
  4295. (1 + s->b8_stride) * sizeof(*s->coded_block));
  4296. }
  4297. for (; s->mb_y < s->end_mb_y; s->mb_y++) {
  4298. s->mb_x = 0;
  4299. ff_init_block_index(s);
  4300. for (;s->mb_x < s->mb_width; s->mb_x++) {
  4301. DCTELEM (*block)[64] = v->block[v->cur_blk_idx];
  4302. ff_update_block_index(s);
  4303. s->dsp.clear_blocks(block[0]);
  4304. mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  4305. s->current_picture.f.mb_type[mb_pos + v->mb_off] = MB_TYPE_INTRA;
  4306. s->current_picture.f.motion_val[1][s->block_index[0] + v->blocks_off][0] = 0;
  4307. s->current_picture.f.motion_val[1][s->block_index[0] + v->blocks_off][1] = 0;
  4308. // do actual MB decoding and displaying
  4309. if (v->fieldtx_is_raw)
  4310. v->fieldtx_plane[mb_pos] = get_bits1(&v->s.gb);
  4311. cbp = get_vlc2(&v->s.gb, ff_msmp4_mb_i_vlc.table, MB_INTRA_VLC_BITS, 2);
  4312. if ( v->acpred_is_raw)
  4313. v->s.ac_pred = get_bits1(&v->s.gb);
  4314. else
  4315. v->s.ac_pred = v->acpred_plane[mb_pos];
  4316. if (v->condover == CONDOVER_SELECT && v->overflg_is_raw)
  4317. v->over_flags_plane[mb_pos] = get_bits1(&v->s.gb);
  4318. GET_MQUANT();
  4319. s->current_picture.f.qscale_table[mb_pos] = mquant;
  4320. /* Set DC scale - y and c use the same */
  4321. s->y_dc_scale = s->y_dc_scale_table[mquant];
  4322. s->c_dc_scale = s->c_dc_scale_table[mquant];
  4323. for (k = 0; k < 6; k++) {
  4324. val = ((cbp >> (5 - k)) & 1);
  4325. if (k < 4) {
  4326. int pred = vc1_coded_block_pred(&v->s, k, &coded_val);
  4327. val = val ^ pred;
  4328. *coded_val = val;
  4329. }
  4330. cbp |= val << (5 - k);
  4331. v->a_avail = !s->first_slice_line || (k == 2 || k == 3);
  4332. v->c_avail = !!s->mb_x || (k == 1 || k == 3);
  4333. vc1_decode_i_block_adv(v, block[k], k, val,
  4334. (k < 4) ? v->codingset : v->codingset2, mquant);
  4335. if (k > 3 && (s->flags & CODEC_FLAG_GRAY))
  4336. continue;
  4337. v->vc1dsp.vc1_inv_trans_8x8(block[k]);
  4338. }
  4339. vc1_smooth_overlap_filter_iblk(v);
  4340. vc1_put_signed_blocks_clamped(v);
  4341. if (v->s.loop_filter) vc1_loop_filter_iblk_delayed(v, v->pq);
  4342. if (get_bits_count(&s->gb) > v->bits) {
  4343. // TODO: may need modification to handle slice coding
  4344. ff_er_add_slice(s, 0, s->start_mb_y, s->mb_x, s->mb_y, ER_MB_ERROR);
  4345. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i\n",
  4346. get_bits_count(&s->gb), v->bits);
  4347. return;
  4348. }
  4349. }
  4350. if (!v->s.loop_filter)
  4351. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  4352. else if (s->mb_y)
  4353. ff_draw_horiz_band(s, (s->mb_y-1) * 16, 16);
  4354. s->first_slice_line = 0;
  4355. }
  4356. /* raw bottom MB row */
  4357. s->mb_x = 0;
  4358. ff_init_block_index(s);
  4359. for (;s->mb_x < s->mb_width; s->mb_x++) {
  4360. ff_update_block_index(s);
  4361. vc1_put_signed_blocks_clamped(v);
  4362. if (v->s.loop_filter)
  4363. vc1_loop_filter_iblk_delayed(v, v->pq);
  4364. }
  4365. if (v->s.loop_filter)
  4366. ff_draw_horiz_band(s, (s->end_mb_y-1)*16, 16);
  4367. ff_er_add_slice(s, 0, s->start_mb_y << v->field_mode, s->mb_width - 1,
  4368. (s->end_mb_y << v->field_mode) - 1, ER_MB_END);
  4369. }
  4370. static void vc1_decode_p_blocks(VC1Context *v)
  4371. {
  4372. MpegEncContext *s = &v->s;
  4373. int apply_loop_filter;
  4374. /* select codingmode used for VLC tables selection */
  4375. switch (v->c_ac_table_index) {
  4376. case 0:
  4377. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  4378. break;
  4379. case 1:
  4380. v->codingset = CS_HIGH_MOT_INTRA;
  4381. break;
  4382. case 2:
  4383. v->codingset = CS_MID_RATE_INTRA;
  4384. break;
  4385. }
  4386. switch (v->c_ac_table_index) {
  4387. case 0:
  4388. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  4389. break;
  4390. case 1:
  4391. v->codingset2 = CS_HIGH_MOT_INTER;
  4392. break;
  4393. case 2:
  4394. v->codingset2 = CS_MID_RATE_INTER;
  4395. break;
  4396. }
  4397. apply_loop_filter = s->loop_filter && !(s->avctx->skip_loop_filter >= AVDISCARD_NONKEY);
  4398. s->first_slice_line = 1;
  4399. memset(v->cbp_base, 0, sizeof(v->cbp_base[0])*2*s->mb_stride);
  4400. for (s->mb_y = s->start_mb_y; s->mb_y < s->end_mb_y; s->mb_y++) {
  4401. s->mb_x = 0;
  4402. ff_init_block_index(s);
  4403. for (; s->mb_x < s->mb_width; s->mb_x++) {
  4404. ff_update_block_index(s);
  4405. if (v->fcm == ILACE_FIELD)
  4406. vc1_decode_p_mb_intfi(v);
  4407. else if (v->fcm == ILACE_FRAME)
  4408. vc1_decode_p_mb_intfr(v);
  4409. else vc1_decode_p_mb(v);
  4410. if (s->mb_y != s->start_mb_y && apply_loop_filter && v->fcm == PROGRESSIVE)
  4411. vc1_apply_p_loop_filter(v);
  4412. if (get_bits_count(&s->gb) > v->bits || get_bits_count(&s->gb) < 0) {
  4413. // TODO: may need modification to handle slice coding
  4414. ff_er_add_slice(s, 0, s->start_mb_y, s->mb_x, s->mb_y, ER_MB_ERROR);
  4415. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i at %ix%i\n",
  4416. get_bits_count(&s->gb), v->bits, s->mb_x, s->mb_y);
  4417. return;
  4418. }
  4419. }
  4420. memmove(v->cbp_base, v->cbp, sizeof(v->cbp_base[0]) * s->mb_stride);
  4421. memmove(v->ttblk_base, v->ttblk, sizeof(v->ttblk_base[0]) * s->mb_stride);
  4422. memmove(v->is_intra_base, v->is_intra, sizeof(v->is_intra_base[0]) * s->mb_stride);
  4423. memmove(v->luma_mv_base, v->luma_mv, sizeof(v->luma_mv_base[0]) * s->mb_stride);
  4424. if (s->mb_y != s->start_mb_y) ff_draw_horiz_band(s, (s->mb_y - 1) * 16, 16);
  4425. s->first_slice_line = 0;
  4426. }
  4427. if (apply_loop_filter) {
  4428. s->mb_x = 0;
  4429. ff_init_block_index(s);
  4430. for (; s->mb_x < s->mb_width; s->mb_x++) {
  4431. ff_update_block_index(s);
  4432. vc1_apply_p_loop_filter(v);
  4433. }
  4434. }
  4435. if (s->end_mb_y >= s->start_mb_y)
  4436. ff_draw_horiz_band(s, (s->end_mb_y - 1) * 16, 16);
  4437. ff_er_add_slice(s, 0, s->start_mb_y << v->field_mode, s->mb_width - 1,
  4438. (s->end_mb_y << v->field_mode) - 1, ER_MB_END);
  4439. }
  4440. static void vc1_decode_b_blocks(VC1Context *v)
  4441. {
  4442. MpegEncContext *s = &v->s;
  4443. /* select codingmode used for VLC tables selection */
  4444. switch (v->c_ac_table_index) {
  4445. case 0:
  4446. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  4447. break;
  4448. case 1:
  4449. v->codingset = CS_HIGH_MOT_INTRA;
  4450. break;
  4451. case 2:
  4452. v->codingset = CS_MID_RATE_INTRA;
  4453. break;
  4454. }
  4455. switch (v->c_ac_table_index) {
  4456. case 0:
  4457. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  4458. break;
  4459. case 1:
  4460. v->codingset2 = CS_HIGH_MOT_INTER;
  4461. break;
  4462. case 2:
  4463. v->codingset2 = CS_MID_RATE_INTER;
  4464. break;
  4465. }
  4466. s->first_slice_line = 1;
  4467. for (s->mb_y = s->start_mb_y; s->mb_y < s->end_mb_y; s->mb_y++) {
  4468. s->mb_x = 0;
  4469. ff_init_block_index(s);
  4470. for (; s->mb_x < s->mb_width; s->mb_x++) {
  4471. ff_update_block_index(s);
  4472. if (v->fcm == ILACE_FIELD)
  4473. vc1_decode_b_mb_intfi(v);
  4474. else
  4475. vc1_decode_b_mb(v);
  4476. if (get_bits_count(&s->gb) > v->bits || get_bits_count(&s->gb) < 0) {
  4477. // TODO: may need modification to handle slice coding
  4478. ff_er_add_slice(s, 0, s->start_mb_y, s->mb_x, s->mb_y, ER_MB_ERROR);
  4479. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i at %ix%i\n",
  4480. get_bits_count(&s->gb), v->bits, s->mb_x, s->mb_y);
  4481. return;
  4482. }
  4483. if (v->s.loop_filter) vc1_loop_filter_iblk(v, v->pq);
  4484. }
  4485. if (!v->s.loop_filter)
  4486. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  4487. else if (s->mb_y)
  4488. ff_draw_horiz_band(s, (s->mb_y - 1) * 16, 16);
  4489. s->first_slice_line = 0;
  4490. }
  4491. if (v->s.loop_filter)
  4492. ff_draw_horiz_band(s, (s->end_mb_y - 1) * 16, 16);
  4493. ff_er_add_slice(s, 0, s->start_mb_y << v->field_mode, s->mb_width - 1,
  4494. (s->end_mb_y << v->field_mode) - 1, ER_MB_END);
  4495. }
  4496. static void vc1_decode_skip_blocks(VC1Context *v)
  4497. {
  4498. MpegEncContext *s = &v->s;
  4499. ff_er_add_slice(s, 0, s->start_mb_y, s->mb_width - 1, s->end_mb_y - 1, ER_MB_END);
  4500. s->first_slice_line = 1;
  4501. for (s->mb_y = s->start_mb_y; s->mb_y < s->end_mb_y; s->mb_y++) {
  4502. s->mb_x = 0;
  4503. ff_init_block_index(s);
  4504. ff_update_block_index(s);
  4505. memcpy(s->dest[0], s->last_picture.f.data[0] + s->mb_y * 16 * s->linesize, s->linesize * 16);
  4506. memcpy(s->dest[1], s->last_picture.f.data[1] + s->mb_y * 8 * s->uvlinesize, s->uvlinesize * 8);
  4507. memcpy(s->dest[2], s->last_picture.f.data[2] + s->mb_y * 8 * s->uvlinesize, s->uvlinesize * 8);
  4508. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  4509. s->first_slice_line = 0;
  4510. }
  4511. s->pict_type = AV_PICTURE_TYPE_P;
  4512. }
  4513. static void vc1_decode_blocks(VC1Context *v)
  4514. {
  4515. v->s.esc3_level_length = 0;
  4516. if (v->x8_type) {
  4517. ff_intrax8_decode_picture(&v->x8, 2*v->pq + v->halfpq, v->pq * !v->pquantizer);
  4518. } else {
  4519. v->cur_blk_idx = 0;
  4520. v->left_blk_idx = -1;
  4521. v->topleft_blk_idx = 1;
  4522. v->top_blk_idx = 2;
  4523. switch (v->s.pict_type) {
  4524. case AV_PICTURE_TYPE_I:
  4525. if (v->profile == PROFILE_ADVANCED)
  4526. vc1_decode_i_blocks_adv(v);
  4527. else
  4528. vc1_decode_i_blocks(v);
  4529. break;
  4530. case AV_PICTURE_TYPE_P:
  4531. if (v->p_frame_skipped)
  4532. vc1_decode_skip_blocks(v);
  4533. else
  4534. vc1_decode_p_blocks(v);
  4535. break;
  4536. case AV_PICTURE_TYPE_B:
  4537. if (v->bi_type) {
  4538. if (v->profile == PROFILE_ADVANCED)
  4539. vc1_decode_i_blocks_adv(v);
  4540. else
  4541. vc1_decode_i_blocks(v);
  4542. } else
  4543. vc1_decode_b_blocks(v);
  4544. break;
  4545. }
  4546. }
  4547. }
  4548. #if CONFIG_WMV3IMAGE_DECODER || CONFIG_VC1IMAGE_DECODER
  4549. typedef struct {
  4550. /**
  4551. * Transform coefficients for both sprites in 16.16 fixed point format,
  4552. * in the order they appear in the bitstream:
  4553. * x scale
  4554. * rotation 1 (unused)
  4555. * x offset
  4556. * rotation 2 (unused)
  4557. * y scale
  4558. * y offset
  4559. * alpha
  4560. */
  4561. int coefs[2][7];
  4562. int effect_type, effect_flag;
  4563. int effect_pcount1, effect_pcount2; ///< amount of effect parameters stored in effect_params
  4564. int effect_params1[15], effect_params2[10]; ///< effect parameters in 16.16 fixed point format
  4565. } SpriteData;
  4566. static inline int get_fp_val(GetBitContext* gb)
  4567. {
  4568. return (get_bits_long(gb, 30) - (1 << 29)) << 1;
  4569. }
  4570. static void vc1_sprite_parse_transform(GetBitContext* gb, int c[7])
  4571. {
  4572. c[1] = c[3] = 0;
  4573. switch (get_bits(gb, 2)) {
  4574. case 0:
  4575. c[0] = 1 << 16;
  4576. c[2] = get_fp_val(gb);
  4577. c[4] = 1 << 16;
  4578. break;
  4579. case 1:
  4580. c[0] = c[4] = get_fp_val(gb);
  4581. c[2] = get_fp_val(gb);
  4582. break;
  4583. case 2:
  4584. c[0] = get_fp_val(gb);
  4585. c[2] = get_fp_val(gb);
  4586. c[4] = get_fp_val(gb);
  4587. break;
  4588. case 3:
  4589. c[0] = get_fp_val(gb);
  4590. c[1] = get_fp_val(gb);
  4591. c[2] = get_fp_val(gb);
  4592. c[3] = get_fp_val(gb);
  4593. c[4] = get_fp_val(gb);
  4594. break;
  4595. }
  4596. c[5] = get_fp_val(gb);
  4597. if (get_bits1(gb))
  4598. c[6] = get_fp_val(gb);
  4599. else
  4600. c[6] = 1 << 16;
  4601. }
  4602. static void vc1_parse_sprites(VC1Context *v, GetBitContext* gb, SpriteData* sd)
  4603. {
  4604. AVCodecContext *avctx = v->s.avctx;
  4605. int sprite, i;
  4606. for (sprite = 0; sprite <= v->two_sprites; sprite++) {
  4607. vc1_sprite_parse_transform(gb, sd->coefs[sprite]);
  4608. if (sd->coefs[sprite][1] || sd->coefs[sprite][3])
  4609. av_log_ask_for_sample(avctx, "Rotation coefficients are not zero");
  4610. av_log(avctx, AV_LOG_DEBUG, sprite ? "S2:" : "S1:");
  4611. for (i = 0; i < 7; i++)
  4612. av_log(avctx, AV_LOG_DEBUG, " %d.%.3d",
  4613. sd->coefs[sprite][i] / (1<<16),
  4614. (abs(sd->coefs[sprite][i]) & 0xFFFF) * 1000 / (1 << 16));
  4615. av_log(avctx, AV_LOG_DEBUG, "\n");
  4616. }
  4617. skip_bits(gb, 2);
  4618. if (sd->effect_type = get_bits_long(gb, 30)) {
  4619. switch (sd->effect_pcount1 = get_bits(gb, 4)) {
  4620. case 7:
  4621. vc1_sprite_parse_transform(gb, sd->effect_params1);
  4622. break;
  4623. case 14:
  4624. vc1_sprite_parse_transform(gb, sd->effect_params1);
  4625. vc1_sprite_parse_transform(gb, sd->effect_params1 + 7);
  4626. break;
  4627. default:
  4628. for (i = 0; i < sd->effect_pcount1; i++)
  4629. sd->effect_params1[i] = get_fp_val(gb);
  4630. }
  4631. if (sd->effect_type != 13 || sd->effect_params1[0] != sd->coefs[0][6]) {
  4632. // effect 13 is simple alpha blending and matches the opacity above
  4633. av_log(avctx, AV_LOG_DEBUG, "Effect: %d; params: ", sd->effect_type);
  4634. for (i = 0; i < sd->effect_pcount1; i++)
  4635. av_log(avctx, AV_LOG_DEBUG, " %d.%.2d",
  4636. sd->effect_params1[i] / (1 << 16),
  4637. (abs(sd->effect_params1[i]) & 0xFFFF) * 1000 / (1 << 16));
  4638. av_log(avctx, AV_LOG_DEBUG, "\n");
  4639. }
  4640. sd->effect_pcount2 = get_bits(gb, 16);
  4641. if (sd->effect_pcount2 > 10) {
  4642. av_log(avctx, AV_LOG_ERROR, "Too many effect parameters\n");
  4643. return;
  4644. } else if (sd->effect_pcount2) {
  4645. i = -1;
  4646. av_log(avctx, AV_LOG_DEBUG, "Effect params 2: ");
  4647. while (++i < sd->effect_pcount2) {
  4648. sd->effect_params2[i] = get_fp_val(gb);
  4649. av_log(avctx, AV_LOG_DEBUG, " %d.%.2d",
  4650. sd->effect_params2[i] / (1 << 16),
  4651. (abs(sd->effect_params2[i]) & 0xFFFF) * 1000 / (1 << 16));
  4652. }
  4653. av_log(avctx, AV_LOG_DEBUG, "\n");
  4654. }
  4655. }
  4656. if (sd->effect_flag = get_bits1(gb))
  4657. av_log(avctx, AV_LOG_DEBUG, "Effect flag set\n");
  4658. if (get_bits_count(gb) >= gb->size_in_bits +
  4659. (avctx->codec_id == CODEC_ID_WMV3IMAGE ? 64 : 0))
  4660. av_log(avctx, AV_LOG_ERROR, "Buffer overrun\n");
  4661. if (get_bits_count(gb) < gb->size_in_bits - 8)
  4662. av_log(avctx, AV_LOG_WARNING, "Buffer not fully read\n");
  4663. }
  4664. static void vc1_draw_sprites(VC1Context *v, SpriteData* sd)
  4665. {
  4666. int i, plane, row, sprite;
  4667. int sr_cache[2][2] = { { -1, -1 }, { -1, -1 } };
  4668. uint8_t* src_h[2][2];
  4669. int xoff[2], xadv[2], yoff[2], yadv[2], alpha;
  4670. int ysub[2];
  4671. MpegEncContext *s = &v->s;
  4672. for (i = 0; i < 2; i++) {
  4673. xoff[i] = av_clip(sd->coefs[i][2], 0, v->sprite_width-1 << 16);
  4674. xadv[i] = sd->coefs[i][0];
  4675. if (xadv[i] != 1<<16 || (v->sprite_width << 16) - (v->output_width << 16) - xoff[i])
  4676. xadv[i] = av_clip(xadv[i], 0, ((v->sprite_width<<16) - xoff[i] - 1) / v->output_width);
  4677. yoff[i] = av_clip(sd->coefs[i][5], 0, v->sprite_height-1 << 16);
  4678. yadv[i] = av_clip(sd->coefs[i][4], 0, ((v->sprite_height << 16) - yoff[i]) / v->output_height);
  4679. }
  4680. alpha = av_clip(sd->coefs[1][6], 0, (1<<16) - 1);
  4681. for (plane = 0; plane < (s->flags&CODEC_FLAG_GRAY ? 1 : 3); plane++) {
  4682. int width = v->output_width>>!!plane;
  4683. for (row = 0; row < v->output_height>>!!plane; row++) {
  4684. uint8_t *dst = v->sprite_output_frame.data[plane] +
  4685. v->sprite_output_frame.linesize[plane] * row;
  4686. for (sprite = 0; sprite <= v->two_sprites; sprite++) {
  4687. uint8_t *iplane = s->current_picture.f.data[plane];
  4688. int iline = s->current_picture.f.linesize[plane];
  4689. int ycoord = yoff[sprite] + yadv[sprite] * row;
  4690. int yline = ycoord >> 16;
  4691. ysub[sprite] = ycoord & 0xFFFF;
  4692. if (sprite) {
  4693. iplane = s->last_picture.f.data[plane];
  4694. iline = s->last_picture.f.linesize[plane];
  4695. }
  4696. if (!(xoff[sprite] & 0xFFFF) && xadv[sprite] == 1 << 16) {
  4697. src_h[sprite][0] = iplane + (xoff[sprite] >> 16) + yline * iline;
  4698. if (ysub[sprite])
  4699. src_h[sprite][1] = iplane + (xoff[sprite] >> 16) + (yline + 1) * iline;
  4700. } else {
  4701. if (sr_cache[sprite][0] != yline) {
  4702. if (sr_cache[sprite][1] == yline) {
  4703. FFSWAP(uint8_t*, v->sr_rows[sprite][0], v->sr_rows[sprite][1]);
  4704. FFSWAP(int, sr_cache[sprite][0], sr_cache[sprite][1]);
  4705. } else {
  4706. v->vc1dsp.sprite_h(v->sr_rows[sprite][0], iplane + yline * iline, xoff[sprite], xadv[sprite], width);
  4707. sr_cache[sprite][0] = yline;
  4708. }
  4709. }
  4710. if (ysub[sprite] && sr_cache[sprite][1] != yline + 1) {
  4711. v->vc1dsp.sprite_h(v->sr_rows[sprite][1], iplane + (yline + 1) * iline, xoff[sprite], xadv[sprite], width);
  4712. sr_cache[sprite][1] = yline + 1;
  4713. }
  4714. src_h[sprite][0] = v->sr_rows[sprite][0];
  4715. src_h[sprite][1] = v->sr_rows[sprite][1];
  4716. }
  4717. }
  4718. if (!v->two_sprites) {
  4719. if (ysub[0]) {
  4720. v->vc1dsp.sprite_v_single(dst, src_h[0][0], src_h[0][1], ysub[0], width);
  4721. } else {
  4722. memcpy(dst, src_h[0][0], width);
  4723. }
  4724. } else {
  4725. if (ysub[0] && ysub[1]) {
  4726. v->vc1dsp.sprite_v_double_twoscale(dst, src_h[0][0], src_h[0][1], ysub[0],
  4727. src_h[1][0], src_h[1][1], ysub[1], alpha, width);
  4728. } else if (ysub[0]) {
  4729. v->vc1dsp.sprite_v_double_onescale(dst, src_h[0][0], src_h[0][1], ysub[0],
  4730. src_h[1][0], alpha, width);
  4731. } else if (ysub[1]) {
  4732. v->vc1dsp.sprite_v_double_onescale(dst, src_h[1][0], src_h[1][1], ysub[1],
  4733. src_h[0][0], (1<<16)-1-alpha, width);
  4734. } else {
  4735. v->vc1dsp.sprite_v_double_noscale(dst, src_h[0][0], src_h[1][0], alpha, width);
  4736. }
  4737. }
  4738. }
  4739. if (!plane) {
  4740. for (i = 0; i < 2; i++) {
  4741. xoff[i] >>= 1;
  4742. yoff[i] >>= 1;
  4743. }
  4744. }
  4745. }
  4746. }
  4747. static int vc1_decode_sprites(VC1Context *v, GetBitContext* gb)
  4748. {
  4749. MpegEncContext *s = &v->s;
  4750. AVCodecContext *avctx = s->avctx;
  4751. SpriteData sd;
  4752. vc1_parse_sprites(v, gb, &sd);
  4753. if (!s->current_picture.f.data[0]) {
  4754. av_log(avctx, AV_LOG_ERROR, "Got no sprites\n");
  4755. return -1;
  4756. }
  4757. if (v->two_sprites && (!s->last_picture_ptr || !s->last_picture.f.data[0])) {
  4758. av_log(avctx, AV_LOG_WARNING, "Need two sprites, only got one\n");
  4759. v->two_sprites = 0;
  4760. }
  4761. if (v->sprite_output_frame.data[0])
  4762. avctx->release_buffer(avctx, &v->sprite_output_frame);
  4763. v->sprite_output_frame.buffer_hints = FF_BUFFER_HINTS_VALID;
  4764. v->sprite_output_frame.reference = 0;
  4765. if (avctx->get_buffer(avctx, &v->sprite_output_frame) < 0) {
  4766. av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
  4767. return -1;
  4768. }
  4769. vc1_draw_sprites(v, &sd);
  4770. return 0;
  4771. }
  4772. static void vc1_sprite_flush(AVCodecContext *avctx)
  4773. {
  4774. VC1Context *v = avctx->priv_data;
  4775. MpegEncContext *s = &v->s;
  4776. AVFrame *f = &s->current_picture.f;
  4777. int plane, i;
  4778. /* Windows Media Image codecs have a convergence interval of two keyframes.
  4779. Since we can't enforce it, clear to black the missing sprite. This is
  4780. wrong but it looks better than doing nothing. */
  4781. if (f->data[0])
  4782. for (plane = 0; plane < (s->flags&CODEC_FLAG_GRAY ? 1 : 3); plane++)
  4783. for (i = 0; i < v->sprite_height>>!!plane; i++)
  4784. memset(f->data[plane] + i * f->linesize[plane],
  4785. plane ? 128 : 0, f->linesize[plane]);
  4786. }
  4787. #endif
  4788. static av_cold int vc1_decode_init_alloc_tables(VC1Context *v)
  4789. {
  4790. MpegEncContext *s = &v->s;
  4791. int i;
  4792. /* Allocate mb bitplanes */
  4793. v->mv_type_mb_plane = av_malloc (s->mb_stride * s->mb_height);
  4794. v->direct_mb_plane = av_malloc (s->mb_stride * s->mb_height);
  4795. v->forward_mb_plane = av_malloc (s->mb_stride * s->mb_height);
  4796. v->fieldtx_plane = av_mallocz(s->mb_stride * s->mb_height);
  4797. v->acpred_plane = av_malloc (s->mb_stride * s->mb_height);
  4798. v->over_flags_plane = av_malloc (s->mb_stride * s->mb_height);
  4799. v->n_allocated_blks = s->mb_width + 2;
  4800. v->block = av_malloc(sizeof(*v->block) * v->n_allocated_blks);
  4801. v->cbp_base = av_malloc(sizeof(v->cbp_base[0]) * 2 * s->mb_stride);
  4802. v->cbp = v->cbp_base + s->mb_stride;
  4803. v->ttblk_base = av_malloc(sizeof(v->ttblk_base[0]) * 2 * s->mb_stride);
  4804. v->ttblk = v->ttblk_base + s->mb_stride;
  4805. v->is_intra_base = av_mallocz(sizeof(v->is_intra_base[0]) * 2 * s->mb_stride);
  4806. v->is_intra = v->is_intra_base + s->mb_stride;
  4807. v->luma_mv_base = av_malloc(sizeof(v->luma_mv_base[0]) * 2 * s->mb_stride);
  4808. v->luma_mv = v->luma_mv_base + s->mb_stride;
  4809. /* allocate block type info in that way so it could be used with s->block_index[] */
  4810. v->mb_type_base = av_malloc(s->b8_stride * (s->mb_height * 2 + 1) + s->mb_stride * (s->mb_height + 1) * 2);
  4811. v->mb_type[0] = v->mb_type_base + s->b8_stride + 1;
  4812. v->mb_type[1] = v->mb_type_base + s->b8_stride * (s->mb_height * 2 + 1) + s->mb_stride + 1;
  4813. v->mb_type[2] = v->mb_type[1] + s->mb_stride * (s->mb_height + 1);
  4814. /* allocate memory to store block level MV info */
  4815. v->blk_mv_type_base = av_mallocz( s->b8_stride * (s->mb_height * 2 + 1) + s->mb_stride * (s->mb_height + 1) * 2);
  4816. v->blk_mv_type = v->blk_mv_type_base + s->b8_stride + 1;
  4817. v->mv_f_base = av_mallocz(2 * (s->b8_stride * (s->mb_height * 2 + 1) + s->mb_stride * (s->mb_height + 1) * 2));
  4818. v->mv_f[0] = v->mv_f_base + s->b8_stride + 1;
  4819. v->mv_f[1] = v->mv_f[0] + (s->b8_stride * (s->mb_height * 2 + 1) + s->mb_stride * (s->mb_height + 1) * 2);
  4820. v->mv_f_last_base = av_mallocz(2 * (s->b8_stride * (s->mb_height * 2 + 1) + s->mb_stride * (s->mb_height + 1) * 2));
  4821. v->mv_f_last[0] = v->mv_f_last_base + s->b8_stride + 1;
  4822. v->mv_f_last[1] = v->mv_f_last[0] + (s->b8_stride * (s->mb_height * 2 + 1) + s->mb_stride * (s->mb_height + 1) * 2);
  4823. v->mv_f_next_base = av_mallocz(2 * (s->b8_stride * (s->mb_height * 2 + 1) + s->mb_stride * (s->mb_height + 1) * 2));
  4824. v->mv_f_next[0] = v->mv_f_next_base + s->b8_stride + 1;
  4825. v->mv_f_next[1] = v->mv_f_next[0] + (s->b8_stride * (s->mb_height * 2 + 1) + s->mb_stride * (s->mb_height + 1) * 2);
  4826. /* Init coded blocks info */
  4827. if (v->profile == PROFILE_ADVANCED) {
  4828. // if (alloc_bitplane(&v->over_flags_plane, s->mb_width, s->mb_height) < 0)
  4829. // return -1;
  4830. // if (alloc_bitplane(&v->ac_pred_plane, s->mb_width, s->mb_height) < 0)
  4831. // return -1;
  4832. }
  4833. ff_intrax8_common_init(&v->x8,s);
  4834. if (s->avctx->codec_id == CODEC_ID_WMV3IMAGE || s->avctx->codec_id == CODEC_ID_VC1IMAGE) {
  4835. for (i = 0; i < 4; i++)
  4836. if (!(v->sr_rows[i >> 1][i & 1] = av_malloc(v->output_width))) return -1;
  4837. }
  4838. if (!v->mv_type_mb_plane || !v->direct_mb_plane || !v->acpred_plane || !v->over_flags_plane ||
  4839. !v->block || !v->cbp_base || !v->ttblk_base || !v->is_intra_base || !v->luma_mv_base ||
  4840. !v->mb_type_base)
  4841. return -1;
  4842. return 0;
  4843. }
  4844. /** Initialize a VC1/WMV3 decoder
  4845. * @todo TODO: Handle VC-1 IDUs (Transport level?)
  4846. * @todo TODO: Decypher remaining bits in extra_data
  4847. */
  4848. static av_cold int vc1_decode_init(AVCodecContext *avctx)
  4849. {
  4850. VC1Context *v = avctx->priv_data;
  4851. MpegEncContext *s = &v->s;
  4852. GetBitContext gb;
  4853. int i;
  4854. /* save the container output size for WMImage */
  4855. v->output_width = avctx->width;
  4856. v->output_height = avctx->height;
  4857. if (!avctx->extradata_size || !avctx->extradata)
  4858. return -1;
  4859. if (!(avctx->flags & CODEC_FLAG_GRAY))
  4860. avctx->pix_fmt = avctx->get_format(avctx, avctx->codec->pix_fmts);
  4861. else
  4862. avctx->pix_fmt = PIX_FMT_GRAY8;
  4863. avctx->hwaccel = ff_find_hwaccel(avctx->codec->id, avctx->pix_fmt);
  4864. v->s.avctx = avctx;
  4865. avctx->flags |= CODEC_FLAG_EMU_EDGE;
  4866. v->s.flags |= CODEC_FLAG_EMU_EDGE;
  4867. if (avctx->idct_algo == FF_IDCT_AUTO) {
  4868. avctx->idct_algo = FF_IDCT_WMV2;
  4869. }
  4870. if (vc1_init_common(v) < 0)
  4871. return -1;
  4872. ff_vc1dsp_init(&v->vc1dsp);
  4873. if (avctx->codec_id == CODEC_ID_WMV3 || avctx->codec_id == CODEC_ID_WMV3IMAGE) {
  4874. int count = 0;
  4875. // looks like WMV3 has a sequence header stored in the extradata
  4876. // advanced sequence header may be before the first frame
  4877. // the last byte of the extradata is a version number, 1 for the
  4878. // samples we can decode
  4879. init_get_bits(&gb, avctx->extradata, avctx->extradata_size*8);
  4880. if (vc1_decode_sequence_header(avctx, v, &gb) < 0)
  4881. return -1;
  4882. count = avctx->extradata_size*8 - get_bits_count(&gb);
  4883. if (count > 0) {
  4884. av_log(avctx, AV_LOG_INFO, "Extra data: %i bits left, value: %X\n",
  4885. count, get_bits(&gb, count));
  4886. } else if (count < 0) {
  4887. av_log(avctx, AV_LOG_INFO, "Read %i bits in overflow\n", -count);
  4888. }
  4889. } else { // VC1/WVC1/WVP2
  4890. const uint8_t *start = avctx->extradata;
  4891. uint8_t *end = avctx->extradata + avctx->extradata_size;
  4892. const uint8_t *next;
  4893. int size, buf2_size;
  4894. uint8_t *buf2 = NULL;
  4895. int seq_initialized = 0, ep_initialized = 0;
  4896. if (avctx->extradata_size < 16) {
  4897. av_log(avctx, AV_LOG_ERROR, "Extradata size too small: %i\n", avctx->extradata_size);
  4898. return -1;
  4899. }
  4900. buf2 = av_mallocz(avctx->extradata_size + FF_INPUT_BUFFER_PADDING_SIZE);
  4901. start = find_next_marker(start, end); // in WVC1 extradata first byte is its size, but can be 0 in mkv
  4902. next = start;
  4903. for (; next < end; start = next) {
  4904. next = find_next_marker(start + 4, end);
  4905. size = next - start - 4;
  4906. if (size <= 0)
  4907. continue;
  4908. buf2_size = vc1_unescape_buffer(start + 4, size, buf2);
  4909. init_get_bits(&gb, buf2, buf2_size * 8);
  4910. switch (AV_RB32(start)) {
  4911. case VC1_CODE_SEQHDR:
  4912. if (vc1_decode_sequence_header(avctx, v, &gb) < 0) {
  4913. av_free(buf2);
  4914. return -1;
  4915. }
  4916. seq_initialized = 1;
  4917. break;
  4918. case VC1_CODE_ENTRYPOINT:
  4919. if (vc1_decode_entry_point(avctx, v, &gb) < 0) {
  4920. av_free(buf2);
  4921. return -1;
  4922. }
  4923. ep_initialized = 1;
  4924. break;
  4925. }
  4926. }
  4927. av_free(buf2);
  4928. if (!seq_initialized || !ep_initialized) {
  4929. av_log(avctx, AV_LOG_ERROR, "Incomplete extradata\n");
  4930. return -1;
  4931. }
  4932. v->res_sprite = (avctx->codec_tag == MKTAG('W','V','P','2'));
  4933. }
  4934. avctx->profile = v->profile;
  4935. if (v->profile == PROFILE_ADVANCED)
  4936. avctx->level = v->level;
  4937. avctx->has_b_frames = !!(avctx->max_b_frames);
  4938. s->mb_width = (avctx->coded_width + 15) >> 4;
  4939. s->mb_height = (avctx->coded_height + 15) >> 4;
  4940. if (v->profile == PROFILE_ADVANCED || v->res_fasttx) {
  4941. for (i = 0; i < 64; i++) {
  4942. #define transpose(x) ((x >> 3) | ((x & 7) << 3))
  4943. v->zz_8x8[0][i] = transpose(wmv1_scantable[0][i]);
  4944. v->zz_8x8[1][i] = transpose(wmv1_scantable[1][i]);
  4945. v->zz_8x8[2][i] = transpose(wmv1_scantable[2][i]);
  4946. v->zz_8x8[3][i] = transpose(wmv1_scantable[3][i]);
  4947. v->zzi_8x8[i] = transpose(ff_vc1_adv_interlaced_8x8_zz[i]);
  4948. }
  4949. v->left_blk_sh = 0;
  4950. v->top_blk_sh = 3;
  4951. } else {
  4952. memcpy(v->zz_8x8, wmv1_scantable, 4*64);
  4953. v->left_blk_sh = 3;
  4954. v->top_blk_sh = 0;
  4955. }
  4956. if (avctx->codec_id == CODEC_ID_WMV3IMAGE || avctx->codec_id == CODEC_ID_VC1IMAGE) {
  4957. v->sprite_width = avctx->coded_width;
  4958. v->sprite_height = avctx->coded_height;
  4959. avctx->coded_width = avctx->width = v->output_width;
  4960. avctx->coded_height = avctx->height = v->output_height;
  4961. // prevent 16.16 overflows
  4962. if (v->sprite_width > 1 << 14 ||
  4963. v->sprite_height > 1 << 14 ||
  4964. v->output_width > 1 << 14 ||
  4965. v->output_height > 1 << 14) return -1;
  4966. }
  4967. return 0;
  4968. }
  4969. /** Close a VC1/WMV3 decoder
  4970. * @warning Initial try at using MpegEncContext stuff
  4971. */
  4972. static av_cold int vc1_decode_end(AVCodecContext *avctx)
  4973. {
  4974. VC1Context *v = avctx->priv_data;
  4975. int i;
  4976. if ((avctx->codec_id == CODEC_ID_WMV3IMAGE || avctx->codec_id == CODEC_ID_VC1IMAGE)
  4977. && v->sprite_output_frame.data[0])
  4978. avctx->release_buffer(avctx, &v->sprite_output_frame);
  4979. for (i = 0; i < 4; i++)
  4980. av_freep(&v->sr_rows[i >> 1][i & 1]);
  4981. av_freep(&v->hrd_rate);
  4982. av_freep(&v->hrd_buffer);
  4983. MPV_common_end(&v->s);
  4984. av_freep(&v->mv_type_mb_plane);
  4985. av_freep(&v->direct_mb_plane);
  4986. av_freep(&v->forward_mb_plane);
  4987. av_freep(&v->fieldtx_plane);
  4988. av_freep(&v->acpred_plane);
  4989. av_freep(&v->over_flags_plane);
  4990. av_freep(&v->mb_type_base);
  4991. av_freep(&v->blk_mv_type_base);
  4992. av_freep(&v->mv_f_base);
  4993. av_freep(&v->mv_f_last_base);
  4994. av_freep(&v->mv_f_next_base);
  4995. av_freep(&v->block);
  4996. av_freep(&v->cbp_base);
  4997. av_freep(&v->ttblk_base);
  4998. av_freep(&v->is_intra_base); // FIXME use v->mb_type[]
  4999. av_freep(&v->luma_mv_base);
  5000. ff_intrax8_common_end(&v->x8);
  5001. return 0;
  5002. }
  5003. /** Decode a VC1/WMV3 frame
  5004. * @todo TODO: Handle VC-1 IDUs (Transport level?)
  5005. */
  5006. static int vc1_decode_frame(AVCodecContext *avctx, void *data,
  5007. int *data_size, AVPacket *avpkt)
  5008. {
  5009. const uint8_t *buf = avpkt->data;
  5010. int buf_size = avpkt->size, n_slices = 0, i;
  5011. VC1Context *v = avctx->priv_data;
  5012. MpegEncContext *s = &v->s;
  5013. AVFrame *pict = data;
  5014. uint8_t *buf2 = NULL;
  5015. const uint8_t *buf_start = buf;
  5016. int mb_height, n_slices1=-1;
  5017. struct {
  5018. uint8_t *buf;
  5019. GetBitContext gb;
  5020. int mby_start;
  5021. } *slices = NULL, *tmp;
  5022. if(s->flags & CODEC_FLAG_LOW_DELAY)
  5023. s->low_delay = 1;
  5024. /* no supplementary picture */
  5025. if (buf_size == 0 || (buf_size == 4 && AV_RB32(buf) == VC1_CODE_ENDOFSEQ)) {
  5026. /* special case for last picture */
  5027. if (s->low_delay == 0 && s->next_picture_ptr) {
  5028. *pict = *(AVFrame*)s->next_picture_ptr;
  5029. s->next_picture_ptr = NULL;
  5030. *data_size = sizeof(AVFrame);
  5031. }
  5032. return 0;
  5033. }
  5034. if (s->avctx->codec->capabilities&CODEC_CAP_HWACCEL_VDPAU) {
  5035. if (v->profile < PROFILE_ADVANCED)
  5036. avctx->pix_fmt = PIX_FMT_VDPAU_WMV3;
  5037. else
  5038. avctx->pix_fmt = PIX_FMT_VDPAU_VC1;
  5039. }
  5040. //for advanced profile we may need to parse and unescape data
  5041. if (avctx->codec_id == CODEC_ID_VC1 || avctx->codec_id == CODEC_ID_VC1IMAGE) {
  5042. int buf_size2 = 0;
  5043. buf2 = av_mallocz(buf_size + FF_INPUT_BUFFER_PADDING_SIZE);
  5044. if (IS_MARKER(AV_RB32(buf))) { /* frame starts with marker and needs to be parsed */
  5045. const uint8_t *start, *end, *next;
  5046. int size;
  5047. next = buf;
  5048. for (start = buf, end = buf + buf_size; next < end; start = next) {
  5049. next = find_next_marker(start + 4, end);
  5050. size = next - start - 4;
  5051. if (size <= 0) continue;
  5052. switch (AV_RB32(start)) {
  5053. case VC1_CODE_FRAME:
  5054. if (avctx->hwaccel ||
  5055. s->avctx->codec->capabilities&CODEC_CAP_HWACCEL_VDPAU)
  5056. buf_start = start;
  5057. buf_size2 = vc1_unescape_buffer(start + 4, size, buf2);
  5058. break;
  5059. case VC1_CODE_FIELD: {
  5060. int buf_size3;
  5061. slices = av_realloc(slices, sizeof(*slices) * (n_slices+1));
  5062. if (!slices)
  5063. goto err;
  5064. slices[n_slices].buf = av_mallocz(buf_size + FF_INPUT_BUFFER_PADDING_SIZE);
  5065. if (!slices[n_slices].buf)
  5066. goto err;
  5067. buf_size3 = vc1_unescape_buffer(start + 4, size,
  5068. slices[n_slices].buf);
  5069. init_get_bits(&slices[n_slices].gb, slices[n_slices].buf,
  5070. buf_size3 << 3);
  5071. /* assuming that the field marker is at the exact middle,
  5072. hope it's correct */
  5073. slices[n_slices].mby_start = s->mb_height >> 1;
  5074. n_slices1 = n_slices - 1; // index of the last slice of the first field
  5075. n_slices++;
  5076. break;
  5077. }
  5078. case VC1_CODE_ENTRYPOINT: /* it should be before frame data */
  5079. buf_size2 = vc1_unescape_buffer(start + 4, size, buf2);
  5080. init_get_bits(&s->gb, buf2, buf_size2 * 8);
  5081. vc1_decode_entry_point(avctx, v, &s->gb);
  5082. break;
  5083. case VC1_CODE_SLICE: {
  5084. int buf_size3;
  5085. slices = av_realloc(slices, sizeof(*slices) * (n_slices+1));
  5086. if (!slices)
  5087. goto err;
  5088. slices[n_slices].buf = av_mallocz(buf_size + FF_INPUT_BUFFER_PADDING_SIZE);
  5089. if (!slices[n_slices].buf)
  5090. goto err;
  5091. buf_size3 = vc1_unescape_buffer(start + 4, size,
  5092. slices[n_slices].buf);
  5093. init_get_bits(&slices[n_slices].gb, slices[n_slices].buf,
  5094. buf_size3 << 3);
  5095. slices[n_slices].mby_start = get_bits(&slices[n_slices].gb, 9);
  5096. n_slices++;
  5097. break;
  5098. }
  5099. }
  5100. }
  5101. } else if (v->interlace && ((buf[0] & 0xC0) == 0xC0)) { /* WVC1 interlaced stores both fields divided by marker */
  5102. const uint8_t *divider;
  5103. int buf_size3;
  5104. divider = find_next_marker(buf, buf + buf_size);
  5105. if ((divider == (buf + buf_size)) || AV_RB32(divider) != VC1_CODE_FIELD) {
  5106. av_log(avctx, AV_LOG_ERROR, "Error in WVC1 interlaced frame\n");
  5107. goto err;
  5108. } else { // found field marker, unescape second field
  5109. tmp = av_realloc(slices, sizeof(*slices) * (n_slices+1));
  5110. if (!tmp)
  5111. goto err;
  5112. slices = tmp;
  5113. slices[n_slices].buf = av_mallocz(buf_size + FF_INPUT_BUFFER_PADDING_SIZE);
  5114. if (!slices[n_slices].buf)
  5115. goto err;
  5116. buf_size3 = vc1_unescape_buffer(divider + 4, buf + buf_size - divider - 4, slices[n_slices].buf);
  5117. init_get_bits(&slices[n_slices].gb, slices[n_slices].buf,
  5118. buf_size3 << 3);
  5119. slices[n_slices].mby_start = s->mb_height >> 1;
  5120. n_slices1 = n_slices - 1;
  5121. n_slices++;
  5122. }
  5123. buf_size2 = vc1_unescape_buffer(buf, divider - buf, buf2);
  5124. } else {
  5125. buf_size2 = vc1_unescape_buffer(buf, buf_size, buf2);
  5126. }
  5127. init_get_bits(&s->gb, buf2, buf_size2*8);
  5128. } else
  5129. init_get_bits(&s->gb, buf, buf_size*8);
  5130. if (v->res_sprite) {
  5131. v->new_sprite = !get_bits1(&s->gb);
  5132. v->two_sprites = get_bits1(&s->gb);
  5133. /* res_sprite means a Windows Media Image stream, CODEC_ID_*IMAGE means
  5134. we're using the sprite compositor. These are intentionally kept separate
  5135. so you can get the raw sprites by using the wmv3 decoder for WMVP or
  5136. the vc1 one for WVP2 */
  5137. if (avctx->codec_id == CODEC_ID_WMV3IMAGE || avctx->codec_id == CODEC_ID_VC1IMAGE) {
  5138. if (v->new_sprite) {
  5139. // switch AVCodecContext parameters to those of the sprites
  5140. avctx->width = avctx->coded_width = v->sprite_width;
  5141. avctx->height = avctx->coded_height = v->sprite_height;
  5142. } else {
  5143. goto image;
  5144. }
  5145. }
  5146. }
  5147. if (s->context_initialized &&
  5148. (s->width != avctx->coded_width ||
  5149. s->height != avctx->coded_height)) {
  5150. vc1_decode_end(avctx);
  5151. }
  5152. if (!s->context_initialized) {
  5153. if (ff_msmpeg4_decode_init(avctx) < 0 || vc1_decode_init_alloc_tables(v) < 0)
  5154. return -1;
  5155. s->low_delay = !avctx->has_b_frames || v->res_sprite;
  5156. if (v->profile == PROFILE_ADVANCED) {
  5157. s->h_edge_pos = avctx->coded_width;
  5158. s->v_edge_pos = avctx->coded_height;
  5159. }
  5160. }
  5161. /* We need to set current_picture_ptr before reading the header,
  5162. * otherwise we cannot store anything in there. */
  5163. if (s->current_picture_ptr == NULL || s->current_picture_ptr->f.data[0]) {
  5164. int i = ff_find_unused_picture(s, 0);
  5165. if (i < 0)
  5166. goto err;
  5167. s->current_picture_ptr = &s->picture[i];
  5168. }
  5169. // do parse frame header
  5170. v->pic_header_flag = 0;
  5171. if (v->profile < PROFILE_ADVANCED) {
  5172. if (vc1_parse_frame_header(v, &s->gb) == -1) {
  5173. goto err;
  5174. }
  5175. } else {
  5176. if (vc1_parse_frame_header_adv(v, &s->gb) == -1) {
  5177. goto err;
  5178. }
  5179. }
  5180. if ((avctx->codec_id == CODEC_ID_WMV3IMAGE || avctx->codec_id == CODEC_ID_VC1IMAGE)
  5181. && s->pict_type != AV_PICTURE_TYPE_I) {
  5182. av_log(v->s.avctx, AV_LOG_ERROR, "Sprite decoder: expected I-frame\n");
  5183. goto err;
  5184. }
  5185. // process pulldown flags
  5186. s->current_picture_ptr->f.repeat_pict = 0;
  5187. // Pulldown flags are only valid when 'broadcast' has been set.
  5188. // So ticks_per_frame will be 2
  5189. if (v->rff) {
  5190. // repeat field
  5191. s->current_picture_ptr->f.repeat_pict = 1;
  5192. } else if (v->rptfrm) {
  5193. // repeat frames
  5194. s->current_picture_ptr->f.repeat_pict = v->rptfrm * 2;
  5195. }
  5196. // for skipping the frame
  5197. s->current_picture.f.pict_type = s->pict_type;
  5198. s->current_picture.f.key_frame = s->pict_type == AV_PICTURE_TYPE_I;
  5199. /* skip B-frames if we don't have reference frames */
  5200. if (s->last_picture_ptr == NULL && (s->pict_type == AV_PICTURE_TYPE_B || s->dropable)) {
  5201. goto err;
  5202. }
  5203. if ((avctx->skip_frame >= AVDISCARD_NONREF && s->pict_type == AV_PICTURE_TYPE_B) ||
  5204. (avctx->skip_frame >= AVDISCARD_NONKEY && s->pict_type != AV_PICTURE_TYPE_I) ||
  5205. avctx->skip_frame >= AVDISCARD_ALL) {
  5206. goto end;
  5207. }
  5208. if (s->next_p_frame_damaged) {
  5209. if (s->pict_type == AV_PICTURE_TYPE_B)
  5210. goto end;
  5211. else
  5212. s->next_p_frame_damaged = 0;
  5213. }
  5214. if (MPV_frame_start(s, avctx) < 0) {
  5215. goto err;
  5216. }
  5217. s->me.qpel_put = s->dsp.put_qpel_pixels_tab;
  5218. s->me.qpel_avg = s->dsp.avg_qpel_pixels_tab;
  5219. if ((CONFIG_VC1_VDPAU_DECODER)
  5220. &&s->avctx->codec->capabilities&CODEC_CAP_HWACCEL_VDPAU)
  5221. ff_vdpau_vc1_decode_picture(s, buf_start, (buf + buf_size) - buf_start);
  5222. else if (avctx->hwaccel) {
  5223. if (avctx->hwaccel->start_frame(avctx, buf, buf_size) < 0)
  5224. goto err;
  5225. if (avctx->hwaccel->decode_slice(avctx, buf_start, (buf + buf_size) - buf_start) < 0)
  5226. goto err;
  5227. if (avctx->hwaccel->end_frame(avctx) < 0)
  5228. goto err;
  5229. } else {
  5230. ff_er_frame_start(s);
  5231. v->bits = buf_size * 8;
  5232. if (v->field_mode) {
  5233. uint8_t *tmp[2];
  5234. s->current_picture.f.linesize[0] <<= 1;
  5235. s->current_picture.f.linesize[1] <<= 1;
  5236. s->current_picture.f.linesize[2] <<= 1;
  5237. s->linesize <<= 1;
  5238. s->uvlinesize <<= 1;
  5239. tmp[0] = v->mv_f_last[0];
  5240. tmp[1] = v->mv_f_last[1];
  5241. v->mv_f_last[0] = v->mv_f_next[0];
  5242. v->mv_f_last[1] = v->mv_f_next[1];
  5243. v->mv_f_next[0] = v->mv_f[0];
  5244. v->mv_f_next[1] = v->mv_f[1];
  5245. v->mv_f[0] = tmp[0];
  5246. v->mv_f[1] = tmp[1];
  5247. }
  5248. mb_height = s->mb_height >> v->field_mode;
  5249. for (i = 0; i <= n_slices; i++) {
  5250. if (i > 0 && slices[i - 1].mby_start >= mb_height) {
  5251. v->second_field = 1;
  5252. v->blocks_off = s->mb_width * s->mb_height << 1;
  5253. v->mb_off = s->mb_stride * s->mb_height >> 1;
  5254. } else {
  5255. v->second_field = 0;
  5256. v->blocks_off = 0;
  5257. v->mb_off = 0;
  5258. }
  5259. if (i) {
  5260. v->pic_header_flag = 0;
  5261. if (v->field_mode && i == n_slices1 + 2)
  5262. vc1_parse_frame_header_adv(v, &s->gb);
  5263. else if (get_bits1(&s->gb)) {
  5264. v->pic_header_flag = 1;
  5265. vc1_parse_frame_header_adv(v, &s->gb);
  5266. }
  5267. }
  5268. s->start_mb_y = (i == 0) ? 0 : FFMAX(0, slices[i-1].mby_start % mb_height);
  5269. if (!v->field_mode || v->second_field)
  5270. s->end_mb_y = (i == n_slices ) ? mb_height : FFMIN(mb_height, slices[i].mby_start % mb_height);
  5271. else
  5272. s->end_mb_y = (i == n_slices1 + 1) ? mb_height : FFMIN(mb_height, slices[i].mby_start % mb_height);
  5273. vc1_decode_blocks(v);
  5274. if (i != n_slices)
  5275. s->gb = slices[i].gb;
  5276. }
  5277. if (v->field_mode) {
  5278. v->second_field = 0;
  5279. if (s->pict_type == AV_PICTURE_TYPE_B) {
  5280. memcpy(v->mv_f_base, v->mv_f_next_base,
  5281. 2 * (s->b8_stride * (s->mb_height * 2 + 1) + s->mb_stride * (s->mb_height + 1) * 2));
  5282. }
  5283. s->current_picture.f.linesize[0] >>= 1;
  5284. s->current_picture.f.linesize[1] >>= 1;
  5285. s->current_picture.f.linesize[2] >>= 1;
  5286. s->linesize >>= 1;
  5287. s->uvlinesize >>= 1;
  5288. }
  5289. //av_log(s->avctx, AV_LOG_INFO, "Consumed %i/%i bits\n", get_bits_count(&s->gb), s->gb.size_in_bits);
  5290. // if (get_bits_count(&s->gb) > buf_size * 8)
  5291. // return -1;
  5292. if(s->error_occurred && s->pict_type == AV_PICTURE_TYPE_B)
  5293. goto err;
  5294. ff_er_frame_end(s);
  5295. }
  5296. MPV_frame_end(s);
  5297. if (avctx->codec_id == CODEC_ID_WMV3IMAGE || avctx->codec_id == CODEC_ID_VC1IMAGE) {
  5298. image:
  5299. avctx->width = avctx->coded_width = v->output_width;
  5300. avctx->height = avctx->coded_height = v->output_height;
  5301. if (avctx->skip_frame >= AVDISCARD_NONREF)
  5302. goto end;
  5303. #if CONFIG_WMV3IMAGE_DECODER || CONFIG_VC1IMAGE_DECODER
  5304. if (vc1_decode_sprites(v, &s->gb))
  5305. goto err;
  5306. #endif
  5307. *pict = v->sprite_output_frame;
  5308. *data_size = sizeof(AVFrame);
  5309. } else {
  5310. if (s->pict_type == AV_PICTURE_TYPE_B || s->low_delay) {
  5311. *pict = *(AVFrame*)s->current_picture_ptr;
  5312. } else if (s->last_picture_ptr != NULL) {
  5313. *pict = *(AVFrame*)s->last_picture_ptr;
  5314. }
  5315. if (s->last_picture_ptr || s->low_delay) {
  5316. *data_size = sizeof(AVFrame);
  5317. ff_print_debug_info(s, pict);
  5318. }
  5319. }
  5320. end:
  5321. av_free(buf2);
  5322. for (i = 0; i < n_slices; i++)
  5323. av_free(slices[i].buf);
  5324. av_free(slices);
  5325. return buf_size;
  5326. err:
  5327. av_free(buf2);
  5328. for (i = 0; i < n_slices; i++)
  5329. av_free(slices[i].buf);
  5330. av_free(slices);
  5331. return -1;
  5332. }
  5333. static const AVProfile profiles[] = {
  5334. { FF_PROFILE_VC1_SIMPLE, "Simple" },
  5335. { FF_PROFILE_VC1_MAIN, "Main" },
  5336. { FF_PROFILE_VC1_COMPLEX, "Complex" },
  5337. { FF_PROFILE_VC1_ADVANCED, "Advanced" },
  5338. { FF_PROFILE_UNKNOWN },
  5339. };
  5340. AVCodec ff_vc1_decoder = {
  5341. .name = "vc1",
  5342. .type = AVMEDIA_TYPE_VIDEO,
  5343. .id = CODEC_ID_VC1,
  5344. .priv_data_size = sizeof(VC1Context),
  5345. .init = vc1_decode_init,
  5346. .close = vc1_decode_end,
  5347. .decode = vc1_decode_frame,
  5348. .capabilities = CODEC_CAP_DR1 | CODEC_CAP_DELAY,
  5349. .long_name = NULL_IF_CONFIG_SMALL("SMPTE VC-1"),
  5350. .pix_fmts = ff_hwaccel_pixfmt_list_420,
  5351. .profiles = NULL_IF_CONFIG_SMALL(profiles)
  5352. };
  5353. #if CONFIG_WMV3_DECODER
  5354. AVCodec ff_wmv3_decoder = {
  5355. .name = "wmv3",
  5356. .type = AVMEDIA_TYPE_VIDEO,
  5357. .id = CODEC_ID_WMV3,
  5358. .priv_data_size = sizeof(VC1Context),
  5359. .init = vc1_decode_init,
  5360. .close = vc1_decode_end,
  5361. .decode = vc1_decode_frame,
  5362. .capabilities = CODEC_CAP_DR1 | CODEC_CAP_DELAY,
  5363. .long_name = NULL_IF_CONFIG_SMALL("Windows Media Video 9"),
  5364. .pix_fmts = ff_hwaccel_pixfmt_list_420,
  5365. .profiles = NULL_IF_CONFIG_SMALL(profiles)
  5366. };
  5367. #endif
  5368. #if CONFIG_WMV3_VDPAU_DECODER
  5369. AVCodec ff_wmv3_vdpau_decoder = {
  5370. .name = "wmv3_vdpau",
  5371. .type = AVMEDIA_TYPE_VIDEO,
  5372. .id = CODEC_ID_WMV3,
  5373. .priv_data_size = sizeof(VC1Context),
  5374. .init = vc1_decode_init,
  5375. .close = vc1_decode_end,
  5376. .decode = vc1_decode_frame,
  5377. .capabilities = CODEC_CAP_DR1 | CODEC_CAP_DELAY | CODEC_CAP_HWACCEL_VDPAU,
  5378. .long_name = NULL_IF_CONFIG_SMALL("Windows Media Video 9 VDPAU"),
  5379. .pix_fmts = (const enum PixelFormat[]){PIX_FMT_VDPAU_WMV3, PIX_FMT_NONE},
  5380. .profiles = NULL_IF_CONFIG_SMALL(profiles)
  5381. };
  5382. #endif
  5383. #if CONFIG_VC1_VDPAU_DECODER
  5384. AVCodec ff_vc1_vdpau_decoder = {
  5385. .name = "vc1_vdpau",
  5386. .type = AVMEDIA_TYPE_VIDEO,
  5387. .id = CODEC_ID_VC1,
  5388. .priv_data_size = sizeof(VC1Context),
  5389. .init = vc1_decode_init,
  5390. .close = vc1_decode_end,
  5391. .decode = vc1_decode_frame,
  5392. .capabilities = CODEC_CAP_DR1 | CODEC_CAP_DELAY | CODEC_CAP_HWACCEL_VDPAU,
  5393. .long_name = NULL_IF_CONFIG_SMALL("SMPTE VC-1 VDPAU"),
  5394. .pix_fmts = (const enum PixelFormat[]){PIX_FMT_VDPAU_VC1, PIX_FMT_NONE},
  5395. .profiles = NULL_IF_CONFIG_SMALL(profiles)
  5396. };
  5397. #endif
  5398. #if CONFIG_WMV3IMAGE_DECODER
  5399. AVCodec ff_wmv3image_decoder = {
  5400. .name = "wmv3image",
  5401. .type = AVMEDIA_TYPE_VIDEO,
  5402. .id = CODEC_ID_WMV3IMAGE,
  5403. .priv_data_size = sizeof(VC1Context),
  5404. .init = vc1_decode_init,
  5405. .close = vc1_decode_end,
  5406. .decode = vc1_decode_frame,
  5407. .capabilities = CODEC_CAP_DR1,
  5408. .flush = vc1_sprite_flush,
  5409. .long_name = NULL_IF_CONFIG_SMALL("Windows Media Video 9 Image"),
  5410. .pix_fmts = ff_pixfmt_list_420
  5411. };
  5412. #endif
  5413. #if CONFIG_VC1IMAGE_DECODER
  5414. AVCodec ff_vc1image_decoder = {
  5415. .name = "vc1image",
  5416. .type = AVMEDIA_TYPE_VIDEO,
  5417. .id = CODEC_ID_VC1IMAGE,
  5418. .priv_data_size = sizeof(VC1Context),
  5419. .init = vc1_decode_init,
  5420. .close = vc1_decode_end,
  5421. .decode = vc1_decode_frame,
  5422. .capabilities = CODEC_CAP_DR1,
  5423. .flush = vc1_sprite_flush,
  5424. .long_name = NULL_IF_CONFIG_SMALL("Windows Media Video 9 Image v2"),
  5425. .pix_fmts = ff_pixfmt_list_420
  5426. };
  5427. #endif