You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1308 lines
44KB

  1. /*
  2. * COOK compatible decoder
  3. * Copyright (c) 2003 Sascha Sommer
  4. * Copyright (c) 2005 Benjamin Larsson
  5. *
  6. * This file is part of Libav.
  7. *
  8. * Libav is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU Lesser General Public
  10. * License as published by the Free Software Foundation; either
  11. * version 2.1 of the License, or (at your option) any later version.
  12. *
  13. * Libav is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * Lesser General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU Lesser General Public
  19. * License along with Libav; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  21. */
  22. /**
  23. * @file
  24. * Cook compatible decoder. Bastardization of the G.722.1 standard.
  25. * This decoder handles RealNetworks, RealAudio G2 data.
  26. * Cook is identified by the codec name cook in RM files.
  27. *
  28. * To use this decoder, a calling application must supply the extradata
  29. * bytes provided from the RM container; 8+ bytes for mono streams and
  30. * 16+ for stereo streams (maybe more).
  31. *
  32. * Codec technicalities (all this assume a buffer length of 1024):
  33. * Cook works with several different techniques to achieve its compression.
  34. * In the timedomain the buffer is divided into 8 pieces and quantized. If
  35. * two neighboring pieces have different quantization index a smooth
  36. * quantization curve is used to get a smooth overlap between the different
  37. * pieces.
  38. * To get to the transformdomain Cook uses a modulated lapped transform.
  39. * The transform domain has 50 subbands with 20 elements each. This
  40. * means only a maximum of 50*20=1000 coefficients are used out of the 1024
  41. * available.
  42. */
  43. #include "libavutil/lfg.h"
  44. #include "avcodec.h"
  45. #include "get_bits.h"
  46. #include "dsputil.h"
  47. #include "bytestream.h"
  48. #include "fft.h"
  49. #include "libavutil/audioconvert.h"
  50. #include "sinewin.h"
  51. #include "cookdata.h"
  52. /* the different Cook versions */
  53. #define MONO 0x1000001
  54. #define STEREO 0x1000002
  55. #define JOINT_STEREO 0x1000003
  56. #define MC_COOK 0x2000000 // multichannel Cook, not supported
  57. #define SUBBAND_SIZE 20
  58. #define MAX_SUBPACKETS 5
  59. typedef struct {
  60. int *now;
  61. int *previous;
  62. } cook_gains;
  63. typedef struct {
  64. int ch_idx;
  65. int size;
  66. int num_channels;
  67. int cookversion;
  68. int samples_per_frame;
  69. int subbands;
  70. int js_subband_start;
  71. int js_vlc_bits;
  72. int samples_per_channel;
  73. int log2_numvector_size;
  74. unsigned int channel_mask;
  75. VLC ccpl; ///< channel coupling
  76. int joint_stereo;
  77. int bits_per_subpacket;
  78. int bits_per_subpdiv;
  79. int total_subbands;
  80. int numvector_size; ///< 1 << log2_numvector_size;
  81. float mono_previous_buffer1[1024];
  82. float mono_previous_buffer2[1024];
  83. /** gain buffers */
  84. cook_gains gains1;
  85. cook_gains gains2;
  86. int gain_1[9];
  87. int gain_2[9];
  88. int gain_3[9];
  89. int gain_4[9];
  90. } COOKSubpacket;
  91. typedef struct cook {
  92. /*
  93. * The following 5 functions provide the lowlevel arithmetic on
  94. * the internal audio buffers.
  95. */
  96. void (*scalar_dequant)(struct cook *q, int index, int quant_index,
  97. int *subband_coef_index, int *subband_coef_sign,
  98. float *mlt_p);
  99. void (*decouple)(struct cook *q,
  100. COOKSubpacket *p,
  101. int subband,
  102. float f1, float f2,
  103. float *decode_buffer,
  104. float *mlt_buffer1, float *mlt_buffer2);
  105. void (*imlt_window)(struct cook *q, float *buffer1,
  106. cook_gains *gains_ptr, float *previous_buffer);
  107. void (*interpolate)(struct cook *q, float *buffer,
  108. int gain_index, int gain_index_next);
  109. void (*saturate_output)(struct cook *q, int chan, float *out);
  110. AVCodecContext* avctx;
  111. AVFrame frame;
  112. GetBitContext gb;
  113. /* stream data */
  114. int nb_channels;
  115. int bit_rate;
  116. int sample_rate;
  117. int num_vectors;
  118. int samples_per_channel;
  119. /* states */
  120. AVLFG random_state;
  121. int discarded_packets;
  122. /* transform data */
  123. FFTContext mdct_ctx;
  124. float* mlt_window;
  125. /* VLC data */
  126. VLC envelope_quant_index[13];
  127. VLC sqvh[7]; // scalar quantization
  128. /* generatable tables and related variables */
  129. int gain_size_factor;
  130. float gain_table[23];
  131. /* data buffers */
  132. uint8_t* decoded_bytes_buffer;
  133. DECLARE_ALIGNED(32, float, mono_mdct_output)[2048];
  134. float decode_buffer_1[1024];
  135. float decode_buffer_2[1024];
  136. float decode_buffer_0[1060]; /* static allocation for joint decode */
  137. const float *cplscales[5];
  138. int num_subpackets;
  139. COOKSubpacket subpacket[MAX_SUBPACKETS];
  140. } COOKContext;
  141. static float pow2tab[127];
  142. static float rootpow2tab[127];
  143. /*************** init functions ***************/
  144. /* table generator */
  145. static av_cold void init_pow2table(void)
  146. {
  147. int i;
  148. for (i = -63; i < 64; i++) {
  149. pow2tab[63 + i] = pow(2, i);
  150. rootpow2tab[63 + i] = sqrt(pow(2, i));
  151. }
  152. }
  153. /* table generator */
  154. static av_cold void init_gain_table(COOKContext *q)
  155. {
  156. int i;
  157. q->gain_size_factor = q->samples_per_channel / 8;
  158. for (i = 0; i < 23; i++)
  159. q->gain_table[i] = pow(pow2tab[i + 52],
  160. (1.0 / (double) q->gain_size_factor));
  161. }
  162. static av_cold int init_cook_vlc_tables(COOKContext *q)
  163. {
  164. int i, result;
  165. result = 0;
  166. for (i = 0; i < 13; i++) {
  167. result |= init_vlc(&q->envelope_quant_index[i], 9, 24,
  168. envelope_quant_index_huffbits[i], 1, 1,
  169. envelope_quant_index_huffcodes[i], 2, 2, 0);
  170. }
  171. av_log(q->avctx, AV_LOG_DEBUG, "sqvh VLC init\n");
  172. for (i = 0; i < 7; i++) {
  173. result |= init_vlc(&q->sqvh[i], vhvlcsize_tab[i], vhsize_tab[i],
  174. cvh_huffbits[i], 1, 1,
  175. cvh_huffcodes[i], 2, 2, 0);
  176. }
  177. for (i = 0; i < q->num_subpackets; i++) {
  178. if (q->subpacket[i].joint_stereo == 1) {
  179. result |= init_vlc(&q->subpacket[i].ccpl, 6, (1 << q->subpacket[i].js_vlc_bits) - 1,
  180. ccpl_huffbits[q->subpacket[i].js_vlc_bits - 2], 1, 1,
  181. ccpl_huffcodes[q->subpacket[i].js_vlc_bits - 2], 2, 2, 0);
  182. av_log(q->avctx, AV_LOG_DEBUG, "subpacket %i Joint-stereo VLC used.\n", i);
  183. }
  184. }
  185. av_log(q->avctx, AV_LOG_DEBUG, "VLC tables initialized.\n");
  186. return result;
  187. }
  188. static av_cold int init_cook_mlt(COOKContext *q)
  189. {
  190. int j, ret;
  191. int mlt_size = q->samples_per_channel;
  192. if ((q->mlt_window = av_malloc(mlt_size * sizeof(*q->mlt_window))) == 0)
  193. return AVERROR(ENOMEM);
  194. /* Initialize the MLT window: simple sine window. */
  195. ff_sine_window_init(q->mlt_window, mlt_size);
  196. for (j = 0; j < mlt_size; j++)
  197. q->mlt_window[j] *= sqrt(2.0 / q->samples_per_channel);
  198. /* Initialize the MDCT. */
  199. if ((ret = ff_mdct_init(&q->mdct_ctx, av_log2(mlt_size) + 1, 1, 1.0 / 32768.0))) {
  200. av_free(q->mlt_window);
  201. return ret;
  202. }
  203. av_log(q->avctx, AV_LOG_DEBUG, "MDCT initialized, order = %d.\n",
  204. av_log2(mlt_size) + 1);
  205. return 0;
  206. }
  207. static const float *maybe_reformat_buffer32(COOKContext *q, const float *ptr, int n)
  208. {
  209. if (1)
  210. return ptr;
  211. }
  212. static av_cold void init_cplscales_table(COOKContext *q)
  213. {
  214. int i;
  215. for (i = 0; i < 5; i++)
  216. q->cplscales[i] = maybe_reformat_buffer32(q, cplscales[i], (1 << (i + 2)) - 1);
  217. }
  218. /*************** init functions end ***********/
  219. #define DECODE_BYTES_PAD1(bytes) (3 - ((bytes) + 3) % 4)
  220. #define DECODE_BYTES_PAD2(bytes) ((bytes) % 4 + DECODE_BYTES_PAD1(2 * (bytes)))
  221. /**
  222. * Cook indata decoding, every 32 bits are XORed with 0x37c511f2.
  223. * Why? No idea, some checksum/error detection method maybe.
  224. *
  225. * Out buffer size: extra bytes are needed to cope with
  226. * padding/misalignment.
  227. * Subpackets passed to the decoder can contain two, consecutive
  228. * half-subpackets, of identical but arbitrary size.
  229. * 1234 1234 1234 1234 extraA extraB
  230. * Case 1: AAAA BBBB 0 0
  231. * Case 2: AAAA ABBB BB-- 3 3
  232. * Case 3: AAAA AABB BBBB 2 2
  233. * Case 4: AAAA AAAB BBBB BB-- 1 5
  234. *
  235. * Nice way to waste CPU cycles.
  236. *
  237. * @param inbuffer pointer to byte array of indata
  238. * @param out pointer to byte array of outdata
  239. * @param bytes number of bytes
  240. */
  241. static inline int decode_bytes(const uint8_t *inbuffer, uint8_t *out, int bytes)
  242. {
  243. static const uint32_t tab[4] = {
  244. AV_BE2NE32C(0x37c511f2u), AV_BE2NE32C(0xf237c511u),
  245. AV_BE2NE32C(0x11f237c5u), AV_BE2NE32C(0xc511f237u),
  246. };
  247. int i, off;
  248. uint32_t c;
  249. const uint32_t *buf;
  250. uint32_t *obuf = (uint32_t *) out;
  251. /* FIXME: 64 bit platforms would be able to do 64 bits at a time.
  252. * I'm too lazy though, should be something like
  253. * for (i = 0; i < bitamount / 64; i++)
  254. * (int64_t) out[i] = 0x37c511f237c511f2 ^ av_be2ne64(int64_t) in[i]);
  255. * Buffer alignment needs to be checked. */
  256. off = (intptr_t) inbuffer & 3;
  257. buf = (const uint32_t *) (inbuffer - off);
  258. c = tab[off];
  259. bytes += 3 + off;
  260. for (i = 0; i < bytes / 4; i++)
  261. obuf[i] = c ^ buf[i];
  262. return off;
  263. }
  264. /**
  265. * Cook uninit
  266. */
  267. static av_cold int cook_decode_close(AVCodecContext *avctx)
  268. {
  269. int i;
  270. COOKContext *q = avctx->priv_data;
  271. av_log(avctx, AV_LOG_DEBUG, "Deallocating memory.\n");
  272. /* Free allocated memory buffers. */
  273. av_free(q->mlt_window);
  274. av_free(q->decoded_bytes_buffer);
  275. /* Free the transform. */
  276. ff_mdct_end(&q->mdct_ctx);
  277. /* Free the VLC tables. */
  278. for (i = 0; i < 13; i++)
  279. ff_free_vlc(&q->envelope_quant_index[i]);
  280. for (i = 0; i < 7; i++)
  281. ff_free_vlc(&q->sqvh[i]);
  282. for (i = 0; i < q->num_subpackets; i++)
  283. ff_free_vlc(&q->subpacket[i].ccpl);
  284. av_log(avctx, AV_LOG_DEBUG, "Memory deallocated.\n");
  285. return 0;
  286. }
  287. /**
  288. * Fill the gain array for the timedomain quantization.
  289. *
  290. * @param gb pointer to the GetBitContext
  291. * @param gaininfo array[9] of gain indexes
  292. */
  293. static void decode_gain_info(GetBitContext *gb, int *gaininfo)
  294. {
  295. int i, n;
  296. while (get_bits1(gb)) {
  297. /* NOTHING */
  298. }
  299. n = get_bits_count(gb) - 1; // amount of elements*2 to update
  300. i = 0;
  301. while (n--) {
  302. int index = get_bits(gb, 3);
  303. int gain = get_bits1(gb) ? get_bits(gb, 4) - 7 : -1;
  304. while (i <= index)
  305. gaininfo[i++] = gain;
  306. }
  307. while (i <= 8)
  308. gaininfo[i++] = 0;
  309. }
  310. /**
  311. * Create the quant index table needed for the envelope.
  312. *
  313. * @param q pointer to the COOKContext
  314. * @param quant_index_table pointer to the array
  315. */
  316. static int decode_envelope(COOKContext *q, COOKSubpacket *p,
  317. int *quant_index_table)
  318. {
  319. int i, j, vlc_index;
  320. quant_index_table[0] = get_bits(&q->gb, 6) - 6; // This is used later in categorize
  321. for (i = 1; i < p->total_subbands; i++) {
  322. vlc_index = i;
  323. if (i >= p->js_subband_start * 2) {
  324. vlc_index -= p->js_subband_start;
  325. } else {
  326. vlc_index /= 2;
  327. if (vlc_index < 1)
  328. vlc_index = 1;
  329. }
  330. if (vlc_index > 13)
  331. vlc_index = 13; // the VLC tables >13 are identical to No. 13
  332. j = get_vlc2(&q->gb, q->envelope_quant_index[vlc_index - 1].table,
  333. q->envelope_quant_index[vlc_index - 1].bits, 2);
  334. quant_index_table[i] = quant_index_table[i - 1] + j - 12; // differential encoding
  335. if (quant_index_table[i] > 63 || quant_index_table[i] < -63) {
  336. av_log(q->avctx, AV_LOG_ERROR,
  337. "Invalid quantizer %d at position %d, outside [-63, 63] range\n",
  338. quant_index_table[i], i);
  339. return AVERROR_INVALIDDATA;
  340. }
  341. }
  342. return 0;
  343. }
  344. /**
  345. * Calculate the category and category_index vector.
  346. *
  347. * @param q pointer to the COOKContext
  348. * @param quant_index_table pointer to the array
  349. * @param category pointer to the category array
  350. * @param category_index pointer to the category_index array
  351. */
  352. static void categorize(COOKContext *q, COOKSubpacket *p, int *quant_index_table,
  353. int *category, int *category_index)
  354. {
  355. int exp_idx, bias, tmpbias1, tmpbias2, bits_left, num_bits, index, v, i, j;
  356. int exp_index2[102] = { 0 };
  357. int exp_index1[102] = { 0 };
  358. int tmp_categorize_array[128 * 2] = { 0 };
  359. int tmp_categorize_array1_idx = p->numvector_size;
  360. int tmp_categorize_array2_idx = p->numvector_size;
  361. bits_left = p->bits_per_subpacket - get_bits_count(&q->gb);
  362. if (bits_left > q->samples_per_channel) {
  363. bits_left = q->samples_per_channel +
  364. ((bits_left - q->samples_per_channel) * 5) / 8;
  365. //av_log(q->avctx, AV_LOG_ERROR, "bits_left = %d\n",bits_left);
  366. }
  367. bias = -32;
  368. /* Estimate bias. */
  369. for (i = 32; i > 0; i = i / 2) {
  370. num_bits = 0;
  371. index = 0;
  372. for (j = p->total_subbands; j > 0; j--) {
  373. exp_idx = av_clip((i - quant_index_table[index] + bias) / 2, 0, 7);
  374. index++;
  375. num_bits += expbits_tab[exp_idx];
  376. }
  377. if (num_bits >= bits_left - 32)
  378. bias += i;
  379. }
  380. /* Calculate total number of bits. */
  381. num_bits = 0;
  382. for (i = 0; i < p->total_subbands; i++) {
  383. exp_idx = av_clip((bias - quant_index_table[i]) / 2, 0, 7);
  384. num_bits += expbits_tab[exp_idx];
  385. exp_index1[i] = exp_idx;
  386. exp_index2[i] = exp_idx;
  387. }
  388. tmpbias1 = tmpbias2 = num_bits;
  389. for (j = 1; j < p->numvector_size; j++) {
  390. if (tmpbias1 + tmpbias2 > 2 * bits_left) { /* ---> */
  391. int max = -999999;
  392. index = -1;
  393. for (i = 0; i < p->total_subbands; i++) {
  394. if (exp_index1[i] < 7) {
  395. v = (-2 * exp_index1[i]) - quant_index_table[i] + bias;
  396. if (v >= max) {
  397. max = v;
  398. index = i;
  399. }
  400. }
  401. }
  402. if (index == -1)
  403. break;
  404. tmp_categorize_array[tmp_categorize_array1_idx++] = index;
  405. tmpbias1 -= expbits_tab[exp_index1[index]] -
  406. expbits_tab[exp_index1[index] + 1];
  407. ++exp_index1[index];
  408. } else { /* <--- */
  409. int min = 999999;
  410. index = -1;
  411. for (i = 0; i < p->total_subbands; i++) {
  412. if (exp_index2[i] > 0) {
  413. v = (-2 * exp_index2[i]) - quant_index_table[i] + bias;
  414. if (v < min) {
  415. min = v;
  416. index = i;
  417. }
  418. }
  419. }
  420. if (index == -1)
  421. break;
  422. tmp_categorize_array[--tmp_categorize_array2_idx] = index;
  423. tmpbias2 -= expbits_tab[exp_index2[index]] -
  424. expbits_tab[exp_index2[index] - 1];
  425. --exp_index2[index];
  426. }
  427. }
  428. for (i = 0; i < p->total_subbands; i++)
  429. category[i] = exp_index2[i];
  430. for (i = 0; i < p->numvector_size - 1; i++)
  431. category_index[i] = tmp_categorize_array[tmp_categorize_array2_idx++];
  432. }
  433. /**
  434. * Expand the category vector.
  435. *
  436. * @param q pointer to the COOKContext
  437. * @param category pointer to the category array
  438. * @param category_index pointer to the category_index array
  439. */
  440. static inline void expand_category(COOKContext *q, int *category,
  441. int *category_index)
  442. {
  443. int i;
  444. for (i = 0; i < q->num_vectors; i++)
  445. {
  446. int idx = category_index[i];
  447. if (++category[idx] >= FF_ARRAY_ELEMS(dither_tab))
  448. --category[idx];
  449. }
  450. }
  451. /**
  452. * The real requantization of the mltcoefs
  453. *
  454. * @param q pointer to the COOKContext
  455. * @param index index
  456. * @param quant_index quantisation index
  457. * @param subband_coef_index array of indexes to quant_centroid_tab
  458. * @param subband_coef_sign signs of coefficients
  459. * @param mlt_p pointer into the mlt buffer
  460. */
  461. static void scalar_dequant_float(COOKContext *q, int index, int quant_index,
  462. int *subband_coef_index, int *subband_coef_sign,
  463. float *mlt_p)
  464. {
  465. int i;
  466. float f1;
  467. for (i = 0; i < SUBBAND_SIZE; i++) {
  468. if (subband_coef_index[i]) {
  469. f1 = quant_centroid_tab[index][subband_coef_index[i]];
  470. if (subband_coef_sign[i])
  471. f1 = -f1;
  472. } else {
  473. /* noise coding if subband_coef_index[i] == 0 */
  474. f1 = dither_tab[index];
  475. if (av_lfg_get(&q->random_state) < 0x80000000)
  476. f1 = -f1;
  477. }
  478. mlt_p[i] = f1 * rootpow2tab[quant_index + 63];
  479. }
  480. }
  481. /**
  482. * Unpack the subband_coef_index and subband_coef_sign vectors.
  483. *
  484. * @param q pointer to the COOKContext
  485. * @param category pointer to the category array
  486. * @param subband_coef_index array of indexes to quant_centroid_tab
  487. * @param subband_coef_sign signs of coefficients
  488. */
  489. static int unpack_SQVH(COOKContext *q, COOKSubpacket *p, int category,
  490. int *subband_coef_index, int *subband_coef_sign)
  491. {
  492. int i, j;
  493. int vlc, vd, tmp, result;
  494. vd = vd_tab[category];
  495. result = 0;
  496. for (i = 0; i < vpr_tab[category]; i++) {
  497. vlc = get_vlc2(&q->gb, q->sqvh[category].table, q->sqvh[category].bits, 3);
  498. if (p->bits_per_subpacket < get_bits_count(&q->gb)) {
  499. vlc = 0;
  500. result = 1;
  501. }
  502. for (j = vd - 1; j >= 0; j--) {
  503. tmp = (vlc * invradix_tab[category]) / 0x100000;
  504. subband_coef_index[vd * i + j] = vlc - tmp * (kmax_tab[category] + 1);
  505. vlc = tmp;
  506. }
  507. for (j = 0; j < vd; j++) {
  508. if (subband_coef_index[i * vd + j]) {
  509. if (get_bits_count(&q->gb) < p->bits_per_subpacket) {
  510. subband_coef_sign[i * vd + j] = get_bits1(&q->gb);
  511. } else {
  512. result = 1;
  513. subband_coef_sign[i * vd + j] = 0;
  514. }
  515. } else {
  516. subband_coef_sign[i * vd + j] = 0;
  517. }
  518. }
  519. }
  520. return result;
  521. }
  522. /**
  523. * Fill the mlt_buffer with mlt coefficients.
  524. *
  525. * @param q pointer to the COOKContext
  526. * @param category pointer to the category array
  527. * @param quant_index_table pointer to the array
  528. * @param mlt_buffer pointer to mlt coefficients
  529. */
  530. static void decode_vectors(COOKContext *q, COOKSubpacket *p, int *category,
  531. int *quant_index_table, float *mlt_buffer)
  532. {
  533. /* A zero in this table means that the subband coefficient is
  534. random noise coded. */
  535. int subband_coef_index[SUBBAND_SIZE];
  536. /* A zero in this table means that the subband coefficient is a
  537. positive multiplicator. */
  538. int subband_coef_sign[SUBBAND_SIZE];
  539. int band, j;
  540. int index = 0;
  541. for (band = 0; band < p->total_subbands; band++) {
  542. index = category[band];
  543. if (category[band] < 7) {
  544. if (unpack_SQVH(q, p, category[band], subband_coef_index, subband_coef_sign)) {
  545. index = 7;
  546. for (j = 0; j < p->total_subbands; j++)
  547. category[band + j] = 7;
  548. }
  549. }
  550. if (index >= 7) {
  551. memset(subband_coef_index, 0, sizeof(subband_coef_index));
  552. memset(subband_coef_sign, 0, sizeof(subband_coef_sign));
  553. }
  554. q->scalar_dequant(q, index, quant_index_table[band],
  555. subband_coef_index, subband_coef_sign,
  556. &mlt_buffer[band * SUBBAND_SIZE]);
  557. }
  558. /* FIXME: should this be removed, or moved into loop above? */
  559. if (p->total_subbands * SUBBAND_SIZE >= q->samples_per_channel)
  560. return;
  561. }
  562. /**
  563. * function for decoding mono data
  564. *
  565. * @param q pointer to the COOKContext
  566. * @param mlt_buffer pointer to mlt coefficients
  567. */
  568. static int mono_decode(COOKContext *q, COOKSubpacket *p, float *mlt_buffer)
  569. {
  570. int category_index[128] = { 0 };
  571. int category[128] = { 0 };
  572. int quant_index_table[102];
  573. int res;
  574. if ((res = decode_envelope(q, p, quant_index_table)) < 0)
  575. return res;
  576. q->num_vectors = get_bits(&q->gb, p->log2_numvector_size);
  577. categorize(q, p, quant_index_table, category, category_index);
  578. expand_category(q, category, category_index);
  579. decode_vectors(q, p, category, quant_index_table, mlt_buffer);
  580. return 0;
  581. }
  582. /**
  583. * the actual requantization of the timedomain samples
  584. *
  585. * @param q pointer to the COOKContext
  586. * @param buffer pointer to the timedomain buffer
  587. * @param gain_index index for the block multiplier
  588. * @param gain_index_next index for the next block multiplier
  589. */
  590. static void interpolate_float(COOKContext *q, float *buffer,
  591. int gain_index, int gain_index_next)
  592. {
  593. int i;
  594. float fc1, fc2;
  595. fc1 = pow2tab[gain_index + 63];
  596. if (gain_index == gain_index_next) { // static gain
  597. for (i = 0; i < q->gain_size_factor; i++)
  598. buffer[i] *= fc1;
  599. } else { // smooth gain
  600. fc2 = q->gain_table[11 + (gain_index_next - gain_index)];
  601. for (i = 0; i < q->gain_size_factor; i++) {
  602. buffer[i] *= fc1;
  603. fc1 *= fc2;
  604. }
  605. }
  606. }
  607. /**
  608. * Apply transform window, overlap buffers.
  609. *
  610. * @param q pointer to the COOKContext
  611. * @param inbuffer pointer to the mltcoefficients
  612. * @param gains_ptr current and previous gains
  613. * @param previous_buffer pointer to the previous buffer to be used for overlapping
  614. */
  615. static void imlt_window_float(COOKContext *q, float *inbuffer,
  616. cook_gains *gains_ptr, float *previous_buffer)
  617. {
  618. const float fc = pow2tab[gains_ptr->previous[0] + 63];
  619. int i;
  620. /* The weird thing here, is that the two halves of the time domain
  621. * buffer are swapped. Also, the newest data, that we save away for
  622. * next frame, has the wrong sign. Hence the subtraction below.
  623. * Almost sounds like a complex conjugate/reverse data/FFT effect.
  624. */
  625. /* Apply window and overlap */
  626. for (i = 0; i < q->samples_per_channel; i++)
  627. inbuffer[i] = inbuffer[i] * fc * q->mlt_window[i] -
  628. previous_buffer[i] * q->mlt_window[q->samples_per_channel - 1 - i];
  629. }
  630. /**
  631. * The modulated lapped transform, this takes transform coefficients
  632. * and transforms them into timedomain samples.
  633. * Apply transform window, overlap buffers, apply gain profile
  634. * and buffer management.
  635. *
  636. * @param q pointer to the COOKContext
  637. * @param inbuffer pointer to the mltcoefficients
  638. * @param gains_ptr current and previous gains
  639. * @param previous_buffer pointer to the previous buffer to be used for overlapping
  640. */
  641. static void imlt_gain(COOKContext *q, float *inbuffer,
  642. cook_gains *gains_ptr, float *previous_buffer)
  643. {
  644. float *buffer0 = q->mono_mdct_output;
  645. float *buffer1 = q->mono_mdct_output + q->samples_per_channel;
  646. int i;
  647. /* Inverse modified discrete cosine transform */
  648. q->mdct_ctx.imdct_calc(&q->mdct_ctx, q->mono_mdct_output, inbuffer);
  649. q->imlt_window(q, buffer1, gains_ptr, previous_buffer);
  650. /* Apply gain profile */
  651. for (i = 0; i < 8; i++)
  652. if (gains_ptr->now[i] || gains_ptr->now[i + 1])
  653. q->interpolate(q, &buffer1[q->gain_size_factor * i],
  654. gains_ptr->now[i], gains_ptr->now[i + 1]);
  655. /* Save away the current to be previous block. */
  656. memcpy(previous_buffer, buffer0,
  657. q->samples_per_channel * sizeof(*previous_buffer));
  658. }
  659. /**
  660. * function for getting the jointstereo coupling information
  661. *
  662. * @param q pointer to the COOKContext
  663. * @param decouple_tab decoupling array
  664. *
  665. */
  666. static void decouple_info(COOKContext *q, COOKSubpacket *p, int *decouple_tab)
  667. {
  668. int i;
  669. int vlc = get_bits1(&q->gb);
  670. int start = cplband[p->js_subband_start];
  671. int end = cplband[p->subbands - 1];
  672. int length = end - start + 1;
  673. if (start > end)
  674. return;
  675. if (vlc)
  676. for (i = 0; i < length; i++)
  677. decouple_tab[start + i] = get_vlc2(&q->gb, p->ccpl.table, p->ccpl.bits, 2);
  678. else
  679. for (i = 0; i < length; i++)
  680. decouple_tab[start + i] = get_bits(&q->gb, p->js_vlc_bits);
  681. }
  682. /*
  683. * function decouples a pair of signals from a single signal via multiplication.
  684. *
  685. * @param q pointer to the COOKContext
  686. * @param subband index of the current subband
  687. * @param f1 multiplier for channel 1 extraction
  688. * @param f2 multiplier for channel 2 extraction
  689. * @param decode_buffer input buffer
  690. * @param mlt_buffer1 pointer to left channel mlt coefficients
  691. * @param mlt_buffer2 pointer to right channel mlt coefficients
  692. */
  693. static void decouple_float(COOKContext *q,
  694. COOKSubpacket *p,
  695. int subband,
  696. float f1, float f2,
  697. float *decode_buffer,
  698. float *mlt_buffer1, float *mlt_buffer2)
  699. {
  700. int j, tmp_idx;
  701. for (j = 0; j < SUBBAND_SIZE; j++) {
  702. tmp_idx = ((p->js_subband_start + subband) * SUBBAND_SIZE) + j;
  703. mlt_buffer1[SUBBAND_SIZE * subband + j] = f1 * decode_buffer[tmp_idx];
  704. mlt_buffer2[SUBBAND_SIZE * subband + j] = f2 * decode_buffer[tmp_idx];
  705. }
  706. }
  707. /**
  708. * function for decoding joint stereo data
  709. *
  710. * @param q pointer to the COOKContext
  711. * @param mlt_buffer1 pointer to left channel mlt coefficients
  712. * @param mlt_buffer2 pointer to right channel mlt coefficients
  713. */
  714. static int joint_decode(COOKContext *q, COOKSubpacket *p, float *mlt_buffer1,
  715. float *mlt_buffer2)
  716. {
  717. int i, j, res;
  718. int decouple_tab[SUBBAND_SIZE] = { 0 };
  719. float *decode_buffer = q->decode_buffer_0;
  720. int idx, cpl_tmp;
  721. float f1, f2;
  722. const float *cplscale;
  723. memset(decode_buffer, 0, sizeof(q->decode_buffer_0));
  724. /* Make sure the buffers are zeroed out. */
  725. memset(mlt_buffer1, 0, 1024 * sizeof(*mlt_buffer1));
  726. memset(mlt_buffer2, 0, 1024 * sizeof(*mlt_buffer2));
  727. decouple_info(q, p, decouple_tab);
  728. if ((res = mono_decode(q, p, decode_buffer)) < 0)
  729. return res;
  730. /* The two channels are stored interleaved in decode_buffer. */
  731. for (i = 0; i < p->js_subband_start; i++) {
  732. for (j = 0; j < SUBBAND_SIZE; j++) {
  733. mlt_buffer1[i * 20 + j] = decode_buffer[i * 40 + j];
  734. mlt_buffer2[i * 20 + j] = decode_buffer[i * 40 + 20 + j];
  735. }
  736. }
  737. /* When we reach js_subband_start (the higher frequencies)
  738. the coefficients are stored in a coupling scheme. */
  739. idx = (1 << p->js_vlc_bits) - 1;
  740. for (i = p->js_subband_start; i < p->subbands; i++) {
  741. cpl_tmp = cplband[i];
  742. idx -= decouple_tab[cpl_tmp];
  743. cplscale = q->cplscales[p->js_vlc_bits - 2]; // choose decoupler table
  744. f1 = cplscale[decouple_tab[cpl_tmp] + 1];
  745. f2 = cplscale[idx];
  746. q->decouple(q, p, i, f1, f2, decode_buffer, mlt_buffer1, mlt_buffer2);
  747. idx = (1 << p->js_vlc_bits) - 1;
  748. }
  749. return 0;
  750. }
  751. /**
  752. * First part of subpacket decoding:
  753. * decode raw stream bytes and read gain info.
  754. *
  755. * @param q pointer to the COOKContext
  756. * @param inbuffer pointer to raw stream data
  757. * @param gains_ptr array of current/prev gain pointers
  758. */
  759. static inline void decode_bytes_and_gain(COOKContext *q, COOKSubpacket *p,
  760. const uint8_t *inbuffer,
  761. cook_gains *gains_ptr)
  762. {
  763. int offset;
  764. offset = decode_bytes(inbuffer, q->decoded_bytes_buffer,
  765. p->bits_per_subpacket / 8);
  766. init_get_bits(&q->gb, q->decoded_bytes_buffer + offset,
  767. p->bits_per_subpacket);
  768. decode_gain_info(&q->gb, gains_ptr->now);
  769. /* Swap current and previous gains */
  770. FFSWAP(int *, gains_ptr->now, gains_ptr->previous);
  771. }
  772. /**
  773. * Saturate the output signal and interleave.
  774. *
  775. * @param q pointer to the COOKContext
  776. * @param chan channel to saturate
  777. * @param out pointer to the output vector
  778. */
  779. static void saturate_output_float(COOKContext *q, int chan, float *out)
  780. {
  781. int j;
  782. float *output = q->mono_mdct_output + q->samples_per_channel;
  783. for (j = 0; j < q->samples_per_channel; j++) {
  784. out[chan + q->nb_channels * j] = av_clipf(output[j], -1.0, 1.0);
  785. }
  786. }
  787. /**
  788. * Final part of subpacket decoding:
  789. * Apply modulated lapped transform, gain compensation,
  790. * clip and convert to integer.
  791. *
  792. * @param q pointer to the COOKContext
  793. * @param decode_buffer pointer to the mlt coefficients
  794. * @param gains_ptr array of current/prev gain pointers
  795. * @param previous_buffer pointer to the previous buffer to be used for overlapping
  796. * @param out pointer to the output buffer
  797. * @param chan 0: left or single channel, 1: right channel
  798. */
  799. static inline void mlt_compensate_output(COOKContext *q, float *decode_buffer,
  800. cook_gains *gains_ptr, float *previous_buffer,
  801. float *out, int chan)
  802. {
  803. imlt_gain(q, decode_buffer, gains_ptr, previous_buffer);
  804. if (out)
  805. q->saturate_output(q, chan, out);
  806. }
  807. /**
  808. * Cook subpacket decoding. This function returns one decoded subpacket,
  809. * usually 1024 samples per channel.
  810. *
  811. * @param q pointer to the COOKContext
  812. * @param inbuffer pointer to the inbuffer
  813. * @param outbuffer pointer to the outbuffer
  814. */
  815. static int decode_subpacket(COOKContext *q, COOKSubpacket *p,
  816. const uint8_t *inbuffer, float *outbuffer)
  817. {
  818. int sub_packet_size = p->size;
  819. int res;
  820. /* packet dump */
  821. // for (i = 0; i < sub_packet_size ; i++)
  822. // av_log(q->avctx, AV_LOG_ERROR, "%02x", inbuffer[i]);
  823. // av_log(q->avctx, AV_LOG_ERROR, "\n");
  824. memset(q->decode_buffer_1, 0, sizeof(q->decode_buffer_1));
  825. decode_bytes_and_gain(q, p, inbuffer, &p->gains1);
  826. if (p->joint_stereo) {
  827. if ((res = joint_decode(q, p, q->decode_buffer_1, q->decode_buffer_2)) < 0)
  828. return res;
  829. } else {
  830. if ((res = mono_decode(q, p, q->decode_buffer_1)) < 0)
  831. return res;
  832. if (p->num_channels == 2) {
  833. decode_bytes_and_gain(q, p, inbuffer + sub_packet_size / 2, &p->gains2);
  834. if ((res = mono_decode(q, p, q->decode_buffer_2)) < 0)
  835. return res;
  836. }
  837. }
  838. mlt_compensate_output(q, q->decode_buffer_1, &p->gains1,
  839. p->mono_previous_buffer1, outbuffer, p->ch_idx);
  840. if (p->num_channels == 2)
  841. if (p->joint_stereo)
  842. mlt_compensate_output(q, q->decode_buffer_2, &p->gains1,
  843. p->mono_previous_buffer2, outbuffer, p->ch_idx + 1);
  844. else
  845. mlt_compensate_output(q, q->decode_buffer_2, &p->gains2,
  846. p->mono_previous_buffer2, outbuffer, p->ch_idx + 1);
  847. return 0;
  848. }
  849. /**
  850. * Cook frame decoding
  851. *
  852. * @param avctx pointer to the AVCodecContext
  853. */
  854. static int cook_decode_frame(AVCodecContext *avctx, void *data,
  855. int *got_frame_ptr, AVPacket *avpkt)
  856. {
  857. const uint8_t *buf = avpkt->data;
  858. int buf_size = avpkt->size;
  859. COOKContext *q = avctx->priv_data;
  860. float *samples = NULL;
  861. int i, ret;
  862. int offset = 0;
  863. int chidx = 0;
  864. if (buf_size < avctx->block_align)
  865. return buf_size;
  866. /* get output buffer */
  867. if (q->discarded_packets >= 2) {
  868. q->frame.nb_samples = q->samples_per_channel;
  869. if ((ret = avctx->get_buffer(avctx, &q->frame)) < 0) {
  870. av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
  871. return ret;
  872. }
  873. samples = (float *) q->frame.data[0];
  874. }
  875. /* estimate subpacket sizes */
  876. q->subpacket[0].size = avctx->block_align;
  877. for (i = 1; i < q->num_subpackets; i++) {
  878. q->subpacket[i].size = 2 * buf[avctx->block_align - q->num_subpackets + i];
  879. q->subpacket[0].size -= q->subpacket[i].size + 1;
  880. if (q->subpacket[0].size < 0) {
  881. av_log(avctx, AV_LOG_DEBUG,
  882. "frame subpacket size total > avctx->block_align!\n");
  883. return AVERROR_INVALIDDATA;
  884. }
  885. }
  886. /* decode supbackets */
  887. for (i = 0; i < q->num_subpackets; i++) {
  888. q->subpacket[i].bits_per_subpacket = (q->subpacket[i].size * 8) >>
  889. q->subpacket[i].bits_per_subpdiv;
  890. q->subpacket[i].ch_idx = chidx;
  891. av_log(avctx, AV_LOG_DEBUG,
  892. "subpacket[%i] size %i js %i %i block_align %i\n",
  893. i, q->subpacket[i].size, q->subpacket[i].joint_stereo, offset,
  894. avctx->block_align);
  895. if ((ret = decode_subpacket(q, &q->subpacket[i], buf + offset, samples)) < 0)
  896. return ret;
  897. offset += q->subpacket[i].size;
  898. chidx += q->subpacket[i].num_channels;
  899. av_log(avctx, AV_LOG_DEBUG, "subpacket[%i] %i %i\n",
  900. i, q->subpacket[i].size * 8, get_bits_count(&q->gb));
  901. }
  902. /* Discard the first two frames: no valid audio. */
  903. if (q->discarded_packets < 2) {
  904. q->discarded_packets++;
  905. *got_frame_ptr = 0;
  906. return avctx->block_align;
  907. }
  908. *got_frame_ptr = 1;
  909. *(AVFrame *) data = q->frame;
  910. return avctx->block_align;
  911. }
  912. #ifdef DEBUG
  913. static void dump_cook_context(COOKContext *q)
  914. {
  915. //int i=0;
  916. #define PRINT(a, b) av_log(q->avctx, AV_LOG_ERROR, " %s = %d\n", a, b);
  917. av_log(q->avctx, AV_LOG_ERROR, "COOKextradata\n");
  918. av_log(q->avctx, AV_LOG_ERROR, "cookversion=%x\n", q->subpacket[0].cookversion);
  919. if (q->subpacket[0].cookversion > STEREO) {
  920. PRINT("js_subband_start", q->subpacket[0].js_subband_start);
  921. PRINT("js_vlc_bits", q->subpacket[0].js_vlc_bits);
  922. }
  923. av_log(q->avctx, AV_LOG_ERROR, "COOKContext\n");
  924. PRINT("nb_channels", q->nb_channels);
  925. PRINT("bit_rate", q->bit_rate);
  926. PRINT("sample_rate", q->sample_rate);
  927. PRINT("samples_per_channel", q->subpacket[0].samples_per_channel);
  928. PRINT("samples_per_frame", q->subpacket[0].samples_per_frame);
  929. PRINT("subbands", q->subpacket[0].subbands);
  930. PRINT("js_subband_start", q->subpacket[0].js_subband_start);
  931. PRINT("log2_numvector_size", q->subpacket[0].log2_numvector_size);
  932. PRINT("numvector_size", q->subpacket[0].numvector_size);
  933. PRINT("total_subbands", q->subpacket[0].total_subbands);
  934. }
  935. #endif
  936. static av_cold int cook_count_channels(unsigned int mask)
  937. {
  938. int i;
  939. int channels = 0;
  940. for (i = 0; i < 32; i++)
  941. if (mask & (1 << i))
  942. ++channels;
  943. return channels;
  944. }
  945. /**
  946. * Cook initialization
  947. *
  948. * @param avctx pointer to the AVCodecContext
  949. */
  950. static av_cold int cook_decode_init(AVCodecContext *avctx)
  951. {
  952. COOKContext *q = avctx->priv_data;
  953. const uint8_t *edata_ptr = avctx->extradata;
  954. const uint8_t *edata_ptr_end = edata_ptr + avctx->extradata_size;
  955. int extradata_size = avctx->extradata_size;
  956. int s = 0;
  957. unsigned int channel_mask = 0;
  958. int ret;
  959. q->avctx = avctx;
  960. /* Take care of the codec specific extradata. */
  961. if (extradata_size <= 0) {
  962. av_log(avctx, AV_LOG_ERROR, "Necessary extradata missing!\n");
  963. return AVERROR_INVALIDDATA;
  964. }
  965. av_log(avctx, AV_LOG_DEBUG, "codecdata_length=%d\n", avctx->extradata_size);
  966. /* Take data from the AVCodecContext (RM container). */
  967. q->sample_rate = avctx->sample_rate;
  968. q->nb_channels = avctx->channels;
  969. q->bit_rate = avctx->bit_rate;
  970. if (!q->nb_channels) {
  971. av_log(avctx, AV_LOG_ERROR, "Invalid number of channels\n");
  972. return AVERROR_INVALIDDATA;
  973. }
  974. /* Initialize RNG. */
  975. av_lfg_init(&q->random_state, 0);
  976. while (edata_ptr < edata_ptr_end) {
  977. /* 8 for mono, 16 for stereo, ? for multichannel
  978. Swap to right endianness so we don't need to care later on. */
  979. if (extradata_size >= 8) {
  980. q->subpacket[s].cookversion = bytestream_get_be32(&edata_ptr);
  981. q->subpacket[s].samples_per_frame = bytestream_get_be16(&edata_ptr);
  982. q->subpacket[s].subbands = bytestream_get_be16(&edata_ptr);
  983. extradata_size -= 8;
  984. }
  985. if (extradata_size >= 8) {
  986. bytestream_get_be32(&edata_ptr); // Unknown unused
  987. q->subpacket[s].js_subband_start = bytestream_get_be16(&edata_ptr);
  988. q->subpacket[s].js_vlc_bits = bytestream_get_be16(&edata_ptr);
  989. extradata_size -= 8;
  990. }
  991. /* Initialize extradata related variables. */
  992. q->subpacket[s].samples_per_channel = q->subpacket[s].samples_per_frame / q->nb_channels;
  993. q->subpacket[s].bits_per_subpacket = avctx->block_align * 8;
  994. /* Initialize default data states. */
  995. q->subpacket[s].log2_numvector_size = 5;
  996. q->subpacket[s].total_subbands = q->subpacket[s].subbands;
  997. q->subpacket[s].num_channels = 1;
  998. /* Initialize version-dependent variables */
  999. av_log(avctx, AV_LOG_DEBUG, "subpacket[%i].cookversion=%x\n", s,
  1000. q->subpacket[s].cookversion);
  1001. q->subpacket[s].joint_stereo = 0;
  1002. switch (q->subpacket[s].cookversion) {
  1003. case MONO:
  1004. if (q->nb_channels != 1) {
  1005. av_log_ask_for_sample(avctx, "Container channels != 1.\n");
  1006. return AVERROR_PATCHWELCOME;
  1007. }
  1008. av_log(avctx, AV_LOG_DEBUG, "MONO\n");
  1009. break;
  1010. case STEREO:
  1011. if (q->nb_channels != 1) {
  1012. q->subpacket[s].bits_per_subpdiv = 1;
  1013. q->subpacket[s].num_channels = 2;
  1014. }
  1015. av_log(avctx, AV_LOG_DEBUG, "STEREO\n");
  1016. break;
  1017. case JOINT_STEREO:
  1018. if (q->nb_channels != 2) {
  1019. av_log_ask_for_sample(avctx, "Container channels != 2.\n");
  1020. return AVERROR_PATCHWELCOME;
  1021. }
  1022. av_log(avctx, AV_LOG_DEBUG, "JOINT_STEREO\n");
  1023. if (avctx->extradata_size >= 16) {
  1024. q->subpacket[s].total_subbands = q->subpacket[s].subbands +
  1025. q->subpacket[s].js_subband_start;
  1026. q->subpacket[s].joint_stereo = 1;
  1027. q->subpacket[s].num_channels = 2;
  1028. }
  1029. if (q->subpacket[s].samples_per_channel > 256) {
  1030. q->subpacket[s].log2_numvector_size = 6;
  1031. }
  1032. if (q->subpacket[s].samples_per_channel > 512) {
  1033. q->subpacket[s].log2_numvector_size = 7;
  1034. }
  1035. break;
  1036. case MC_COOK:
  1037. av_log(avctx, AV_LOG_DEBUG, "MULTI_CHANNEL\n");
  1038. if (extradata_size >= 4)
  1039. channel_mask |= q->subpacket[s].channel_mask = bytestream_get_be32(&edata_ptr);
  1040. if (cook_count_channels(q->subpacket[s].channel_mask) > 1) {
  1041. q->subpacket[s].total_subbands = q->subpacket[s].subbands +
  1042. q->subpacket[s].js_subband_start;
  1043. q->subpacket[s].joint_stereo = 1;
  1044. q->subpacket[s].num_channels = 2;
  1045. q->subpacket[s].samples_per_channel = q->subpacket[s].samples_per_frame >> 1;
  1046. if (q->subpacket[s].samples_per_channel > 256) {
  1047. q->subpacket[s].log2_numvector_size = 6;
  1048. }
  1049. if (q->subpacket[s].samples_per_channel > 512) {
  1050. q->subpacket[s].log2_numvector_size = 7;
  1051. }
  1052. } else
  1053. q->subpacket[s].samples_per_channel = q->subpacket[s].samples_per_frame;
  1054. break;
  1055. default:
  1056. av_log_ask_for_sample(avctx, "Unknown Cook version.\n");
  1057. return AVERROR_PATCHWELCOME;
  1058. }
  1059. if (s > 1 && q->subpacket[s].samples_per_channel != q->samples_per_channel) {
  1060. av_log(avctx, AV_LOG_ERROR, "different number of samples per channel!\n");
  1061. return AVERROR_INVALIDDATA;
  1062. } else
  1063. q->samples_per_channel = q->subpacket[0].samples_per_channel;
  1064. /* Initialize variable relations */
  1065. q->subpacket[s].numvector_size = (1 << q->subpacket[s].log2_numvector_size);
  1066. /* Try to catch some obviously faulty streams, othervise it might be exploitable */
  1067. if (q->subpacket[s].total_subbands > 53) {
  1068. av_log_ask_for_sample(avctx, "total_subbands > 53\n");
  1069. return AVERROR_PATCHWELCOME;
  1070. }
  1071. if ((q->subpacket[s].js_vlc_bits > 6) ||
  1072. (q->subpacket[s].js_vlc_bits < 2 * q->subpacket[s].joint_stereo)) {
  1073. av_log(avctx, AV_LOG_ERROR, "js_vlc_bits = %d, only >= %d and <= 6 allowed!\n",
  1074. q->subpacket[s].js_vlc_bits, 2 * q->subpacket[s].joint_stereo);
  1075. return AVERROR_INVALIDDATA;
  1076. }
  1077. if (q->subpacket[s].subbands > 50) {
  1078. av_log_ask_for_sample(avctx, "subbands > 50\n");
  1079. return AVERROR_PATCHWELCOME;
  1080. }
  1081. q->subpacket[s].gains1.now = q->subpacket[s].gain_1;
  1082. q->subpacket[s].gains1.previous = q->subpacket[s].gain_2;
  1083. q->subpacket[s].gains2.now = q->subpacket[s].gain_3;
  1084. q->subpacket[s].gains2.previous = q->subpacket[s].gain_4;
  1085. q->num_subpackets++;
  1086. s++;
  1087. if (s > MAX_SUBPACKETS) {
  1088. av_log_ask_for_sample(avctx, "Too many subpackets > 5\n");
  1089. return AVERROR_PATCHWELCOME;
  1090. }
  1091. }
  1092. /* Generate tables */
  1093. init_pow2table();
  1094. init_gain_table(q);
  1095. init_cplscales_table(q);
  1096. if ((ret = init_cook_vlc_tables(q)))
  1097. return ret;
  1098. if (avctx->block_align >= UINT_MAX / 2)
  1099. return AVERROR(EINVAL);
  1100. /* Pad the databuffer with:
  1101. DECODE_BYTES_PAD1 or DECODE_BYTES_PAD2 for decode_bytes(),
  1102. FF_INPUT_BUFFER_PADDING_SIZE, for the bitstreamreader. */
  1103. q->decoded_bytes_buffer =
  1104. av_mallocz(avctx->block_align
  1105. + DECODE_BYTES_PAD1(avctx->block_align)
  1106. + FF_INPUT_BUFFER_PADDING_SIZE);
  1107. if (q->decoded_bytes_buffer == NULL)
  1108. return AVERROR(ENOMEM);
  1109. /* Initialize transform. */
  1110. if ((ret = init_cook_mlt(q)))
  1111. return ret;
  1112. /* Initialize COOK signal arithmetic handling */
  1113. if (1) {
  1114. q->scalar_dequant = scalar_dequant_float;
  1115. q->decouple = decouple_float;
  1116. q->imlt_window = imlt_window_float;
  1117. q->interpolate = interpolate_float;
  1118. q->saturate_output = saturate_output_float;
  1119. }
  1120. /* Try to catch some obviously faulty streams, othervise it might be exploitable */
  1121. if ((q->samples_per_channel == 256) || (q->samples_per_channel == 512)
  1122. || (q->samples_per_channel == 1024)) {
  1123. } else {
  1124. av_log_ask_for_sample(avctx,
  1125. "unknown amount of samples_per_channel = %d\n",
  1126. q->samples_per_channel);
  1127. return AVERROR_PATCHWELCOME;
  1128. }
  1129. avctx->sample_fmt = AV_SAMPLE_FMT_FLT;
  1130. if (channel_mask)
  1131. avctx->channel_layout = channel_mask;
  1132. else
  1133. avctx->channel_layout = (avctx->channels == 2) ? AV_CH_LAYOUT_STEREO : AV_CH_LAYOUT_MONO;
  1134. avcodec_get_frame_defaults(&q->frame);
  1135. avctx->coded_frame = &q->frame;
  1136. #ifdef DEBUG
  1137. dump_cook_context(q);
  1138. #endif
  1139. return 0;
  1140. }
  1141. AVCodec ff_cook_decoder = {
  1142. .name = "cook",
  1143. .type = AVMEDIA_TYPE_AUDIO,
  1144. .id = CODEC_ID_COOK,
  1145. .priv_data_size = sizeof(COOKContext),
  1146. .init = cook_decode_init,
  1147. .close = cook_decode_close,
  1148. .decode = cook_decode_frame,
  1149. .capabilities = CODEC_CAP_DR1,
  1150. .long_name = NULL_IF_CONFIG_SMALL("COOK"),
  1151. };