You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

222 lines
5.4KB

  1. /*
  2. * (I)DCT Transforms
  3. * Copyright (c) 2009 Peter Ross <pross@xvid.org>
  4. * Copyright (c) 2010 Alex Converse <alex.converse@gmail.com>
  5. * Copyright (c) 2010 Vitor Sessak
  6. *
  7. * This file is part of Libav.
  8. *
  9. * Libav is free software; you can redistribute it and/or
  10. * modify it under the terms of the GNU Lesser General Public
  11. * License as published by the Free Software Foundation; either
  12. * version 2.1 of the License, or (at your option) any later version.
  13. *
  14. * Libav is distributed in the hope that it will be useful,
  15. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  16. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  17. * Lesser General Public License for more details.
  18. *
  19. * You should have received a copy of the GNU Lesser General Public
  20. * License along with Libav; if not, write to the Free Software
  21. * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  22. */
  23. /**
  24. * @file
  25. * (Inverse) Discrete Cosine Transforms. These are also known as the
  26. * type II and type III DCTs respectively.
  27. */
  28. #include <math.h>
  29. #include "libavutil/mathematics.h"
  30. #include "dct.h"
  31. #include "dct32.h"
  32. /* sin((M_PI * x / (2 * n)) */
  33. #define SIN(s, n, x) (s->costab[(n) - (x)])
  34. /* cos((M_PI * x / (2 * n)) */
  35. #define COS(s, n, x) (s->costab[x])
  36. static void ff_dst_calc_I_c(DCTContext *ctx, FFTSample *data)
  37. {
  38. int n = 1 << ctx->nbits;
  39. int i;
  40. data[0] = 0;
  41. for (i = 1; i < n / 2; i++) {
  42. float tmp1 = data[i ];
  43. float tmp2 = data[n - i];
  44. float s = SIN(ctx, n, 2 * i);
  45. s *= tmp1 + tmp2;
  46. tmp1 = (tmp1 - tmp2) * 0.5f;
  47. data[i] = s + tmp1;
  48. data[n - i] = s - tmp1;
  49. }
  50. data[n / 2] *= 2;
  51. ctx->rdft.rdft_calc(&ctx->rdft, data);
  52. data[0] *= 0.5f;
  53. for (i = 1; i < n - 2; i += 2) {
  54. data[i + 1] += data[i - 1];
  55. data[i] = -data[i + 2];
  56. }
  57. data[n - 1] = 0;
  58. }
  59. static void ff_dct_calc_I_c(DCTContext *ctx, FFTSample *data)
  60. {
  61. int n = 1 << ctx->nbits;
  62. int i;
  63. float next = -0.5f * (data[0] - data[n]);
  64. for (i = 0; i < n / 2; i++) {
  65. float tmp1 = data[i];
  66. float tmp2 = data[n - i];
  67. float s = SIN(ctx, n, 2 * i);
  68. float c = COS(ctx, n, 2 * i);
  69. c *= tmp1 - tmp2;
  70. s *= tmp1 - tmp2;
  71. next += c;
  72. tmp1 = (tmp1 + tmp2) * 0.5f;
  73. data[i] = tmp1 - s;
  74. data[n - i] = tmp1 + s;
  75. }
  76. ctx->rdft.rdft_calc(&ctx->rdft, data);
  77. data[n] = data[1];
  78. data[1] = next;
  79. for (i = 3; i <= n; i += 2)
  80. data[i] = data[i - 2] - data[i];
  81. }
  82. static void ff_dct_calc_III_c(DCTContext *ctx, FFTSample *data)
  83. {
  84. int n = 1 << ctx->nbits;
  85. int i;
  86. float next = data[n - 1];
  87. float inv_n = 1.0f / n;
  88. for (i = n - 2; i >= 2; i -= 2) {
  89. float val1 = data[i];
  90. float val2 = data[i - 1] - data[i + 1];
  91. float c = COS(ctx, n, i);
  92. float s = SIN(ctx, n, i);
  93. data[i] = c * val1 + s * val2;
  94. data[i + 1] = s * val1 - c * val2;
  95. }
  96. data[1] = 2 * next;
  97. ctx->rdft.rdft_calc(&ctx->rdft, data);
  98. for (i = 0; i < n / 2; i++) {
  99. float tmp1 = data[i] * inv_n;
  100. float tmp2 = data[n - i - 1] * inv_n;
  101. float csc = ctx->csc2[i] * (tmp1 - tmp2);
  102. tmp1 += tmp2;
  103. data[i] = tmp1 + csc;
  104. data[n - i - 1] = tmp1 - csc;
  105. }
  106. }
  107. static void ff_dct_calc_II_c(DCTContext *ctx, FFTSample *data)
  108. {
  109. int n = 1 << ctx->nbits;
  110. int i;
  111. float next;
  112. for (i = 0; i < n / 2; i++) {
  113. float tmp1 = data[i];
  114. float tmp2 = data[n - i - 1];
  115. float s = SIN(ctx, n, 2 * i + 1);
  116. s *= tmp1 - tmp2;
  117. tmp1 = (tmp1 + tmp2) * 0.5f;
  118. data[i] = tmp1 + s;
  119. data[n-i-1] = tmp1 - s;
  120. }
  121. ctx->rdft.rdft_calc(&ctx->rdft, data);
  122. next = data[1] * 0.5;
  123. data[1] *= -1;
  124. for (i = n - 2; i >= 0; i -= 2) {
  125. float inr = data[i ];
  126. float ini = data[i + 1];
  127. float c = COS(ctx, n, i);
  128. float s = SIN(ctx, n, i);
  129. data[i] = c * inr + s * ini;
  130. data[i + 1] = next;
  131. next += s * inr - c * ini;
  132. }
  133. }
  134. static void dct32_func(DCTContext *ctx, FFTSample *data)
  135. {
  136. ctx->dct32(data, data);
  137. }
  138. av_cold int ff_dct_init(DCTContext *s, int nbits, enum DCTTransformType inverse)
  139. {
  140. int n = 1 << nbits;
  141. int i;
  142. memset(s, 0, sizeof(*s));
  143. s->nbits = nbits;
  144. s->inverse = inverse;
  145. if (inverse == DCT_II && nbits == 5) {
  146. s->dct_calc = dct32_func;
  147. } else {
  148. ff_init_ff_cos_tabs(nbits + 2);
  149. s->costab = ff_cos_tabs[nbits + 2];
  150. s->csc2 = av_malloc(n / 2 * sizeof(FFTSample));
  151. if (ff_rdft_init(&s->rdft, nbits, inverse == DCT_III) < 0) {
  152. av_free(s->csc2);
  153. return -1;
  154. }
  155. for (i = 0; i < n / 2; i++)
  156. s->csc2[i] = 0.5 / sin((M_PI / (2 * n) * (2 * i + 1)));
  157. switch (inverse) {
  158. case DCT_I : s->dct_calc = ff_dct_calc_I_c; break;
  159. case DCT_II : s->dct_calc = ff_dct_calc_II_c; break;
  160. case DCT_III: s->dct_calc = ff_dct_calc_III_c; break;
  161. case DST_I : s->dct_calc = ff_dst_calc_I_c; break;
  162. }
  163. }
  164. s->dct32 = ff_dct32_float;
  165. if (HAVE_MMX)
  166. ff_dct_init_mmx(s);
  167. return 0;
  168. }
  169. av_cold void ff_dct_end(DCTContext *s)
  170. {
  171. ff_rdft_end(&s->rdft);
  172. av_free(s->csc2);
  173. }