You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

205 lines
5.8KB

  1. /*
  2. * LSP routines for ACELP-based codecs
  3. *
  4. * Copyright (c) 2007 Reynaldo H. Verdejo Pinochet (QCELP decoder)
  5. * Copyright (c) 2008 Vladimir Voroshilov
  6. *
  7. * This file is part of Libav.
  8. *
  9. * Libav is free software; you can redistribute it and/or
  10. * modify it under the terms of the GNU Lesser General Public
  11. * License as published by the Free Software Foundation; either
  12. * version 2.1 of the License, or (at your option) any later version.
  13. *
  14. * Libav is distributed in the hope that it will be useful,
  15. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  16. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  17. * Lesser General Public License for more details.
  18. *
  19. * You should have received a copy of the GNU Lesser General Public
  20. * License along with Libav; if not, write to the Free Software
  21. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  22. */
  23. #include <inttypes.h>
  24. #include "avcodec.h"
  25. #define FRAC_BITS 14
  26. #include "mathops.h"
  27. #include "lsp.h"
  28. #include "celp_math.h"
  29. void ff_acelp_reorder_lsf(int16_t* lsfq, int lsfq_min_distance, int lsfq_min, int lsfq_max, int lp_order)
  30. {
  31. int i, j;
  32. /* sort lsfq in ascending order. float bubble agorithm,
  33. O(n) if data already sorted, O(n^2) - otherwise */
  34. for(i=0; i<lp_order-1; i++)
  35. for(j=i; j>=0 && lsfq[j] > lsfq[j+1]; j--)
  36. FFSWAP(int16_t, lsfq[j], lsfq[j+1]);
  37. for(i=0; i<lp_order; i++)
  38. {
  39. lsfq[i] = FFMAX(lsfq[i], lsfq_min);
  40. lsfq_min = lsfq[i] + lsfq_min_distance;
  41. }
  42. lsfq[lp_order-1] = FFMIN(lsfq[lp_order-1], lsfq_max);//Is warning required ?
  43. }
  44. void ff_set_min_dist_lsf(float *lsf, double min_spacing, int size)
  45. {
  46. int i;
  47. float prev = 0.0;
  48. for (i = 0; i < size; i++)
  49. prev = lsf[i] = FFMAX(lsf[i], prev + min_spacing);
  50. }
  51. void ff_acelp_lsf2lsp(int16_t *lsp, const int16_t *lsf, int lp_order)
  52. {
  53. int i;
  54. /* Convert LSF to LSP, lsp=cos(lsf) */
  55. for(i=0; i<lp_order; i++)
  56. // 20861 = 2.0 / PI in (0.15)
  57. lsp[i] = ff_cos(lsf[i] * 20861 >> 15); // divide by PI and (0,13) -> (0,14)
  58. }
  59. void ff_acelp_lsf2lspd(double *lsp, const float *lsf, int lp_order)
  60. {
  61. int i;
  62. for(i = 0; i < lp_order; i++)
  63. lsp[i] = cos(2.0 * M_PI * lsf[i]);
  64. }
  65. /**
  66. * @brief decodes polynomial coefficients from LSP
  67. * @param[out] f decoded polynomial coefficients (-0x20000000 <= (3.22) <= 0x1fffffff)
  68. * @param lsp LSP coefficients (-0x8000 <= (0.15) <= 0x7fff)
  69. */
  70. static void lsp2poly(int* f, const int16_t* lsp, int lp_half_order)
  71. {
  72. int i, j;
  73. f[0] = 0x400000; // 1.0 in (3.22)
  74. f[1] = -lsp[0] << 8; // *2 and (0.15) -> (3.22)
  75. for(i=2; i<=lp_half_order; i++)
  76. {
  77. f[i] = f[i-2];
  78. for(j=i; j>1; j--)
  79. f[j] -= MULL(f[j-1], lsp[2*i-2], FRAC_BITS) - f[j-2];
  80. f[1] -= lsp[2*i-2] << 8;
  81. }
  82. }
  83. void ff_acelp_lsp2lpc(int16_t* lp, const int16_t* lsp, int lp_half_order)
  84. {
  85. int i;
  86. int f1[MAX_LP_HALF_ORDER+1]; // (3.22)
  87. int f2[MAX_LP_HALF_ORDER+1]; // (3.22)
  88. lsp2poly(f1, lsp , lp_half_order);
  89. lsp2poly(f2, lsp+1, lp_half_order);
  90. /* 3.2.6 of G.729, Equations 25 and 26*/
  91. lp[0] = 4096;
  92. for(i=1; i<lp_half_order+1; i++)
  93. {
  94. int ff1 = f1[i] + f1[i-1]; // (3.22)
  95. int ff2 = f2[i] - f2[i-1]; // (3.22)
  96. ff1 += 1 << 10; // for rounding
  97. lp[i] = (ff1 + ff2) >> 11; // divide by 2 and (3.22) -> (3.12)
  98. lp[(lp_half_order << 1) + 1 - i] = (ff1 - ff2) >> 11; // divide by 2 and (3.22) -> (3.12)
  99. }
  100. }
  101. void ff_amrwb_lsp2lpc(const double *lsp, float *lp, int lp_order)
  102. {
  103. int lp_half_order = lp_order >> 1;
  104. double buf[MAX_LP_HALF_ORDER + 1];
  105. double pa[MAX_LP_HALF_ORDER + 1];
  106. double *qa = buf + 1;
  107. int i,j;
  108. qa[-1] = 0.0;
  109. ff_lsp2polyf(lsp , pa, lp_half_order );
  110. ff_lsp2polyf(lsp + 1, qa, lp_half_order - 1);
  111. for (i = 1, j = lp_order - 1; i < lp_half_order; i++, j--) {
  112. double paf = pa[i] * (1 + lsp[lp_order - 1]);
  113. double qaf = (qa[i] - qa[i-2]) * (1 - lsp[lp_order - 1]);
  114. lp[i-1] = (paf + qaf) * 0.5;
  115. lp[j-1] = (paf - qaf) * 0.5;
  116. }
  117. lp[lp_half_order - 1] = (1.0 + lsp[lp_order - 1]) *
  118. pa[lp_half_order] * 0.5;
  119. lp[lp_order - 1] = lsp[lp_order - 1];
  120. }
  121. void ff_acelp_lp_decode(int16_t* lp_1st, int16_t* lp_2nd, const int16_t* lsp_2nd, const int16_t* lsp_prev, int lp_order)
  122. {
  123. int16_t lsp_1st[MAX_LP_ORDER]; // (0.15)
  124. int i;
  125. /* LSP values for first subframe (3.2.5 of G.729, Equation 24)*/
  126. for(i=0; i<lp_order; i++)
  127. lsp_1st[i] = (lsp_2nd[i] + lsp_prev[i]) >> 1;
  128. ff_acelp_lsp2lpc(lp_1st, lsp_1st, lp_order >> 1);
  129. /* LSP values for second subframe (3.2.5 of G.729)*/
  130. ff_acelp_lsp2lpc(lp_2nd, lsp_2nd, lp_order >> 1);
  131. }
  132. void ff_lsp2polyf(const double *lsp, double *f, int lp_half_order)
  133. {
  134. int i, j;
  135. f[0] = 1.0;
  136. f[1] = -2 * lsp[0];
  137. lsp -= 2;
  138. for(i=2; i<=lp_half_order; i++)
  139. {
  140. double val = -2 * lsp[2*i];
  141. f[i] = val * f[i-1] + 2*f[i-2];
  142. for(j=i-1; j>1; j--)
  143. f[j] += f[j-1] * val + f[j-2];
  144. f[1] += val;
  145. }
  146. }
  147. void ff_acelp_lspd2lpc(const double *lsp, float *lpc, int lp_half_order)
  148. {
  149. double pa[MAX_LP_HALF_ORDER+1], qa[MAX_LP_HALF_ORDER+1];
  150. float *lpc2 = lpc + (lp_half_order << 1) - 1;
  151. assert(lp_half_order <= MAX_LP_HALF_ORDER);
  152. ff_lsp2polyf(lsp, pa, lp_half_order);
  153. ff_lsp2polyf(lsp + 1, qa, lp_half_order);
  154. while (lp_half_order--) {
  155. double paf = pa[lp_half_order+1] + pa[lp_half_order];
  156. double qaf = qa[lp_half_order+1] - qa[lp_half_order];
  157. lpc [ lp_half_order] = 0.5*(paf+qaf);
  158. lpc2[-lp_half_order] = 0.5*(paf-qaf);
  159. }
  160. }
  161. void ff_sort_nearly_sorted_floats(float *vals, int len)
  162. {
  163. int i,j;
  164. for (i = 0; i < len - 1; i++)
  165. for (j = i; j >= 0 && vals[j] > vals[j+1]; j--)
  166. FFSWAP(float, vals[j], vals[j+1]);
  167. }