You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

2166 lines
77KB

  1. /*
  2. * MPEG-4 ALS decoder
  3. * Copyright (c) 2009 Thilo Borgmann <thilo.borgmann _at_ mail.de>
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file
  23. * MPEG-4 ALS decoder
  24. * @author Thilo Borgmann <thilo.borgmann _at_ mail.de>
  25. */
  26. #include <inttypes.h>
  27. #include "avcodec.h"
  28. #include "get_bits.h"
  29. #include "unary.h"
  30. #include "mpeg4audio.h"
  31. #include "bgmc.h"
  32. #include "bswapdsp.h"
  33. #include "internal.h"
  34. #include "mlz.h"
  35. #include "libavutil/samplefmt.h"
  36. #include "libavutil/crc.h"
  37. #include "libavutil/softfloat_ieee754.h"
  38. #include "libavutil/intfloat.h"
  39. #include "libavutil/intreadwrite.h"
  40. #include <stdint.h>
  41. /** Rice parameters and corresponding index offsets for decoding the
  42. * indices of scaled PARCOR values. The table chosen is set globally
  43. * by the encoder and stored in ALSSpecificConfig.
  44. */
  45. static const int8_t parcor_rice_table[3][20][2] = {
  46. { {-52, 4}, {-29, 5}, {-31, 4}, { 19, 4}, {-16, 4},
  47. { 12, 3}, { -7, 3}, { 9, 3}, { -5, 3}, { 6, 3},
  48. { -4, 3}, { 3, 3}, { -3, 2}, { 3, 2}, { -2, 2},
  49. { 3, 2}, { -1, 2}, { 2, 2}, { -1, 2}, { 2, 2} },
  50. { {-58, 3}, {-42, 4}, {-46, 4}, { 37, 5}, {-36, 4},
  51. { 29, 4}, {-29, 4}, { 25, 4}, {-23, 4}, { 20, 4},
  52. {-17, 4}, { 16, 4}, {-12, 4}, { 12, 3}, {-10, 4},
  53. { 7, 3}, { -4, 4}, { 3, 3}, { -1, 3}, { 1, 3} },
  54. { {-59, 3}, {-45, 5}, {-50, 4}, { 38, 4}, {-39, 4},
  55. { 32, 4}, {-30, 4}, { 25, 3}, {-23, 3}, { 20, 3},
  56. {-20, 3}, { 16, 3}, {-13, 3}, { 10, 3}, { -7, 3},
  57. { 3, 3}, { 0, 3}, { -1, 3}, { 2, 3}, { -1, 2} }
  58. };
  59. /** Scaled PARCOR values used for the first two PARCOR coefficients.
  60. * To be indexed by the Rice coded indices.
  61. * Generated by: parcor_scaled_values[i] = 32 + ((i * (i+1)) << 7) - (1 << 20)
  62. * Actual values are divided by 32 in order to be stored in 16 bits.
  63. */
  64. static const int16_t parcor_scaled_values[] = {
  65. -1048544 / 32, -1048288 / 32, -1047776 / 32, -1047008 / 32,
  66. -1045984 / 32, -1044704 / 32, -1043168 / 32, -1041376 / 32,
  67. -1039328 / 32, -1037024 / 32, -1034464 / 32, -1031648 / 32,
  68. -1028576 / 32, -1025248 / 32, -1021664 / 32, -1017824 / 32,
  69. -1013728 / 32, -1009376 / 32, -1004768 / 32, -999904 / 32,
  70. -994784 / 32, -989408 / 32, -983776 / 32, -977888 / 32,
  71. -971744 / 32, -965344 / 32, -958688 / 32, -951776 / 32,
  72. -944608 / 32, -937184 / 32, -929504 / 32, -921568 / 32,
  73. -913376 / 32, -904928 / 32, -896224 / 32, -887264 / 32,
  74. -878048 / 32, -868576 / 32, -858848 / 32, -848864 / 32,
  75. -838624 / 32, -828128 / 32, -817376 / 32, -806368 / 32,
  76. -795104 / 32, -783584 / 32, -771808 / 32, -759776 / 32,
  77. -747488 / 32, -734944 / 32, -722144 / 32, -709088 / 32,
  78. -695776 / 32, -682208 / 32, -668384 / 32, -654304 / 32,
  79. -639968 / 32, -625376 / 32, -610528 / 32, -595424 / 32,
  80. -580064 / 32, -564448 / 32, -548576 / 32, -532448 / 32,
  81. -516064 / 32, -499424 / 32, -482528 / 32, -465376 / 32,
  82. -447968 / 32, -430304 / 32, -412384 / 32, -394208 / 32,
  83. -375776 / 32, -357088 / 32, -338144 / 32, -318944 / 32,
  84. -299488 / 32, -279776 / 32, -259808 / 32, -239584 / 32,
  85. -219104 / 32, -198368 / 32, -177376 / 32, -156128 / 32,
  86. -134624 / 32, -112864 / 32, -90848 / 32, -68576 / 32,
  87. -46048 / 32, -23264 / 32, -224 / 32, 23072 / 32,
  88. 46624 / 32, 70432 / 32, 94496 / 32, 118816 / 32,
  89. 143392 / 32, 168224 / 32, 193312 / 32, 218656 / 32,
  90. 244256 / 32, 270112 / 32, 296224 / 32, 322592 / 32,
  91. 349216 / 32, 376096 / 32, 403232 / 32, 430624 / 32,
  92. 458272 / 32, 486176 / 32, 514336 / 32, 542752 / 32,
  93. 571424 / 32, 600352 / 32, 629536 / 32, 658976 / 32,
  94. 688672 / 32, 718624 / 32, 748832 / 32, 779296 / 32,
  95. 810016 / 32, 840992 / 32, 872224 / 32, 903712 / 32,
  96. 935456 / 32, 967456 / 32, 999712 / 32, 1032224 / 32
  97. };
  98. /** Gain values of p(0) for long-term prediction.
  99. * To be indexed by the Rice coded indices.
  100. */
  101. static const uint8_t ltp_gain_values [4][4] = {
  102. { 0, 8, 16, 24},
  103. {32, 40, 48, 56},
  104. {64, 70, 76, 82},
  105. {88, 92, 96, 100}
  106. };
  107. /** Inter-channel weighting factors for multi-channel correlation.
  108. * To be indexed by the Rice coded indices.
  109. */
  110. static const int16_t mcc_weightings[] = {
  111. 204, 192, 179, 166, 153, 140, 128, 115,
  112. 102, 89, 76, 64, 51, 38, 25, 12,
  113. 0, -12, -25, -38, -51, -64, -76, -89,
  114. -102, -115, -128, -140, -153, -166, -179, -192
  115. };
  116. /** Tail codes used in arithmetic coding using block Gilbert-Moore codes.
  117. */
  118. static const uint8_t tail_code[16][6] = {
  119. { 74, 44, 25, 13, 7, 3},
  120. { 68, 42, 24, 13, 7, 3},
  121. { 58, 39, 23, 13, 7, 3},
  122. {126, 70, 37, 19, 10, 5},
  123. {132, 70, 37, 20, 10, 5},
  124. {124, 70, 38, 20, 10, 5},
  125. {120, 69, 37, 20, 11, 5},
  126. {116, 67, 37, 20, 11, 5},
  127. {108, 66, 36, 20, 10, 5},
  128. {102, 62, 36, 20, 10, 5},
  129. { 88, 58, 34, 19, 10, 5},
  130. {162, 89, 49, 25, 13, 7},
  131. {156, 87, 49, 26, 14, 7},
  132. {150, 86, 47, 26, 14, 7},
  133. {142, 84, 47, 26, 14, 7},
  134. {131, 79, 46, 26, 14, 7}
  135. };
  136. enum RA_Flag {
  137. RA_FLAG_NONE,
  138. RA_FLAG_FRAMES,
  139. RA_FLAG_HEADER
  140. };
  141. typedef struct ALSSpecificConfig {
  142. uint32_t samples; ///< number of samples, 0xFFFFFFFF if unknown
  143. int resolution; ///< 000 = 8-bit; 001 = 16-bit; 010 = 24-bit; 011 = 32-bit
  144. int floating; ///< 1 = IEEE 32-bit floating-point, 0 = integer
  145. int msb_first; ///< 1 = original CRC calculated on big-endian system, 0 = little-endian
  146. int frame_length; ///< frame length for each frame (last frame may differ)
  147. int ra_distance; ///< distance between RA frames (in frames, 0...255)
  148. enum RA_Flag ra_flag; ///< indicates where the size of ra units is stored
  149. int adapt_order; ///< adaptive order: 1 = on, 0 = off
  150. int coef_table; ///< table index of Rice code parameters
  151. int long_term_prediction; ///< long term prediction (LTP): 1 = on, 0 = off
  152. int max_order; ///< maximum prediction order (0..1023)
  153. int block_switching; ///< number of block switching levels
  154. int bgmc; ///< "Block Gilbert-Moore Code": 1 = on, 0 = off (Rice coding only)
  155. int sb_part; ///< sub-block partition
  156. int joint_stereo; ///< joint stereo: 1 = on, 0 = off
  157. int mc_coding; ///< extended inter-channel coding (multi channel coding): 1 = on, 0 = off
  158. int chan_config; ///< indicates that a chan_config_info field is present
  159. int chan_sort; ///< channel rearrangement: 1 = on, 0 = off
  160. int rlslms; ///< use "Recursive Least Square-Least Mean Square" predictor: 1 = on, 0 = off
  161. int chan_config_info; ///< mapping of channels to loudspeaker locations. Unused until setting channel configuration is implemented.
  162. int *chan_pos; ///< original channel positions
  163. int crc_enabled; ///< enable Cyclic Redundancy Checksum
  164. } ALSSpecificConfig;
  165. typedef struct ALSChannelData {
  166. int stop_flag;
  167. int master_channel;
  168. int time_diff_flag;
  169. int time_diff_sign;
  170. int time_diff_index;
  171. int weighting[6];
  172. } ALSChannelData;
  173. typedef struct ALSDecContext {
  174. AVCodecContext *avctx;
  175. ALSSpecificConfig sconf;
  176. GetBitContext gb;
  177. BswapDSPContext bdsp;
  178. const AVCRC *crc_table;
  179. uint32_t crc_org; ///< CRC value of the original input data
  180. uint32_t crc; ///< CRC value calculated from decoded data
  181. unsigned int cur_frame_length; ///< length of the current frame to decode
  182. unsigned int frame_id; ///< the frame ID / number of the current frame
  183. unsigned int js_switch; ///< if true, joint-stereo decoding is enforced
  184. unsigned int cs_switch; ///< if true, channel rearrangement is done
  185. unsigned int num_blocks; ///< number of blocks used in the current frame
  186. unsigned int s_max; ///< maximum Rice parameter allowed in entropy coding
  187. uint8_t *bgmc_lut; ///< pointer at lookup tables used for BGMC
  188. int *bgmc_lut_status; ///< pointer at lookup table status flags used for BGMC
  189. int ltp_lag_length; ///< number of bits used for ltp lag value
  190. int *const_block; ///< contains const_block flags for all channels
  191. unsigned int *shift_lsbs; ///< contains shift_lsbs flags for all channels
  192. unsigned int *opt_order; ///< contains opt_order flags for all channels
  193. int *store_prev_samples; ///< contains store_prev_samples flags for all channels
  194. int *use_ltp; ///< contains use_ltp flags for all channels
  195. int *ltp_lag; ///< contains ltp lag values for all channels
  196. int **ltp_gain; ///< gain values for ltp 5-tap filter for a channel
  197. int *ltp_gain_buffer; ///< contains all gain values for ltp 5-tap filter
  198. int32_t **quant_cof; ///< quantized parcor coefficients for a channel
  199. int32_t *quant_cof_buffer; ///< contains all quantized parcor coefficients
  200. int32_t **lpc_cof; ///< coefficients of the direct form prediction filter for a channel
  201. int32_t *lpc_cof_buffer; ///< contains all coefficients of the direct form prediction filter
  202. int32_t *lpc_cof_reversed_buffer; ///< temporary buffer to set up a reversed versio of lpc_cof_buffer
  203. ALSChannelData **chan_data; ///< channel data for multi-channel correlation
  204. ALSChannelData *chan_data_buffer; ///< contains channel data for all channels
  205. int *reverted_channels; ///< stores a flag for each reverted channel
  206. int32_t *prev_raw_samples; ///< contains unshifted raw samples from the previous block
  207. int32_t **raw_samples; ///< decoded raw samples for each channel
  208. int32_t *raw_buffer; ///< contains all decoded raw samples including carryover samples
  209. uint8_t *crc_buffer; ///< buffer of byte order corrected samples used for CRC check
  210. MLZ* mlz; ///< masked lz decompression structure
  211. SoftFloat_IEEE754 *acf; ///< contains common multiplier for all channels
  212. int *last_acf_mantissa; ///< contains the last acf mantissa data of common multiplier for all channels
  213. int *shift_value; ///< value by which the binary point is to be shifted for all channels
  214. int *last_shift_value; ///< contains last shift value for all channels
  215. int **raw_mantissa; ///< decoded mantissa bits of the difference signal
  216. unsigned char *larray; ///< buffer to store the output of masked lz decompression
  217. int *nbits; ///< contains the number of bits to read for masked lz decompression for all samples
  218. } ALSDecContext;
  219. typedef struct ALSBlockData {
  220. unsigned int block_length; ///< number of samples within the block
  221. unsigned int ra_block; ///< if true, this is a random access block
  222. int *const_block; ///< if true, this is a constant value block
  223. int js_blocks; ///< true if this block contains a difference signal
  224. unsigned int *shift_lsbs; ///< shift of values for this block
  225. unsigned int *opt_order; ///< prediction order of this block
  226. int *store_prev_samples;///< if true, carryover samples have to be stored
  227. int *use_ltp; ///< if true, long-term prediction is used
  228. int *ltp_lag; ///< lag value for long-term prediction
  229. int *ltp_gain; ///< gain values for ltp 5-tap filter
  230. int32_t *quant_cof; ///< quantized parcor coefficients
  231. int32_t *lpc_cof; ///< coefficients of the direct form prediction
  232. int32_t *raw_samples; ///< decoded raw samples / residuals for this block
  233. int32_t *prev_raw_samples; ///< contains unshifted raw samples from the previous block
  234. int32_t *raw_other; ///< decoded raw samples of the other channel of a channel pair
  235. } ALSBlockData;
  236. static av_cold void dprint_specific_config(ALSDecContext *ctx)
  237. {
  238. #ifdef DEBUG
  239. AVCodecContext *avctx = ctx->avctx;
  240. ALSSpecificConfig *sconf = &ctx->sconf;
  241. ff_dlog(avctx, "resolution = %i\n", sconf->resolution);
  242. ff_dlog(avctx, "floating = %i\n", sconf->floating);
  243. ff_dlog(avctx, "frame_length = %i\n", sconf->frame_length);
  244. ff_dlog(avctx, "ra_distance = %i\n", sconf->ra_distance);
  245. ff_dlog(avctx, "ra_flag = %i\n", sconf->ra_flag);
  246. ff_dlog(avctx, "adapt_order = %i\n", sconf->adapt_order);
  247. ff_dlog(avctx, "coef_table = %i\n", sconf->coef_table);
  248. ff_dlog(avctx, "long_term_prediction = %i\n", sconf->long_term_prediction);
  249. ff_dlog(avctx, "max_order = %i\n", sconf->max_order);
  250. ff_dlog(avctx, "block_switching = %i\n", sconf->block_switching);
  251. ff_dlog(avctx, "bgmc = %i\n", sconf->bgmc);
  252. ff_dlog(avctx, "sb_part = %i\n", sconf->sb_part);
  253. ff_dlog(avctx, "joint_stereo = %i\n", sconf->joint_stereo);
  254. ff_dlog(avctx, "mc_coding = %i\n", sconf->mc_coding);
  255. ff_dlog(avctx, "chan_config = %i\n", sconf->chan_config);
  256. ff_dlog(avctx, "chan_sort = %i\n", sconf->chan_sort);
  257. ff_dlog(avctx, "RLSLMS = %i\n", sconf->rlslms);
  258. ff_dlog(avctx, "chan_config_info = %i\n", sconf->chan_config_info);
  259. #endif
  260. }
  261. /** Read an ALSSpecificConfig from a buffer into the output struct.
  262. */
  263. static av_cold int read_specific_config(ALSDecContext *ctx)
  264. {
  265. GetBitContext gb;
  266. uint64_t ht_size;
  267. int i, config_offset;
  268. MPEG4AudioConfig m4ac = {0};
  269. ALSSpecificConfig *sconf = &ctx->sconf;
  270. AVCodecContext *avctx = ctx->avctx;
  271. uint32_t als_id, header_size, trailer_size;
  272. int ret;
  273. if ((ret = init_get_bits8(&gb, avctx->extradata, avctx->extradata_size)) < 0)
  274. return ret;
  275. config_offset = avpriv_mpeg4audio_get_config(&m4ac, avctx->extradata,
  276. avctx->extradata_size * 8, 1);
  277. if (config_offset < 0)
  278. return AVERROR_INVALIDDATA;
  279. skip_bits_long(&gb, config_offset);
  280. if (get_bits_left(&gb) < (30 << 3))
  281. return AVERROR_INVALIDDATA;
  282. // read the fixed items
  283. als_id = get_bits_long(&gb, 32);
  284. avctx->sample_rate = m4ac.sample_rate;
  285. skip_bits_long(&gb, 32); // sample rate already known
  286. sconf->samples = get_bits_long(&gb, 32);
  287. avctx->channels = m4ac.channels;
  288. skip_bits(&gb, 16); // number of channels already known
  289. skip_bits(&gb, 3); // skip file_type
  290. sconf->resolution = get_bits(&gb, 3);
  291. sconf->floating = get_bits1(&gb);
  292. sconf->msb_first = get_bits1(&gb);
  293. sconf->frame_length = get_bits(&gb, 16) + 1;
  294. sconf->ra_distance = get_bits(&gb, 8);
  295. sconf->ra_flag = get_bits(&gb, 2);
  296. sconf->adapt_order = get_bits1(&gb);
  297. sconf->coef_table = get_bits(&gb, 2);
  298. sconf->long_term_prediction = get_bits1(&gb);
  299. sconf->max_order = get_bits(&gb, 10);
  300. sconf->block_switching = get_bits(&gb, 2);
  301. sconf->bgmc = get_bits1(&gb);
  302. sconf->sb_part = get_bits1(&gb);
  303. sconf->joint_stereo = get_bits1(&gb);
  304. sconf->mc_coding = get_bits1(&gb);
  305. sconf->chan_config = get_bits1(&gb);
  306. sconf->chan_sort = get_bits1(&gb);
  307. sconf->crc_enabled = get_bits1(&gb);
  308. sconf->rlslms = get_bits1(&gb);
  309. skip_bits(&gb, 5); // skip 5 reserved bits
  310. skip_bits1(&gb); // skip aux_data_enabled
  311. // check for ALSSpecificConfig struct
  312. if (als_id != MKBETAG('A','L','S','\0'))
  313. return AVERROR_INVALIDDATA;
  314. if (avctx->channels > FF_SANE_NB_CHANNELS) {
  315. avpriv_request_sample(avctx, "Huge number of channels\n");
  316. return AVERROR_PATCHWELCOME;
  317. }
  318. ctx->cur_frame_length = sconf->frame_length;
  319. // read channel config
  320. if (sconf->chan_config)
  321. sconf->chan_config_info = get_bits(&gb, 16);
  322. // TODO: use this to set avctx->channel_layout
  323. // read channel sorting
  324. if (sconf->chan_sort && avctx->channels > 1) {
  325. int chan_pos_bits = av_ceil_log2(avctx->channels);
  326. int bits_needed = avctx->channels * chan_pos_bits + 7;
  327. if (get_bits_left(&gb) < bits_needed)
  328. return AVERROR_INVALIDDATA;
  329. if (!(sconf->chan_pos = av_malloc_array(avctx->channels, sizeof(*sconf->chan_pos))))
  330. return AVERROR(ENOMEM);
  331. ctx->cs_switch = 1;
  332. for (i = 0; i < avctx->channels; i++) {
  333. sconf->chan_pos[i] = -1;
  334. }
  335. for (i = 0; i < avctx->channels; i++) {
  336. int idx;
  337. idx = get_bits(&gb, chan_pos_bits);
  338. if (idx >= avctx->channels || sconf->chan_pos[idx] != -1) {
  339. av_log(avctx, AV_LOG_WARNING, "Invalid channel reordering.\n");
  340. ctx->cs_switch = 0;
  341. break;
  342. }
  343. sconf->chan_pos[idx] = i;
  344. }
  345. align_get_bits(&gb);
  346. }
  347. // read fixed header and trailer sizes,
  348. // if size = 0xFFFFFFFF then there is no data field!
  349. if (get_bits_left(&gb) < 64)
  350. return AVERROR_INVALIDDATA;
  351. header_size = get_bits_long(&gb, 32);
  352. trailer_size = get_bits_long(&gb, 32);
  353. if (header_size == 0xFFFFFFFF)
  354. header_size = 0;
  355. if (trailer_size == 0xFFFFFFFF)
  356. trailer_size = 0;
  357. ht_size = ((int64_t)(header_size) + (int64_t)(trailer_size)) << 3;
  358. // skip the header and trailer data
  359. if (get_bits_left(&gb) < ht_size)
  360. return AVERROR_INVALIDDATA;
  361. if (ht_size > INT32_MAX)
  362. return AVERROR_PATCHWELCOME;
  363. skip_bits_long(&gb, ht_size);
  364. // initialize CRC calculation
  365. if (sconf->crc_enabled) {
  366. if (get_bits_left(&gb) < 32)
  367. return AVERROR_INVALIDDATA;
  368. if (avctx->err_recognition & (AV_EF_CRCCHECK|AV_EF_CAREFUL)) {
  369. ctx->crc_table = av_crc_get_table(AV_CRC_32_IEEE_LE);
  370. ctx->crc = 0xFFFFFFFF;
  371. ctx->crc_org = ~get_bits_long(&gb, 32);
  372. } else
  373. skip_bits_long(&gb, 32);
  374. }
  375. // no need to read the rest of ALSSpecificConfig (ra_unit_size & aux data)
  376. dprint_specific_config(ctx);
  377. return 0;
  378. }
  379. /** Check the ALSSpecificConfig for unsupported features.
  380. */
  381. static int check_specific_config(ALSDecContext *ctx)
  382. {
  383. ALSSpecificConfig *sconf = &ctx->sconf;
  384. int error = 0;
  385. // report unsupported feature and set error value
  386. #define MISSING_ERR(cond, str, errval) \
  387. { \
  388. if (cond) { \
  389. avpriv_report_missing_feature(ctx->avctx, \
  390. str); \
  391. error = errval; \
  392. } \
  393. }
  394. MISSING_ERR(sconf->rlslms, "Adaptive RLS-LMS prediction", AVERROR_PATCHWELCOME);
  395. return error;
  396. }
  397. /** Parse the bs_info field to extract the block partitioning used in
  398. * block switching mode, refer to ISO/IEC 14496-3, section 11.6.2.
  399. */
  400. static void parse_bs_info(const uint32_t bs_info, unsigned int n,
  401. unsigned int div, unsigned int **div_blocks,
  402. unsigned int *num_blocks)
  403. {
  404. if (n < 31 && ((bs_info << n) & 0x40000000)) {
  405. // if the level is valid and the investigated bit n is set
  406. // then recursively check both children at bits (2n+1) and (2n+2)
  407. n *= 2;
  408. div += 1;
  409. parse_bs_info(bs_info, n + 1, div, div_blocks, num_blocks);
  410. parse_bs_info(bs_info, n + 2, div, div_blocks, num_blocks);
  411. } else {
  412. // else the bit is not set or the last level has been reached
  413. // (bit implicitly not set)
  414. **div_blocks = div;
  415. (*div_blocks)++;
  416. (*num_blocks)++;
  417. }
  418. }
  419. /** Read and decode a Rice codeword.
  420. */
  421. static int32_t decode_rice(GetBitContext *gb, unsigned int k)
  422. {
  423. int max = get_bits_left(gb) - k;
  424. unsigned q = get_unary(gb, 0, max);
  425. int r = k ? get_bits1(gb) : !(q & 1);
  426. if (k > 1) {
  427. q <<= (k - 1);
  428. q += get_bits_long(gb, k - 1);
  429. } else if (!k) {
  430. q >>= 1;
  431. }
  432. return r ? q : ~q;
  433. }
  434. /** Convert PARCOR coefficient k to direct filter coefficient.
  435. */
  436. static void parcor_to_lpc(unsigned int k, const int32_t *par, int32_t *cof)
  437. {
  438. int i, j;
  439. for (i = 0, j = k - 1; i < j; i++, j--) {
  440. unsigned tmp1 = ((MUL64(par[k], cof[j]) + (1 << 19)) >> 20);
  441. cof[j] += ((MUL64(par[k], cof[i]) + (1 << 19)) >> 20);
  442. cof[i] += tmp1;
  443. }
  444. if (i == j)
  445. cof[i] += ((MUL64(par[k], cof[j]) + (1 << 19)) >> 20);
  446. cof[k] = par[k];
  447. }
  448. /** Read block switching field if necessary and set actual block sizes.
  449. * Also assure that the block sizes of the last frame correspond to the
  450. * actual number of samples.
  451. */
  452. static void get_block_sizes(ALSDecContext *ctx, unsigned int *div_blocks,
  453. uint32_t *bs_info)
  454. {
  455. ALSSpecificConfig *sconf = &ctx->sconf;
  456. GetBitContext *gb = &ctx->gb;
  457. unsigned int *ptr_div_blocks = div_blocks;
  458. unsigned int b;
  459. if (sconf->block_switching) {
  460. unsigned int bs_info_len = 1 << (sconf->block_switching + 2);
  461. *bs_info = get_bits_long(gb, bs_info_len);
  462. *bs_info <<= (32 - bs_info_len);
  463. }
  464. ctx->num_blocks = 0;
  465. parse_bs_info(*bs_info, 0, 0, &ptr_div_blocks, &ctx->num_blocks);
  466. // The last frame may have an overdetermined block structure given in
  467. // the bitstream. In that case the defined block structure would need
  468. // more samples than available to be consistent.
  469. // The block structure is actually used but the block sizes are adapted
  470. // to fit the actual number of available samples.
  471. // Example: 5 samples, 2nd level block sizes: 2 2 2 2.
  472. // This results in the actual block sizes: 2 2 1 0.
  473. // This is not specified in 14496-3 but actually done by the reference
  474. // codec RM22 revision 2.
  475. // This appears to happen in case of an odd number of samples in the last
  476. // frame which is actually not allowed by the block length switching part
  477. // of 14496-3.
  478. // The ALS conformance files feature an odd number of samples in the last
  479. // frame.
  480. for (b = 0; b < ctx->num_blocks; b++)
  481. div_blocks[b] = ctx->sconf.frame_length >> div_blocks[b];
  482. if (ctx->cur_frame_length != ctx->sconf.frame_length) {
  483. unsigned int remaining = ctx->cur_frame_length;
  484. for (b = 0; b < ctx->num_blocks; b++) {
  485. if (remaining <= div_blocks[b]) {
  486. div_blocks[b] = remaining;
  487. ctx->num_blocks = b + 1;
  488. break;
  489. }
  490. remaining -= div_blocks[b];
  491. }
  492. }
  493. }
  494. /** Read the block data for a constant block
  495. */
  496. static int read_const_block_data(ALSDecContext *ctx, ALSBlockData *bd)
  497. {
  498. ALSSpecificConfig *sconf = &ctx->sconf;
  499. AVCodecContext *avctx = ctx->avctx;
  500. GetBitContext *gb = &ctx->gb;
  501. if (bd->block_length <= 0)
  502. return AVERROR_INVALIDDATA;
  503. *bd->raw_samples = 0;
  504. *bd->const_block = get_bits1(gb); // 1 = constant value, 0 = zero block (silence)
  505. bd->js_blocks = get_bits1(gb);
  506. // skip 5 reserved bits
  507. skip_bits(gb, 5);
  508. if (*bd->const_block) {
  509. unsigned int const_val_bits = sconf->floating ? 24 : avctx->bits_per_raw_sample;
  510. *bd->raw_samples = get_sbits_long(gb, const_val_bits);
  511. }
  512. // ensure constant block decoding by reusing this field
  513. *bd->const_block = 1;
  514. return 0;
  515. }
  516. /** Decode the block data for a constant block
  517. */
  518. static void decode_const_block_data(ALSDecContext *ctx, ALSBlockData *bd)
  519. {
  520. int smp = bd->block_length - 1;
  521. int32_t val = *bd->raw_samples;
  522. int32_t *dst = bd->raw_samples + 1;
  523. // write raw samples into buffer
  524. for (; smp; smp--)
  525. *dst++ = val;
  526. }
  527. /** Read the block data for a non-constant block
  528. */
  529. static int read_var_block_data(ALSDecContext *ctx, ALSBlockData *bd)
  530. {
  531. ALSSpecificConfig *sconf = &ctx->sconf;
  532. AVCodecContext *avctx = ctx->avctx;
  533. GetBitContext *gb = &ctx->gb;
  534. unsigned int k;
  535. unsigned int s[8];
  536. unsigned int sx[8];
  537. unsigned int sub_blocks, log2_sub_blocks, sb_length;
  538. unsigned int start = 0;
  539. unsigned int opt_order;
  540. int sb;
  541. int32_t *quant_cof = bd->quant_cof;
  542. int32_t *current_res;
  543. // ensure variable block decoding by reusing this field
  544. *bd->const_block = 0;
  545. *bd->opt_order = 1;
  546. bd->js_blocks = get_bits1(gb);
  547. opt_order = *bd->opt_order;
  548. // determine the number of subblocks for entropy decoding
  549. if (!sconf->bgmc && !sconf->sb_part) {
  550. log2_sub_blocks = 0;
  551. } else {
  552. if (sconf->bgmc && sconf->sb_part)
  553. log2_sub_blocks = get_bits(gb, 2);
  554. else
  555. log2_sub_blocks = 2 * get_bits1(gb);
  556. }
  557. sub_blocks = 1 << log2_sub_blocks;
  558. // do not continue in case of a damaged stream since
  559. // block_length must be evenly divisible by sub_blocks
  560. if (bd->block_length & (sub_blocks - 1) || bd->block_length <= 0) {
  561. av_log(avctx, AV_LOG_WARNING,
  562. "Block length is not evenly divisible by the number of subblocks.\n");
  563. return AVERROR_INVALIDDATA;
  564. }
  565. sb_length = bd->block_length >> log2_sub_blocks;
  566. if (sconf->bgmc) {
  567. s[0] = get_bits(gb, 8 + (sconf->resolution > 1));
  568. for (k = 1; k < sub_blocks; k++)
  569. s[k] = s[k - 1] + decode_rice(gb, 2);
  570. for (k = 0; k < sub_blocks; k++) {
  571. sx[k] = s[k] & 0x0F;
  572. s [k] >>= 4;
  573. }
  574. } else {
  575. s[0] = get_bits(gb, 4 + (sconf->resolution > 1));
  576. for (k = 1; k < sub_blocks; k++)
  577. s[k] = s[k - 1] + decode_rice(gb, 0);
  578. }
  579. for (k = 1; k < sub_blocks; k++)
  580. if (s[k] > 32) {
  581. av_log(avctx, AV_LOG_ERROR, "k invalid for rice code.\n");
  582. return AVERROR_INVALIDDATA;
  583. }
  584. if (get_bits1(gb))
  585. *bd->shift_lsbs = get_bits(gb, 4) + 1;
  586. *bd->store_prev_samples = (bd->js_blocks && bd->raw_other) || *bd->shift_lsbs;
  587. if (!sconf->rlslms) {
  588. if (sconf->adapt_order && sconf->max_order) {
  589. int opt_order_length = av_ceil_log2(av_clip((bd->block_length >> 3) - 1,
  590. 2, sconf->max_order + 1));
  591. *bd->opt_order = get_bits(gb, opt_order_length);
  592. if (*bd->opt_order > sconf->max_order) {
  593. *bd->opt_order = sconf->max_order;
  594. av_log(avctx, AV_LOG_ERROR, "Predictor order too large.\n");
  595. return AVERROR_INVALIDDATA;
  596. }
  597. } else {
  598. *bd->opt_order = sconf->max_order;
  599. }
  600. opt_order = *bd->opt_order;
  601. if (opt_order) {
  602. int add_base;
  603. if (sconf->coef_table == 3) {
  604. add_base = 0x7F;
  605. // read coefficient 0
  606. quant_cof[0] = 32 * parcor_scaled_values[get_bits(gb, 7)];
  607. // read coefficient 1
  608. if (opt_order > 1)
  609. quant_cof[1] = -32 * parcor_scaled_values[get_bits(gb, 7)];
  610. // read coefficients 2 to opt_order
  611. for (k = 2; k < opt_order; k++)
  612. quant_cof[k] = get_bits(gb, 7);
  613. } else {
  614. int k_max;
  615. add_base = 1;
  616. // read coefficient 0 to 19
  617. k_max = FFMIN(opt_order, 20);
  618. for (k = 0; k < k_max; k++) {
  619. int rice_param = parcor_rice_table[sconf->coef_table][k][1];
  620. int offset = parcor_rice_table[sconf->coef_table][k][0];
  621. quant_cof[k] = decode_rice(gb, rice_param) + offset;
  622. if (quant_cof[k] < -64 || quant_cof[k] > 63) {
  623. av_log(avctx, AV_LOG_ERROR,
  624. "quant_cof %"PRId32" is out of range.\n",
  625. quant_cof[k]);
  626. return AVERROR_INVALIDDATA;
  627. }
  628. }
  629. // read coefficients 20 to 126
  630. k_max = FFMIN(opt_order, 127);
  631. for (; k < k_max; k++)
  632. quant_cof[k] = decode_rice(gb, 2) + (k & 1);
  633. // read coefficients 127 to opt_order
  634. for (; k < opt_order; k++)
  635. quant_cof[k] = decode_rice(gb, 1);
  636. quant_cof[0] = 32 * parcor_scaled_values[quant_cof[0] + 64];
  637. if (opt_order > 1)
  638. quant_cof[1] = -32 * parcor_scaled_values[quant_cof[1] + 64];
  639. }
  640. for (k = 2; k < opt_order; k++)
  641. quant_cof[k] = (quant_cof[k] * (1 << 14)) + (add_base << 13);
  642. }
  643. }
  644. // read LTP gain and lag values
  645. if (sconf->long_term_prediction) {
  646. *bd->use_ltp = get_bits1(gb);
  647. if (*bd->use_ltp) {
  648. int r, c;
  649. bd->ltp_gain[0] = decode_rice(gb, 1) * 8;
  650. bd->ltp_gain[1] = decode_rice(gb, 2) * 8;
  651. r = get_unary(gb, 0, 4);
  652. c = get_bits(gb, 2);
  653. if (r >= 4) {
  654. av_log(avctx, AV_LOG_ERROR, "r overflow\n");
  655. return AVERROR_INVALIDDATA;
  656. }
  657. bd->ltp_gain[2] = ltp_gain_values[r][c];
  658. bd->ltp_gain[3] = decode_rice(gb, 2) * 8;
  659. bd->ltp_gain[4] = decode_rice(gb, 1) * 8;
  660. *bd->ltp_lag = get_bits(gb, ctx->ltp_lag_length);
  661. *bd->ltp_lag += FFMAX(4, opt_order + 1);
  662. }
  663. }
  664. // read first value and residuals in case of a random access block
  665. if (bd->ra_block) {
  666. start = FFMIN(opt_order, 3);
  667. av_assert0(sb_length <= sconf->frame_length);
  668. if (sb_length <= start) {
  669. // opt_order or sb_length may be corrupted, either way this is unsupported and not well defined in the specification
  670. av_log(avctx, AV_LOG_ERROR, "Sub block length smaller or equal start\n");
  671. return AVERROR_PATCHWELCOME;
  672. }
  673. if (opt_order)
  674. bd->raw_samples[0] = decode_rice(gb, avctx->bits_per_raw_sample - 4);
  675. if (opt_order > 1)
  676. bd->raw_samples[1] = decode_rice(gb, FFMIN(s[0] + 3, ctx->s_max));
  677. if (opt_order > 2)
  678. bd->raw_samples[2] = decode_rice(gb, FFMIN(s[0] + 1, ctx->s_max));
  679. }
  680. // read all residuals
  681. if (sconf->bgmc) {
  682. int delta[8];
  683. unsigned int k [8];
  684. unsigned int b = av_clip((av_ceil_log2(bd->block_length) - 3) >> 1, 0, 5);
  685. // read most significant bits
  686. unsigned int high;
  687. unsigned int low;
  688. unsigned int value;
  689. ff_bgmc_decode_init(gb, &high, &low, &value);
  690. current_res = bd->raw_samples + start;
  691. for (sb = 0; sb < sub_blocks; sb++) {
  692. unsigned int sb_len = sb_length - (sb ? 0 : start);
  693. k [sb] = s[sb] > b ? s[sb] - b : 0;
  694. delta[sb] = 5 - s[sb] + k[sb];
  695. ff_bgmc_decode(gb, sb_len, current_res,
  696. delta[sb], sx[sb], &high, &low, &value, ctx->bgmc_lut, ctx->bgmc_lut_status);
  697. current_res += sb_len;
  698. }
  699. ff_bgmc_decode_end(gb);
  700. // read least significant bits and tails
  701. current_res = bd->raw_samples + start;
  702. for (sb = 0; sb < sub_blocks; sb++, start = 0) {
  703. unsigned int cur_tail_code = tail_code[sx[sb]][delta[sb]];
  704. unsigned int cur_k = k[sb];
  705. unsigned int cur_s = s[sb];
  706. for (; start < sb_length; start++) {
  707. int32_t res = *current_res;
  708. if (res == cur_tail_code) {
  709. unsigned int max_msb = (2 + (sx[sb] > 2) + (sx[sb] > 10))
  710. << (5 - delta[sb]);
  711. res = decode_rice(gb, cur_s);
  712. if (res >= 0) {
  713. res += (max_msb ) << cur_k;
  714. } else {
  715. res -= (max_msb - 1) << cur_k;
  716. }
  717. } else {
  718. if (res > cur_tail_code)
  719. res--;
  720. if (res & 1)
  721. res = -res;
  722. res >>= 1;
  723. if (cur_k) {
  724. res *= 1U << cur_k;
  725. res |= get_bits_long(gb, cur_k);
  726. }
  727. }
  728. *current_res++ = res;
  729. }
  730. }
  731. } else {
  732. current_res = bd->raw_samples + start;
  733. for (sb = 0; sb < sub_blocks; sb++, start = 0)
  734. for (; start < sb_length; start++)
  735. *current_res++ = decode_rice(gb, s[sb]);
  736. }
  737. return 0;
  738. }
  739. /** Decode the block data for a non-constant block
  740. */
  741. static int decode_var_block_data(ALSDecContext *ctx, ALSBlockData *bd)
  742. {
  743. ALSSpecificConfig *sconf = &ctx->sconf;
  744. unsigned int block_length = bd->block_length;
  745. unsigned int smp = 0;
  746. unsigned int k;
  747. int opt_order = *bd->opt_order;
  748. int sb;
  749. int64_t y;
  750. int32_t *quant_cof = bd->quant_cof;
  751. int32_t *lpc_cof = bd->lpc_cof;
  752. int32_t *raw_samples = bd->raw_samples;
  753. int32_t *raw_samples_end = bd->raw_samples + bd->block_length;
  754. int32_t *lpc_cof_reversed = ctx->lpc_cof_reversed_buffer;
  755. // reverse long-term prediction
  756. if (*bd->use_ltp) {
  757. int ltp_smp;
  758. for (ltp_smp = FFMAX(*bd->ltp_lag - 2, 0); ltp_smp < block_length; ltp_smp++) {
  759. int center = ltp_smp - *bd->ltp_lag;
  760. int begin = FFMAX(0, center - 2);
  761. int end = center + 3;
  762. int tab = 5 - (end - begin);
  763. int base;
  764. y = 1 << 6;
  765. for (base = begin; base < end; base++, tab++)
  766. y += (uint64_t)MUL64(bd->ltp_gain[tab], raw_samples[base]);
  767. raw_samples[ltp_smp] += y >> 7;
  768. }
  769. }
  770. // reconstruct all samples from residuals
  771. if (bd->ra_block) {
  772. for (smp = 0; smp < FFMIN(opt_order, block_length); smp++) {
  773. y = 1 << 19;
  774. for (sb = 0; sb < smp; sb++)
  775. y += (uint64_t)MUL64(lpc_cof[sb], raw_samples[-(sb + 1)]);
  776. *raw_samples++ -= y >> 20;
  777. parcor_to_lpc(smp, quant_cof, lpc_cof);
  778. }
  779. } else {
  780. for (k = 0; k < opt_order; k++)
  781. parcor_to_lpc(k, quant_cof, lpc_cof);
  782. // store previous samples in case that they have to be altered
  783. if (*bd->store_prev_samples)
  784. memcpy(bd->prev_raw_samples, raw_samples - sconf->max_order,
  785. sizeof(*bd->prev_raw_samples) * sconf->max_order);
  786. // reconstruct difference signal for prediction (joint-stereo)
  787. if (bd->js_blocks && bd->raw_other) {
  788. int32_t *left, *right;
  789. if (bd->raw_other > raw_samples) { // D = R - L
  790. left = raw_samples;
  791. right = bd->raw_other;
  792. } else { // D = R - L
  793. left = bd->raw_other;
  794. right = raw_samples;
  795. }
  796. for (sb = -1; sb >= -sconf->max_order; sb--)
  797. raw_samples[sb] = right[sb] - left[sb];
  798. }
  799. // reconstruct shifted signal
  800. if (*bd->shift_lsbs)
  801. for (sb = -1; sb >= -sconf->max_order; sb--)
  802. raw_samples[sb] >>= *bd->shift_lsbs;
  803. }
  804. // reverse linear prediction coefficients for efficiency
  805. lpc_cof = lpc_cof + opt_order;
  806. for (sb = 0; sb < opt_order; sb++)
  807. lpc_cof_reversed[sb] = lpc_cof[-(sb + 1)];
  808. // reconstruct raw samples
  809. raw_samples = bd->raw_samples + smp;
  810. lpc_cof = lpc_cof_reversed + opt_order;
  811. for (; raw_samples < raw_samples_end; raw_samples++) {
  812. y = 1 << 19;
  813. for (sb = -opt_order; sb < 0; sb++)
  814. y += (uint64_t)MUL64(lpc_cof[sb], raw_samples[sb]);
  815. *raw_samples -= y >> 20;
  816. }
  817. raw_samples = bd->raw_samples;
  818. // restore previous samples in case that they have been altered
  819. if (*bd->store_prev_samples)
  820. memcpy(raw_samples - sconf->max_order, bd->prev_raw_samples,
  821. sizeof(*raw_samples) * sconf->max_order);
  822. return 0;
  823. }
  824. /** Read the block data.
  825. */
  826. static int read_block(ALSDecContext *ctx, ALSBlockData *bd)
  827. {
  828. int ret;
  829. GetBitContext *gb = &ctx->gb;
  830. ALSSpecificConfig *sconf = &ctx->sconf;
  831. *bd->shift_lsbs = 0;
  832. // read block type flag and read the samples accordingly
  833. if (get_bits1(gb)) {
  834. ret = read_var_block_data(ctx, bd);
  835. } else {
  836. ret = read_const_block_data(ctx, bd);
  837. }
  838. if (!sconf->mc_coding || ctx->js_switch)
  839. align_get_bits(gb);
  840. return ret;
  841. }
  842. /** Decode the block data.
  843. */
  844. static int decode_block(ALSDecContext *ctx, ALSBlockData *bd)
  845. {
  846. unsigned int smp;
  847. int ret = 0;
  848. // read block type flag and read the samples accordingly
  849. if (*bd->const_block)
  850. decode_const_block_data(ctx, bd);
  851. else
  852. ret = decode_var_block_data(ctx, bd); // always return 0
  853. if (ret < 0)
  854. return ret;
  855. // TODO: read RLSLMS extension data
  856. if (*bd->shift_lsbs)
  857. for (smp = 0; smp < bd->block_length; smp++)
  858. bd->raw_samples[smp] = (unsigned)bd->raw_samples[smp] << *bd->shift_lsbs;
  859. return 0;
  860. }
  861. /** Read and decode block data successively.
  862. */
  863. static int read_decode_block(ALSDecContext *ctx, ALSBlockData *bd)
  864. {
  865. int ret;
  866. if ((ret = read_block(ctx, bd)) < 0)
  867. return ret;
  868. return decode_block(ctx, bd);
  869. }
  870. /** Compute the number of samples left to decode for the current frame and
  871. * sets these samples to zero.
  872. */
  873. static void zero_remaining(unsigned int b, unsigned int b_max,
  874. const unsigned int *div_blocks, int32_t *buf)
  875. {
  876. unsigned int count = 0;
  877. while (b < b_max)
  878. count += div_blocks[b++];
  879. if (count)
  880. memset(buf, 0, sizeof(*buf) * count);
  881. }
  882. /** Decode blocks independently.
  883. */
  884. static int decode_blocks_ind(ALSDecContext *ctx, unsigned int ra_frame,
  885. unsigned int c, const unsigned int *div_blocks,
  886. unsigned int *js_blocks)
  887. {
  888. int ret;
  889. unsigned int b;
  890. ALSBlockData bd = { 0 };
  891. bd.ra_block = ra_frame;
  892. bd.const_block = ctx->const_block;
  893. bd.shift_lsbs = ctx->shift_lsbs;
  894. bd.opt_order = ctx->opt_order;
  895. bd.store_prev_samples = ctx->store_prev_samples;
  896. bd.use_ltp = ctx->use_ltp;
  897. bd.ltp_lag = ctx->ltp_lag;
  898. bd.ltp_gain = ctx->ltp_gain[0];
  899. bd.quant_cof = ctx->quant_cof[0];
  900. bd.lpc_cof = ctx->lpc_cof[0];
  901. bd.prev_raw_samples = ctx->prev_raw_samples;
  902. bd.raw_samples = ctx->raw_samples[c];
  903. for (b = 0; b < ctx->num_blocks; b++) {
  904. bd.block_length = div_blocks[b];
  905. if ((ret = read_decode_block(ctx, &bd)) < 0) {
  906. // damaged block, write zero for the rest of the frame
  907. zero_remaining(b, ctx->num_blocks, div_blocks, bd.raw_samples);
  908. return ret;
  909. }
  910. bd.raw_samples += div_blocks[b];
  911. bd.ra_block = 0;
  912. }
  913. return 0;
  914. }
  915. /** Decode blocks dependently.
  916. */
  917. static int decode_blocks(ALSDecContext *ctx, unsigned int ra_frame,
  918. unsigned int c, const unsigned int *div_blocks,
  919. unsigned int *js_blocks)
  920. {
  921. ALSSpecificConfig *sconf = &ctx->sconf;
  922. unsigned int offset = 0;
  923. unsigned int b;
  924. int ret;
  925. ALSBlockData bd[2] = { { 0 } };
  926. bd[0].ra_block = ra_frame;
  927. bd[0].const_block = ctx->const_block;
  928. bd[0].shift_lsbs = ctx->shift_lsbs;
  929. bd[0].opt_order = ctx->opt_order;
  930. bd[0].store_prev_samples = ctx->store_prev_samples;
  931. bd[0].use_ltp = ctx->use_ltp;
  932. bd[0].ltp_lag = ctx->ltp_lag;
  933. bd[0].ltp_gain = ctx->ltp_gain[0];
  934. bd[0].quant_cof = ctx->quant_cof[0];
  935. bd[0].lpc_cof = ctx->lpc_cof[0];
  936. bd[0].prev_raw_samples = ctx->prev_raw_samples;
  937. bd[0].js_blocks = *js_blocks;
  938. bd[1].ra_block = ra_frame;
  939. bd[1].const_block = ctx->const_block;
  940. bd[1].shift_lsbs = ctx->shift_lsbs;
  941. bd[1].opt_order = ctx->opt_order;
  942. bd[1].store_prev_samples = ctx->store_prev_samples;
  943. bd[1].use_ltp = ctx->use_ltp;
  944. bd[1].ltp_lag = ctx->ltp_lag;
  945. bd[1].ltp_gain = ctx->ltp_gain[0];
  946. bd[1].quant_cof = ctx->quant_cof[0];
  947. bd[1].lpc_cof = ctx->lpc_cof[0];
  948. bd[1].prev_raw_samples = ctx->prev_raw_samples;
  949. bd[1].js_blocks = *(js_blocks + 1);
  950. // decode all blocks
  951. for (b = 0; b < ctx->num_blocks; b++) {
  952. unsigned int s;
  953. bd[0].block_length = div_blocks[b];
  954. bd[1].block_length = div_blocks[b];
  955. bd[0].raw_samples = ctx->raw_samples[c ] + offset;
  956. bd[1].raw_samples = ctx->raw_samples[c + 1] + offset;
  957. bd[0].raw_other = bd[1].raw_samples;
  958. bd[1].raw_other = bd[0].raw_samples;
  959. if ((ret = read_decode_block(ctx, &bd[0])) < 0 ||
  960. (ret = read_decode_block(ctx, &bd[1])) < 0)
  961. goto fail;
  962. // reconstruct joint-stereo blocks
  963. if (bd[0].js_blocks) {
  964. if (bd[1].js_blocks)
  965. av_log(ctx->avctx, AV_LOG_WARNING, "Invalid channel pair.\n");
  966. for (s = 0; s < div_blocks[b]; s++)
  967. bd[0].raw_samples[s] = bd[1].raw_samples[s] - (unsigned)bd[0].raw_samples[s];
  968. } else if (bd[1].js_blocks) {
  969. for (s = 0; s < div_blocks[b]; s++)
  970. bd[1].raw_samples[s] = bd[1].raw_samples[s] + (unsigned)bd[0].raw_samples[s];
  971. }
  972. offset += div_blocks[b];
  973. bd[0].ra_block = 0;
  974. bd[1].ra_block = 0;
  975. }
  976. // store carryover raw samples,
  977. // the others channel raw samples are stored by the calling function.
  978. memmove(ctx->raw_samples[c] - sconf->max_order,
  979. ctx->raw_samples[c] - sconf->max_order + sconf->frame_length,
  980. sizeof(*ctx->raw_samples[c]) * sconf->max_order);
  981. return 0;
  982. fail:
  983. // damaged block, write zero for the rest of the frame
  984. zero_remaining(b, ctx->num_blocks, div_blocks, bd[0].raw_samples);
  985. zero_remaining(b, ctx->num_blocks, div_blocks, bd[1].raw_samples);
  986. return ret;
  987. }
  988. static inline int als_weighting(GetBitContext *gb, int k, int off)
  989. {
  990. int idx = av_clip(decode_rice(gb, k) + off,
  991. 0, FF_ARRAY_ELEMS(mcc_weightings) - 1);
  992. return mcc_weightings[idx];
  993. }
  994. /** Read the channel data.
  995. */
  996. static int read_channel_data(ALSDecContext *ctx, ALSChannelData *cd, int c)
  997. {
  998. GetBitContext *gb = &ctx->gb;
  999. ALSChannelData *current = cd;
  1000. unsigned int channels = ctx->avctx->channels;
  1001. int entries = 0;
  1002. while (entries < channels && !(current->stop_flag = get_bits1(gb))) {
  1003. current->master_channel = get_bits_long(gb, av_ceil_log2(channels));
  1004. if (current->master_channel >= channels) {
  1005. av_log(ctx->avctx, AV_LOG_ERROR, "Invalid master channel.\n");
  1006. return AVERROR_INVALIDDATA;
  1007. }
  1008. if (current->master_channel != c) {
  1009. current->time_diff_flag = get_bits1(gb);
  1010. current->weighting[0] = als_weighting(gb, 1, 16);
  1011. current->weighting[1] = als_weighting(gb, 2, 14);
  1012. current->weighting[2] = als_weighting(gb, 1, 16);
  1013. if (current->time_diff_flag) {
  1014. current->weighting[3] = als_weighting(gb, 1, 16);
  1015. current->weighting[4] = als_weighting(gb, 1, 16);
  1016. current->weighting[5] = als_weighting(gb, 1, 16);
  1017. current->time_diff_sign = get_bits1(gb);
  1018. current->time_diff_index = get_bits(gb, ctx->ltp_lag_length - 3) + 3;
  1019. }
  1020. }
  1021. current++;
  1022. entries++;
  1023. }
  1024. if (entries == channels) {
  1025. av_log(ctx->avctx, AV_LOG_ERROR, "Damaged channel data.\n");
  1026. return AVERROR_INVALIDDATA;
  1027. }
  1028. align_get_bits(gb);
  1029. return 0;
  1030. }
  1031. /** Recursively reverts the inter-channel correlation for a block.
  1032. */
  1033. static int revert_channel_correlation(ALSDecContext *ctx, ALSBlockData *bd,
  1034. ALSChannelData **cd, int *reverted,
  1035. unsigned int offset, int c)
  1036. {
  1037. ALSChannelData *ch = cd[c];
  1038. unsigned int dep = 0;
  1039. unsigned int channels = ctx->avctx->channels;
  1040. unsigned int channel_size = ctx->sconf.frame_length + ctx->sconf.max_order;
  1041. if (reverted[c])
  1042. return 0;
  1043. reverted[c] = 1;
  1044. while (dep < channels && !ch[dep].stop_flag) {
  1045. revert_channel_correlation(ctx, bd, cd, reverted, offset,
  1046. ch[dep].master_channel);
  1047. dep++;
  1048. }
  1049. if (dep == channels) {
  1050. av_log(ctx->avctx, AV_LOG_WARNING, "Invalid channel correlation.\n");
  1051. return AVERROR_INVALIDDATA;
  1052. }
  1053. bd->const_block = ctx->const_block + c;
  1054. bd->shift_lsbs = ctx->shift_lsbs + c;
  1055. bd->opt_order = ctx->opt_order + c;
  1056. bd->store_prev_samples = ctx->store_prev_samples + c;
  1057. bd->use_ltp = ctx->use_ltp + c;
  1058. bd->ltp_lag = ctx->ltp_lag + c;
  1059. bd->ltp_gain = ctx->ltp_gain[c];
  1060. bd->lpc_cof = ctx->lpc_cof[c];
  1061. bd->quant_cof = ctx->quant_cof[c];
  1062. bd->raw_samples = ctx->raw_samples[c] + offset;
  1063. for (dep = 0; !ch[dep].stop_flag; dep++) {
  1064. ptrdiff_t smp;
  1065. ptrdiff_t begin = 1;
  1066. ptrdiff_t end = bd->block_length - 1;
  1067. int64_t y;
  1068. int32_t *master = ctx->raw_samples[ch[dep].master_channel] + offset;
  1069. if (ch[dep].master_channel == c)
  1070. continue;
  1071. if (ch[dep].time_diff_flag) {
  1072. int t = ch[dep].time_diff_index;
  1073. if (ch[dep].time_diff_sign) {
  1074. t = -t;
  1075. if (begin < t) {
  1076. av_log(ctx->avctx, AV_LOG_ERROR, "begin %"PTRDIFF_SPECIFIER" smaller than time diff index %d.\n", begin, t);
  1077. return AVERROR_INVALIDDATA;
  1078. }
  1079. begin -= t;
  1080. } else {
  1081. if (end < t) {
  1082. av_log(ctx->avctx, AV_LOG_ERROR, "end %"PTRDIFF_SPECIFIER" smaller than time diff index %d.\n", end, t);
  1083. return AVERROR_INVALIDDATA;
  1084. }
  1085. end -= t;
  1086. }
  1087. if (FFMIN(begin - 1, begin - 1 + t) < ctx->raw_buffer - master ||
  1088. FFMAX(end + 1, end + 1 + t) > ctx->raw_buffer + channels * channel_size - master) {
  1089. av_log(ctx->avctx, AV_LOG_ERROR,
  1090. "sample pointer range [%p, %p] not contained in raw_buffer [%p, %p].\n",
  1091. master + FFMIN(begin - 1, begin - 1 + t), master + FFMAX(end + 1, end + 1 + t),
  1092. ctx->raw_buffer, ctx->raw_buffer + channels * channel_size);
  1093. return AVERROR_INVALIDDATA;
  1094. }
  1095. for (smp = begin; smp < end; smp++) {
  1096. y = (1 << 6) +
  1097. MUL64(ch[dep].weighting[0], master[smp - 1 ]) +
  1098. MUL64(ch[dep].weighting[1], master[smp ]) +
  1099. MUL64(ch[dep].weighting[2], master[smp + 1 ]) +
  1100. MUL64(ch[dep].weighting[3], master[smp - 1 + t]) +
  1101. MUL64(ch[dep].weighting[4], master[smp + t]) +
  1102. MUL64(ch[dep].weighting[5], master[smp + 1 + t]);
  1103. bd->raw_samples[smp] += y >> 7;
  1104. }
  1105. } else {
  1106. if (begin - 1 < ctx->raw_buffer - master ||
  1107. end + 1 > ctx->raw_buffer + channels * channel_size - master) {
  1108. av_log(ctx->avctx, AV_LOG_ERROR,
  1109. "sample pointer range [%p, %p] not contained in raw_buffer [%p, %p].\n",
  1110. master + begin - 1, master + end + 1,
  1111. ctx->raw_buffer, ctx->raw_buffer + channels * channel_size);
  1112. return AVERROR_INVALIDDATA;
  1113. }
  1114. for (smp = begin; smp < end; smp++) {
  1115. y = (1 << 6) +
  1116. MUL64(ch[dep].weighting[0], master[smp - 1]) +
  1117. MUL64(ch[dep].weighting[1], master[smp ]) +
  1118. MUL64(ch[dep].weighting[2], master[smp + 1]);
  1119. bd->raw_samples[smp] += y >> 7;
  1120. }
  1121. }
  1122. }
  1123. return 0;
  1124. }
  1125. /** multiply two softfloats and handle the rounding off
  1126. */
  1127. static SoftFloat_IEEE754 multiply(SoftFloat_IEEE754 a, SoftFloat_IEEE754 b) {
  1128. uint64_t mantissa_temp;
  1129. uint64_t mask_64;
  1130. int cutoff_bit_count;
  1131. unsigned char last_2_bits;
  1132. unsigned int mantissa;
  1133. int32_t sign;
  1134. uint32_t return_val = 0;
  1135. int bit_count = 48;
  1136. sign = a.sign ^ b.sign;
  1137. // Multiply mantissa bits in a 64-bit register
  1138. mantissa_temp = (uint64_t)a.mant * (uint64_t)b.mant;
  1139. mask_64 = (uint64_t)0x1 << 47;
  1140. if (!mantissa_temp)
  1141. return FLOAT_0;
  1142. // Count the valid bit count
  1143. while (!(mantissa_temp & mask_64) && mask_64) {
  1144. bit_count--;
  1145. mask_64 >>= 1;
  1146. }
  1147. // Round off
  1148. cutoff_bit_count = bit_count - 24;
  1149. if (cutoff_bit_count > 0) {
  1150. last_2_bits = (unsigned char)(((unsigned int)mantissa_temp >> (cutoff_bit_count - 1)) & 0x3 );
  1151. if ((last_2_bits == 0x3) || ((last_2_bits == 0x1) && ((unsigned int)mantissa_temp & ((0x1UL << (cutoff_bit_count - 1)) - 1)))) {
  1152. // Need to round up
  1153. mantissa_temp += (uint64_t)0x1 << cutoff_bit_count;
  1154. }
  1155. }
  1156. if (cutoff_bit_count >= 0) {
  1157. mantissa = (unsigned int)(mantissa_temp >> cutoff_bit_count);
  1158. } else {
  1159. mantissa = (unsigned int)(mantissa_temp <<-cutoff_bit_count);
  1160. }
  1161. // Need one more shift?
  1162. if (mantissa & 0x01000000ul) {
  1163. bit_count++;
  1164. mantissa >>= 1;
  1165. }
  1166. if (!sign) {
  1167. return_val = 0x80000000U;
  1168. }
  1169. return_val |= ((unsigned)av_clip(a.exp + b.exp + bit_count - 47, -126, 127) << 23) & 0x7F800000;
  1170. return_val |= mantissa;
  1171. return av_bits2sf_ieee754(return_val);
  1172. }
  1173. /** Read and decode the floating point sample data
  1174. */
  1175. static int read_diff_float_data(ALSDecContext *ctx, unsigned int ra_frame) {
  1176. AVCodecContext *avctx = ctx->avctx;
  1177. GetBitContext *gb = &ctx->gb;
  1178. SoftFloat_IEEE754 *acf = ctx->acf;
  1179. int *shift_value = ctx->shift_value;
  1180. int *last_shift_value = ctx->last_shift_value;
  1181. int *last_acf_mantissa = ctx->last_acf_mantissa;
  1182. int **raw_mantissa = ctx->raw_mantissa;
  1183. int *nbits = ctx->nbits;
  1184. unsigned char *larray = ctx->larray;
  1185. int frame_length = ctx->cur_frame_length;
  1186. SoftFloat_IEEE754 scale = av_int2sf_ieee754(0x1u, 23);
  1187. unsigned int partA_flag;
  1188. unsigned int highest_byte;
  1189. unsigned int shift_amp;
  1190. uint32_t tmp_32;
  1191. int use_acf;
  1192. int nchars;
  1193. int i;
  1194. int c;
  1195. long k;
  1196. long nbits_aligned;
  1197. unsigned long acc;
  1198. unsigned long j;
  1199. uint32_t sign;
  1200. uint32_t e;
  1201. uint32_t mantissa;
  1202. skip_bits_long(gb, 32); //num_bytes_diff_float
  1203. use_acf = get_bits1(gb);
  1204. if (ra_frame) {
  1205. memset(last_acf_mantissa, 0, avctx->channels * sizeof(*last_acf_mantissa));
  1206. memset(last_shift_value, 0, avctx->channels * sizeof(*last_shift_value) );
  1207. ff_mlz_flush_dict(ctx->mlz);
  1208. }
  1209. for (c = 0; c < avctx->channels; ++c) {
  1210. if (use_acf) {
  1211. //acf_flag
  1212. if (get_bits1(gb)) {
  1213. tmp_32 = get_bits(gb, 23);
  1214. last_acf_mantissa[c] = tmp_32;
  1215. } else {
  1216. tmp_32 = last_acf_mantissa[c];
  1217. }
  1218. acf[c] = av_bits2sf_ieee754(tmp_32);
  1219. } else {
  1220. acf[c] = FLOAT_1;
  1221. }
  1222. highest_byte = get_bits(gb, 2);
  1223. partA_flag = get_bits1(gb);
  1224. shift_amp = get_bits1(gb);
  1225. if (shift_amp) {
  1226. shift_value[c] = get_bits(gb, 8);
  1227. last_shift_value[c] = shift_value[c];
  1228. } else {
  1229. shift_value[c] = last_shift_value[c];
  1230. }
  1231. if (partA_flag) {
  1232. if (!get_bits1(gb)) { //uncompressed
  1233. for (i = 0; i < frame_length; ++i) {
  1234. if (ctx->raw_samples[c][i] == 0) {
  1235. ctx->raw_mantissa[c][i] = get_bits_long(gb, 32);
  1236. }
  1237. }
  1238. } else { //compressed
  1239. nchars = 0;
  1240. for (i = 0; i < frame_length; ++i) {
  1241. if (ctx->raw_samples[c][i] == 0) {
  1242. nchars += 4;
  1243. }
  1244. }
  1245. tmp_32 = ff_mlz_decompression(ctx->mlz, gb, nchars, larray);
  1246. if(tmp_32 != nchars) {
  1247. av_log(ctx->avctx, AV_LOG_ERROR, "Error in MLZ decompression (%"PRId32", %d).\n", tmp_32, nchars);
  1248. return AVERROR_INVALIDDATA;
  1249. }
  1250. for (i = 0; i < frame_length; ++i) {
  1251. ctx->raw_mantissa[c][i] = AV_RB32(larray);
  1252. }
  1253. }
  1254. }
  1255. //decode part B
  1256. if (highest_byte) {
  1257. for (i = 0; i < frame_length; ++i) {
  1258. if (ctx->raw_samples[c][i] != 0) {
  1259. //The following logic is taken from Tabel 14.45 and 14.46 from the ISO spec
  1260. if (av_cmp_sf_ieee754(acf[c], FLOAT_1)) {
  1261. nbits[i] = 23 - av_log2(abs(ctx->raw_samples[c][i]));
  1262. } else {
  1263. nbits[i] = 23;
  1264. }
  1265. nbits[i] = FFMIN(nbits[i], highest_byte*8);
  1266. }
  1267. }
  1268. if (!get_bits1(gb)) { //uncompressed
  1269. for (i = 0; i < frame_length; ++i) {
  1270. if (ctx->raw_samples[c][i] != 0) {
  1271. raw_mantissa[c][i] = get_bitsz(gb, nbits[i]);
  1272. }
  1273. }
  1274. } else { //compressed
  1275. nchars = 0;
  1276. for (i = 0; i < frame_length; ++i) {
  1277. if (ctx->raw_samples[c][i]) {
  1278. nchars += (int) nbits[i] / 8;
  1279. if (nbits[i] & 7) {
  1280. ++nchars;
  1281. }
  1282. }
  1283. }
  1284. tmp_32 = ff_mlz_decompression(ctx->mlz, gb, nchars, larray);
  1285. if(tmp_32 != nchars) {
  1286. av_log(ctx->avctx, AV_LOG_ERROR, "Error in MLZ decompression (%"PRId32", %d).\n", tmp_32, nchars);
  1287. return AVERROR_INVALIDDATA;
  1288. }
  1289. j = 0;
  1290. for (i = 0; i < frame_length; ++i) {
  1291. if (ctx->raw_samples[c][i]) {
  1292. if (nbits[i] & 7) {
  1293. nbits_aligned = 8 * ((unsigned int)(nbits[i] / 8) + 1);
  1294. } else {
  1295. nbits_aligned = nbits[i];
  1296. }
  1297. acc = 0;
  1298. for (k = 0; k < nbits_aligned/8; ++k) {
  1299. acc = (acc << 8) + larray[j++];
  1300. }
  1301. acc >>= (nbits_aligned - nbits[i]);
  1302. raw_mantissa[c][i] = acc;
  1303. }
  1304. }
  1305. }
  1306. }
  1307. for (i = 0; i < frame_length; ++i) {
  1308. SoftFloat_IEEE754 pcm_sf = av_int2sf_ieee754(ctx->raw_samples[c][i], 0);
  1309. pcm_sf = av_div_sf_ieee754(pcm_sf, scale);
  1310. if (ctx->raw_samples[c][i] != 0) {
  1311. if (!av_cmp_sf_ieee754(acf[c], FLOAT_1)) {
  1312. pcm_sf = multiply(acf[c], pcm_sf);
  1313. }
  1314. sign = pcm_sf.sign;
  1315. e = pcm_sf.exp;
  1316. mantissa = (pcm_sf.mant | 0x800000) + raw_mantissa[c][i];
  1317. while(mantissa >= 0x1000000) {
  1318. e++;
  1319. mantissa >>= 1;
  1320. }
  1321. if (mantissa) e += (shift_value[c] - 127);
  1322. mantissa &= 0x007fffffUL;
  1323. tmp_32 = (sign << 31) | ((e + EXP_BIAS) << 23) | (mantissa);
  1324. ctx->raw_samples[c][i] = tmp_32;
  1325. } else {
  1326. ctx->raw_samples[c][i] = raw_mantissa[c][i] & 0x007fffffUL;
  1327. }
  1328. }
  1329. align_get_bits(gb);
  1330. }
  1331. return 0;
  1332. }
  1333. /** Read the frame data.
  1334. */
  1335. static int read_frame_data(ALSDecContext *ctx, unsigned int ra_frame)
  1336. {
  1337. ALSSpecificConfig *sconf = &ctx->sconf;
  1338. AVCodecContext *avctx = ctx->avctx;
  1339. GetBitContext *gb = &ctx->gb;
  1340. unsigned int div_blocks[32]; ///< block sizes.
  1341. unsigned int c;
  1342. unsigned int js_blocks[2];
  1343. uint32_t bs_info = 0;
  1344. int ret;
  1345. // skip the size of the ra unit if present in the frame
  1346. if (sconf->ra_flag == RA_FLAG_FRAMES && ra_frame)
  1347. skip_bits_long(gb, 32);
  1348. if (sconf->mc_coding && sconf->joint_stereo) {
  1349. ctx->js_switch = get_bits1(gb);
  1350. align_get_bits(gb);
  1351. }
  1352. if (!sconf->mc_coding || ctx->js_switch) {
  1353. int independent_bs = !sconf->joint_stereo;
  1354. for (c = 0; c < avctx->channels; c++) {
  1355. js_blocks[0] = 0;
  1356. js_blocks[1] = 0;
  1357. get_block_sizes(ctx, div_blocks, &bs_info);
  1358. // if joint_stereo and block_switching is set, independent decoding
  1359. // is signaled via the first bit of bs_info
  1360. if (sconf->joint_stereo && sconf->block_switching)
  1361. if (bs_info >> 31)
  1362. independent_bs = 2;
  1363. // if this is the last channel, it has to be decoded independently
  1364. if (c == avctx->channels - 1 || (c & 1))
  1365. independent_bs = 1;
  1366. if (independent_bs) {
  1367. ret = decode_blocks_ind(ctx, ra_frame, c,
  1368. div_blocks, js_blocks);
  1369. if (ret < 0)
  1370. return ret;
  1371. independent_bs--;
  1372. } else {
  1373. ret = decode_blocks(ctx, ra_frame, c, div_blocks, js_blocks);
  1374. if (ret < 0)
  1375. return ret;
  1376. c++;
  1377. }
  1378. // store carryover raw samples
  1379. memmove(ctx->raw_samples[c] - sconf->max_order,
  1380. ctx->raw_samples[c] - sconf->max_order + sconf->frame_length,
  1381. sizeof(*ctx->raw_samples[c]) * sconf->max_order);
  1382. }
  1383. } else { // multi-channel coding
  1384. ALSBlockData bd = { 0 };
  1385. int b, ret;
  1386. int *reverted_channels = ctx->reverted_channels;
  1387. unsigned int offset = 0;
  1388. for (c = 0; c < avctx->channels; c++)
  1389. if (ctx->chan_data[c] < ctx->chan_data_buffer) {
  1390. av_log(ctx->avctx, AV_LOG_ERROR, "Invalid channel data.\n");
  1391. return AVERROR_INVALIDDATA;
  1392. }
  1393. memset(reverted_channels, 0, sizeof(*reverted_channels) * avctx->channels);
  1394. bd.ra_block = ra_frame;
  1395. bd.prev_raw_samples = ctx->prev_raw_samples;
  1396. get_block_sizes(ctx, div_blocks, &bs_info);
  1397. for (b = 0; b < ctx->num_blocks; b++) {
  1398. bd.block_length = div_blocks[b];
  1399. if (bd.block_length <= 0) {
  1400. av_log(ctx->avctx, AV_LOG_WARNING,
  1401. "Invalid block length %u in channel data!\n",
  1402. bd.block_length);
  1403. continue;
  1404. }
  1405. for (c = 0; c < avctx->channels; c++) {
  1406. bd.const_block = ctx->const_block + c;
  1407. bd.shift_lsbs = ctx->shift_lsbs + c;
  1408. bd.opt_order = ctx->opt_order + c;
  1409. bd.store_prev_samples = ctx->store_prev_samples + c;
  1410. bd.use_ltp = ctx->use_ltp + c;
  1411. bd.ltp_lag = ctx->ltp_lag + c;
  1412. bd.ltp_gain = ctx->ltp_gain[c];
  1413. bd.lpc_cof = ctx->lpc_cof[c];
  1414. bd.quant_cof = ctx->quant_cof[c];
  1415. bd.raw_samples = ctx->raw_samples[c] + offset;
  1416. bd.raw_other = NULL;
  1417. if ((ret = read_block(ctx, &bd)) < 0)
  1418. return ret;
  1419. if ((ret = read_channel_data(ctx, ctx->chan_data[c], c)) < 0)
  1420. return ret;
  1421. }
  1422. for (c = 0; c < avctx->channels; c++) {
  1423. ret = revert_channel_correlation(ctx, &bd, ctx->chan_data,
  1424. reverted_channels, offset, c);
  1425. if (ret < 0)
  1426. return ret;
  1427. }
  1428. for (c = 0; c < avctx->channels; c++) {
  1429. bd.const_block = ctx->const_block + c;
  1430. bd.shift_lsbs = ctx->shift_lsbs + c;
  1431. bd.opt_order = ctx->opt_order + c;
  1432. bd.store_prev_samples = ctx->store_prev_samples + c;
  1433. bd.use_ltp = ctx->use_ltp + c;
  1434. bd.ltp_lag = ctx->ltp_lag + c;
  1435. bd.ltp_gain = ctx->ltp_gain[c];
  1436. bd.lpc_cof = ctx->lpc_cof[c];
  1437. bd.quant_cof = ctx->quant_cof[c];
  1438. bd.raw_samples = ctx->raw_samples[c] + offset;
  1439. if ((ret = decode_block(ctx, &bd)) < 0)
  1440. return ret;
  1441. }
  1442. memset(reverted_channels, 0, avctx->channels * sizeof(*reverted_channels));
  1443. offset += div_blocks[b];
  1444. bd.ra_block = 0;
  1445. }
  1446. // store carryover raw samples
  1447. for (c = 0; c < avctx->channels; c++)
  1448. memmove(ctx->raw_samples[c] - sconf->max_order,
  1449. ctx->raw_samples[c] - sconf->max_order + sconf->frame_length,
  1450. sizeof(*ctx->raw_samples[c]) * sconf->max_order);
  1451. }
  1452. if (sconf->floating) {
  1453. read_diff_float_data(ctx, ra_frame);
  1454. }
  1455. if (get_bits_left(gb) < 0) {
  1456. av_log(ctx->avctx, AV_LOG_ERROR, "Overread %d\n", -get_bits_left(gb));
  1457. return AVERROR_INVALIDDATA;
  1458. }
  1459. return 0;
  1460. }
  1461. /** Decode an ALS frame.
  1462. */
  1463. static int decode_frame(AVCodecContext *avctx, void *data, int *got_frame_ptr,
  1464. AVPacket *avpkt)
  1465. {
  1466. ALSDecContext *ctx = avctx->priv_data;
  1467. AVFrame *frame = data;
  1468. ALSSpecificConfig *sconf = &ctx->sconf;
  1469. const uint8_t *buffer = avpkt->data;
  1470. int buffer_size = avpkt->size;
  1471. int invalid_frame, ret;
  1472. unsigned int c, sample, ra_frame, bytes_read, shift;
  1473. if ((ret = init_get_bits8(&ctx->gb, buffer, buffer_size)) < 0)
  1474. return ret;
  1475. // In the case that the distance between random access frames is set to zero
  1476. // (sconf->ra_distance == 0) no frame is treated as a random access frame.
  1477. // For the first frame, if prediction is used, all samples used from the
  1478. // previous frame are assumed to be zero.
  1479. ra_frame = sconf->ra_distance && !(ctx->frame_id % sconf->ra_distance);
  1480. // the last frame to decode might have a different length
  1481. if (sconf->samples != 0xFFFFFFFF)
  1482. ctx->cur_frame_length = FFMIN(sconf->samples - ctx->frame_id * (uint64_t) sconf->frame_length,
  1483. sconf->frame_length);
  1484. else
  1485. ctx->cur_frame_length = sconf->frame_length;
  1486. // decode the frame data
  1487. if ((invalid_frame = read_frame_data(ctx, ra_frame)) < 0)
  1488. av_log(ctx->avctx, AV_LOG_WARNING,
  1489. "Reading frame data failed. Skipping RA unit.\n");
  1490. ctx->frame_id++;
  1491. /* get output buffer */
  1492. frame->nb_samples = ctx->cur_frame_length;
  1493. if ((ret = ff_get_buffer(avctx, frame, 0)) < 0)
  1494. return ret;
  1495. // transform decoded frame into output format
  1496. #define INTERLEAVE_OUTPUT(bps) \
  1497. { \
  1498. int##bps##_t *dest = (int##bps##_t*)frame->data[0]; \
  1499. shift = bps - ctx->avctx->bits_per_raw_sample; \
  1500. if (!ctx->cs_switch) { \
  1501. for (sample = 0; sample < ctx->cur_frame_length; sample++) \
  1502. for (c = 0; c < avctx->channels; c++) \
  1503. *dest++ = ctx->raw_samples[c][sample] * (1U << shift); \
  1504. } else { \
  1505. for (sample = 0; sample < ctx->cur_frame_length; sample++) \
  1506. for (c = 0; c < avctx->channels; c++) \
  1507. *dest++ = ctx->raw_samples[sconf->chan_pos[c]][sample] * (1U << shift); \
  1508. } \
  1509. }
  1510. if (ctx->avctx->bits_per_raw_sample <= 16) {
  1511. INTERLEAVE_OUTPUT(16)
  1512. } else {
  1513. INTERLEAVE_OUTPUT(32)
  1514. }
  1515. // update CRC
  1516. if (sconf->crc_enabled && (avctx->err_recognition & (AV_EF_CRCCHECK|AV_EF_CAREFUL))) {
  1517. int swap = HAVE_BIGENDIAN != sconf->msb_first;
  1518. if (ctx->avctx->bits_per_raw_sample == 24) {
  1519. int32_t *src = (int32_t *)frame->data[0];
  1520. for (sample = 0;
  1521. sample < ctx->cur_frame_length * avctx->channels;
  1522. sample++) {
  1523. int32_t v;
  1524. if (swap)
  1525. v = av_bswap32(src[sample]);
  1526. else
  1527. v = src[sample];
  1528. if (!HAVE_BIGENDIAN)
  1529. v >>= 8;
  1530. ctx->crc = av_crc(ctx->crc_table, ctx->crc, (uint8_t*)(&v), 3);
  1531. }
  1532. } else {
  1533. uint8_t *crc_source;
  1534. if (swap) {
  1535. if (ctx->avctx->bits_per_raw_sample <= 16) {
  1536. int16_t *src = (int16_t*) frame->data[0];
  1537. int16_t *dest = (int16_t*) ctx->crc_buffer;
  1538. for (sample = 0;
  1539. sample < ctx->cur_frame_length * avctx->channels;
  1540. sample++)
  1541. *dest++ = av_bswap16(src[sample]);
  1542. } else {
  1543. ctx->bdsp.bswap_buf((uint32_t *) ctx->crc_buffer,
  1544. (uint32_t *) frame->data[0],
  1545. ctx->cur_frame_length * avctx->channels);
  1546. }
  1547. crc_source = ctx->crc_buffer;
  1548. } else {
  1549. crc_source = frame->data[0];
  1550. }
  1551. ctx->crc = av_crc(ctx->crc_table, ctx->crc, crc_source,
  1552. ctx->cur_frame_length * avctx->channels *
  1553. av_get_bytes_per_sample(avctx->sample_fmt));
  1554. }
  1555. // check CRC sums if this is the last frame
  1556. if (ctx->cur_frame_length != sconf->frame_length &&
  1557. ctx->crc_org != ctx->crc) {
  1558. av_log(avctx, AV_LOG_ERROR, "CRC error.\n");
  1559. if (avctx->err_recognition & AV_EF_EXPLODE)
  1560. return AVERROR_INVALIDDATA;
  1561. }
  1562. }
  1563. *got_frame_ptr = 1;
  1564. bytes_read = invalid_frame ? buffer_size :
  1565. (get_bits_count(&ctx->gb) + 7) >> 3;
  1566. return bytes_read;
  1567. }
  1568. /** Uninitialize the ALS decoder.
  1569. */
  1570. static av_cold int decode_end(AVCodecContext *avctx)
  1571. {
  1572. ALSDecContext *ctx = avctx->priv_data;
  1573. int i;
  1574. av_freep(&ctx->sconf.chan_pos);
  1575. ff_bgmc_end(&ctx->bgmc_lut, &ctx->bgmc_lut_status);
  1576. av_freep(&ctx->const_block);
  1577. av_freep(&ctx->shift_lsbs);
  1578. av_freep(&ctx->opt_order);
  1579. av_freep(&ctx->store_prev_samples);
  1580. av_freep(&ctx->use_ltp);
  1581. av_freep(&ctx->ltp_lag);
  1582. av_freep(&ctx->ltp_gain);
  1583. av_freep(&ctx->ltp_gain_buffer);
  1584. av_freep(&ctx->quant_cof);
  1585. av_freep(&ctx->lpc_cof);
  1586. av_freep(&ctx->quant_cof_buffer);
  1587. av_freep(&ctx->lpc_cof_buffer);
  1588. av_freep(&ctx->lpc_cof_reversed_buffer);
  1589. av_freep(&ctx->prev_raw_samples);
  1590. av_freep(&ctx->raw_samples);
  1591. av_freep(&ctx->raw_buffer);
  1592. av_freep(&ctx->chan_data);
  1593. av_freep(&ctx->chan_data_buffer);
  1594. av_freep(&ctx->reverted_channels);
  1595. av_freep(&ctx->crc_buffer);
  1596. if (ctx->mlz) {
  1597. av_freep(&ctx->mlz->dict);
  1598. av_freep(&ctx->mlz);
  1599. }
  1600. av_freep(&ctx->acf);
  1601. av_freep(&ctx->last_acf_mantissa);
  1602. av_freep(&ctx->shift_value);
  1603. av_freep(&ctx->last_shift_value);
  1604. if (ctx->raw_mantissa) {
  1605. for (i = 0; i < avctx->channels; i++) {
  1606. av_freep(&ctx->raw_mantissa[i]);
  1607. }
  1608. av_freep(&ctx->raw_mantissa);
  1609. }
  1610. av_freep(&ctx->larray);
  1611. av_freep(&ctx->nbits);
  1612. return 0;
  1613. }
  1614. /** Initialize the ALS decoder.
  1615. */
  1616. static av_cold int decode_init(AVCodecContext *avctx)
  1617. {
  1618. unsigned int c;
  1619. unsigned int channel_size;
  1620. int num_buffers, ret;
  1621. ALSDecContext *ctx = avctx->priv_data;
  1622. ALSSpecificConfig *sconf = &ctx->sconf;
  1623. ctx->avctx = avctx;
  1624. if (!avctx->extradata) {
  1625. av_log(avctx, AV_LOG_ERROR, "Missing required ALS extradata.\n");
  1626. return AVERROR_INVALIDDATA;
  1627. }
  1628. if ((ret = read_specific_config(ctx)) < 0) {
  1629. av_log(avctx, AV_LOG_ERROR, "Reading ALSSpecificConfig failed.\n");
  1630. goto fail;
  1631. }
  1632. if ((ret = check_specific_config(ctx)) < 0) {
  1633. goto fail;
  1634. }
  1635. if (sconf->bgmc) {
  1636. ret = ff_bgmc_init(avctx, &ctx->bgmc_lut, &ctx->bgmc_lut_status);
  1637. if (ret < 0)
  1638. goto fail;
  1639. }
  1640. if (sconf->floating) {
  1641. avctx->sample_fmt = AV_SAMPLE_FMT_FLT;
  1642. avctx->bits_per_raw_sample = 32;
  1643. } else {
  1644. avctx->sample_fmt = sconf->resolution > 1
  1645. ? AV_SAMPLE_FMT_S32 : AV_SAMPLE_FMT_S16;
  1646. avctx->bits_per_raw_sample = (sconf->resolution + 1) * 8;
  1647. if (avctx->bits_per_raw_sample > 32) {
  1648. av_log(avctx, AV_LOG_ERROR, "Bits per raw sample %d larger than 32.\n",
  1649. avctx->bits_per_raw_sample);
  1650. ret = AVERROR_INVALIDDATA;
  1651. goto fail;
  1652. }
  1653. }
  1654. // set maximum Rice parameter for progressive decoding based on resolution
  1655. // This is not specified in 14496-3 but actually done by the reference
  1656. // codec RM22 revision 2.
  1657. ctx->s_max = sconf->resolution > 1 ? 31 : 15;
  1658. // set lag value for long-term prediction
  1659. ctx->ltp_lag_length = 8 + (avctx->sample_rate >= 96000) +
  1660. (avctx->sample_rate >= 192000);
  1661. // allocate quantized parcor coefficient buffer
  1662. num_buffers = sconf->mc_coding ? avctx->channels : 1;
  1663. if (num_buffers * (uint64_t)num_buffers > INT_MAX) // protect chan_data_buffer allocation
  1664. return AVERROR_INVALIDDATA;
  1665. ctx->quant_cof = av_malloc_array(num_buffers, sizeof(*ctx->quant_cof));
  1666. ctx->lpc_cof = av_malloc_array(num_buffers, sizeof(*ctx->lpc_cof));
  1667. ctx->quant_cof_buffer = av_malloc_array(num_buffers * sconf->max_order,
  1668. sizeof(*ctx->quant_cof_buffer));
  1669. ctx->lpc_cof_buffer = av_malloc_array(num_buffers * sconf->max_order,
  1670. sizeof(*ctx->lpc_cof_buffer));
  1671. ctx->lpc_cof_reversed_buffer = av_malloc_array(sconf->max_order,
  1672. sizeof(*ctx->lpc_cof_buffer));
  1673. if (!ctx->quant_cof || !ctx->lpc_cof ||
  1674. !ctx->quant_cof_buffer || !ctx->lpc_cof_buffer ||
  1675. !ctx->lpc_cof_reversed_buffer) {
  1676. av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
  1677. ret = AVERROR(ENOMEM);
  1678. goto fail;
  1679. }
  1680. // assign quantized parcor coefficient buffers
  1681. for (c = 0; c < num_buffers; c++) {
  1682. ctx->quant_cof[c] = ctx->quant_cof_buffer + c * sconf->max_order;
  1683. ctx->lpc_cof[c] = ctx->lpc_cof_buffer + c * sconf->max_order;
  1684. }
  1685. // allocate and assign lag and gain data buffer for ltp mode
  1686. ctx->const_block = av_malloc_array(num_buffers, sizeof(*ctx->const_block));
  1687. ctx->shift_lsbs = av_malloc_array(num_buffers, sizeof(*ctx->shift_lsbs));
  1688. ctx->opt_order = av_malloc_array(num_buffers, sizeof(*ctx->opt_order));
  1689. ctx->store_prev_samples = av_malloc_array(num_buffers, sizeof(*ctx->store_prev_samples));
  1690. ctx->use_ltp = av_mallocz_array(num_buffers, sizeof(*ctx->use_ltp));
  1691. ctx->ltp_lag = av_malloc_array(num_buffers, sizeof(*ctx->ltp_lag));
  1692. ctx->ltp_gain = av_malloc_array(num_buffers, sizeof(*ctx->ltp_gain));
  1693. ctx->ltp_gain_buffer = av_malloc_array(num_buffers * 5, sizeof(*ctx->ltp_gain_buffer));
  1694. if (!ctx->const_block || !ctx->shift_lsbs ||
  1695. !ctx->opt_order || !ctx->store_prev_samples ||
  1696. !ctx->use_ltp || !ctx->ltp_lag ||
  1697. !ctx->ltp_gain || !ctx->ltp_gain_buffer) {
  1698. av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
  1699. ret = AVERROR(ENOMEM);
  1700. goto fail;
  1701. }
  1702. for (c = 0; c < num_buffers; c++)
  1703. ctx->ltp_gain[c] = ctx->ltp_gain_buffer + c * 5;
  1704. // allocate and assign channel data buffer for mcc mode
  1705. if (sconf->mc_coding) {
  1706. ctx->chan_data_buffer = av_mallocz_array(num_buffers * num_buffers,
  1707. sizeof(*ctx->chan_data_buffer));
  1708. ctx->chan_data = av_mallocz_array(num_buffers,
  1709. sizeof(*ctx->chan_data));
  1710. ctx->reverted_channels = av_malloc_array(num_buffers,
  1711. sizeof(*ctx->reverted_channels));
  1712. if (!ctx->chan_data_buffer || !ctx->chan_data || !ctx->reverted_channels) {
  1713. av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
  1714. ret = AVERROR(ENOMEM);
  1715. goto fail;
  1716. }
  1717. for (c = 0; c < num_buffers; c++)
  1718. ctx->chan_data[c] = ctx->chan_data_buffer + c * num_buffers;
  1719. } else {
  1720. ctx->chan_data = NULL;
  1721. ctx->chan_data_buffer = NULL;
  1722. ctx->reverted_channels = NULL;
  1723. }
  1724. channel_size = sconf->frame_length + sconf->max_order;
  1725. ctx->prev_raw_samples = av_malloc_array(sconf->max_order, sizeof(*ctx->prev_raw_samples));
  1726. ctx->raw_buffer = av_mallocz_array(avctx->channels * channel_size, sizeof(*ctx->raw_buffer));
  1727. ctx->raw_samples = av_malloc_array(avctx->channels, sizeof(*ctx->raw_samples));
  1728. if (sconf->floating) {
  1729. ctx->acf = av_malloc_array(avctx->channels, sizeof(*ctx->acf));
  1730. ctx->shift_value = av_malloc_array(avctx->channels, sizeof(*ctx->shift_value));
  1731. ctx->last_shift_value = av_malloc_array(avctx->channels, sizeof(*ctx->last_shift_value));
  1732. ctx->last_acf_mantissa = av_malloc_array(avctx->channels, sizeof(*ctx->last_acf_mantissa));
  1733. ctx->raw_mantissa = av_mallocz_array(avctx->channels, sizeof(*ctx->raw_mantissa));
  1734. ctx->larray = av_malloc_array(ctx->cur_frame_length * 4, sizeof(*ctx->larray));
  1735. ctx->nbits = av_malloc_array(ctx->cur_frame_length, sizeof(*ctx->nbits));
  1736. ctx->mlz = av_mallocz(sizeof(*ctx->mlz));
  1737. if (!ctx->mlz || !ctx->acf || !ctx->shift_value || !ctx->last_shift_value
  1738. || !ctx->last_acf_mantissa || !ctx->raw_mantissa) {
  1739. av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
  1740. ret = AVERROR(ENOMEM);
  1741. goto fail;
  1742. }
  1743. ff_mlz_init_dict(avctx, ctx->mlz);
  1744. ff_mlz_flush_dict(ctx->mlz);
  1745. for (c = 0; c < avctx->channels; ++c) {
  1746. ctx->raw_mantissa[c] = av_mallocz_array(ctx->cur_frame_length, sizeof(**ctx->raw_mantissa));
  1747. }
  1748. }
  1749. // allocate previous raw sample buffer
  1750. if (!ctx->prev_raw_samples || !ctx->raw_buffer|| !ctx->raw_samples) {
  1751. av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
  1752. ret = AVERROR(ENOMEM);
  1753. goto fail;
  1754. }
  1755. // assign raw samples buffers
  1756. ctx->raw_samples[0] = ctx->raw_buffer + sconf->max_order;
  1757. for (c = 1; c < avctx->channels; c++)
  1758. ctx->raw_samples[c] = ctx->raw_samples[c - 1] + channel_size;
  1759. // allocate crc buffer
  1760. if (HAVE_BIGENDIAN != sconf->msb_first && sconf->crc_enabled &&
  1761. (avctx->err_recognition & (AV_EF_CRCCHECK|AV_EF_CAREFUL))) {
  1762. ctx->crc_buffer = av_malloc_array(ctx->cur_frame_length *
  1763. avctx->channels *
  1764. av_get_bytes_per_sample(avctx->sample_fmt),
  1765. sizeof(*ctx->crc_buffer));
  1766. if (!ctx->crc_buffer) {
  1767. av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
  1768. ret = AVERROR(ENOMEM);
  1769. goto fail;
  1770. }
  1771. }
  1772. ff_bswapdsp_init(&ctx->bdsp);
  1773. return 0;
  1774. fail:
  1775. return ret;
  1776. }
  1777. /** Flush (reset) the frame ID after seeking.
  1778. */
  1779. static av_cold void flush(AVCodecContext *avctx)
  1780. {
  1781. ALSDecContext *ctx = avctx->priv_data;
  1782. ctx->frame_id = 0;
  1783. }
  1784. AVCodec ff_als_decoder = {
  1785. .name = "als",
  1786. .long_name = NULL_IF_CONFIG_SMALL("MPEG-4 Audio Lossless Coding (ALS)"),
  1787. .type = AVMEDIA_TYPE_AUDIO,
  1788. .id = AV_CODEC_ID_MP4ALS,
  1789. .priv_data_size = sizeof(ALSDecContext),
  1790. .init = decode_init,
  1791. .close = decode_end,
  1792. .decode = decode_frame,
  1793. .flush = flush,
  1794. .capabilities = AV_CODEC_CAP_SUBFRAMES | AV_CODEC_CAP_DR1,
  1795. .caps_internal = FF_CODEC_CAP_INIT_CLEANUP,
  1796. };