You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1170 lines
39KB

  1. /*
  2. * MLP decoder
  3. * Copyright (c) 2007-2008 Ian Caulfield
  4. *
  5. * This file is part of Libav.
  6. *
  7. * Libav is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * Libav is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with Libav; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file
  23. * MLP decoder
  24. */
  25. #include <stdint.h>
  26. #include "avcodec.h"
  27. #include "dsputil.h"
  28. #include "libavutil/intreadwrite.h"
  29. #include "get_bits.h"
  30. #include "libavutil/crc.h"
  31. #include "parser.h"
  32. #include "mlp_parser.h"
  33. #include "mlp.h"
  34. /** number of bits used for VLC lookup - longest Huffman code is 9 */
  35. #define VLC_BITS 9
  36. typedef struct SubStream {
  37. /// Set if a valid restart header has been read. Otherwise the substream cannot be decoded.
  38. uint8_t restart_seen;
  39. //@{
  40. /** restart header data */
  41. /// The type of noise to be used in the rematrix stage.
  42. uint16_t noise_type;
  43. /// The index of the first channel coded in this substream.
  44. uint8_t min_channel;
  45. /// The index of the last channel coded in this substream.
  46. uint8_t max_channel;
  47. /// The number of channels input into the rematrix stage.
  48. uint8_t max_matrix_channel;
  49. /// For each channel output by the matrix, the output channel to map it to
  50. uint8_t ch_assign[MAX_CHANNELS];
  51. /// Channel coding parameters for channels in the substream
  52. ChannelParams channel_params[MAX_CHANNELS];
  53. /// The left shift applied to random noise in 0x31ea substreams.
  54. uint8_t noise_shift;
  55. /// The current seed value for the pseudorandom noise generator(s).
  56. uint32_t noisegen_seed;
  57. /// Set if the substream contains extra info to check the size of VLC blocks.
  58. uint8_t data_check_present;
  59. /// Bitmask of which parameter sets are conveyed in a decoding parameter block.
  60. uint8_t param_presence_flags;
  61. #define PARAM_BLOCKSIZE (1 << 7)
  62. #define PARAM_MATRIX (1 << 6)
  63. #define PARAM_OUTSHIFT (1 << 5)
  64. #define PARAM_QUANTSTEP (1 << 4)
  65. #define PARAM_FIR (1 << 3)
  66. #define PARAM_IIR (1 << 2)
  67. #define PARAM_HUFFOFFSET (1 << 1)
  68. #define PARAM_PRESENCE (1 << 0)
  69. //@}
  70. //@{
  71. /** matrix data */
  72. /// Number of matrices to be applied.
  73. uint8_t num_primitive_matrices;
  74. /// matrix output channel
  75. uint8_t matrix_out_ch[MAX_MATRICES];
  76. /// Whether the LSBs of the matrix output are encoded in the bitstream.
  77. uint8_t lsb_bypass[MAX_MATRICES];
  78. /// Matrix coefficients, stored as 2.14 fixed point.
  79. int32_t matrix_coeff[MAX_MATRICES][MAX_CHANNELS];
  80. /// Left shift to apply to noise values in 0x31eb substreams.
  81. uint8_t matrix_noise_shift[MAX_MATRICES];
  82. //@}
  83. /// Left shift to apply to Huffman-decoded residuals.
  84. uint8_t quant_step_size[MAX_CHANNELS];
  85. /// number of PCM samples in current audio block
  86. uint16_t blocksize;
  87. /// Number of PCM samples decoded so far in this frame.
  88. uint16_t blockpos;
  89. /// Left shift to apply to decoded PCM values to get final 24-bit output.
  90. int8_t output_shift[MAX_CHANNELS];
  91. /// Running XOR of all output samples.
  92. int32_t lossless_check_data;
  93. } SubStream;
  94. typedef struct MLPDecodeContext {
  95. AVCodecContext *avctx;
  96. AVFrame frame;
  97. /// Current access unit being read has a major sync.
  98. int is_major_sync_unit;
  99. /// Set if a valid major sync block has been read. Otherwise no decoding is possible.
  100. uint8_t params_valid;
  101. /// Number of substreams contained within this stream.
  102. uint8_t num_substreams;
  103. /// Index of the last substream to decode - further substreams are skipped.
  104. uint8_t max_decoded_substream;
  105. /// number of PCM samples contained in each frame
  106. int access_unit_size;
  107. /// next power of two above the number of samples in each frame
  108. int access_unit_size_pow2;
  109. SubStream substream[MAX_SUBSTREAMS];
  110. int matrix_changed;
  111. int filter_changed[MAX_CHANNELS][NUM_FILTERS];
  112. int8_t noise_buffer[MAX_BLOCKSIZE_POW2];
  113. int8_t bypassed_lsbs[MAX_BLOCKSIZE][MAX_CHANNELS];
  114. int32_t sample_buffer[MAX_BLOCKSIZE][MAX_CHANNELS];
  115. DSPContext dsp;
  116. } MLPDecodeContext;
  117. static VLC huff_vlc[3];
  118. /** Initialize static data, constant between all invocations of the codec. */
  119. static av_cold void init_static(void)
  120. {
  121. if (!huff_vlc[0].bits) {
  122. INIT_VLC_STATIC(&huff_vlc[0], VLC_BITS, 18,
  123. &ff_mlp_huffman_tables[0][0][1], 2, 1,
  124. &ff_mlp_huffman_tables[0][0][0], 2, 1, 512);
  125. INIT_VLC_STATIC(&huff_vlc[1], VLC_BITS, 16,
  126. &ff_mlp_huffman_tables[1][0][1], 2, 1,
  127. &ff_mlp_huffman_tables[1][0][0], 2, 1, 512);
  128. INIT_VLC_STATIC(&huff_vlc[2], VLC_BITS, 15,
  129. &ff_mlp_huffman_tables[2][0][1], 2, 1,
  130. &ff_mlp_huffman_tables[2][0][0], 2, 1, 512);
  131. }
  132. ff_mlp_init_crc();
  133. }
  134. static inline int32_t calculate_sign_huff(MLPDecodeContext *m,
  135. unsigned int substr, unsigned int ch)
  136. {
  137. SubStream *s = &m->substream[substr];
  138. ChannelParams *cp = &s->channel_params[ch];
  139. int lsb_bits = cp->huff_lsbs - s->quant_step_size[ch];
  140. int sign_shift = lsb_bits + (cp->codebook ? 2 - cp->codebook : -1);
  141. int32_t sign_huff_offset = cp->huff_offset;
  142. if (cp->codebook > 0)
  143. sign_huff_offset -= 7 << lsb_bits;
  144. if (sign_shift >= 0)
  145. sign_huff_offset -= 1 << sign_shift;
  146. return sign_huff_offset;
  147. }
  148. /** Read a sample, consisting of either, both or neither of entropy-coded MSBs
  149. * and plain LSBs. */
  150. static inline int read_huff_channels(MLPDecodeContext *m, GetBitContext *gbp,
  151. unsigned int substr, unsigned int pos)
  152. {
  153. SubStream *s = &m->substream[substr];
  154. unsigned int mat, channel;
  155. for (mat = 0; mat < s->num_primitive_matrices; mat++)
  156. if (s->lsb_bypass[mat])
  157. m->bypassed_lsbs[pos + s->blockpos][mat] = get_bits1(gbp);
  158. for (channel = s->min_channel; channel <= s->max_channel; channel++) {
  159. ChannelParams *cp = &s->channel_params[channel];
  160. int codebook = cp->codebook;
  161. int quant_step_size = s->quant_step_size[channel];
  162. int lsb_bits = cp->huff_lsbs - quant_step_size;
  163. int result = 0;
  164. if (codebook > 0)
  165. result = get_vlc2(gbp, huff_vlc[codebook-1].table,
  166. VLC_BITS, (9 + VLC_BITS - 1) / VLC_BITS);
  167. if (result < 0)
  168. return AVERROR_INVALIDDATA;
  169. if (lsb_bits > 0)
  170. result = (result << lsb_bits) + get_bits(gbp, lsb_bits);
  171. result += cp->sign_huff_offset;
  172. result <<= quant_step_size;
  173. m->sample_buffer[pos + s->blockpos][channel] = result;
  174. }
  175. return 0;
  176. }
  177. static av_cold int mlp_decode_init(AVCodecContext *avctx)
  178. {
  179. MLPDecodeContext *m = avctx->priv_data;
  180. int substr;
  181. init_static();
  182. m->avctx = avctx;
  183. for (substr = 0; substr < MAX_SUBSTREAMS; substr++)
  184. m->substream[substr].lossless_check_data = 0xffffffff;
  185. ff_dsputil_init(&m->dsp, avctx);
  186. avcodec_get_frame_defaults(&m->frame);
  187. avctx->coded_frame = &m->frame;
  188. return 0;
  189. }
  190. /** Read a major sync info header - contains high level information about
  191. * the stream - sample rate, channel arrangement etc. Most of this
  192. * information is not actually necessary for decoding, only for playback.
  193. */
  194. static int read_major_sync(MLPDecodeContext *m, GetBitContext *gb)
  195. {
  196. MLPHeaderInfo mh;
  197. int substr, ret;
  198. if ((ret = ff_mlp_read_major_sync(m->avctx, &mh, gb)) != 0)
  199. return ret;
  200. if (mh.group1_bits == 0) {
  201. av_log(m->avctx, AV_LOG_ERROR, "invalid/unknown bits per sample\n");
  202. return AVERROR_INVALIDDATA;
  203. }
  204. if (mh.group2_bits > mh.group1_bits) {
  205. av_log(m->avctx, AV_LOG_ERROR,
  206. "Channel group 2 cannot have more bits per sample than group 1.\n");
  207. return AVERROR_INVALIDDATA;
  208. }
  209. if (mh.group2_samplerate && mh.group2_samplerate != mh.group1_samplerate) {
  210. av_log(m->avctx, AV_LOG_ERROR,
  211. "Channel groups with differing sample rates are not currently supported.\n");
  212. return AVERROR_INVALIDDATA;
  213. }
  214. if (mh.group1_samplerate == 0) {
  215. av_log(m->avctx, AV_LOG_ERROR, "invalid/unknown sampling rate\n");
  216. return AVERROR_INVALIDDATA;
  217. }
  218. if (mh.group1_samplerate > MAX_SAMPLERATE) {
  219. av_log(m->avctx, AV_LOG_ERROR,
  220. "Sampling rate %d is greater than the supported maximum (%d).\n",
  221. mh.group1_samplerate, MAX_SAMPLERATE);
  222. return AVERROR_INVALIDDATA;
  223. }
  224. if (mh.access_unit_size > MAX_BLOCKSIZE) {
  225. av_log(m->avctx, AV_LOG_ERROR,
  226. "Block size %d is greater than the supported maximum (%d).\n",
  227. mh.access_unit_size, MAX_BLOCKSIZE);
  228. return AVERROR_INVALIDDATA;
  229. }
  230. if (mh.access_unit_size_pow2 > MAX_BLOCKSIZE_POW2) {
  231. av_log(m->avctx, AV_LOG_ERROR,
  232. "Block size pow2 %d is greater than the supported maximum (%d).\n",
  233. mh.access_unit_size_pow2, MAX_BLOCKSIZE_POW2);
  234. return AVERROR_INVALIDDATA;
  235. }
  236. if (mh.num_substreams == 0)
  237. return AVERROR_INVALIDDATA;
  238. if (m->avctx->codec_id == CODEC_ID_MLP && mh.num_substreams > 2) {
  239. av_log(m->avctx, AV_LOG_ERROR, "MLP only supports up to 2 substreams.\n");
  240. return AVERROR_INVALIDDATA;
  241. }
  242. if (mh.num_substreams > MAX_SUBSTREAMS) {
  243. av_log_ask_for_sample(m->avctx,
  244. "Number of substreams %d is larger than the maximum supported "
  245. "by the decoder.\n", mh.num_substreams);
  246. return AVERROR_PATCHWELCOME;
  247. }
  248. m->access_unit_size = mh.access_unit_size;
  249. m->access_unit_size_pow2 = mh.access_unit_size_pow2;
  250. m->num_substreams = mh.num_substreams;
  251. m->max_decoded_substream = m->num_substreams - 1;
  252. m->avctx->sample_rate = mh.group1_samplerate;
  253. m->avctx->frame_size = mh.access_unit_size;
  254. m->avctx->bits_per_raw_sample = mh.group1_bits;
  255. if (mh.group1_bits > 16)
  256. m->avctx->sample_fmt = AV_SAMPLE_FMT_S32;
  257. else
  258. m->avctx->sample_fmt = AV_SAMPLE_FMT_S16;
  259. m->params_valid = 1;
  260. for (substr = 0; substr < MAX_SUBSTREAMS; substr++)
  261. m->substream[substr].restart_seen = 0;
  262. return 0;
  263. }
  264. /** Read a restart header from a block in a substream. This contains parameters
  265. * required to decode the audio that do not change very often. Generally
  266. * (always) present only in blocks following a major sync. */
  267. static int read_restart_header(MLPDecodeContext *m, GetBitContext *gbp,
  268. const uint8_t *buf, unsigned int substr)
  269. {
  270. SubStream *s = &m->substream[substr];
  271. unsigned int ch;
  272. int sync_word, tmp;
  273. uint8_t checksum;
  274. uint8_t lossless_check;
  275. int start_count = get_bits_count(gbp);
  276. const int max_matrix_channel = m->avctx->codec_id == CODEC_ID_MLP
  277. ? MAX_MATRIX_CHANNEL_MLP
  278. : MAX_MATRIX_CHANNEL_TRUEHD;
  279. sync_word = get_bits(gbp, 13);
  280. if (sync_word != 0x31ea >> 1) {
  281. av_log(m->avctx, AV_LOG_ERROR,
  282. "restart header sync incorrect (got 0x%04x)\n", sync_word);
  283. return AVERROR_INVALIDDATA;
  284. }
  285. s->noise_type = get_bits1(gbp);
  286. if (m->avctx->codec_id == CODEC_ID_MLP && s->noise_type) {
  287. av_log(m->avctx, AV_LOG_ERROR, "MLP must have 0x31ea sync word.\n");
  288. return AVERROR_INVALIDDATA;
  289. }
  290. skip_bits(gbp, 16); /* Output timestamp */
  291. s->min_channel = get_bits(gbp, 4);
  292. s->max_channel = get_bits(gbp, 4);
  293. s->max_matrix_channel = get_bits(gbp, 4);
  294. if (s->max_matrix_channel > max_matrix_channel) {
  295. av_log(m->avctx, AV_LOG_ERROR,
  296. "Max matrix channel cannot be greater than %d.\n",
  297. max_matrix_channel);
  298. return AVERROR_INVALIDDATA;
  299. }
  300. if (s->max_channel != s->max_matrix_channel) {
  301. av_log(m->avctx, AV_LOG_ERROR,
  302. "Max channel must be equal max matrix channel.\n");
  303. return AVERROR_INVALIDDATA;
  304. }
  305. /* This should happen for TrueHD streams with >6 channels and MLP's noise
  306. * type. It is not yet known if this is allowed. */
  307. if (s->max_channel > MAX_MATRIX_CHANNEL_MLP && !s->noise_type) {
  308. av_log_ask_for_sample(m->avctx,
  309. "Number of channels %d is larger than the maximum supported "
  310. "by the decoder.\n", s->max_channel + 2);
  311. return AVERROR_PATCHWELCOME;
  312. }
  313. if (s->min_channel > s->max_channel) {
  314. av_log(m->avctx, AV_LOG_ERROR,
  315. "Substream min channel cannot be greater than max channel.\n");
  316. return AVERROR_INVALIDDATA;
  317. }
  318. if (m->avctx->request_channels > 0
  319. && s->max_channel + 1 >= m->avctx->request_channels
  320. && substr < m->max_decoded_substream) {
  321. av_log(m->avctx, AV_LOG_DEBUG,
  322. "Extracting %d channel downmix from substream %d. "
  323. "Further substreams will be skipped.\n",
  324. s->max_channel + 1, substr);
  325. m->max_decoded_substream = substr;
  326. }
  327. s->noise_shift = get_bits(gbp, 4);
  328. s->noisegen_seed = get_bits(gbp, 23);
  329. skip_bits(gbp, 19);
  330. s->data_check_present = get_bits1(gbp);
  331. lossless_check = get_bits(gbp, 8);
  332. if (substr == m->max_decoded_substream
  333. && s->lossless_check_data != 0xffffffff) {
  334. tmp = xor_32_to_8(s->lossless_check_data);
  335. if (tmp != lossless_check)
  336. av_log(m->avctx, AV_LOG_WARNING,
  337. "Lossless check failed - expected %02x, calculated %02x.\n",
  338. lossless_check, tmp);
  339. }
  340. skip_bits(gbp, 16);
  341. memset(s->ch_assign, 0, sizeof(s->ch_assign));
  342. for (ch = 0; ch <= s->max_matrix_channel; ch++) {
  343. int ch_assign = get_bits(gbp, 6);
  344. if (ch_assign > s->max_matrix_channel) {
  345. av_log_ask_for_sample(m->avctx,
  346. "Assignment of matrix channel %d to invalid output channel %d.\n",
  347. ch, ch_assign);
  348. return AVERROR_PATCHWELCOME;
  349. }
  350. s->ch_assign[ch_assign] = ch;
  351. }
  352. checksum = ff_mlp_restart_checksum(buf, get_bits_count(gbp) - start_count);
  353. if (checksum != get_bits(gbp, 8))
  354. av_log(m->avctx, AV_LOG_ERROR, "restart header checksum error\n");
  355. /* Set default decoding parameters. */
  356. s->param_presence_flags = 0xff;
  357. s->num_primitive_matrices = 0;
  358. s->blocksize = 8;
  359. s->lossless_check_data = 0;
  360. memset(s->output_shift , 0, sizeof(s->output_shift ));
  361. memset(s->quant_step_size, 0, sizeof(s->quant_step_size));
  362. for (ch = s->min_channel; ch <= s->max_channel; ch++) {
  363. ChannelParams *cp = &s->channel_params[ch];
  364. cp->filter_params[FIR].order = 0;
  365. cp->filter_params[IIR].order = 0;
  366. cp->filter_params[FIR].shift = 0;
  367. cp->filter_params[IIR].shift = 0;
  368. /* Default audio coding is 24-bit raw PCM. */
  369. cp->huff_offset = 0;
  370. cp->sign_huff_offset = (-1) << 23;
  371. cp->codebook = 0;
  372. cp->huff_lsbs = 24;
  373. }
  374. if (substr == m->max_decoded_substream)
  375. m->avctx->channels = s->max_matrix_channel + 1;
  376. return 0;
  377. }
  378. /** Read parameters for one of the prediction filters. */
  379. static int read_filter_params(MLPDecodeContext *m, GetBitContext *gbp,
  380. unsigned int substr, unsigned int channel,
  381. unsigned int filter)
  382. {
  383. SubStream *s = &m->substream[substr];
  384. FilterParams *fp = &s->channel_params[channel].filter_params[filter];
  385. const int max_order = filter ? MAX_IIR_ORDER : MAX_FIR_ORDER;
  386. const char fchar = filter ? 'I' : 'F';
  387. int i, order;
  388. // Filter is 0 for FIR, 1 for IIR.
  389. assert(filter < 2);
  390. if (m->filter_changed[channel][filter]++ > 1) {
  391. av_log(m->avctx, AV_LOG_ERROR, "Filters may change only once per access unit.\n");
  392. return AVERROR_INVALIDDATA;
  393. }
  394. order = get_bits(gbp, 4);
  395. if (order > max_order) {
  396. av_log(m->avctx, AV_LOG_ERROR,
  397. "%cIR filter order %d is greater than maximum %d.\n",
  398. fchar, order, max_order);
  399. return AVERROR_INVALIDDATA;
  400. }
  401. fp->order = order;
  402. if (order > 0) {
  403. int32_t *fcoeff = s->channel_params[channel].coeff[filter];
  404. int coeff_bits, coeff_shift;
  405. fp->shift = get_bits(gbp, 4);
  406. coeff_bits = get_bits(gbp, 5);
  407. coeff_shift = get_bits(gbp, 3);
  408. if (coeff_bits < 1 || coeff_bits > 16) {
  409. av_log(m->avctx, AV_LOG_ERROR,
  410. "%cIR filter coeff_bits must be between 1 and 16.\n",
  411. fchar);
  412. return AVERROR_INVALIDDATA;
  413. }
  414. if (coeff_bits + coeff_shift > 16) {
  415. av_log(m->avctx, AV_LOG_ERROR,
  416. "Sum of coeff_bits and coeff_shift for %cIR filter must be 16 or less.\n",
  417. fchar);
  418. return AVERROR_INVALIDDATA;
  419. }
  420. for (i = 0; i < order; i++)
  421. fcoeff[i] = get_sbits(gbp, coeff_bits) << coeff_shift;
  422. if (get_bits1(gbp)) {
  423. int state_bits, state_shift;
  424. if (filter == FIR) {
  425. av_log(m->avctx, AV_LOG_ERROR,
  426. "FIR filter has state data specified.\n");
  427. return AVERROR_INVALIDDATA;
  428. }
  429. state_bits = get_bits(gbp, 4);
  430. state_shift = get_bits(gbp, 4);
  431. /* TODO: Check validity of state data. */
  432. for (i = 0; i < order; i++)
  433. fp->state[i] = get_sbits(gbp, state_bits) << state_shift;
  434. }
  435. }
  436. return 0;
  437. }
  438. /** Read parameters for primitive matrices. */
  439. static int read_matrix_params(MLPDecodeContext *m, unsigned int substr, GetBitContext *gbp)
  440. {
  441. SubStream *s = &m->substream[substr];
  442. unsigned int mat, ch;
  443. const int max_primitive_matrices = m->avctx->codec_id == CODEC_ID_MLP
  444. ? MAX_MATRICES_MLP
  445. : MAX_MATRICES_TRUEHD;
  446. if (m->matrix_changed++ > 1) {
  447. av_log(m->avctx, AV_LOG_ERROR, "Matrices may change only once per access unit.\n");
  448. return AVERROR_INVALIDDATA;
  449. }
  450. s->num_primitive_matrices = get_bits(gbp, 4);
  451. if (s->num_primitive_matrices > max_primitive_matrices) {
  452. av_log(m->avctx, AV_LOG_ERROR,
  453. "Number of primitive matrices cannot be greater than %d.\n",
  454. max_primitive_matrices);
  455. return AVERROR_INVALIDDATA;
  456. }
  457. for (mat = 0; mat < s->num_primitive_matrices; mat++) {
  458. int frac_bits, max_chan;
  459. s->matrix_out_ch[mat] = get_bits(gbp, 4);
  460. frac_bits = get_bits(gbp, 4);
  461. s->lsb_bypass [mat] = get_bits1(gbp);
  462. if (s->matrix_out_ch[mat] > s->max_matrix_channel) {
  463. av_log(m->avctx, AV_LOG_ERROR,
  464. "Invalid channel %d specified as output from matrix.\n",
  465. s->matrix_out_ch[mat]);
  466. return AVERROR_INVALIDDATA;
  467. }
  468. if (frac_bits > 14) {
  469. av_log(m->avctx, AV_LOG_ERROR,
  470. "Too many fractional bits specified.\n");
  471. return AVERROR_INVALIDDATA;
  472. }
  473. max_chan = s->max_matrix_channel;
  474. if (!s->noise_type)
  475. max_chan+=2;
  476. for (ch = 0; ch <= max_chan; ch++) {
  477. int coeff_val = 0;
  478. if (get_bits1(gbp))
  479. coeff_val = get_sbits(gbp, frac_bits + 2);
  480. s->matrix_coeff[mat][ch] = coeff_val << (14 - frac_bits);
  481. }
  482. if (s->noise_type)
  483. s->matrix_noise_shift[mat] = get_bits(gbp, 4);
  484. else
  485. s->matrix_noise_shift[mat] = 0;
  486. }
  487. return 0;
  488. }
  489. /** Read channel parameters. */
  490. static int read_channel_params(MLPDecodeContext *m, unsigned int substr,
  491. GetBitContext *gbp, unsigned int ch)
  492. {
  493. SubStream *s = &m->substream[substr];
  494. ChannelParams *cp = &s->channel_params[ch];
  495. FilterParams *fir = &cp->filter_params[FIR];
  496. FilterParams *iir = &cp->filter_params[IIR];
  497. int ret;
  498. if (s->param_presence_flags & PARAM_FIR)
  499. if (get_bits1(gbp))
  500. if ((ret = read_filter_params(m, gbp, substr, ch, FIR)) < 0)
  501. return ret;
  502. if (s->param_presence_flags & PARAM_IIR)
  503. if (get_bits1(gbp))
  504. if ((ret = read_filter_params(m, gbp, substr, ch, IIR)) < 0)
  505. return ret;
  506. if (fir->order + iir->order > 8) {
  507. av_log(m->avctx, AV_LOG_ERROR, "Total filter orders too high.\n");
  508. return AVERROR_INVALIDDATA;
  509. }
  510. if (fir->order && iir->order &&
  511. fir->shift != iir->shift) {
  512. av_log(m->avctx, AV_LOG_ERROR,
  513. "FIR and IIR filters must use the same precision.\n");
  514. return AVERROR_INVALIDDATA;
  515. }
  516. /* The FIR and IIR filters must have the same precision.
  517. * To simplify the filtering code, only the precision of the
  518. * FIR filter is considered. If only the IIR filter is employed,
  519. * the FIR filter precision is set to that of the IIR filter, so
  520. * that the filtering code can use it. */
  521. if (!fir->order && iir->order)
  522. fir->shift = iir->shift;
  523. if (s->param_presence_flags & PARAM_HUFFOFFSET)
  524. if (get_bits1(gbp))
  525. cp->huff_offset = get_sbits(gbp, 15);
  526. cp->codebook = get_bits(gbp, 2);
  527. cp->huff_lsbs = get_bits(gbp, 5);
  528. if (cp->huff_lsbs > 24) {
  529. av_log(m->avctx, AV_LOG_ERROR, "Invalid huff_lsbs.\n");
  530. return AVERROR_INVALIDDATA;
  531. }
  532. cp->sign_huff_offset = calculate_sign_huff(m, substr, ch);
  533. return 0;
  534. }
  535. /** Read decoding parameters that change more often than those in the restart
  536. * header. */
  537. static int read_decoding_params(MLPDecodeContext *m, GetBitContext *gbp,
  538. unsigned int substr)
  539. {
  540. SubStream *s = &m->substream[substr];
  541. unsigned int ch;
  542. int ret;
  543. if (s->param_presence_flags & PARAM_PRESENCE)
  544. if (get_bits1(gbp))
  545. s->param_presence_flags = get_bits(gbp, 8);
  546. if (s->param_presence_flags & PARAM_BLOCKSIZE)
  547. if (get_bits1(gbp)) {
  548. s->blocksize = get_bits(gbp, 9);
  549. if (s->blocksize < 8 || s->blocksize > m->access_unit_size) {
  550. av_log(m->avctx, AV_LOG_ERROR, "Invalid blocksize.");
  551. s->blocksize = 0;
  552. return AVERROR_INVALIDDATA;
  553. }
  554. }
  555. if (s->param_presence_flags & PARAM_MATRIX)
  556. if (get_bits1(gbp))
  557. if ((ret = read_matrix_params(m, substr, gbp)) < 0)
  558. return ret;
  559. if (s->param_presence_flags & PARAM_OUTSHIFT)
  560. if (get_bits1(gbp))
  561. for (ch = 0; ch <= s->max_matrix_channel; ch++)
  562. s->output_shift[ch] = get_sbits(gbp, 4);
  563. if (s->param_presence_flags & PARAM_QUANTSTEP)
  564. if (get_bits1(gbp))
  565. for (ch = 0; ch <= s->max_channel; ch++) {
  566. ChannelParams *cp = &s->channel_params[ch];
  567. s->quant_step_size[ch] = get_bits(gbp, 4);
  568. cp->sign_huff_offset = calculate_sign_huff(m, substr, ch);
  569. }
  570. for (ch = s->min_channel; ch <= s->max_channel; ch++)
  571. if (get_bits1(gbp))
  572. if ((ret = read_channel_params(m, substr, gbp, ch)) < 0)
  573. return ret;
  574. return 0;
  575. }
  576. #define MSB_MASK(bits) (-1u << bits)
  577. /** Generate PCM samples using the prediction filters and residual values
  578. * read from the data stream, and update the filter state. */
  579. static void filter_channel(MLPDecodeContext *m, unsigned int substr,
  580. unsigned int channel)
  581. {
  582. SubStream *s = &m->substream[substr];
  583. const int32_t *fircoeff = s->channel_params[channel].coeff[FIR];
  584. int32_t state_buffer[NUM_FILTERS][MAX_BLOCKSIZE + MAX_FIR_ORDER];
  585. int32_t *firbuf = state_buffer[FIR] + MAX_BLOCKSIZE;
  586. int32_t *iirbuf = state_buffer[IIR] + MAX_BLOCKSIZE;
  587. FilterParams *fir = &s->channel_params[channel].filter_params[FIR];
  588. FilterParams *iir = &s->channel_params[channel].filter_params[IIR];
  589. unsigned int filter_shift = fir->shift;
  590. int32_t mask = MSB_MASK(s->quant_step_size[channel]);
  591. memcpy(firbuf, fir->state, MAX_FIR_ORDER * sizeof(int32_t));
  592. memcpy(iirbuf, iir->state, MAX_IIR_ORDER * sizeof(int32_t));
  593. m->dsp.mlp_filter_channel(firbuf, fircoeff,
  594. fir->order, iir->order,
  595. filter_shift, mask, s->blocksize,
  596. &m->sample_buffer[s->blockpos][channel]);
  597. memcpy(fir->state, firbuf - s->blocksize, MAX_FIR_ORDER * sizeof(int32_t));
  598. memcpy(iir->state, iirbuf - s->blocksize, MAX_IIR_ORDER * sizeof(int32_t));
  599. }
  600. /** Read a block of PCM residual data (or actual if no filtering active). */
  601. static int read_block_data(MLPDecodeContext *m, GetBitContext *gbp,
  602. unsigned int substr)
  603. {
  604. SubStream *s = &m->substream[substr];
  605. unsigned int i, ch, expected_stream_pos = 0;
  606. int ret;
  607. if (s->data_check_present) {
  608. expected_stream_pos = get_bits_count(gbp);
  609. expected_stream_pos += get_bits(gbp, 16);
  610. av_log_ask_for_sample(m->avctx, "This file contains some features "
  611. "we have not tested yet.\n");
  612. }
  613. if (s->blockpos + s->blocksize > m->access_unit_size) {
  614. av_log(m->avctx, AV_LOG_ERROR, "too many audio samples in frame\n");
  615. return AVERROR_INVALIDDATA;
  616. }
  617. memset(&m->bypassed_lsbs[s->blockpos][0], 0,
  618. s->blocksize * sizeof(m->bypassed_lsbs[0]));
  619. for (i = 0; i < s->blocksize; i++)
  620. if ((ret = read_huff_channels(m, gbp, substr, i)) < 0)
  621. return ret;
  622. for (ch = s->min_channel; ch <= s->max_channel; ch++)
  623. filter_channel(m, substr, ch);
  624. s->blockpos += s->blocksize;
  625. if (s->data_check_present) {
  626. if (get_bits_count(gbp) != expected_stream_pos)
  627. av_log(m->avctx, AV_LOG_ERROR, "block data length mismatch\n");
  628. skip_bits(gbp, 8);
  629. }
  630. return 0;
  631. }
  632. /** Data table used for TrueHD noise generation function. */
  633. static const int8_t noise_table[256] = {
  634. 30, 51, 22, 54, 3, 7, -4, 38, 14, 55, 46, 81, 22, 58, -3, 2,
  635. 52, 31, -7, 51, 15, 44, 74, 30, 85, -17, 10, 33, 18, 80, 28, 62,
  636. 10, 32, 23, 69, 72, 26, 35, 17, 73, 60, 8, 56, 2, 6, -2, -5,
  637. 51, 4, 11, 50, 66, 76, 21, 44, 33, 47, 1, 26, 64, 48, 57, 40,
  638. 38, 16, -10, -28, 92, 22, -18, 29, -10, 5, -13, 49, 19, 24, 70, 34,
  639. 61, 48, 30, 14, -6, 25, 58, 33, 42, 60, 67, 17, 54, 17, 22, 30,
  640. 67, 44, -9, 50, -11, 43, 40, 32, 59, 82, 13, 49, -14, 55, 60, 36,
  641. 48, 49, 31, 47, 15, 12, 4, 65, 1, 23, 29, 39, 45, -2, 84, 69,
  642. 0, 72, 37, 57, 27, 41, -15, -16, 35, 31, 14, 61, 24, 0, 27, 24,
  643. 16, 41, 55, 34, 53, 9, 56, 12, 25, 29, 53, 5, 20, -20, -8, 20,
  644. 13, 28, -3, 78, 38, 16, 11, 62, 46, 29, 21, 24, 46, 65, 43, -23,
  645. 89, 18, 74, 21, 38, -12, 19, 12, -19, 8, 15, 33, 4, 57, 9, -8,
  646. 36, 35, 26, 28, 7, 83, 63, 79, 75, 11, 3, 87, 37, 47, 34, 40,
  647. 39, 19, 20, 42, 27, 34, 39, 77, 13, 42, 59, 64, 45, -1, 32, 37,
  648. 45, -5, 53, -6, 7, 36, 50, 23, 6, 32, 9, -21, 18, 71, 27, 52,
  649. -25, 31, 35, 42, -1, 68, 63, 52, 26, 43, 66, 37, 41, 25, 40, 70,
  650. };
  651. /** Noise generation functions.
  652. * I'm not sure what these are for - they seem to be some kind of pseudorandom
  653. * sequence generators, used to generate noise data which is used when the
  654. * channels are rematrixed. I'm not sure if they provide a practical benefit
  655. * to compression, or just obfuscate the decoder. Are they for some kind of
  656. * dithering? */
  657. /** Generate two channels of noise, used in the matrix when
  658. * restart sync word == 0x31ea. */
  659. static void generate_2_noise_channels(MLPDecodeContext *m, unsigned int substr)
  660. {
  661. SubStream *s = &m->substream[substr];
  662. unsigned int i;
  663. uint32_t seed = s->noisegen_seed;
  664. unsigned int maxchan = s->max_matrix_channel;
  665. for (i = 0; i < s->blockpos; i++) {
  666. uint16_t seed_shr7 = seed >> 7;
  667. m->sample_buffer[i][maxchan+1] = ((int8_t)(seed >> 15)) << s->noise_shift;
  668. m->sample_buffer[i][maxchan+2] = ((int8_t) seed_shr7) << s->noise_shift;
  669. seed = (seed << 16) ^ seed_shr7 ^ (seed_shr7 << 5);
  670. }
  671. s->noisegen_seed = seed;
  672. }
  673. /** Generate a block of noise, used when restart sync word == 0x31eb. */
  674. static void fill_noise_buffer(MLPDecodeContext *m, unsigned int substr)
  675. {
  676. SubStream *s = &m->substream[substr];
  677. unsigned int i;
  678. uint32_t seed = s->noisegen_seed;
  679. for (i = 0; i < m->access_unit_size_pow2; i++) {
  680. uint8_t seed_shr15 = seed >> 15;
  681. m->noise_buffer[i] = noise_table[seed_shr15];
  682. seed = (seed << 8) ^ seed_shr15 ^ (seed_shr15 << 5);
  683. }
  684. s->noisegen_seed = seed;
  685. }
  686. /** Apply the channel matrices in turn to reconstruct the original audio
  687. * samples. */
  688. static void rematrix_channels(MLPDecodeContext *m, unsigned int substr)
  689. {
  690. SubStream *s = &m->substream[substr];
  691. unsigned int mat, src_ch, i;
  692. unsigned int maxchan;
  693. maxchan = s->max_matrix_channel;
  694. if (!s->noise_type) {
  695. generate_2_noise_channels(m, substr);
  696. maxchan += 2;
  697. } else {
  698. fill_noise_buffer(m, substr);
  699. }
  700. for (mat = 0; mat < s->num_primitive_matrices; mat++) {
  701. int matrix_noise_shift = s->matrix_noise_shift[mat];
  702. unsigned int dest_ch = s->matrix_out_ch[mat];
  703. int32_t mask = MSB_MASK(s->quant_step_size[dest_ch]);
  704. int32_t *coeffs = s->matrix_coeff[mat];
  705. int index = s->num_primitive_matrices - mat;
  706. int index2 = 2 * index + 1;
  707. /* TODO: DSPContext? */
  708. for (i = 0; i < s->blockpos; i++) {
  709. int32_t bypassed_lsb = m->bypassed_lsbs[i][mat];
  710. int32_t *samples = m->sample_buffer[i];
  711. int64_t accum = 0;
  712. for (src_ch = 0; src_ch <= maxchan; src_ch++)
  713. accum += (int64_t) samples[src_ch] * coeffs[src_ch];
  714. if (matrix_noise_shift) {
  715. index &= m->access_unit_size_pow2 - 1;
  716. accum += m->noise_buffer[index] << (matrix_noise_shift + 7);
  717. index += index2;
  718. }
  719. samples[dest_ch] = ((accum >> 14) & mask) + bypassed_lsb;
  720. }
  721. }
  722. }
  723. /** Write the audio data into the output buffer. */
  724. static int output_data(MLPDecodeContext *m, unsigned int substr,
  725. void *data, int *got_frame_ptr)
  726. {
  727. AVCodecContext *avctx = m->avctx;
  728. SubStream *s = &m->substream[substr];
  729. unsigned int i, out_ch = 0;
  730. int32_t *data_32;
  731. int16_t *data_16;
  732. int ret;
  733. int is32 = (m->avctx->sample_fmt == AV_SAMPLE_FMT_S32);
  734. if (m->avctx->channels != s->max_matrix_channel + 1) {
  735. av_log(m->avctx, AV_LOG_ERROR, "channel count mismatch\n");
  736. return AVERROR_INVALIDDATA;
  737. }
  738. /* get output buffer */
  739. m->frame.nb_samples = s->blockpos;
  740. if ((ret = avctx->get_buffer(avctx, &m->frame)) < 0) {
  741. av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
  742. return ret;
  743. }
  744. data_32 = (int32_t *)m->frame.data[0];
  745. data_16 = (int16_t *)m->frame.data[0];
  746. for (i = 0; i < s->blockpos; i++) {
  747. for (out_ch = 0; out_ch <= s->max_matrix_channel; out_ch++) {
  748. int mat_ch = s->ch_assign[out_ch];
  749. int32_t sample = m->sample_buffer[i][mat_ch]
  750. << s->output_shift[mat_ch];
  751. s->lossless_check_data ^= (sample & 0xffffff) << mat_ch;
  752. if (is32) *data_32++ = sample << 8;
  753. else *data_16++ = sample >> 8;
  754. }
  755. }
  756. *got_frame_ptr = 1;
  757. *(AVFrame *)data = m->frame;
  758. return 0;
  759. }
  760. /** Read an access unit from the stream.
  761. * @return negative on error, 0 if not enough data is present in the input stream,
  762. * otherwise the number of bytes consumed. */
  763. static int read_access_unit(AVCodecContext *avctx, void* data,
  764. int *got_frame_ptr, AVPacket *avpkt)
  765. {
  766. const uint8_t *buf = avpkt->data;
  767. int buf_size = avpkt->size;
  768. MLPDecodeContext *m = avctx->priv_data;
  769. GetBitContext gb;
  770. unsigned int length, substr;
  771. unsigned int substream_start;
  772. unsigned int header_size = 4;
  773. unsigned int substr_header_size = 0;
  774. uint8_t substream_parity_present[MAX_SUBSTREAMS];
  775. uint16_t substream_data_len[MAX_SUBSTREAMS];
  776. uint8_t parity_bits;
  777. int ret;
  778. if (buf_size < 4)
  779. return 0;
  780. length = (AV_RB16(buf) & 0xfff) * 2;
  781. if (length < 4 || length > buf_size)
  782. return AVERROR_INVALIDDATA;
  783. init_get_bits(&gb, (buf + 4), (length - 4) * 8);
  784. m->is_major_sync_unit = 0;
  785. if (show_bits_long(&gb, 31) == (0xf8726fba >> 1)) {
  786. if (read_major_sync(m, &gb) < 0)
  787. goto error;
  788. m->is_major_sync_unit = 1;
  789. header_size += 28;
  790. }
  791. if (!m->params_valid) {
  792. av_log(m->avctx, AV_LOG_WARNING,
  793. "Stream parameters not seen; skipping frame.\n");
  794. *got_frame_ptr = 0;
  795. return length;
  796. }
  797. substream_start = 0;
  798. for (substr = 0; substr < m->num_substreams; substr++) {
  799. int extraword_present, checkdata_present, end, nonrestart_substr;
  800. extraword_present = get_bits1(&gb);
  801. nonrestart_substr = get_bits1(&gb);
  802. checkdata_present = get_bits1(&gb);
  803. skip_bits1(&gb);
  804. end = get_bits(&gb, 12) * 2;
  805. substr_header_size += 2;
  806. if (extraword_present) {
  807. if (m->avctx->codec_id == CODEC_ID_MLP) {
  808. av_log(m->avctx, AV_LOG_ERROR, "There must be no extraword for MLP.\n");
  809. goto error;
  810. }
  811. skip_bits(&gb, 16);
  812. substr_header_size += 2;
  813. }
  814. if (!(nonrestart_substr ^ m->is_major_sync_unit)) {
  815. av_log(m->avctx, AV_LOG_ERROR, "Invalid nonrestart_substr.\n");
  816. goto error;
  817. }
  818. if (end + header_size + substr_header_size > length) {
  819. av_log(m->avctx, AV_LOG_ERROR,
  820. "Indicated length of substream %d data goes off end of "
  821. "packet.\n", substr);
  822. end = length - header_size - substr_header_size;
  823. }
  824. if (end < substream_start) {
  825. av_log(avctx, AV_LOG_ERROR,
  826. "Indicated end offset of substream %d data "
  827. "is smaller than calculated start offset.\n",
  828. substr);
  829. goto error;
  830. }
  831. if (substr > m->max_decoded_substream)
  832. continue;
  833. substream_parity_present[substr] = checkdata_present;
  834. substream_data_len[substr] = end - substream_start;
  835. substream_start = end;
  836. }
  837. parity_bits = ff_mlp_calculate_parity(buf, 4);
  838. parity_bits ^= ff_mlp_calculate_parity(buf + header_size, substr_header_size);
  839. if ((((parity_bits >> 4) ^ parity_bits) & 0xF) != 0xF) {
  840. av_log(avctx, AV_LOG_ERROR, "Parity check failed.\n");
  841. goto error;
  842. }
  843. buf += header_size + substr_header_size;
  844. for (substr = 0; substr <= m->max_decoded_substream; substr++) {
  845. SubStream *s = &m->substream[substr];
  846. init_get_bits(&gb, buf, substream_data_len[substr] * 8);
  847. m->matrix_changed = 0;
  848. memset(m->filter_changed, 0, sizeof(m->filter_changed));
  849. s->blockpos = 0;
  850. do {
  851. if (get_bits1(&gb)) {
  852. if (get_bits1(&gb)) {
  853. /* A restart header should be present. */
  854. if (read_restart_header(m, &gb, buf, substr) < 0)
  855. goto next_substr;
  856. s->restart_seen = 1;
  857. }
  858. if (!s->restart_seen)
  859. goto next_substr;
  860. if (read_decoding_params(m, &gb, substr) < 0)
  861. goto next_substr;
  862. }
  863. if (!s->restart_seen)
  864. goto next_substr;
  865. if ((ret = read_block_data(m, &gb, substr)) < 0)
  866. return ret;
  867. if (get_bits_count(&gb) >= substream_data_len[substr] * 8)
  868. goto substream_length_mismatch;
  869. } while (!get_bits1(&gb));
  870. skip_bits(&gb, (-get_bits_count(&gb)) & 15);
  871. if (substream_data_len[substr] * 8 - get_bits_count(&gb) >= 32) {
  872. int shorten_by;
  873. if (get_bits(&gb, 16) != 0xD234)
  874. return AVERROR_INVALIDDATA;
  875. shorten_by = get_bits(&gb, 16);
  876. if (m->avctx->codec_id == CODEC_ID_TRUEHD && shorten_by & 0x2000)
  877. s->blockpos -= FFMIN(shorten_by & 0x1FFF, s->blockpos);
  878. else if (m->avctx->codec_id == CODEC_ID_MLP && shorten_by != 0xD234)
  879. return AVERROR_INVALIDDATA;
  880. if (substr == m->max_decoded_substream)
  881. av_log(m->avctx, AV_LOG_INFO, "End of stream indicated.\n");
  882. }
  883. if (substream_parity_present[substr]) {
  884. uint8_t parity, checksum;
  885. if (substream_data_len[substr] * 8 - get_bits_count(&gb) != 16)
  886. goto substream_length_mismatch;
  887. parity = ff_mlp_calculate_parity(buf, substream_data_len[substr] - 2);
  888. checksum = ff_mlp_checksum8 (buf, substream_data_len[substr] - 2);
  889. if ((get_bits(&gb, 8) ^ parity) != 0xa9 )
  890. av_log(m->avctx, AV_LOG_ERROR, "Substream %d parity check failed.\n", substr);
  891. if ( get_bits(&gb, 8) != checksum)
  892. av_log(m->avctx, AV_LOG_ERROR, "Substream %d checksum failed.\n" , substr);
  893. }
  894. if (substream_data_len[substr] * 8 != get_bits_count(&gb))
  895. goto substream_length_mismatch;
  896. next_substr:
  897. if (!s->restart_seen)
  898. av_log(m->avctx, AV_LOG_ERROR,
  899. "No restart header present in substream %d.\n", substr);
  900. buf += substream_data_len[substr];
  901. }
  902. rematrix_channels(m, m->max_decoded_substream);
  903. if ((ret = output_data(m, m->max_decoded_substream, data, got_frame_ptr)) < 0)
  904. return ret;
  905. return length;
  906. substream_length_mismatch:
  907. av_log(m->avctx, AV_LOG_ERROR, "substream %d length mismatch\n", substr);
  908. return AVERROR_INVALIDDATA;
  909. error:
  910. m->params_valid = 0;
  911. return AVERROR_INVALIDDATA;
  912. }
  913. AVCodec ff_mlp_decoder = {
  914. .name = "mlp",
  915. .type = AVMEDIA_TYPE_AUDIO,
  916. .id = CODEC_ID_MLP,
  917. .priv_data_size = sizeof(MLPDecodeContext),
  918. .init = mlp_decode_init,
  919. .decode = read_access_unit,
  920. .capabilities = CODEC_CAP_DR1,
  921. .long_name = NULL_IF_CONFIG_SMALL("MLP (Meridian Lossless Packing)"),
  922. };
  923. #if CONFIG_TRUEHD_DECODER
  924. AVCodec ff_truehd_decoder = {
  925. .name = "truehd",
  926. .type = AVMEDIA_TYPE_AUDIO,
  927. .id = CODEC_ID_TRUEHD,
  928. .priv_data_size = sizeof(MLPDecodeContext),
  929. .init = mlp_decode_init,
  930. .decode = read_access_unit,
  931. .capabilities = CODEC_CAP_DR1,
  932. .long_name = NULL_IF_CONFIG_SMALL("TrueHD"),
  933. };
  934. #endif /* CONFIG_TRUEHD_DECODER */