You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

800 lines
24KB

  1. /*
  2. * The simplest mpeg audio layer 2 encoder
  3. * Copyright (c) 2000, 2001 Fabrice Bellard
  4. *
  5. * This file is part of Libav.
  6. *
  7. * Libav is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * Libav is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with Libav; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file
  23. * The simplest mpeg audio layer 2 encoder.
  24. */
  25. #include "avcodec.h"
  26. #include "internal.h"
  27. #include "put_bits.h"
  28. #define FRAC_BITS 15 /* fractional bits for sb_samples and dct */
  29. #define WFRAC_BITS 14 /* fractional bits for window */
  30. #include "mpegaudio.h"
  31. /* currently, cannot change these constants (need to modify
  32. quantization stage) */
  33. #define MUL(a,b) (((int64_t)(a) * (int64_t)(b)) >> FRAC_BITS)
  34. #define SAMPLES_BUF_SIZE 4096
  35. typedef struct MpegAudioContext {
  36. PutBitContext pb;
  37. int nb_channels;
  38. int lsf; /* 1 if mpeg2 low bitrate selected */
  39. int bitrate_index; /* bit rate */
  40. int freq_index;
  41. int frame_size; /* frame size, in bits, without padding */
  42. /* padding computation */
  43. int frame_frac, frame_frac_incr, do_padding;
  44. short samples_buf[MPA_MAX_CHANNELS][SAMPLES_BUF_SIZE]; /* buffer for filter */
  45. int samples_offset[MPA_MAX_CHANNELS]; /* offset in samples_buf */
  46. int sb_samples[MPA_MAX_CHANNELS][3][12][SBLIMIT];
  47. unsigned char scale_factors[MPA_MAX_CHANNELS][SBLIMIT][3]; /* scale factors */
  48. /* code to group 3 scale factors */
  49. unsigned char scale_code[MPA_MAX_CHANNELS][SBLIMIT];
  50. int sblimit; /* number of used subbands */
  51. const unsigned char *alloc_table;
  52. } MpegAudioContext;
  53. /* define it to use floats in quantization (I don't like floats !) */
  54. #define USE_FLOATS
  55. #include "mpegaudiodata.h"
  56. #include "mpegaudiotab.h"
  57. static av_cold int MPA_encode_init(AVCodecContext *avctx)
  58. {
  59. MpegAudioContext *s = avctx->priv_data;
  60. int freq = avctx->sample_rate;
  61. int bitrate = avctx->bit_rate;
  62. int channels = avctx->channels;
  63. int i, v, table;
  64. float a;
  65. if (channels <= 0 || channels > 2){
  66. av_log(avctx, AV_LOG_ERROR, "encoding %d channel(s) is not allowed in mp2\n", channels);
  67. return AVERROR(EINVAL);
  68. }
  69. bitrate = bitrate / 1000;
  70. s->nb_channels = channels;
  71. avctx->frame_size = MPA_FRAME_SIZE;
  72. avctx->delay = 512 - 32 + 1;
  73. /* encoding freq */
  74. s->lsf = 0;
  75. for(i=0;i<3;i++) {
  76. if (avpriv_mpa_freq_tab[i] == freq)
  77. break;
  78. if ((avpriv_mpa_freq_tab[i] / 2) == freq) {
  79. s->lsf = 1;
  80. break;
  81. }
  82. }
  83. if (i == 3){
  84. av_log(avctx, AV_LOG_ERROR, "Sampling rate %d is not allowed in mp2\n", freq);
  85. return AVERROR(EINVAL);
  86. }
  87. s->freq_index = i;
  88. /* encoding bitrate & frequency */
  89. for(i=0;i<15;i++) {
  90. if (avpriv_mpa_bitrate_tab[s->lsf][1][i] == bitrate)
  91. break;
  92. }
  93. if (i == 15){
  94. av_log(avctx, AV_LOG_ERROR, "bitrate %d is not allowed in mp2\n", bitrate);
  95. return AVERROR(EINVAL);
  96. }
  97. s->bitrate_index = i;
  98. /* compute total header size & pad bit */
  99. a = (float)(bitrate * 1000 * MPA_FRAME_SIZE) / (freq * 8.0);
  100. s->frame_size = ((int)a) * 8;
  101. /* frame fractional size to compute padding */
  102. s->frame_frac = 0;
  103. s->frame_frac_incr = (int)((a - floor(a)) * 65536.0);
  104. /* select the right allocation table */
  105. table = ff_mpa_l2_select_table(bitrate, s->nb_channels, freq, s->lsf);
  106. /* number of used subbands */
  107. s->sblimit = ff_mpa_sblimit_table[table];
  108. s->alloc_table = ff_mpa_alloc_tables[table];
  109. av_dlog(avctx, "%d kb/s, %d Hz, frame_size=%d bits, table=%d, padincr=%x\n",
  110. bitrate, freq, s->frame_size, table, s->frame_frac_incr);
  111. for(i=0;i<s->nb_channels;i++)
  112. s->samples_offset[i] = 0;
  113. for(i=0;i<257;i++) {
  114. int v;
  115. v = ff_mpa_enwindow[i];
  116. #if WFRAC_BITS != 16
  117. v = (v + (1 << (16 - WFRAC_BITS - 1))) >> (16 - WFRAC_BITS);
  118. #endif
  119. filter_bank[i] = v;
  120. if ((i & 63) != 0)
  121. v = -v;
  122. if (i != 0)
  123. filter_bank[512 - i] = v;
  124. }
  125. for(i=0;i<64;i++) {
  126. v = (int)(pow(2.0, (3 - i) / 3.0) * (1 << 20));
  127. if (v <= 0)
  128. v = 1;
  129. scale_factor_table[i] = v;
  130. #ifdef USE_FLOATS
  131. scale_factor_inv_table[i] = pow(2.0, -(3 - i) / 3.0) / (float)(1 << 20);
  132. #else
  133. #define P 15
  134. scale_factor_shift[i] = 21 - P - (i / 3);
  135. scale_factor_mult[i] = (1 << P) * pow(2.0, (i % 3) / 3.0);
  136. #endif
  137. }
  138. for(i=0;i<128;i++) {
  139. v = i - 64;
  140. if (v <= -3)
  141. v = 0;
  142. else if (v < 0)
  143. v = 1;
  144. else if (v == 0)
  145. v = 2;
  146. else if (v < 3)
  147. v = 3;
  148. else
  149. v = 4;
  150. scale_diff_table[i] = v;
  151. }
  152. for(i=0;i<17;i++) {
  153. v = ff_mpa_quant_bits[i];
  154. if (v < 0)
  155. v = -v;
  156. else
  157. v = v * 3;
  158. total_quant_bits[i] = 12 * v;
  159. }
  160. #if FF_API_OLD_ENCODE_AUDIO
  161. avctx->coded_frame= avcodec_alloc_frame();
  162. if (!avctx->coded_frame)
  163. return AVERROR(ENOMEM);
  164. #endif
  165. return 0;
  166. }
  167. /* 32 point floating point IDCT without 1/sqrt(2) coef zero scaling */
  168. static void idct32(int *out, int *tab)
  169. {
  170. int i, j;
  171. int *t, *t1, xr;
  172. const int *xp = costab32;
  173. for(j=31;j>=3;j-=2) tab[j] += tab[j - 2];
  174. t = tab + 30;
  175. t1 = tab + 2;
  176. do {
  177. t[0] += t[-4];
  178. t[1] += t[1 - 4];
  179. t -= 4;
  180. } while (t != t1);
  181. t = tab + 28;
  182. t1 = tab + 4;
  183. do {
  184. t[0] += t[-8];
  185. t[1] += t[1-8];
  186. t[2] += t[2-8];
  187. t[3] += t[3-8];
  188. t -= 8;
  189. } while (t != t1);
  190. t = tab;
  191. t1 = tab + 32;
  192. do {
  193. t[ 3] = -t[ 3];
  194. t[ 6] = -t[ 6];
  195. t[11] = -t[11];
  196. t[12] = -t[12];
  197. t[13] = -t[13];
  198. t[15] = -t[15];
  199. t += 16;
  200. } while (t != t1);
  201. t = tab;
  202. t1 = tab + 8;
  203. do {
  204. int x1, x2, x3, x4;
  205. x3 = MUL(t[16], FIX(SQRT2*0.5));
  206. x4 = t[0] - x3;
  207. x3 = t[0] + x3;
  208. x2 = MUL(-(t[24] + t[8]), FIX(SQRT2*0.5));
  209. x1 = MUL((t[8] - x2), xp[0]);
  210. x2 = MUL((t[8] + x2), xp[1]);
  211. t[ 0] = x3 + x1;
  212. t[ 8] = x4 - x2;
  213. t[16] = x4 + x2;
  214. t[24] = x3 - x1;
  215. t++;
  216. } while (t != t1);
  217. xp += 2;
  218. t = tab;
  219. t1 = tab + 4;
  220. do {
  221. xr = MUL(t[28],xp[0]);
  222. t[28] = (t[0] - xr);
  223. t[0] = (t[0] + xr);
  224. xr = MUL(t[4],xp[1]);
  225. t[ 4] = (t[24] - xr);
  226. t[24] = (t[24] + xr);
  227. xr = MUL(t[20],xp[2]);
  228. t[20] = (t[8] - xr);
  229. t[ 8] = (t[8] + xr);
  230. xr = MUL(t[12],xp[3]);
  231. t[12] = (t[16] - xr);
  232. t[16] = (t[16] + xr);
  233. t++;
  234. } while (t != t1);
  235. xp += 4;
  236. for (i = 0; i < 4; i++) {
  237. xr = MUL(tab[30-i*4],xp[0]);
  238. tab[30-i*4] = (tab[i*4] - xr);
  239. tab[ i*4] = (tab[i*4] + xr);
  240. xr = MUL(tab[ 2+i*4],xp[1]);
  241. tab[ 2+i*4] = (tab[28-i*4] - xr);
  242. tab[28-i*4] = (tab[28-i*4] + xr);
  243. xr = MUL(tab[31-i*4],xp[0]);
  244. tab[31-i*4] = (tab[1+i*4] - xr);
  245. tab[ 1+i*4] = (tab[1+i*4] + xr);
  246. xr = MUL(tab[ 3+i*4],xp[1]);
  247. tab[ 3+i*4] = (tab[29-i*4] - xr);
  248. tab[29-i*4] = (tab[29-i*4] + xr);
  249. xp += 2;
  250. }
  251. t = tab + 30;
  252. t1 = tab + 1;
  253. do {
  254. xr = MUL(t1[0], *xp);
  255. t1[0] = (t[0] - xr);
  256. t[0] = (t[0] + xr);
  257. t -= 2;
  258. t1 += 2;
  259. xp++;
  260. } while (t >= tab);
  261. for(i=0;i<32;i++) {
  262. out[i] = tab[bitinv32[i]];
  263. }
  264. }
  265. #define WSHIFT (WFRAC_BITS + 15 - FRAC_BITS)
  266. static void filter(MpegAudioContext *s, int ch, const short *samples, int incr)
  267. {
  268. short *p, *q;
  269. int sum, offset, i, j;
  270. int tmp[64];
  271. int tmp1[32];
  272. int *out;
  273. offset = s->samples_offset[ch];
  274. out = &s->sb_samples[ch][0][0][0];
  275. for(j=0;j<36;j++) {
  276. /* 32 samples at once */
  277. for(i=0;i<32;i++) {
  278. s->samples_buf[ch][offset + (31 - i)] = samples[0];
  279. samples += incr;
  280. }
  281. /* filter */
  282. p = s->samples_buf[ch] + offset;
  283. q = filter_bank;
  284. /* maxsum = 23169 */
  285. for(i=0;i<64;i++) {
  286. sum = p[0*64] * q[0*64];
  287. sum += p[1*64] * q[1*64];
  288. sum += p[2*64] * q[2*64];
  289. sum += p[3*64] * q[3*64];
  290. sum += p[4*64] * q[4*64];
  291. sum += p[5*64] * q[5*64];
  292. sum += p[6*64] * q[6*64];
  293. sum += p[7*64] * q[7*64];
  294. tmp[i] = sum;
  295. p++;
  296. q++;
  297. }
  298. tmp1[0] = tmp[16] >> WSHIFT;
  299. for( i=1; i<=16; i++ ) tmp1[i] = (tmp[i+16]+tmp[16-i]) >> WSHIFT;
  300. for( i=17; i<=31; i++ ) tmp1[i] = (tmp[i+16]-tmp[80-i]) >> WSHIFT;
  301. idct32(out, tmp1);
  302. /* advance of 32 samples */
  303. offset -= 32;
  304. out += 32;
  305. /* handle the wrap around */
  306. if (offset < 0) {
  307. memmove(s->samples_buf[ch] + SAMPLES_BUF_SIZE - (512 - 32),
  308. s->samples_buf[ch], (512 - 32) * 2);
  309. offset = SAMPLES_BUF_SIZE - 512;
  310. }
  311. }
  312. s->samples_offset[ch] = offset;
  313. }
  314. static void compute_scale_factors(unsigned char scale_code[SBLIMIT],
  315. unsigned char scale_factors[SBLIMIT][3],
  316. int sb_samples[3][12][SBLIMIT],
  317. int sblimit)
  318. {
  319. int *p, vmax, v, n, i, j, k, code;
  320. int index, d1, d2;
  321. unsigned char *sf = &scale_factors[0][0];
  322. for(j=0;j<sblimit;j++) {
  323. for(i=0;i<3;i++) {
  324. /* find the max absolute value */
  325. p = &sb_samples[i][0][j];
  326. vmax = abs(*p);
  327. for(k=1;k<12;k++) {
  328. p += SBLIMIT;
  329. v = abs(*p);
  330. if (v > vmax)
  331. vmax = v;
  332. }
  333. /* compute the scale factor index using log 2 computations */
  334. if (vmax > 1) {
  335. n = av_log2(vmax);
  336. /* n is the position of the MSB of vmax. now
  337. use at most 2 compares to find the index */
  338. index = (21 - n) * 3 - 3;
  339. if (index >= 0) {
  340. while (vmax <= scale_factor_table[index+1])
  341. index++;
  342. } else {
  343. index = 0; /* very unlikely case of overflow */
  344. }
  345. } else {
  346. index = 62; /* value 63 is not allowed */
  347. }
  348. av_dlog(NULL, "%2d:%d in=%x %x %d\n",
  349. j, i, vmax, scale_factor_table[index], index);
  350. /* store the scale factor */
  351. assert(index >=0 && index <= 63);
  352. sf[i] = index;
  353. }
  354. /* compute the transmission factor : look if the scale factors
  355. are close enough to each other */
  356. d1 = scale_diff_table[sf[0] - sf[1] + 64];
  357. d2 = scale_diff_table[sf[1] - sf[2] + 64];
  358. /* handle the 25 cases */
  359. switch(d1 * 5 + d2) {
  360. case 0*5+0:
  361. case 0*5+4:
  362. case 3*5+4:
  363. case 4*5+0:
  364. case 4*5+4:
  365. code = 0;
  366. break;
  367. case 0*5+1:
  368. case 0*5+2:
  369. case 4*5+1:
  370. case 4*5+2:
  371. code = 3;
  372. sf[2] = sf[1];
  373. break;
  374. case 0*5+3:
  375. case 4*5+3:
  376. code = 3;
  377. sf[1] = sf[2];
  378. break;
  379. case 1*5+0:
  380. case 1*5+4:
  381. case 2*5+4:
  382. code = 1;
  383. sf[1] = sf[0];
  384. break;
  385. case 1*5+1:
  386. case 1*5+2:
  387. case 2*5+0:
  388. case 2*5+1:
  389. case 2*5+2:
  390. code = 2;
  391. sf[1] = sf[2] = sf[0];
  392. break;
  393. case 2*5+3:
  394. case 3*5+3:
  395. code = 2;
  396. sf[0] = sf[1] = sf[2];
  397. break;
  398. case 3*5+0:
  399. case 3*5+1:
  400. case 3*5+2:
  401. code = 2;
  402. sf[0] = sf[2] = sf[1];
  403. break;
  404. case 1*5+3:
  405. code = 2;
  406. if (sf[0] > sf[2])
  407. sf[0] = sf[2];
  408. sf[1] = sf[2] = sf[0];
  409. break;
  410. default:
  411. assert(0); //cannot happen
  412. code = 0; /* kill warning */
  413. }
  414. av_dlog(NULL, "%d: %2d %2d %2d %d %d -> %d\n", j,
  415. sf[0], sf[1], sf[2], d1, d2, code);
  416. scale_code[j] = code;
  417. sf += 3;
  418. }
  419. }
  420. /* The most important function : psycho acoustic module. In this
  421. encoder there is basically none, so this is the worst you can do,
  422. but also this is the simpler. */
  423. static void psycho_acoustic_model(MpegAudioContext *s, short smr[SBLIMIT])
  424. {
  425. int i;
  426. for(i=0;i<s->sblimit;i++) {
  427. smr[i] = (int)(fixed_smr[i] * 10);
  428. }
  429. }
  430. #define SB_NOTALLOCATED 0
  431. #define SB_ALLOCATED 1
  432. #define SB_NOMORE 2
  433. /* Try to maximize the smr while using a number of bits inferior to
  434. the frame size. I tried to make the code simpler, faster and
  435. smaller than other encoders :-) */
  436. static void compute_bit_allocation(MpegAudioContext *s,
  437. short smr1[MPA_MAX_CHANNELS][SBLIMIT],
  438. unsigned char bit_alloc[MPA_MAX_CHANNELS][SBLIMIT],
  439. int *padding)
  440. {
  441. int i, ch, b, max_smr, max_ch, max_sb, current_frame_size, max_frame_size;
  442. int incr;
  443. short smr[MPA_MAX_CHANNELS][SBLIMIT];
  444. unsigned char subband_status[MPA_MAX_CHANNELS][SBLIMIT];
  445. const unsigned char *alloc;
  446. memcpy(smr, smr1, s->nb_channels * sizeof(short) * SBLIMIT);
  447. memset(subband_status, SB_NOTALLOCATED, s->nb_channels * SBLIMIT);
  448. memset(bit_alloc, 0, s->nb_channels * SBLIMIT);
  449. /* compute frame size and padding */
  450. max_frame_size = s->frame_size;
  451. s->frame_frac += s->frame_frac_incr;
  452. if (s->frame_frac >= 65536) {
  453. s->frame_frac -= 65536;
  454. s->do_padding = 1;
  455. max_frame_size += 8;
  456. } else {
  457. s->do_padding = 0;
  458. }
  459. /* compute the header + bit alloc size */
  460. current_frame_size = 32;
  461. alloc = s->alloc_table;
  462. for(i=0;i<s->sblimit;i++) {
  463. incr = alloc[0];
  464. current_frame_size += incr * s->nb_channels;
  465. alloc += 1 << incr;
  466. }
  467. for(;;) {
  468. /* look for the subband with the largest signal to mask ratio */
  469. max_sb = -1;
  470. max_ch = -1;
  471. max_smr = INT_MIN;
  472. for(ch=0;ch<s->nb_channels;ch++) {
  473. for(i=0;i<s->sblimit;i++) {
  474. if (smr[ch][i] > max_smr && subband_status[ch][i] != SB_NOMORE) {
  475. max_smr = smr[ch][i];
  476. max_sb = i;
  477. max_ch = ch;
  478. }
  479. }
  480. }
  481. if (max_sb < 0)
  482. break;
  483. av_dlog(NULL, "current=%d max=%d max_sb=%d max_ch=%d alloc=%d\n",
  484. current_frame_size, max_frame_size, max_sb, max_ch,
  485. bit_alloc[max_ch][max_sb]);
  486. /* find alloc table entry (XXX: not optimal, should use
  487. pointer table) */
  488. alloc = s->alloc_table;
  489. for(i=0;i<max_sb;i++) {
  490. alloc += 1 << alloc[0];
  491. }
  492. if (subband_status[max_ch][max_sb] == SB_NOTALLOCATED) {
  493. /* nothing was coded for this band: add the necessary bits */
  494. incr = 2 + nb_scale_factors[s->scale_code[max_ch][max_sb]] * 6;
  495. incr += total_quant_bits[alloc[1]];
  496. } else {
  497. /* increments bit allocation */
  498. b = bit_alloc[max_ch][max_sb];
  499. incr = total_quant_bits[alloc[b + 1]] -
  500. total_quant_bits[alloc[b]];
  501. }
  502. if (current_frame_size + incr <= max_frame_size) {
  503. /* can increase size */
  504. b = ++bit_alloc[max_ch][max_sb];
  505. current_frame_size += incr;
  506. /* decrease smr by the resolution we added */
  507. smr[max_ch][max_sb] = smr1[max_ch][max_sb] - quant_snr[alloc[b]];
  508. /* max allocation size reached ? */
  509. if (b == ((1 << alloc[0]) - 1))
  510. subband_status[max_ch][max_sb] = SB_NOMORE;
  511. else
  512. subband_status[max_ch][max_sb] = SB_ALLOCATED;
  513. } else {
  514. /* cannot increase the size of this subband */
  515. subband_status[max_ch][max_sb] = SB_NOMORE;
  516. }
  517. }
  518. *padding = max_frame_size - current_frame_size;
  519. assert(*padding >= 0);
  520. }
  521. /*
  522. * Output the mpeg audio layer 2 frame. Note how the code is small
  523. * compared to other encoders :-)
  524. */
  525. static void encode_frame(MpegAudioContext *s,
  526. unsigned char bit_alloc[MPA_MAX_CHANNELS][SBLIMIT],
  527. int padding)
  528. {
  529. int i, j, k, l, bit_alloc_bits, b, ch;
  530. unsigned char *sf;
  531. int q[3];
  532. PutBitContext *p = &s->pb;
  533. /* header */
  534. put_bits(p, 12, 0xfff);
  535. put_bits(p, 1, 1 - s->lsf); /* 1 = mpeg1 ID, 0 = mpeg2 lsf ID */
  536. put_bits(p, 2, 4-2); /* layer 2 */
  537. put_bits(p, 1, 1); /* no error protection */
  538. put_bits(p, 4, s->bitrate_index);
  539. put_bits(p, 2, s->freq_index);
  540. put_bits(p, 1, s->do_padding); /* use padding */
  541. put_bits(p, 1, 0); /* private_bit */
  542. put_bits(p, 2, s->nb_channels == 2 ? MPA_STEREO : MPA_MONO);
  543. put_bits(p, 2, 0); /* mode_ext */
  544. put_bits(p, 1, 0); /* no copyright */
  545. put_bits(p, 1, 1); /* original */
  546. put_bits(p, 2, 0); /* no emphasis */
  547. /* bit allocation */
  548. j = 0;
  549. for(i=0;i<s->sblimit;i++) {
  550. bit_alloc_bits = s->alloc_table[j];
  551. for(ch=0;ch<s->nb_channels;ch++) {
  552. put_bits(p, bit_alloc_bits, bit_alloc[ch][i]);
  553. }
  554. j += 1 << bit_alloc_bits;
  555. }
  556. /* scale codes */
  557. for(i=0;i<s->sblimit;i++) {
  558. for(ch=0;ch<s->nb_channels;ch++) {
  559. if (bit_alloc[ch][i])
  560. put_bits(p, 2, s->scale_code[ch][i]);
  561. }
  562. }
  563. /* scale factors */
  564. for(i=0;i<s->sblimit;i++) {
  565. for(ch=0;ch<s->nb_channels;ch++) {
  566. if (bit_alloc[ch][i]) {
  567. sf = &s->scale_factors[ch][i][0];
  568. switch(s->scale_code[ch][i]) {
  569. case 0:
  570. put_bits(p, 6, sf[0]);
  571. put_bits(p, 6, sf[1]);
  572. put_bits(p, 6, sf[2]);
  573. break;
  574. case 3:
  575. case 1:
  576. put_bits(p, 6, sf[0]);
  577. put_bits(p, 6, sf[2]);
  578. break;
  579. case 2:
  580. put_bits(p, 6, sf[0]);
  581. break;
  582. }
  583. }
  584. }
  585. }
  586. /* quantization & write sub band samples */
  587. for(k=0;k<3;k++) {
  588. for(l=0;l<12;l+=3) {
  589. j = 0;
  590. for(i=0;i<s->sblimit;i++) {
  591. bit_alloc_bits = s->alloc_table[j];
  592. for(ch=0;ch<s->nb_channels;ch++) {
  593. b = bit_alloc[ch][i];
  594. if (b) {
  595. int qindex, steps, m, sample, bits;
  596. /* we encode 3 sub band samples of the same sub band at a time */
  597. qindex = s->alloc_table[j+b];
  598. steps = ff_mpa_quant_steps[qindex];
  599. for(m=0;m<3;m++) {
  600. sample = s->sb_samples[ch][k][l + m][i];
  601. /* divide by scale factor */
  602. #ifdef USE_FLOATS
  603. {
  604. float a;
  605. a = (float)sample * scale_factor_inv_table[s->scale_factors[ch][i][k]];
  606. q[m] = (int)((a + 1.0) * steps * 0.5);
  607. }
  608. #else
  609. {
  610. int q1, e, shift, mult;
  611. e = s->scale_factors[ch][i][k];
  612. shift = scale_factor_shift[e];
  613. mult = scale_factor_mult[e];
  614. /* normalize to P bits */
  615. if (shift < 0)
  616. q1 = sample << (-shift);
  617. else
  618. q1 = sample >> shift;
  619. q1 = (q1 * mult) >> P;
  620. q[m] = ((q1 + (1 << P)) * steps) >> (P + 1);
  621. }
  622. #endif
  623. if (q[m] >= steps)
  624. q[m] = steps - 1;
  625. assert(q[m] >= 0 && q[m] < steps);
  626. }
  627. bits = ff_mpa_quant_bits[qindex];
  628. if (bits < 0) {
  629. /* group the 3 values to save bits */
  630. put_bits(p, -bits,
  631. q[0] + steps * (q[1] + steps * q[2]));
  632. } else {
  633. put_bits(p, bits, q[0]);
  634. put_bits(p, bits, q[1]);
  635. put_bits(p, bits, q[2]);
  636. }
  637. }
  638. }
  639. /* next subband in alloc table */
  640. j += 1 << bit_alloc_bits;
  641. }
  642. }
  643. }
  644. /* padding */
  645. for(i=0;i<padding;i++)
  646. put_bits(p, 1, 0);
  647. /* flush */
  648. flush_put_bits(p);
  649. }
  650. static int MPA_encode_frame(AVCodecContext *avctx, AVPacket *avpkt,
  651. const AVFrame *frame, int *got_packet_ptr)
  652. {
  653. MpegAudioContext *s = avctx->priv_data;
  654. const int16_t *samples = (const int16_t *)frame->data[0];
  655. short smr[MPA_MAX_CHANNELS][SBLIMIT];
  656. unsigned char bit_alloc[MPA_MAX_CHANNELS][SBLIMIT];
  657. int padding, i, ret;
  658. for(i=0;i<s->nb_channels;i++) {
  659. filter(s, i, samples + i, s->nb_channels);
  660. }
  661. for(i=0;i<s->nb_channels;i++) {
  662. compute_scale_factors(s->scale_code[i], s->scale_factors[i],
  663. s->sb_samples[i], s->sblimit);
  664. }
  665. for(i=0;i<s->nb_channels;i++) {
  666. psycho_acoustic_model(s, smr[i]);
  667. }
  668. compute_bit_allocation(s, smr, bit_alloc, &padding);
  669. if ((ret = ff_alloc_packet(avpkt, MPA_MAX_CODED_FRAME_SIZE))) {
  670. av_log(avctx, AV_LOG_ERROR, "Error getting output packet\n");
  671. return ret;
  672. }
  673. init_put_bits(&s->pb, avpkt->data, avpkt->size);
  674. encode_frame(s, bit_alloc, padding);
  675. if (frame->pts != AV_NOPTS_VALUE)
  676. avpkt->pts = frame->pts - ff_samples_to_time_base(avctx, avctx->delay);
  677. avpkt->size = put_bits_count(&s->pb) / 8;
  678. *got_packet_ptr = 1;
  679. return 0;
  680. }
  681. static av_cold int MPA_encode_close(AVCodecContext *avctx)
  682. {
  683. #if FF_API_OLD_ENCODE_AUDIO
  684. av_freep(&avctx->coded_frame);
  685. #endif
  686. return 0;
  687. }
  688. static const AVCodecDefault mp2_defaults[] = {
  689. { "b", "128k" },
  690. { NULL },
  691. };
  692. AVCodec ff_mp2_encoder = {
  693. .name = "mp2",
  694. .type = AVMEDIA_TYPE_AUDIO,
  695. .id = CODEC_ID_MP2,
  696. .priv_data_size = sizeof(MpegAudioContext),
  697. .init = MPA_encode_init,
  698. .encode2 = MPA_encode_frame,
  699. .close = MPA_encode_close,
  700. .sample_fmts = (const enum AVSampleFormat[]){ AV_SAMPLE_FMT_S16,
  701. AV_SAMPLE_FMT_NONE },
  702. .supported_samplerates = (const int[]){
  703. 44100, 48000, 32000, 22050, 24000, 16000, 0
  704. },
  705. .long_name = NULL_IF_CONFIG_SMALL("MP2 (MPEG audio layer 2)"),
  706. .defaults = mp2_defaults,
  707. };