You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

273 lines
7.6KB

  1. /*
  2. * RealAudio 2.0 (28.8K)
  3. * Copyright (c) 2003 the ffmpeg project
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. #include "avcodec.h"
  22. #define ALT_BITSTREAM_READER_LE
  23. #include "bitstream.h"
  24. #include "ra288.h"
  25. typedef struct {
  26. float sp_lpc[36]; ///< LPC coefficients for speech data (spec: A)
  27. float gain_lpc[10]; ///< LPC coefficients for gain (spec: GB)
  28. float sp_hist[111]; ///< Speech data history (spec: SB)
  29. /** Speech part of the gain autocorrelation (spec: REXP) */
  30. float sp_rec[37];
  31. float gain_hist[38]; ///< Log-gain history (spec: SBLG)
  32. /** Recursive part of the gain autocorrelation (spec: REXPLG) */
  33. float gain_rec[11];
  34. float sp_block[41]; ///< Speech data of four blocks (spec: STTMP)
  35. float gain_block[10]; ///< Gain data of four blocks (spec: GSTATE)
  36. } RA288Context;
  37. static av_cold int ra288_decode_init(AVCodecContext *avctx)
  38. {
  39. avctx->sample_fmt = SAMPLE_FMT_S16;
  40. return 0;
  41. }
  42. static inline float scalar_product_float(const float * v1, const float * v2,
  43. int size)
  44. {
  45. float res = 0.;
  46. while (size--)
  47. res += *v1++ * *v2++;
  48. return res;
  49. }
  50. static void colmult(float *tgt, const float *m1, const float *m2, int n)
  51. {
  52. while (n--)
  53. *tgt++ = *m1++ * *m2++;
  54. }
  55. static void decode(RA288Context *ractx, float gain, int cb_coef)
  56. {
  57. int i, j;
  58. double sumsum;
  59. float sum, buffer[5];
  60. float *block = ractx->sp_block + 36; // Current block
  61. memmove(ractx->sp_block, ractx->sp_block + 5, 36*sizeof(*ractx->sp_block));
  62. for (i=0; i < 5; i++) {
  63. block[i] = 0.;
  64. for (j=0; j < 36; j++)
  65. block[i] -= block[i-1-j]*ractx->sp_lpc[j];
  66. }
  67. /* block 46 of G.728 spec */
  68. sum = 32.;
  69. for (i=0; i < 10; i++)
  70. sum -= ractx->gain_block[9-i] * ractx->gain_lpc[i];
  71. /* block 47 of G.728 spec */
  72. sum = av_clipf(sum, 0, 60);
  73. /* block 48 of G.728 spec */
  74. sumsum = exp(sum * 0.1151292546497) * gain; /* pow(10.0,sum/20)*gain */
  75. for (i=0; i < 5; i++)
  76. buffer[i] = codetable[cb_coef][i] * sumsum;
  77. sum = scalar_product_float(buffer, buffer, 5) / 5;
  78. sum = FFMAX(sum, 1);
  79. /* shift and store */
  80. memmove(ractx->gain_block, ractx->gain_block + 1,
  81. 9 * sizeof(*ractx->gain_block));
  82. ractx->gain_block[9] = 10 * log10(sum) - 32;
  83. for (i=1; i < 5; i++)
  84. for (j=i-1; j >= 0; j--)
  85. buffer[i] -= ractx->sp_lpc[i-j-1] * buffer[j];
  86. /* output */
  87. for (i=0; i < 5; i++)
  88. block[i] = av_clipf(block[i] + buffer[i], -4095, 4095);
  89. }
  90. /**
  91. * Converts autocorrelation coefficients to LPC coefficients using the
  92. * Levinson-Durbin algorithm. See blocks 37 and 50 of the G.728 specification.
  93. *
  94. * @return 0 if success, -1 if fail
  95. */
  96. static int eval_lpc_coeffs(const float *in, float *tgt, int n)
  97. {
  98. int i, j;
  99. double f0, f1, f2;
  100. if (in[n] == 0)
  101. return -1;
  102. if ((f0 = *in) <= 0)
  103. return -1;
  104. in--; // To avoid a -1 subtraction in the inner loop
  105. for (i=1; i <= n; i++) {
  106. f1 = in[i+1];
  107. for (j=0; j < i - 1; j++)
  108. f1 += in[i-j]*tgt[j];
  109. tgt[i-1] = f2 = -f1/f0;
  110. for (j=0; j < i >> 1; j++) {
  111. float temp = tgt[j] + tgt[i-j-2]*f2;
  112. tgt[i-j-2] += tgt[j]*f2;
  113. tgt[j] = temp;
  114. }
  115. if ((f0 += f1*f2) < 0)
  116. return -1;
  117. }
  118. return 0;
  119. }
  120. static void convolve(float *tgt, const float *src, int len, int n)
  121. {
  122. for (; n >= 0; n--)
  123. tgt[n] = scalar_product_float(src, src - n, len);
  124. }
  125. /**
  126. * Hybrid window filtering. See blocks 36 and 49 of the G.728 specification.
  127. *
  128. * @param order the order of the filter
  129. * @param n the length of the input
  130. * @param non_rec the number of non-recursive samples
  131. * @param out the filter output
  132. * @param in pointer to the input of the filter
  133. * @param hist pointer to the input history of the filter. It is updated by
  134. * this function.
  135. * @param out pointer to the non-recursive part of the output
  136. * @param out2 pointer to the recursive part of the output
  137. * @param window pointer to the windowing function table
  138. */
  139. static void do_hybrid_window(int order, int n, int non_rec, const float *in,
  140. float *out, float *hist, float *out2,
  141. const float *window)
  142. {
  143. int i;
  144. float buffer1[order + 1];
  145. float buffer2[order + 1];
  146. float work[order + n + non_rec];
  147. /* update history */
  148. memmove(hist , hist + n, (order + non_rec)*sizeof(*hist));
  149. memcpy (hist + order + non_rec, in , n *sizeof(*hist));
  150. colmult(work, window, hist, order + n + non_rec);
  151. convolve(buffer1, work + order , n , order);
  152. convolve(buffer2, work + order + n, non_rec, order);
  153. for (i=0; i <= order; i++) {
  154. out2[i] = out2[i] * 0.5625 + buffer1[i];
  155. out [i] = out2[i] + buffer2[i];
  156. }
  157. /* Multiply by the white noise correcting factor (WNCF) */
  158. *out *= 257./256.;
  159. }
  160. /**
  161. * Backward synthesis filter. Find the LPC coefficients from past speech data.
  162. */
  163. static void backward_filter(RA288Context *ractx)
  164. {
  165. float temp1[37]; // RTMP in the spec
  166. float temp2[11]; // GPTPMP in the spec
  167. do_hybrid_window(36, 40, 35, ractx->sp_block+1, temp1, ractx->sp_hist,
  168. ractx->sp_rec, syn_window);
  169. if (!eval_lpc_coeffs(temp1, ractx->sp_lpc, 36))
  170. colmult(ractx->sp_lpc, ractx->sp_lpc, syn_bw_tab, 36);
  171. do_hybrid_window(10, 8, 20, ractx->gain_block+2, temp2, ractx->gain_hist,
  172. ractx->gain_rec, gain_window);
  173. if (!eval_lpc_coeffs(temp2, ractx->gain_lpc, 10))
  174. colmult(ractx->gain_lpc, ractx->gain_lpc, gain_bw_tab, 10);
  175. }
  176. static int ra288_decode_frame(AVCodecContext * avctx, void *data,
  177. int *data_size, const uint8_t * buf,
  178. int buf_size)
  179. {
  180. int16_t *out = data;
  181. int i, j;
  182. RA288Context *ractx = avctx->priv_data;
  183. GetBitContext gb;
  184. if (buf_size < avctx->block_align) {
  185. av_log(avctx, AV_LOG_ERROR,
  186. "Error! Input buffer is too small [%d<%d]\n",
  187. buf_size, avctx->block_align);
  188. return 0;
  189. }
  190. if (*data_size < 32*5*2)
  191. return -1;
  192. init_get_bits(&gb, buf, avctx->block_align * 8);
  193. for (i=0; i < 32; i++) {
  194. float gain = amptable[get_bits(&gb, 3)];
  195. int cb_coef = get_bits(&gb, 6 + (i&1));
  196. decode(ractx, gain, cb_coef);
  197. for (j=0; j < 5; j++)
  198. *(out++) = 8 * ractx->sp_block[36 + j];
  199. if ((i & 7) == 3)
  200. backward_filter(ractx);
  201. }
  202. *data_size = (char *)out - (char *)data;
  203. return avctx->block_align;
  204. }
  205. AVCodec ra_288_decoder =
  206. {
  207. "real_288",
  208. CODEC_TYPE_AUDIO,
  209. CODEC_ID_RA_288,
  210. sizeof(RA288Context),
  211. ra288_decode_init,
  212. NULL,
  213. NULL,
  214. ra288_decode_frame,
  215. .long_name = NULL_IF_CONFIG_SMALL("RealAudio 2.0 (28.8K)"),
  216. };