You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1105 lines
39KB

  1. /*
  2. * Indeo Video v3 compatible decoder
  3. * Copyright (c) 2009 - 2011 Maxim Poliakovski
  4. *
  5. * This file is part of Libav.
  6. *
  7. * Libav is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * Libav is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with Libav; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file
  23. * This is a decoder for Intel Indeo Video v3.
  24. * It is based on vector quantization, run-length coding and motion compensation.
  25. * Known container formats: .avi and .mov
  26. * Known FOURCCs: 'IV31', 'IV32'
  27. *
  28. * @see http://wiki.multimedia.cx/index.php?title=Indeo_3
  29. */
  30. #include "libavutil/imgutils.h"
  31. #include "libavutil/intreadwrite.h"
  32. #include "avcodec.h"
  33. #include "dsputil.h"
  34. #include "bytestream.h"
  35. #include "get_bits.h"
  36. #include "indeo3data.h"
  37. /* RLE opcodes. */
  38. enum {
  39. RLE_ESC_F9 = 249, ///< same as RLE_ESC_FA + do the same with next block
  40. RLE_ESC_FA = 250, ///< INTRA: skip block, INTER: copy data from reference
  41. RLE_ESC_FB = 251, ///< apply null delta to N blocks / skip N blocks
  42. RLE_ESC_FC = 252, ///< same as RLE_ESC_FD + do the same with next block
  43. RLE_ESC_FD = 253, ///< apply null delta to all remaining lines of this block
  44. RLE_ESC_FE = 254, ///< apply null delta to all lines up to the 3rd line
  45. RLE_ESC_FF = 255 ///< apply null delta to all lines up to the 2nd line
  46. };
  47. /* Some constants for parsing frame bitstream flags. */
  48. #define BS_8BIT_PEL (1 << 1) ///< 8bit pixel bitdepth indicator
  49. #define BS_KEYFRAME (1 << 2) ///< intra frame indicator
  50. #define BS_MV_Y_HALF (1 << 4) ///< vertical mv halfpel resolution indicator
  51. #define BS_MV_X_HALF (1 << 5) ///< horizontal mv halfpel resolution indicator
  52. #define BS_NONREF (1 << 8) ///< nonref (discardable) frame indicator
  53. #define BS_BUFFER 9 ///< indicates which of two frame buffers should be used
  54. typedef struct Plane {
  55. uint8_t *buffers[2];
  56. uint8_t *pixels[2]; ///< pointer to the actual pixel data of the buffers above
  57. uint32_t width;
  58. uint32_t height;
  59. uint32_t pitch;
  60. } Plane;
  61. #define CELL_STACK_MAX 20
  62. typedef struct Cell {
  63. int16_t xpos; ///< cell coordinates in 4x4 blocks
  64. int16_t ypos;
  65. int16_t width; ///< cell width in 4x4 blocks
  66. int16_t height; ///< cell height in 4x4 blocks
  67. uint8_t tree; ///< tree id: 0- MC tree, 1 - VQ tree
  68. const int8_t *mv_ptr; ///< ptr to the motion vector if any
  69. } Cell;
  70. typedef struct Indeo3DecodeContext {
  71. AVCodecContext *avctx;
  72. AVFrame frame;
  73. DSPContext dsp;
  74. GetBitContext gb;
  75. int need_resync;
  76. int skip_bits;
  77. const uint8_t *next_cell_data;
  78. const uint8_t *last_byte;
  79. const int8_t *mc_vectors;
  80. unsigned num_vectors; ///< number of motion vectors in mc_vectors
  81. int16_t width, height;
  82. uint32_t frame_num; ///< current frame number (zero-based)
  83. uint32_t data_size; ///< size of the frame data in bytes
  84. uint16_t frame_flags; ///< frame properties
  85. uint8_t cb_offset; ///< needed for selecting VQ tables
  86. uint8_t buf_sel; ///< active frame buffer: 0 - primary, 1 -secondary
  87. const uint8_t *y_data_ptr;
  88. const uint8_t *v_data_ptr;
  89. const uint8_t *u_data_ptr;
  90. int32_t y_data_size;
  91. int32_t v_data_size;
  92. int32_t u_data_size;
  93. const uint8_t *alt_quant; ///< secondary VQ table set for the modes 1 and 4
  94. Plane planes[3];
  95. } Indeo3DecodeContext;
  96. static uint8_t requant_tab[8][128];
  97. /*
  98. * Build the static requantization table.
  99. * This table is used to remap pixel values according to a specific
  100. * quant index and thus avoid overflows while adding deltas.
  101. */
  102. static av_cold void build_requant_tab(void)
  103. {
  104. static int8_t offsets[8] = { 1, 1, 2, -3, -3, 3, 4, 4 };
  105. static int8_t deltas [8] = { 0, 1, 0, 4, 4, 1, 0, 1 };
  106. int i, j, step;
  107. for (i = 0; i < 8; i++) {
  108. step = i + 2;
  109. for (j = 0; j < 128; j++)
  110. requant_tab[i][j] = (j + offsets[i]) / step * step + deltas[i];
  111. }
  112. /* some last elements calculated above will have values >= 128 */
  113. /* pixel values shall never exceed 127 so set them to non-overflowing values */
  114. /* according with the quantization step of the respective section */
  115. requant_tab[0][127] = 126;
  116. requant_tab[1][119] = 118;
  117. requant_tab[1][120] = 118;
  118. requant_tab[2][126] = 124;
  119. requant_tab[2][127] = 124;
  120. requant_tab[6][124] = 120;
  121. requant_tab[6][125] = 120;
  122. requant_tab[6][126] = 120;
  123. requant_tab[6][127] = 120;
  124. /* Patch for compatibility with the Intel's binary decoders */
  125. requant_tab[1][7] = 10;
  126. requant_tab[4][8] = 10;
  127. }
  128. static av_cold int allocate_frame_buffers(Indeo3DecodeContext *ctx,
  129. AVCodecContext *avctx)
  130. {
  131. int p, luma_width, luma_height, chroma_width, chroma_height;
  132. int luma_pitch, chroma_pitch, luma_size, chroma_size;
  133. luma_width = ctx->width;
  134. luma_height = ctx->height;
  135. if (luma_width < 16 || luma_width > 640 ||
  136. luma_height < 16 || luma_height > 480 ||
  137. luma_width & 3 || luma_height & 3) {
  138. av_log(avctx, AV_LOG_ERROR, "Invalid picture dimensions: %d x %d!\n",
  139. luma_width, luma_height);
  140. return AVERROR_INVALIDDATA;
  141. }
  142. chroma_width = FFALIGN(luma_width >> 2, 4);
  143. chroma_height = FFALIGN(luma_height >> 2, 4);
  144. luma_pitch = FFALIGN(luma_width, 16);
  145. chroma_pitch = FFALIGN(chroma_width, 16);
  146. /* Calculate size of the luminance plane. */
  147. /* Add one line more for INTRA prediction. */
  148. luma_size = luma_pitch * (luma_height + 1);
  149. /* Calculate size of a chrominance planes. */
  150. /* Add one line more for INTRA prediction. */
  151. chroma_size = chroma_pitch * (chroma_height + 1);
  152. /* allocate frame buffers */
  153. for (p = 0; p < 3; p++) {
  154. ctx->planes[p].pitch = !p ? luma_pitch : chroma_pitch;
  155. ctx->planes[p].width = !p ? luma_width : chroma_width;
  156. ctx->planes[p].height = !p ? luma_height : chroma_height;
  157. ctx->planes[p].buffers[0] = av_malloc(!p ? luma_size : chroma_size);
  158. ctx->planes[p].buffers[1] = av_malloc(!p ? luma_size : chroma_size);
  159. /* fill the INTRA prediction lines with the middle pixel value = 64 */
  160. memset(ctx->planes[p].buffers[0], 0x40, ctx->planes[p].pitch);
  161. memset(ctx->planes[p].buffers[1], 0x40, ctx->planes[p].pitch);
  162. /* set buffer pointers = buf_ptr + pitch and thus skip the INTRA prediction line */
  163. ctx->planes[p].pixels[0] = ctx->planes[p].buffers[0] + ctx->planes[p].pitch;
  164. ctx->planes[p].pixels[1] = ctx->planes[p].buffers[1] + ctx->planes[p].pitch;
  165. memset(ctx->planes[p].pixels[0], 0, ctx->planes[p].pitch * ctx->planes[p].height);
  166. memset(ctx->planes[p].pixels[1], 0, ctx->planes[p].pitch * ctx->planes[p].height);
  167. }
  168. return 0;
  169. }
  170. static av_cold void free_frame_buffers(Indeo3DecodeContext *ctx)
  171. {
  172. int p;
  173. for (p = 0; p < 3; p++) {
  174. av_freep(&ctx->planes[p].buffers[0]);
  175. av_freep(&ctx->planes[p].buffers[1]);
  176. ctx->planes[p].pixels[0] = ctx->planes[p].pixels[1] = 0;
  177. }
  178. }
  179. /**
  180. * Copy pixels of the cell(x + mv_x, y + mv_y) from the previous frame into
  181. * the cell(x, y) in the current frame.
  182. *
  183. * @param ctx pointer to the decoder context
  184. * @param plane pointer to the plane descriptor
  185. * @param cell pointer to the cell descriptor
  186. */
  187. static void copy_cell(Indeo3DecodeContext *ctx, Plane *plane, Cell *cell)
  188. {
  189. int h, w, mv_x, mv_y, offset, offset_dst;
  190. uint8_t *src, *dst;
  191. /* setup output and reference pointers */
  192. offset_dst = (cell->ypos << 2) * plane->pitch + (cell->xpos << 2);
  193. dst = plane->pixels[ctx->buf_sel] + offset_dst;
  194. mv_y = cell->mv_ptr[0];
  195. mv_x = cell->mv_ptr[1];
  196. offset = offset_dst + mv_y * plane->pitch + mv_x;
  197. src = plane->pixels[ctx->buf_sel ^ 1] + offset;
  198. h = cell->height << 2;
  199. for (w = cell->width; w > 0;) {
  200. /* copy using 16xH blocks */
  201. if (!((cell->xpos << 2) & 15) && w >= 4) {
  202. for (; w >= 4; src += 16, dst += 16, w -= 4)
  203. ctx->dsp.put_no_rnd_pixels_tab[0][0](dst, src, plane->pitch, h);
  204. }
  205. /* copy using 8xH blocks */
  206. if (!((cell->xpos << 2) & 7) && w >= 2) {
  207. ctx->dsp.put_no_rnd_pixels_tab[1][0](dst, src, plane->pitch, h);
  208. w -= 2;
  209. src += 8;
  210. dst += 8;
  211. }
  212. if (w >= 1) {
  213. copy_block4(dst, src, plane->pitch, plane->pitch, h);
  214. w--;
  215. src += 4;
  216. dst += 4;
  217. }
  218. }
  219. }
  220. /* Average 4/8 pixels at once without rounding using SWAR */
  221. #define AVG_32(dst, src, ref) \
  222. AV_WN32A(dst, ((AV_RN32A(src) + AV_RN32A(ref)) >> 1) & 0x7F7F7F7FUL)
  223. #define AVG_64(dst, src, ref) \
  224. AV_WN64A(dst, ((AV_RN64A(src) + AV_RN64A(ref)) >> 1) & 0x7F7F7F7F7F7F7F7FULL)
  225. /*
  226. * Replicate each even pixel as follows:
  227. * ABCDEFGH -> AACCEEGG
  228. */
  229. static inline uint64_t replicate64(uint64_t a) {
  230. #if HAVE_BIGENDIAN
  231. a &= 0xFF00FF00FF00FF00ULL;
  232. a |= a >> 8;
  233. #else
  234. a &= 0x00FF00FF00FF00FFULL;
  235. a |= a << 8;
  236. #endif
  237. return a;
  238. }
  239. static inline uint32_t replicate32(uint32_t a) {
  240. #if HAVE_BIGENDIAN
  241. a &= 0xFF00FF00UL;
  242. a |= a >> 8;
  243. #else
  244. a &= 0x00FF00FFUL;
  245. a |= a << 8;
  246. #endif
  247. return a;
  248. }
  249. /* Fill n lines with 64bit pixel value pix */
  250. static inline void fill_64(uint8_t *dst, const uint64_t pix, int32_t n,
  251. int32_t row_offset)
  252. {
  253. for (; n > 0; dst += row_offset, n--)
  254. AV_WN64A(dst, pix);
  255. }
  256. /* Error codes for cell decoding. */
  257. enum {
  258. IV3_NOERR = 0,
  259. IV3_BAD_RLE = 1,
  260. IV3_BAD_DATA = 2,
  261. IV3_BAD_COUNTER = 3,
  262. IV3_UNSUPPORTED = 4,
  263. IV3_OUT_OF_DATA = 5
  264. };
  265. #define BUFFER_PRECHECK \
  266. if (*data_ptr >= last_ptr) \
  267. return IV3_OUT_OF_DATA; \
  268. #define RLE_BLOCK_COPY \
  269. if (cell->mv_ptr || !skip_flag) \
  270. copy_block4(dst, ref, row_offset, row_offset, 4 << v_zoom)
  271. #define RLE_BLOCK_COPY_8 \
  272. pix64 = AV_RN64A(ref);\
  273. if (is_first_row) {/* special prediction case: top line of a cell */\
  274. pix64 = replicate64(pix64);\
  275. fill_64(dst + row_offset, pix64, 7, row_offset);\
  276. AVG_64(dst, ref, dst + row_offset);\
  277. } else \
  278. fill_64(dst, pix64, 8, row_offset)
  279. #define RLE_LINES_COPY \
  280. copy_block4(dst, ref, row_offset, row_offset, num_lines << v_zoom)
  281. #define RLE_LINES_COPY_M10 \
  282. pix64 = AV_RN64A(ref);\
  283. if (is_top_of_cell) {\
  284. pix64 = replicate64(pix64);\
  285. fill_64(dst + row_offset, pix64, (num_lines << 1) - 1, row_offset);\
  286. AVG_64(dst, ref, dst + row_offset);\
  287. } else \
  288. fill_64(dst, pix64, num_lines << 1, row_offset)
  289. #define APPLY_DELTA_4 \
  290. AV_WN16A(dst + line_offset ,\
  291. (AV_RN16A(ref ) + delta_tab->deltas[dyad1]) & 0x7F7F);\
  292. AV_WN16A(dst + line_offset + 2,\
  293. (AV_RN16A(ref + 2) + delta_tab->deltas[dyad2]) & 0x7F7F);\
  294. if (mode >= 3) {\
  295. if (is_top_of_cell && !cell->ypos) {\
  296. AV_COPY32(dst, dst + row_offset);\
  297. } else {\
  298. AVG_32(dst, ref, dst + row_offset);\
  299. }\
  300. }
  301. #define APPLY_DELTA_8 \
  302. /* apply two 32-bit VQ deltas to next even line */\
  303. if (is_top_of_cell) { \
  304. AV_WN32A(dst + row_offset , \
  305. (replicate32(AV_RN32A(ref )) + delta_tab->deltas_m10[dyad1]) & 0x7F7F7F7F);\
  306. AV_WN32A(dst + row_offset + 4, \
  307. (replicate32(AV_RN32A(ref + 4)) + delta_tab->deltas_m10[dyad2]) & 0x7F7F7F7F);\
  308. } else { \
  309. AV_WN32A(dst + row_offset , \
  310. (AV_RN32A(ref ) + delta_tab->deltas_m10[dyad1]) & 0x7F7F7F7F);\
  311. AV_WN32A(dst + row_offset + 4, \
  312. (AV_RN32A(ref + 4) + delta_tab->deltas_m10[dyad2]) & 0x7F7F7F7F);\
  313. } \
  314. /* odd lines are not coded but rather interpolated/replicated */\
  315. /* first line of the cell on the top of image? - replicate */\
  316. /* otherwise - interpolate */\
  317. if (is_top_of_cell && !cell->ypos) {\
  318. AV_COPY64(dst, dst + row_offset);\
  319. } else \
  320. AVG_64(dst, ref, dst + row_offset);
  321. #define APPLY_DELTA_1011_INTER \
  322. if (mode == 10) { \
  323. AV_WN32A(dst , \
  324. (AV_RN32A(dst ) + delta_tab->deltas_m10[dyad1]) & 0x7F7F7F7F);\
  325. AV_WN32A(dst + 4 , \
  326. (AV_RN32A(dst + 4 ) + delta_tab->deltas_m10[dyad2]) & 0x7F7F7F7F);\
  327. AV_WN32A(dst + row_offset , \
  328. (AV_RN32A(dst + row_offset ) + delta_tab->deltas_m10[dyad1]) & 0x7F7F7F7F);\
  329. AV_WN32A(dst + row_offset + 4, \
  330. (AV_RN32A(dst + row_offset + 4) + delta_tab->deltas_m10[dyad2]) & 0x7F7F7F7F);\
  331. } else { \
  332. AV_WN16A(dst , \
  333. (AV_RN16A(dst ) + delta_tab->deltas[dyad1]) & 0x7F7F);\
  334. AV_WN16A(dst + 2 , \
  335. (AV_RN16A(dst + 2 ) + delta_tab->deltas[dyad2]) & 0x7F7F);\
  336. AV_WN16A(dst + row_offset , \
  337. (AV_RN16A(dst + row_offset ) + delta_tab->deltas[dyad1]) & 0x7F7F);\
  338. AV_WN16A(dst + row_offset + 2, \
  339. (AV_RN16A(dst + row_offset + 2) + delta_tab->deltas[dyad2]) & 0x7F7F);\
  340. }
  341. static int decode_cell_data(Cell *cell, uint8_t *block, uint8_t *ref_block,
  342. int pitch, int h_zoom, int v_zoom, int mode,
  343. const vqEntry *delta[2], int swap_quads[2],
  344. const uint8_t **data_ptr, const uint8_t *last_ptr)
  345. {
  346. int x, y, line, num_lines;
  347. int rle_blocks = 0;
  348. uint8_t code, *dst, *ref;
  349. const vqEntry *delta_tab;
  350. unsigned int dyad1, dyad2;
  351. uint64_t pix64;
  352. int skip_flag = 0, is_top_of_cell, is_first_row = 1;
  353. int row_offset, blk_row_offset, line_offset;
  354. row_offset = pitch;
  355. blk_row_offset = (row_offset << (2 + v_zoom)) - (cell->width << 2);
  356. line_offset = v_zoom ? row_offset : 0;
  357. for (y = 0; y < cell->height; is_first_row = 0, y += 1 + v_zoom) {
  358. for (x = 0; x < cell->width; x += 1 + h_zoom) {
  359. ref = ref_block;
  360. dst = block;
  361. if (rle_blocks > 0) {
  362. if (mode <= 4) {
  363. RLE_BLOCK_COPY;
  364. } else if (mode == 10 && !cell->mv_ptr) {
  365. RLE_BLOCK_COPY_8;
  366. }
  367. rle_blocks--;
  368. } else {
  369. for (line = 0; line < 4;) {
  370. num_lines = 1;
  371. is_top_of_cell = is_first_row && !line;
  372. /* select primary VQ table for odd, secondary for even lines */
  373. if (mode <= 4)
  374. delta_tab = delta[line & 1];
  375. else
  376. delta_tab = delta[1];
  377. BUFFER_PRECHECK;
  378. code = bytestream_get_byte(data_ptr);
  379. if (code < 248) {
  380. if (code < delta_tab->num_dyads) {
  381. BUFFER_PRECHECK;
  382. dyad1 = bytestream_get_byte(data_ptr);
  383. dyad2 = code;
  384. if (dyad1 >= delta_tab->num_dyads || dyad1 >= 248)
  385. return IV3_BAD_DATA;
  386. } else {
  387. /* process QUADS */
  388. code -= delta_tab->num_dyads;
  389. dyad1 = code / delta_tab->quad_exp;
  390. dyad2 = code % delta_tab->quad_exp;
  391. if (swap_quads[line & 1])
  392. FFSWAP(unsigned int, dyad1, dyad2);
  393. }
  394. if (mode <= 4) {
  395. APPLY_DELTA_4;
  396. } else if (mode == 10 && !cell->mv_ptr) {
  397. APPLY_DELTA_8;
  398. } else {
  399. APPLY_DELTA_1011_INTER;
  400. }
  401. } else {
  402. /* process RLE codes */
  403. switch (code) {
  404. case RLE_ESC_FC:
  405. skip_flag = 0;
  406. rle_blocks = 1;
  407. code = 253;
  408. /* FALLTHROUGH */
  409. case RLE_ESC_FF:
  410. case RLE_ESC_FE:
  411. case RLE_ESC_FD:
  412. num_lines = 257 - code - line;
  413. if (num_lines <= 0)
  414. return IV3_BAD_RLE;
  415. if (mode <= 4) {
  416. RLE_LINES_COPY;
  417. } else if (mode == 10 && !cell->mv_ptr) {
  418. RLE_LINES_COPY_M10;
  419. }
  420. break;
  421. case RLE_ESC_FB:
  422. BUFFER_PRECHECK;
  423. code = bytestream_get_byte(data_ptr);
  424. rle_blocks = (code & 0x1F) - 1; /* set block counter */
  425. if (code >= 64 || rle_blocks < 0)
  426. return IV3_BAD_COUNTER;
  427. skip_flag = code & 0x20;
  428. num_lines = 4 - line; /* enforce next block processing */
  429. if (mode >= 10 || (cell->mv_ptr || !skip_flag)) {
  430. if (mode <= 4) {
  431. RLE_LINES_COPY;
  432. } else if (mode == 10 && !cell->mv_ptr) {
  433. RLE_LINES_COPY_M10;
  434. }
  435. }
  436. break;
  437. case RLE_ESC_F9:
  438. skip_flag = 1;
  439. rle_blocks = 1;
  440. /* FALLTHROUGH */
  441. case RLE_ESC_FA:
  442. if (line)
  443. return IV3_BAD_RLE;
  444. num_lines = 4; /* enforce next block processing */
  445. if (cell->mv_ptr) {
  446. if (mode <= 4) {
  447. RLE_LINES_COPY;
  448. } else if (mode == 10 && !cell->mv_ptr) {
  449. RLE_LINES_COPY_M10;
  450. }
  451. }
  452. break;
  453. default:
  454. return IV3_UNSUPPORTED;
  455. }
  456. }
  457. line += num_lines;
  458. ref += row_offset * (num_lines << v_zoom);
  459. dst += row_offset * (num_lines << v_zoom);
  460. }
  461. }
  462. /* move to next horizontal block */
  463. block += 4 << h_zoom;
  464. ref_block += 4 << h_zoom;
  465. }
  466. /* move to next line of blocks */
  467. ref_block += blk_row_offset;
  468. block += blk_row_offset;
  469. }
  470. return IV3_NOERR;
  471. }
  472. /**
  473. * Decode a vector-quantized cell.
  474. * It consists of several routines, each of which handles one or more "modes"
  475. * with which a cell can be encoded.
  476. *
  477. * @param ctx pointer to the decoder context
  478. * @param avctx ptr to the AVCodecContext
  479. * @param plane pointer to the plane descriptor
  480. * @param cell pointer to the cell descriptor
  481. * @param data_ptr pointer to the compressed data
  482. * @param last_ptr pointer to the last byte to catch reads past end of buffer
  483. * @return number of consumed bytes or negative number in case of error
  484. */
  485. static int decode_cell(Indeo3DecodeContext *ctx, AVCodecContext *avctx,
  486. Plane *plane, Cell *cell, const uint8_t *data_ptr,
  487. const uint8_t *last_ptr)
  488. {
  489. int x, mv_x, mv_y, mode, vq_index, prim_indx, second_indx;
  490. int zoom_fac;
  491. int offset, error = 0, swap_quads[2];
  492. uint8_t code, *block, *ref_block = 0;
  493. const vqEntry *delta[2];
  494. const uint8_t *data_start = data_ptr;
  495. /* get coding mode and VQ table index from the VQ descriptor byte */
  496. code = *data_ptr++;
  497. mode = code >> 4;
  498. vq_index = code & 0xF;
  499. /* setup output and reference pointers */
  500. offset = (cell->ypos << 2) * plane->pitch + (cell->xpos << 2);
  501. block = plane->pixels[ctx->buf_sel] + offset;
  502. if (!cell->mv_ptr) {
  503. /* use previous line as reference for INTRA cells */
  504. ref_block = block - plane->pitch;
  505. } else if (mode >= 10) {
  506. /* for mode 10 and 11 INTER first copy the predicted cell into the current one */
  507. /* so we don't need to do data copying for each RLE code later */
  508. copy_cell(ctx, plane, cell);
  509. } else {
  510. /* set the pointer to the reference pixels for modes 0-4 INTER */
  511. mv_y = cell->mv_ptr[0];
  512. mv_x = cell->mv_ptr[1];
  513. offset += mv_y * plane->pitch + mv_x;
  514. ref_block = plane->pixels[ctx->buf_sel ^ 1] + offset;
  515. }
  516. /* select VQ tables as follows: */
  517. /* modes 0 and 3 use only the primary table for all lines in a block */
  518. /* while modes 1 and 4 switch between primary and secondary tables on alternate lines */
  519. if (mode == 1 || mode == 4) {
  520. code = ctx->alt_quant[vq_index];
  521. prim_indx = (code >> 4) + ctx->cb_offset;
  522. second_indx = (code & 0xF) + ctx->cb_offset;
  523. } else {
  524. vq_index += ctx->cb_offset;
  525. prim_indx = second_indx = vq_index;
  526. }
  527. if (prim_indx >= 24 || second_indx >= 24) {
  528. av_log(avctx, AV_LOG_ERROR, "Invalid VQ table indexes! Primary: %d, secondary: %d!\n",
  529. prim_indx, second_indx);
  530. return AVERROR_INVALIDDATA;
  531. }
  532. delta[0] = &vq_tab[second_indx];
  533. delta[1] = &vq_tab[prim_indx];
  534. swap_quads[0] = second_indx >= 16;
  535. swap_quads[1] = prim_indx >= 16;
  536. /* requantize the prediction if VQ index of this cell differs from VQ index */
  537. /* of the predicted cell in order to avoid overflows. */
  538. if (vq_index >= 8 && ref_block) {
  539. for (x = 0; x < cell->width << 2; x++)
  540. ref_block[x] = requant_tab[vq_index & 7][ref_block[x]];
  541. }
  542. error = IV3_NOERR;
  543. switch (mode) {
  544. case 0: /*------------------ MODES 0 & 1 (4x4 block processing) --------------------*/
  545. case 1:
  546. case 3: /*------------------ MODES 3 & 4 (4x8 block processing) --------------------*/
  547. case 4:
  548. if (mode >= 3 && cell->mv_ptr) {
  549. av_log(avctx, AV_LOG_ERROR, "Attempt to apply Mode 3/4 to an INTER cell!\n");
  550. return AVERROR_INVALIDDATA;
  551. }
  552. zoom_fac = mode >= 3;
  553. error = decode_cell_data(cell, block, ref_block, plane->pitch, 0, zoom_fac,
  554. mode, delta, swap_quads, &data_ptr, last_ptr);
  555. break;
  556. case 10: /*-------------------- MODE 10 (8x8 block processing) ---------------------*/
  557. case 11: /*----------------- MODE 11 (4x8 INTER block processing) ------------------*/
  558. if (mode == 10 && !cell->mv_ptr) { /* MODE 10 INTRA processing */
  559. error = decode_cell_data(cell, block, ref_block, plane->pitch, 1, 1,
  560. mode, delta, swap_quads, &data_ptr, last_ptr);
  561. } else { /* mode 10 and 11 INTER processing */
  562. if (mode == 11 && !cell->mv_ptr) {
  563. av_log(avctx, AV_LOG_ERROR, "Attempt to use Mode 11 for an INTRA cell!\n");
  564. return AVERROR_INVALIDDATA;
  565. }
  566. zoom_fac = mode == 10;
  567. error = decode_cell_data(cell, block, ref_block, plane->pitch,
  568. zoom_fac, 1, mode, delta, swap_quads,
  569. &data_ptr, last_ptr);
  570. }
  571. break;
  572. default:
  573. av_log(avctx, AV_LOG_ERROR, "Unsupported coding mode: %d\n", mode);
  574. return AVERROR_INVALIDDATA;
  575. }//switch mode
  576. switch (error) {
  577. case IV3_BAD_RLE:
  578. av_log(avctx, AV_LOG_ERROR, "Mode %d: RLE code %X is not allowed at the current line\n",
  579. mode, data_ptr[-1]);
  580. return AVERROR_INVALIDDATA;
  581. case IV3_BAD_DATA:
  582. av_log(avctx, AV_LOG_ERROR, "Mode %d: invalid VQ data\n", mode);
  583. return AVERROR_INVALIDDATA;
  584. case IV3_BAD_COUNTER:
  585. av_log(avctx, AV_LOG_ERROR, "Mode %d: RLE-FB invalid counter: %d\n", mode, code);
  586. return AVERROR_INVALIDDATA;
  587. case IV3_UNSUPPORTED:
  588. av_log(avctx, AV_LOG_ERROR, "Mode %d: unsupported RLE code: %X\n", mode, data_ptr[-1]);
  589. return AVERROR_INVALIDDATA;
  590. case IV3_OUT_OF_DATA:
  591. av_log(avctx, AV_LOG_ERROR, "Mode %d: attempt to read past end of buffer\n", mode);
  592. return AVERROR_INVALIDDATA;
  593. }
  594. return data_ptr - data_start; /* report number of bytes consumed from the input buffer */
  595. }
  596. /* Binary tree codes. */
  597. enum {
  598. H_SPLIT = 0,
  599. V_SPLIT = 1,
  600. INTRA_NULL = 2,
  601. INTER_DATA = 3
  602. };
  603. #define SPLIT_CELL(size, new_size) (new_size) = ((size) > 2) ? ((((size) + 2) >> 2) << 1) : 1
  604. #define UPDATE_BITPOS(n) \
  605. ctx->skip_bits += (n); \
  606. ctx->need_resync = 1
  607. #define RESYNC_BITSTREAM \
  608. if (ctx->need_resync && !(get_bits_count(&ctx->gb) & 7)) { \
  609. skip_bits_long(&ctx->gb, ctx->skip_bits); \
  610. ctx->skip_bits = 0; \
  611. ctx->need_resync = 0; \
  612. }
  613. #define CHECK_CELL \
  614. if (curr_cell.xpos + curr_cell.width > (plane->width >> 2) || \
  615. curr_cell.ypos + curr_cell.height > (plane->height >> 2)) { \
  616. av_log(avctx, AV_LOG_ERROR, "Invalid cell: x=%d, y=%d, w=%d, h=%d\n", \
  617. curr_cell.xpos, curr_cell.ypos, curr_cell.width, curr_cell.height); \
  618. return AVERROR_INVALIDDATA; \
  619. }
  620. static int parse_bintree(Indeo3DecodeContext *ctx, AVCodecContext *avctx,
  621. Plane *plane, int code, Cell *ref_cell,
  622. const int depth, const int strip_width)
  623. {
  624. Cell curr_cell;
  625. int bytes_used;
  626. if (depth <= 0) {
  627. av_log(avctx, AV_LOG_ERROR, "Stack overflow (corrupted binary tree)!\n");
  628. return AVERROR_INVALIDDATA; // unwind recursion
  629. }
  630. curr_cell = *ref_cell; // clone parent cell
  631. if (code == H_SPLIT) {
  632. SPLIT_CELL(ref_cell->height, curr_cell.height);
  633. ref_cell->ypos += curr_cell.height;
  634. ref_cell->height -= curr_cell.height;
  635. if (ref_cell->height <= 0 || curr_cell.height <= 0)
  636. return AVERROR_INVALIDDATA;
  637. } else if (code == V_SPLIT) {
  638. if (curr_cell.width > strip_width) {
  639. /* split strip */
  640. curr_cell.width = (curr_cell.width <= (strip_width << 1) ? 1 : 2) * strip_width;
  641. } else
  642. SPLIT_CELL(ref_cell->width, curr_cell.width);
  643. ref_cell->xpos += curr_cell.width;
  644. ref_cell->width -= curr_cell.width;
  645. if (ref_cell->width <= 0 || curr_cell.width <= 0)
  646. return AVERROR_INVALIDDATA;
  647. }
  648. while (1) { /* loop until return */
  649. RESYNC_BITSTREAM;
  650. switch (code = get_bits(&ctx->gb, 2)) {
  651. case H_SPLIT:
  652. case V_SPLIT:
  653. if (parse_bintree(ctx, avctx, plane, code, &curr_cell, depth - 1, strip_width))
  654. return AVERROR_INVALIDDATA;
  655. break;
  656. case INTRA_NULL:
  657. if (!curr_cell.tree) { /* MC tree INTRA code */
  658. curr_cell.mv_ptr = 0; /* mark the current strip as INTRA */
  659. curr_cell.tree = 1; /* enter the VQ tree */
  660. } else { /* VQ tree NULL code */
  661. RESYNC_BITSTREAM;
  662. code = get_bits(&ctx->gb, 2);
  663. if (code >= 2) {
  664. av_log(avctx, AV_LOG_ERROR, "Invalid VQ_NULL code: %d\n", code);
  665. return AVERROR_INVALIDDATA;
  666. }
  667. if (code == 1)
  668. av_log(avctx, AV_LOG_ERROR, "SkipCell procedure not implemented yet!\n");
  669. CHECK_CELL
  670. if (!curr_cell.mv_ptr)
  671. return AVERROR_INVALIDDATA;
  672. copy_cell(ctx, plane, &curr_cell);
  673. return 0;
  674. }
  675. break;
  676. case INTER_DATA:
  677. if (!curr_cell.tree) { /* MC tree INTER code */
  678. unsigned mv_idx;
  679. /* get motion vector index and setup the pointer to the mv set */
  680. if (!ctx->need_resync)
  681. ctx->next_cell_data = &ctx->gb.buffer[(get_bits_count(&ctx->gb) + 7) >> 3];
  682. mv_idx = *(ctx->next_cell_data++);
  683. if (mv_idx >= ctx->num_vectors) {
  684. av_log(avctx, AV_LOG_ERROR, "motion vector index out of range\n");
  685. return AVERROR_INVALIDDATA;
  686. }
  687. curr_cell.mv_ptr = &ctx->mc_vectors[mv_idx << 1];
  688. curr_cell.tree = 1; /* enter the VQ tree */
  689. UPDATE_BITPOS(8);
  690. } else { /* VQ tree DATA code */
  691. if (!ctx->need_resync)
  692. ctx->next_cell_data = &ctx->gb.buffer[(get_bits_count(&ctx->gb) + 7) >> 3];
  693. CHECK_CELL
  694. bytes_used = decode_cell(ctx, avctx, plane, &curr_cell,
  695. ctx->next_cell_data, ctx->last_byte);
  696. if (bytes_used < 0)
  697. return AVERROR_INVALIDDATA;
  698. UPDATE_BITPOS(bytes_used << 3);
  699. ctx->next_cell_data += bytes_used;
  700. return 0;
  701. }
  702. break;
  703. }
  704. }//while
  705. return 0;
  706. }
  707. static int decode_plane(Indeo3DecodeContext *ctx, AVCodecContext *avctx,
  708. Plane *plane, const uint8_t *data, int32_t data_size,
  709. int32_t strip_width)
  710. {
  711. Cell curr_cell;
  712. unsigned num_vectors;
  713. /* each plane data starts with mc_vector_count field, */
  714. /* an optional array of motion vectors followed by the vq data */
  715. num_vectors = bytestream_get_le32(&data);
  716. if (num_vectors > 256) {
  717. av_log(ctx->avctx, AV_LOG_ERROR,
  718. "Read invalid number of motion vectors %d\n", num_vectors);
  719. return AVERROR_INVALIDDATA;
  720. }
  721. if (num_vectors * 2 >= data_size)
  722. return AVERROR_INVALIDDATA;
  723. ctx->num_vectors = num_vectors;
  724. ctx->mc_vectors = num_vectors ? data : 0;
  725. /* init the bitreader */
  726. init_get_bits(&ctx->gb, &data[num_vectors * 2], (data_size - num_vectors * 2) << 3);
  727. ctx->skip_bits = 0;
  728. ctx->need_resync = 0;
  729. ctx->last_byte = data + data_size - 1;
  730. /* initialize the 1st cell and set its dimensions to whole plane */
  731. curr_cell.xpos = curr_cell.ypos = 0;
  732. curr_cell.width = plane->width >> 2;
  733. curr_cell.height = plane->height >> 2;
  734. curr_cell.tree = 0; // we are in the MC tree now
  735. curr_cell.mv_ptr = 0; // no motion vector = INTRA cell
  736. return parse_bintree(ctx, avctx, plane, INTRA_NULL, &curr_cell, CELL_STACK_MAX, strip_width);
  737. }
  738. #define OS_HDR_ID MKBETAG('F', 'R', 'M', 'H')
  739. static int decode_frame_headers(Indeo3DecodeContext *ctx, AVCodecContext *avctx,
  740. const uint8_t *buf, int buf_size)
  741. {
  742. const uint8_t *buf_ptr = buf, *bs_hdr;
  743. uint32_t frame_num, word2, check_sum, data_size;
  744. uint32_t y_offset, u_offset, v_offset, starts[3], ends[3];
  745. uint16_t height, width;
  746. int i, j;
  747. /* parse and check the OS header */
  748. frame_num = bytestream_get_le32(&buf_ptr);
  749. word2 = bytestream_get_le32(&buf_ptr);
  750. check_sum = bytestream_get_le32(&buf_ptr);
  751. data_size = bytestream_get_le32(&buf_ptr);
  752. if ((frame_num ^ word2 ^ data_size ^ OS_HDR_ID) != check_sum) {
  753. av_log(avctx, AV_LOG_ERROR, "OS header checksum mismatch!\n");
  754. return AVERROR_INVALIDDATA;
  755. }
  756. /* parse the bitstream header */
  757. bs_hdr = buf_ptr;
  758. if (bytestream_get_le16(&buf_ptr) != 32) {
  759. av_log(avctx, AV_LOG_ERROR, "Unsupported codec version!\n");
  760. return AVERROR_INVALIDDATA;
  761. }
  762. ctx->frame_num = frame_num;
  763. ctx->frame_flags = bytestream_get_le16(&buf_ptr);
  764. ctx->data_size = (bytestream_get_le32(&buf_ptr) + 7) >> 3;
  765. ctx->cb_offset = *buf_ptr++;
  766. if (ctx->data_size == 16)
  767. return 4;
  768. if (ctx->data_size > buf_size)
  769. ctx->data_size = buf_size;
  770. buf_ptr += 3; // skip reserved byte and checksum
  771. /* check frame dimensions */
  772. height = bytestream_get_le16(&buf_ptr);
  773. width = bytestream_get_le16(&buf_ptr);
  774. if (av_image_check_size(width, height, 0, avctx))
  775. return AVERROR_INVALIDDATA;
  776. if (width != ctx->width || height != ctx->height) {
  777. int res;
  778. av_dlog(avctx, "Frame dimensions changed!\n");
  779. if (width < 16 || width > 640 ||
  780. height < 16 || height > 480 ||
  781. width & 3 || height & 3) {
  782. av_log(avctx, AV_LOG_ERROR,
  783. "Invalid picture dimensions: %d x %d!\n", width, height);
  784. return AVERROR_INVALIDDATA;
  785. }
  786. ctx->width = width;
  787. ctx->height = height;
  788. free_frame_buffers(ctx);
  789. if ((res = allocate_frame_buffers(ctx, avctx)) < 0)
  790. return res;
  791. avcodec_set_dimensions(avctx, width, height);
  792. }
  793. y_offset = bytestream_get_le32(&buf_ptr);
  794. v_offset = bytestream_get_le32(&buf_ptr);
  795. u_offset = bytestream_get_le32(&buf_ptr);
  796. /* unfortunately there is no common order of planes in the buffer */
  797. /* so we use that sorting algo for determining planes data sizes */
  798. starts[0] = y_offset;
  799. starts[1] = v_offset;
  800. starts[2] = u_offset;
  801. for (j = 0; j < 3; j++) {
  802. ends[j] = ctx->data_size;
  803. for (i = 2; i >= 0; i--)
  804. if (starts[i] < ends[j] && starts[i] > starts[j])
  805. ends[j] = starts[i];
  806. }
  807. ctx->y_data_size = ends[0] - starts[0];
  808. ctx->v_data_size = ends[1] - starts[1];
  809. ctx->u_data_size = ends[2] - starts[2];
  810. if (FFMAX3(y_offset, v_offset, u_offset) >= ctx->data_size - 16 ||
  811. FFMIN3(ctx->y_data_size, ctx->v_data_size, ctx->u_data_size) <= 0) {
  812. av_log(avctx, AV_LOG_ERROR, "One of the y/u/v offsets is invalid\n");
  813. return AVERROR_INVALIDDATA;
  814. }
  815. ctx->y_data_ptr = bs_hdr + y_offset;
  816. ctx->v_data_ptr = bs_hdr + v_offset;
  817. ctx->u_data_ptr = bs_hdr + u_offset;
  818. ctx->alt_quant = buf_ptr + sizeof(uint32_t);
  819. if (ctx->data_size == 16) {
  820. av_log(avctx, AV_LOG_DEBUG, "Sync frame encountered!\n");
  821. return 16;
  822. }
  823. if (ctx->frame_flags & BS_8BIT_PEL) {
  824. av_log_ask_for_sample(avctx, "8-bit pixel format\n");
  825. return AVERROR_PATCHWELCOME;
  826. }
  827. if (ctx->frame_flags & BS_MV_X_HALF || ctx->frame_flags & BS_MV_Y_HALF) {
  828. av_log_ask_for_sample(avctx, "halfpel motion vectors\n");
  829. return AVERROR_PATCHWELCOME;
  830. }
  831. return 0;
  832. }
  833. /**
  834. * Convert and output the current plane.
  835. * All pixel values will be upsampled by shifting right by one bit.
  836. *
  837. * @param[in] plane pointer to the descriptor of the plane being processed
  838. * @param[in] buf_sel indicates which frame buffer the input data stored in
  839. * @param[out] dst pointer to the buffer receiving converted pixels
  840. * @param[in] dst_pitch pitch for moving to the next y line
  841. */
  842. static void output_plane(const Plane *plane, int buf_sel, uint8_t *dst, int dst_pitch)
  843. {
  844. int x,y;
  845. const uint8_t *src = plane->pixels[buf_sel];
  846. uint32_t pitch = plane->pitch;
  847. for (y = 0; y < plane->height; y++) {
  848. /* convert four pixels at once using SWAR */
  849. for (x = 0; x < plane->width >> 2; x++) {
  850. AV_WN32A(dst, (AV_RN32A(src) & 0x7F7F7F7F) << 1);
  851. src += 4;
  852. dst += 4;
  853. }
  854. for (x <<= 2; x < plane->width; x++)
  855. *dst++ = *src++ << 1;
  856. src += pitch - plane->width;
  857. dst += dst_pitch - plane->width;
  858. }
  859. }
  860. static av_cold int decode_init(AVCodecContext *avctx)
  861. {
  862. Indeo3DecodeContext *ctx = avctx->priv_data;
  863. ctx->avctx = avctx;
  864. ctx->width = avctx->width;
  865. ctx->height = avctx->height;
  866. avctx->pix_fmt = PIX_FMT_YUV410P;
  867. build_requant_tab();
  868. ff_dsputil_init(&ctx->dsp, avctx);
  869. allocate_frame_buffers(ctx, avctx);
  870. return 0;
  871. }
  872. static int decode_frame(AVCodecContext *avctx, void *data, int *data_size,
  873. AVPacket *avpkt)
  874. {
  875. Indeo3DecodeContext *ctx = avctx->priv_data;
  876. const uint8_t *buf = avpkt->data;
  877. int buf_size = avpkt->size;
  878. int res;
  879. res = decode_frame_headers(ctx, avctx, buf, buf_size);
  880. if (res < 0)
  881. return res;
  882. /* skip sync(null) frames */
  883. if (res) {
  884. // we have processed 16 bytes but no data was decoded
  885. *data_size = 0;
  886. return buf_size;
  887. }
  888. /* skip droppable INTER frames if requested */
  889. if (ctx->frame_flags & BS_NONREF &&
  890. (avctx->skip_frame >= AVDISCARD_NONREF))
  891. return 0;
  892. /* skip INTER frames if requested */
  893. if (!(ctx->frame_flags & BS_KEYFRAME) && avctx->skip_frame >= AVDISCARD_NONKEY)
  894. return 0;
  895. /* use BS_BUFFER flag for buffer switching */
  896. ctx->buf_sel = (ctx->frame_flags >> BS_BUFFER) & 1;
  897. /* decode luma plane */
  898. if ((res = decode_plane(ctx, avctx, ctx->planes, ctx->y_data_ptr, ctx->y_data_size, 40)))
  899. return res;
  900. /* decode chroma planes */
  901. if ((res = decode_plane(ctx, avctx, &ctx->planes[1], ctx->u_data_ptr, ctx->u_data_size, 10)))
  902. return res;
  903. if ((res = decode_plane(ctx, avctx, &ctx->planes[2], ctx->v_data_ptr, ctx->v_data_size, 10)))
  904. return res;
  905. if (ctx->frame.data[0])
  906. avctx->release_buffer(avctx, &ctx->frame);
  907. ctx->frame.reference = 0;
  908. if ((res = avctx->get_buffer(avctx, &ctx->frame)) < 0) {
  909. av_log(ctx->avctx, AV_LOG_ERROR, "get_buffer() failed\n");
  910. return res;
  911. }
  912. output_plane(&ctx->planes[0], ctx->buf_sel, ctx->frame.data[0], ctx->frame.linesize[0]);
  913. output_plane(&ctx->planes[1], ctx->buf_sel, ctx->frame.data[1], ctx->frame.linesize[1]);
  914. output_plane(&ctx->planes[2], ctx->buf_sel, ctx->frame.data[2], ctx->frame.linesize[2]);
  915. *data_size = sizeof(AVFrame);
  916. *(AVFrame*)data = ctx->frame;
  917. return buf_size;
  918. }
  919. static av_cold int decode_close(AVCodecContext *avctx)
  920. {
  921. Indeo3DecodeContext *ctx = avctx->priv_data;
  922. free_frame_buffers(avctx->priv_data);
  923. if (ctx->frame.data[0])
  924. avctx->release_buffer(avctx, &ctx->frame);
  925. return 0;
  926. }
  927. AVCodec ff_indeo3_decoder = {
  928. .name = "indeo3",
  929. .type = AVMEDIA_TYPE_VIDEO,
  930. .id = CODEC_ID_INDEO3,
  931. .priv_data_size = sizeof(Indeo3DecodeContext),
  932. .init = decode_init,
  933. .close = decode_close,
  934. .decode = decode_frame,
  935. .long_name = NULL_IF_CONFIG_SMALL("Intel Indeo 3"),
  936. };