You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

592 lines
20KB

  1. /*
  2. * SVQ1 Encoder
  3. * Copyright (C) 2004 Mike Melanson <melanson@pcisys.net>
  4. *
  5. * This file is part of Libav.
  6. *
  7. * Libav is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * Libav is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with Libav; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file
  23. * Sorenson Vector Quantizer #1 (SVQ1) video codec.
  24. * For more information of the SVQ1 algorithm, visit:
  25. * http://www.pcisys.net/~melanson/codecs/
  26. */
  27. #include "avcodec.h"
  28. #include "dsputil.h"
  29. #include "mpegvideo.h"
  30. #include "h263.h"
  31. #include "internal.h"
  32. #include "svq1.h"
  33. #include "svq1enc_cb.h"
  34. #undef NDEBUG
  35. #include <assert.h>
  36. typedef struct SVQ1Context {
  37. MpegEncContext m; // needed for motion estimation, should not be used for anything else, the idea is to make the motion estimation eventually independent of MpegEncContext, so this will be removed then (FIXME/XXX)
  38. AVCodecContext *avctx;
  39. DSPContext dsp;
  40. AVFrame picture;
  41. AVFrame current_picture;
  42. AVFrame last_picture;
  43. PutBitContext pb;
  44. GetBitContext gb;
  45. PutBitContext reorder_pb[6]; //why ooh why this sick breadth first order, everything is slower and more complex
  46. int frame_width;
  47. int frame_height;
  48. /* Y plane block dimensions */
  49. int y_block_width;
  50. int y_block_height;
  51. /* U & V plane (C planes) block dimensions */
  52. int c_block_width;
  53. int c_block_height;
  54. uint16_t *mb_type;
  55. uint32_t *dummy;
  56. int16_t (*motion_val8[3])[2];
  57. int16_t (*motion_val16[3])[2];
  58. int64_t rd_total;
  59. uint8_t *scratchbuf;
  60. } SVQ1Context;
  61. static void svq1_write_header(SVQ1Context *s, int frame_type)
  62. {
  63. int i;
  64. /* frame code */
  65. put_bits(&s->pb, 22, 0x20);
  66. /* temporal reference (sure hope this is a "don't care") */
  67. put_bits(&s->pb, 8, 0x00);
  68. /* frame type */
  69. put_bits(&s->pb, 2, frame_type - 1);
  70. if (frame_type == AV_PICTURE_TYPE_I) {
  71. /* no checksum since frame code is 0x20 */
  72. /* no embedded string either */
  73. /* output 5 unknown bits (2 + 2 + 1) */
  74. put_bits(&s->pb, 5, 2); /* 2 needed by quicktime decoder */
  75. i= ff_match_2uint16(ff_svq1_frame_size_table, FF_ARRAY_ELEMS(ff_svq1_frame_size_table), s->frame_width, s->frame_height);
  76. put_bits(&s->pb, 3, i);
  77. if (i == 7)
  78. {
  79. put_bits(&s->pb, 12, s->frame_width);
  80. put_bits(&s->pb, 12, s->frame_height);
  81. }
  82. }
  83. /* no checksum or extra data (next 2 bits get 0) */
  84. put_bits(&s->pb, 2, 0);
  85. }
  86. #define QUALITY_THRESHOLD 100
  87. #define THRESHOLD_MULTIPLIER 0.6
  88. static int encode_block(SVQ1Context *s, uint8_t *src, uint8_t *ref, uint8_t *decoded, int stride, int level, int threshold, int lambda, int intra){
  89. int count, y, x, i, j, split, best_mean, best_score, best_count;
  90. int best_vector[6];
  91. int block_sum[7]= {0, 0, 0, 0, 0, 0};
  92. int w= 2<<((level+2)>>1);
  93. int h= 2<<((level+1)>>1);
  94. int size=w*h;
  95. int16_t block[7][256];
  96. const int8_t *codebook_sum, *codebook;
  97. const uint16_t (*mean_vlc)[2];
  98. const uint8_t (*multistage_vlc)[2];
  99. best_score=0;
  100. //FIXME optimize, this doenst need to be done multiple times
  101. if(intra){
  102. codebook_sum= svq1_intra_codebook_sum[level];
  103. codebook= ff_svq1_intra_codebooks[level];
  104. mean_vlc= ff_svq1_intra_mean_vlc;
  105. multistage_vlc= ff_svq1_intra_multistage_vlc[level];
  106. for(y=0; y<h; y++){
  107. for(x=0; x<w; x++){
  108. int v= src[x + y*stride];
  109. block[0][x + w*y]= v;
  110. best_score += v*v;
  111. block_sum[0] += v;
  112. }
  113. }
  114. }else{
  115. codebook_sum= svq1_inter_codebook_sum[level];
  116. codebook= ff_svq1_inter_codebooks[level];
  117. mean_vlc= ff_svq1_inter_mean_vlc + 256;
  118. multistage_vlc= ff_svq1_inter_multistage_vlc[level];
  119. for(y=0; y<h; y++){
  120. for(x=0; x<w; x++){
  121. int v= src[x + y*stride] - ref[x + y*stride];
  122. block[0][x + w*y]= v;
  123. best_score += v*v;
  124. block_sum[0] += v;
  125. }
  126. }
  127. }
  128. best_count=0;
  129. best_score -= (int)(((unsigned)block_sum[0]*block_sum[0])>>(level+3));
  130. best_mean= (block_sum[0] + (size>>1)) >> (level+3);
  131. if(level<4){
  132. for(count=1; count<7; count++){
  133. int best_vector_score= INT_MAX;
  134. int best_vector_sum=-999, best_vector_mean=-999;
  135. const int stage= count-1;
  136. const int8_t *vector;
  137. for(i=0; i<16; i++){
  138. int sum= codebook_sum[stage*16 + i];
  139. int sqr, diff, score;
  140. vector = codebook + stage*size*16 + i*size;
  141. sqr = s->dsp.ssd_int8_vs_int16(vector, block[stage], size);
  142. diff= block_sum[stage] - sum;
  143. score= sqr - ((diff*(int64_t)diff)>>(level+3)); //FIXME 64bit slooow
  144. if(score < best_vector_score){
  145. int mean= (diff + (size>>1)) >> (level+3);
  146. assert(mean >-300 && mean<300);
  147. mean= av_clip(mean, intra?0:-256, 255);
  148. best_vector_score= score;
  149. best_vector[stage]= i;
  150. best_vector_sum= sum;
  151. best_vector_mean= mean;
  152. }
  153. }
  154. assert(best_vector_mean != -999);
  155. vector= codebook + stage*size*16 + best_vector[stage]*size;
  156. for(j=0; j<size; j++){
  157. block[stage+1][j] = block[stage][j] - vector[j];
  158. }
  159. block_sum[stage+1]= block_sum[stage] - best_vector_sum;
  160. best_vector_score +=
  161. lambda*(+ 1 + 4*count
  162. + multistage_vlc[1+count][1]
  163. + mean_vlc[best_vector_mean][1]);
  164. if(best_vector_score < best_score){
  165. best_score= best_vector_score;
  166. best_count= count;
  167. best_mean= best_vector_mean;
  168. }
  169. }
  170. }
  171. split=0;
  172. if(best_score > threshold && level){
  173. int score=0;
  174. int offset= (level&1) ? stride*h/2 : w/2;
  175. PutBitContext backup[6];
  176. for(i=level-1; i>=0; i--){
  177. backup[i]= s->reorder_pb[i];
  178. }
  179. score += encode_block(s, src , ref , decoded , stride, level-1, threshold>>1, lambda, intra);
  180. score += encode_block(s, src + offset, ref + offset, decoded + offset, stride, level-1, threshold>>1, lambda, intra);
  181. score += lambda;
  182. if(score < best_score){
  183. best_score= score;
  184. split=1;
  185. }else{
  186. for(i=level-1; i>=0; i--){
  187. s->reorder_pb[i]= backup[i];
  188. }
  189. }
  190. }
  191. if (level > 0)
  192. put_bits(&s->reorder_pb[level], 1, split);
  193. if(!split){
  194. assert((best_mean >= 0 && best_mean<256) || !intra);
  195. assert(best_mean >= -256 && best_mean<256);
  196. assert(best_count >=0 && best_count<7);
  197. assert(level<4 || best_count==0);
  198. /* output the encoding */
  199. put_bits(&s->reorder_pb[level],
  200. multistage_vlc[1 + best_count][1],
  201. multistage_vlc[1 + best_count][0]);
  202. put_bits(&s->reorder_pb[level], mean_vlc[best_mean][1],
  203. mean_vlc[best_mean][0]);
  204. for (i = 0; i < best_count; i++){
  205. assert(best_vector[i]>=0 && best_vector[i]<16);
  206. put_bits(&s->reorder_pb[level], 4, best_vector[i]);
  207. }
  208. for(y=0; y<h; y++){
  209. for(x=0; x<w; x++){
  210. decoded[x + y*stride]= src[x + y*stride] - block[best_count][x + w*y] + best_mean;
  211. }
  212. }
  213. }
  214. return best_score;
  215. }
  216. static int svq1_encode_plane(SVQ1Context *s, int plane, unsigned char *src_plane, unsigned char *ref_plane, unsigned char *decoded_plane,
  217. int width, int height, int src_stride, int stride)
  218. {
  219. int x, y;
  220. int i;
  221. int block_width, block_height;
  222. int level;
  223. int threshold[6];
  224. uint8_t *src = s->scratchbuf + stride * 16;
  225. const int lambda= (s->picture.quality*s->picture.quality) >> (2*FF_LAMBDA_SHIFT);
  226. /* figure out the acceptable level thresholds in advance */
  227. threshold[5] = QUALITY_THRESHOLD;
  228. for (level = 4; level >= 0; level--)
  229. threshold[level] = threshold[level + 1] * THRESHOLD_MULTIPLIER;
  230. block_width = (width + 15) / 16;
  231. block_height = (height + 15) / 16;
  232. if(s->picture.pict_type == AV_PICTURE_TYPE_P){
  233. s->m.avctx= s->avctx;
  234. s->m.current_picture_ptr= &s->m.current_picture;
  235. s->m.last_picture_ptr = &s->m.last_picture;
  236. s->m.last_picture.f.data[0] = ref_plane;
  237. s->m.linesize=
  238. s->m.last_picture.f.linesize[0] =
  239. s->m.new_picture.f.linesize[0] =
  240. s->m.current_picture.f.linesize[0] = stride;
  241. s->m.width= width;
  242. s->m.height= height;
  243. s->m.mb_width= block_width;
  244. s->m.mb_height= block_height;
  245. s->m.mb_stride= s->m.mb_width+1;
  246. s->m.b8_stride= 2*s->m.mb_width+1;
  247. s->m.f_code=1;
  248. s->m.pict_type= s->picture.pict_type;
  249. s->m.me_method= s->avctx->me_method;
  250. s->m.me.scene_change_score=0;
  251. s->m.flags= s->avctx->flags;
  252. // s->m.out_format = FMT_H263;
  253. // s->m.unrestricted_mv= 1;
  254. s->m.lambda= s->picture.quality;
  255. s->m.qscale= (s->m.lambda*139 + FF_LAMBDA_SCALE*64) >> (FF_LAMBDA_SHIFT + 7);
  256. s->m.lambda2= (s->m.lambda*s->m.lambda + FF_LAMBDA_SCALE/2) >> FF_LAMBDA_SHIFT;
  257. if(!s->motion_val8[plane]){
  258. s->motion_val8 [plane]= av_mallocz((s->m.b8_stride*block_height*2 + 2)*2*sizeof(int16_t));
  259. s->motion_val16[plane]= av_mallocz((s->m.mb_stride*(block_height + 2) + 1)*2*sizeof(int16_t));
  260. }
  261. s->m.mb_type= s->mb_type;
  262. //dummies, to avoid segfaults
  263. s->m.current_picture.mb_mean= (uint8_t *)s->dummy;
  264. s->m.current_picture.mb_var= (uint16_t*)s->dummy;
  265. s->m.current_picture.mc_mb_var= (uint16_t*)s->dummy;
  266. s->m.current_picture.f.mb_type = s->dummy;
  267. s->m.current_picture.f.motion_val[0] = s->motion_val8[plane] + 2;
  268. s->m.p_mv_table= s->motion_val16[plane] + s->m.mb_stride + 1;
  269. s->m.dsp= s->dsp; //move
  270. ff_init_me(&s->m);
  271. s->m.me.dia_size= s->avctx->dia_size;
  272. s->m.first_slice_line=1;
  273. for (y = 0; y < block_height; y++) {
  274. s->m.new_picture.f.data[0] = src - y*16*stride; //ugly
  275. s->m.mb_y= y;
  276. for(i=0; i<16 && i + 16*y<height; i++){
  277. memcpy(&src[i*stride], &src_plane[(i+16*y)*src_stride], width);
  278. for(x=width; x<16*block_width; x++)
  279. src[i*stride+x]= src[i*stride+x-1];
  280. }
  281. for(; i<16 && i + 16*y<16*block_height; i++)
  282. memcpy(&src[i*stride], &src[(i-1)*stride], 16*block_width);
  283. for (x = 0; x < block_width; x++) {
  284. s->m.mb_x= x;
  285. ff_init_block_index(&s->m);
  286. ff_update_block_index(&s->m);
  287. ff_estimate_p_frame_motion(&s->m, x, y);
  288. }
  289. s->m.first_slice_line=0;
  290. }
  291. ff_fix_long_p_mvs(&s->m);
  292. ff_fix_long_mvs(&s->m, NULL, 0, s->m.p_mv_table, s->m.f_code, CANDIDATE_MB_TYPE_INTER, 0);
  293. }
  294. s->m.first_slice_line=1;
  295. for (y = 0; y < block_height; y++) {
  296. for(i=0; i<16 && i + 16*y<height; i++){
  297. memcpy(&src[i*stride], &src_plane[(i+16*y)*src_stride], width);
  298. for(x=width; x<16*block_width; x++)
  299. src[i*stride+x]= src[i*stride+x-1];
  300. }
  301. for(; i<16 && i + 16*y<16*block_height; i++)
  302. memcpy(&src[i*stride], &src[(i-1)*stride], 16*block_width);
  303. s->m.mb_y= y;
  304. for (x = 0; x < block_width; x++) {
  305. uint8_t reorder_buffer[3][6][7*32];
  306. int count[3][6];
  307. int offset = y * 16 * stride + x * 16;
  308. uint8_t *decoded= decoded_plane + offset;
  309. uint8_t *ref= ref_plane + offset;
  310. int score[4]={0,0,0,0}, best;
  311. uint8_t *temp = s->scratchbuf;
  312. if(s->pb.buf_end - s->pb.buf - (put_bits_count(&s->pb)>>3) < 3000){ //FIXME check size
  313. av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
  314. return -1;
  315. }
  316. s->m.mb_x= x;
  317. ff_init_block_index(&s->m);
  318. ff_update_block_index(&s->m);
  319. if(s->picture.pict_type == AV_PICTURE_TYPE_I || (s->m.mb_type[x + y*s->m.mb_stride]&CANDIDATE_MB_TYPE_INTRA)){
  320. for(i=0; i<6; i++){
  321. init_put_bits(&s->reorder_pb[i], reorder_buffer[0][i], 7*32);
  322. }
  323. if(s->picture.pict_type == AV_PICTURE_TYPE_P){
  324. const uint8_t *vlc= ff_svq1_block_type_vlc[SVQ1_BLOCK_INTRA];
  325. put_bits(&s->reorder_pb[5], vlc[1], vlc[0]);
  326. score[0]= vlc[1]*lambda;
  327. }
  328. score[0]+= encode_block(s, src+16*x, NULL, temp, stride, 5, 64, lambda, 1);
  329. for(i=0; i<6; i++){
  330. count[0][i]= put_bits_count(&s->reorder_pb[i]);
  331. flush_put_bits(&s->reorder_pb[i]);
  332. }
  333. }else
  334. score[0]= INT_MAX;
  335. best=0;
  336. if(s->picture.pict_type == AV_PICTURE_TYPE_P){
  337. const uint8_t *vlc= ff_svq1_block_type_vlc[SVQ1_BLOCK_INTER];
  338. int mx, my, pred_x, pred_y, dxy;
  339. int16_t *motion_ptr;
  340. motion_ptr= ff_h263_pred_motion(&s->m, 0, 0, &pred_x, &pred_y);
  341. if(s->m.mb_type[x + y*s->m.mb_stride]&CANDIDATE_MB_TYPE_INTER){
  342. for(i=0; i<6; i++)
  343. init_put_bits(&s->reorder_pb[i], reorder_buffer[1][i], 7*32);
  344. put_bits(&s->reorder_pb[5], vlc[1], vlc[0]);
  345. s->m.pb= s->reorder_pb[5];
  346. mx= motion_ptr[0];
  347. my= motion_ptr[1];
  348. assert(mx>=-32 && mx<=31);
  349. assert(my>=-32 && my<=31);
  350. assert(pred_x>=-32 && pred_x<=31);
  351. assert(pred_y>=-32 && pred_y<=31);
  352. ff_h263_encode_motion(&s->m, mx - pred_x, 1);
  353. ff_h263_encode_motion(&s->m, my - pred_y, 1);
  354. s->reorder_pb[5]= s->m.pb;
  355. score[1] += lambda*put_bits_count(&s->reorder_pb[5]);
  356. dxy= (mx&1) + 2*(my&1);
  357. s->dsp.put_pixels_tab[0][dxy](temp+16, ref + (mx>>1) + stride*(my>>1), stride, 16);
  358. score[1]+= encode_block(s, src+16*x, temp+16, decoded, stride, 5, 64, lambda, 0);
  359. best= score[1] <= score[0];
  360. vlc= ff_svq1_block_type_vlc[SVQ1_BLOCK_SKIP];
  361. score[2]= s->dsp.sse[0](NULL, src+16*x, ref, stride, 16);
  362. score[2]+= vlc[1]*lambda;
  363. if(score[2] < score[best] && mx==0 && my==0){
  364. best=2;
  365. s->dsp.put_pixels_tab[0][0](decoded, ref, stride, 16);
  366. for(i=0; i<6; i++){
  367. count[2][i]=0;
  368. }
  369. put_bits(&s->pb, vlc[1], vlc[0]);
  370. }
  371. }
  372. if(best==1){
  373. for(i=0; i<6; i++){
  374. count[1][i]= put_bits_count(&s->reorder_pb[i]);
  375. flush_put_bits(&s->reorder_pb[i]);
  376. }
  377. }else{
  378. motion_ptr[0 ] = motion_ptr[1 ]=
  379. motion_ptr[2 ] = motion_ptr[3 ]=
  380. motion_ptr[0+2*s->m.b8_stride] = motion_ptr[1+2*s->m.b8_stride]=
  381. motion_ptr[2+2*s->m.b8_stride] = motion_ptr[3+2*s->m.b8_stride]=0;
  382. }
  383. }
  384. s->rd_total += score[best];
  385. for(i=5; i>=0; i--){
  386. avpriv_copy_bits(&s->pb, reorder_buffer[best][i], count[best][i]);
  387. }
  388. if(best==0){
  389. s->dsp.put_pixels_tab[0][0](decoded, temp, stride, 16);
  390. }
  391. }
  392. s->m.first_slice_line=0;
  393. }
  394. return 0;
  395. }
  396. static av_cold int svq1_encode_init(AVCodecContext *avctx)
  397. {
  398. SVQ1Context * const s = avctx->priv_data;
  399. ff_dsputil_init(&s->dsp, avctx);
  400. avctx->coded_frame = &s->picture;
  401. s->frame_width = avctx->width;
  402. s->frame_height = avctx->height;
  403. s->y_block_width = (s->frame_width + 15) / 16;
  404. s->y_block_height = (s->frame_height + 15) / 16;
  405. s->c_block_width = (s->frame_width / 4 + 15) / 16;
  406. s->c_block_height = (s->frame_height / 4 + 15) / 16;
  407. s->avctx= avctx;
  408. s->m.avctx= avctx;
  409. s->m.me.temp =
  410. s->m.me.scratchpad= av_mallocz((avctx->width+64)*2*16*2*sizeof(uint8_t));
  411. s->m.me.map = av_mallocz(ME_MAP_SIZE*sizeof(uint32_t));
  412. s->m.me.score_map = av_mallocz(ME_MAP_SIZE*sizeof(uint32_t));
  413. s->mb_type = av_mallocz((s->y_block_width+1)*s->y_block_height*sizeof(int16_t));
  414. s->dummy = av_mallocz((s->y_block_width+1)*s->y_block_height*sizeof(int32_t));
  415. ff_h263_encode_init(&s->m); //mv_penalty
  416. return 0;
  417. }
  418. static int svq1_encode_frame(AVCodecContext *avctx, AVPacket *pkt,
  419. const AVFrame *pict, int *got_packet)
  420. {
  421. SVQ1Context * const s = avctx->priv_data;
  422. AVFrame * const p = &s->picture;
  423. AVFrame temp;
  424. int i, ret;
  425. if (!pkt->data &&
  426. (ret = av_new_packet(pkt, s->y_block_width*s->y_block_height*MAX_MB_BYTES*3 + FF_MIN_BUFFER_SIZE) < 0)) {
  427. av_log(avctx, AV_LOG_ERROR, "Error getting output packet.\n");
  428. return ret;
  429. }
  430. if(avctx->pix_fmt != PIX_FMT_YUV410P){
  431. av_log(avctx, AV_LOG_ERROR, "unsupported pixel format\n");
  432. return -1;
  433. }
  434. if(!s->current_picture.data[0]){
  435. avctx->get_buffer(avctx, &s->current_picture);
  436. avctx->get_buffer(avctx, &s->last_picture);
  437. s->scratchbuf = av_malloc(s->current_picture.linesize[0] * 16 * 2);
  438. }
  439. temp= s->current_picture;
  440. s->current_picture= s->last_picture;
  441. s->last_picture= temp;
  442. init_put_bits(&s->pb, pkt->data, pkt->size);
  443. *p = *pict;
  444. p->pict_type = avctx->gop_size && avctx->frame_number % avctx->gop_size ? AV_PICTURE_TYPE_P : AV_PICTURE_TYPE_I;
  445. p->key_frame = p->pict_type == AV_PICTURE_TYPE_I;
  446. svq1_write_header(s, p->pict_type);
  447. for(i=0; i<3; i++){
  448. if(svq1_encode_plane(s, i,
  449. s->picture.data[i], s->last_picture.data[i], s->current_picture.data[i],
  450. s->frame_width / (i?4:1), s->frame_height / (i?4:1),
  451. s->picture.linesize[i], s->current_picture.linesize[i]) < 0)
  452. return -1;
  453. }
  454. // avpriv_align_put_bits(&s->pb);
  455. while(put_bits_count(&s->pb) & 31)
  456. put_bits(&s->pb, 1, 0);
  457. flush_put_bits(&s->pb);
  458. pkt->size = put_bits_count(&s->pb) / 8;
  459. if (p->pict_type == AV_PICTURE_TYPE_I)
  460. pkt->flags |= AV_PKT_FLAG_KEY;
  461. *got_packet = 1;
  462. return 0;
  463. }
  464. static av_cold int svq1_encode_end(AVCodecContext *avctx)
  465. {
  466. SVQ1Context * const s = avctx->priv_data;
  467. int i;
  468. av_log(avctx, AV_LOG_DEBUG, "RD: %f\n", s->rd_total/(double)(avctx->width*avctx->height*avctx->frame_number));
  469. av_freep(&s->m.me.scratchpad);
  470. av_freep(&s->m.me.map);
  471. av_freep(&s->m.me.score_map);
  472. av_freep(&s->mb_type);
  473. av_freep(&s->dummy);
  474. av_freep(&s->scratchbuf);
  475. for(i=0; i<3; i++){
  476. av_freep(&s->motion_val8[i]);
  477. av_freep(&s->motion_val16[i]);
  478. }
  479. return 0;
  480. }
  481. AVCodec ff_svq1_encoder = {
  482. .name = "svq1",
  483. .type = AVMEDIA_TYPE_VIDEO,
  484. .id = CODEC_ID_SVQ1,
  485. .priv_data_size = sizeof(SVQ1Context),
  486. .init = svq1_encode_init,
  487. .encode2 = svq1_encode_frame,
  488. .close = svq1_encode_end,
  489. .pix_fmts = (const enum PixelFormat[]){ PIX_FMT_YUV410P, PIX_FMT_NONE },
  490. .long_name = NULL_IF_CONFIG_SMALL("Sorenson Vector Quantizer 1 / Sorenson Video 1 / SVQ1"),
  491. };