You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1249 lines
45KB

  1. /*
  2. * AMR wideband decoder
  3. * Copyright (c) 2010 Marcelo Galvao Povoa
  4. *
  5. * This file is part of Libav.
  6. *
  7. * Libav is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * Libav is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A particular PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with Libav; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file
  23. * AMR wideband decoder
  24. */
  25. #include "libavutil/lfg.h"
  26. #include "avcodec.h"
  27. #include "lsp.h"
  28. #include "celp_math.h"
  29. #include "celp_filters.h"
  30. #include "acelp_filters.h"
  31. #include "acelp_vectors.h"
  32. #include "acelp_pitch_delay.h"
  33. #define AMR_USE_16BIT_TABLES
  34. #include "amr.h"
  35. #include "amrwbdata.h"
  36. typedef struct {
  37. AVFrame avframe; ///< AVFrame for decoded samples
  38. AMRWBFrame frame; ///< AMRWB parameters decoded from bitstream
  39. enum Mode fr_cur_mode; ///< mode index of current frame
  40. uint8_t fr_quality; ///< frame quality index (FQI)
  41. float isf_cur[LP_ORDER]; ///< working ISF vector from current frame
  42. float isf_q_past[LP_ORDER]; ///< quantized ISF vector of the previous frame
  43. float isf_past_final[LP_ORDER]; ///< final processed ISF vector of the previous frame
  44. double isp[4][LP_ORDER]; ///< ISP vectors from current frame
  45. double isp_sub4_past[LP_ORDER]; ///< ISP vector for the 4th subframe of the previous frame
  46. float lp_coef[4][LP_ORDER]; ///< Linear Prediction Coefficients from ISP vector
  47. uint8_t base_pitch_lag; ///< integer part of pitch lag for the next relative subframe
  48. uint8_t pitch_lag_int; ///< integer part of pitch lag of the previous subframe
  49. float excitation_buf[AMRWB_P_DELAY_MAX + LP_ORDER + 2 + AMRWB_SFR_SIZE]; ///< current excitation and all necessary excitation history
  50. float *excitation; ///< points to current excitation in excitation_buf[]
  51. float pitch_vector[AMRWB_SFR_SIZE]; ///< adaptive codebook (pitch) vector for current subframe
  52. float fixed_vector[AMRWB_SFR_SIZE]; ///< algebraic codebook (fixed) vector for current subframe
  53. float prediction_error[4]; ///< quantified prediction errors {20log10(^gamma_gc)} for previous four subframes
  54. float pitch_gain[6]; ///< quantified pitch gains for the current and previous five subframes
  55. float fixed_gain[2]; ///< quantified fixed gains for the current and previous subframes
  56. float tilt_coef; ///< {beta_1} related to the voicing of the previous subframe
  57. float prev_sparse_fixed_gain; ///< previous fixed gain; used by anti-sparseness to determine "onset"
  58. uint8_t prev_ir_filter_nr; ///< previous impulse response filter "impNr": 0 - strong, 1 - medium, 2 - none
  59. float prev_tr_gain; ///< previous initial gain used by noise enhancer for threshold
  60. float samples_az[LP_ORDER + AMRWB_SFR_SIZE]; ///< low-band samples and memory from synthesis at 12.8kHz
  61. float samples_up[UPS_MEM_SIZE + AMRWB_SFR_SIZE]; ///< low-band samples and memory processed for upsampling
  62. float samples_hb[LP_ORDER_16k + AMRWB_SFR_SIZE_16k]; ///< high-band samples and memory from synthesis at 16kHz
  63. float hpf_31_mem[2], hpf_400_mem[2]; ///< previous values in the high pass filters
  64. float demph_mem[1]; ///< previous value in the de-emphasis filter
  65. float bpf_6_7_mem[HB_FIR_SIZE]; ///< previous values in the high-band band pass filter
  66. float lpf_7_mem[HB_FIR_SIZE]; ///< previous values in the high-band low pass filter
  67. AVLFG prng; ///< random number generator for white noise excitation
  68. uint8_t first_frame; ///< flag active during decoding of the first frame
  69. } AMRWBContext;
  70. static av_cold int amrwb_decode_init(AVCodecContext *avctx)
  71. {
  72. AMRWBContext *ctx = avctx->priv_data;
  73. int i;
  74. avctx->sample_fmt = AV_SAMPLE_FMT_FLT;
  75. av_lfg_init(&ctx->prng, 1);
  76. ctx->excitation = &ctx->excitation_buf[AMRWB_P_DELAY_MAX + LP_ORDER + 1];
  77. ctx->first_frame = 1;
  78. for (i = 0; i < LP_ORDER; i++)
  79. ctx->isf_past_final[i] = isf_init[i] * (1.0f / (1 << 15));
  80. for (i = 0; i < 4; i++)
  81. ctx->prediction_error[i] = MIN_ENERGY;
  82. avcodec_get_frame_defaults(&ctx->avframe);
  83. avctx->coded_frame = &ctx->avframe;
  84. return 0;
  85. }
  86. /**
  87. * Decode the frame header in the "MIME/storage" format. This format
  88. * is simpler and does not carry the auxiliary frame information.
  89. *
  90. * @param[in] ctx The Context
  91. * @param[in] buf Pointer to the input buffer
  92. *
  93. * @return The decoded header length in bytes
  94. */
  95. static int decode_mime_header(AMRWBContext *ctx, const uint8_t *buf)
  96. {
  97. /* Decode frame header (1st octet) */
  98. ctx->fr_cur_mode = buf[0] >> 3 & 0x0F;
  99. ctx->fr_quality = (buf[0] & 0x4) != 0x4;
  100. return 1;
  101. }
  102. /**
  103. * Decode quantized ISF vectors using 36-bit indexes (6K60 mode only).
  104. *
  105. * @param[in] ind Array of 5 indexes
  106. * @param[out] isf_q Buffer for isf_q[LP_ORDER]
  107. *
  108. */
  109. static void decode_isf_indices_36b(uint16_t *ind, float *isf_q)
  110. {
  111. int i;
  112. for (i = 0; i < 9; i++)
  113. isf_q[i] = dico1_isf[ind[0]][i] * (1.0f / (1 << 15));
  114. for (i = 0; i < 7; i++)
  115. isf_q[i + 9] = dico2_isf[ind[1]][i] * (1.0f / (1 << 15));
  116. for (i = 0; i < 5; i++)
  117. isf_q[i] += dico21_isf_36b[ind[2]][i] * (1.0f / (1 << 15));
  118. for (i = 0; i < 4; i++)
  119. isf_q[i + 5] += dico22_isf_36b[ind[3]][i] * (1.0f / (1 << 15));
  120. for (i = 0; i < 7; i++)
  121. isf_q[i + 9] += dico23_isf_36b[ind[4]][i] * (1.0f / (1 << 15));
  122. }
  123. /**
  124. * Decode quantized ISF vectors using 46-bit indexes (except 6K60 mode).
  125. *
  126. * @param[in] ind Array of 7 indexes
  127. * @param[out] isf_q Buffer for isf_q[LP_ORDER]
  128. *
  129. */
  130. static void decode_isf_indices_46b(uint16_t *ind, float *isf_q)
  131. {
  132. int i;
  133. for (i = 0; i < 9; i++)
  134. isf_q[i] = dico1_isf[ind[0]][i] * (1.0f / (1 << 15));
  135. for (i = 0; i < 7; i++)
  136. isf_q[i + 9] = dico2_isf[ind[1]][i] * (1.0f / (1 << 15));
  137. for (i = 0; i < 3; i++)
  138. isf_q[i] += dico21_isf[ind[2]][i] * (1.0f / (1 << 15));
  139. for (i = 0; i < 3; i++)
  140. isf_q[i + 3] += dico22_isf[ind[3]][i] * (1.0f / (1 << 15));
  141. for (i = 0; i < 3; i++)
  142. isf_q[i + 6] += dico23_isf[ind[4]][i] * (1.0f / (1 << 15));
  143. for (i = 0; i < 3; i++)
  144. isf_q[i + 9] += dico24_isf[ind[5]][i] * (1.0f / (1 << 15));
  145. for (i = 0; i < 4; i++)
  146. isf_q[i + 12] += dico25_isf[ind[6]][i] * (1.0f / (1 << 15));
  147. }
  148. /**
  149. * Apply mean and past ISF values using the prediction factor.
  150. * Updates past ISF vector.
  151. *
  152. * @param[in,out] isf_q Current quantized ISF
  153. * @param[in,out] isf_past Past quantized ISF
  154. *
  155. */
  156. static void isf_add_mean_and_past(float *isf_q, float *isf_past)
  157. {
  158. int i;
  159. float tmp;
  160. for (i = 0; i < LP_ORDER; i++) {
  161. tmp = isf_q[i];
  162. isf_q[i] += isf_mean[i] * (1.0f / (1 << 15));
  163. isf_q[i] += PRED_FACTOR * isf_past[i];
  164. isf_past[i] = tmp;
  165. }
  166. }
  167. /**
  168. * Interpolate the fourth ISP vector from current and past frames
  169. * to obtain an ISP vector for each subframe.
  170. *
  171. * @param[in,out] isp_q ISPs for each subframe
  172. * @param[in] isp4_past Past ISP for subframe 4
  173. */
  174. static void interpolate_isp(double isp_q[4][LP_ORDER], const double *isp4_past)
  175. {
  176. int i, k;
  177. for (k = 0; k < 3; k++) {
  178. float c = isfp_inter[k];
  179. for (i = 0; i < LP_ORDER; i++)
  180. isp_q[k][i] = (1.0 - c) * isp4_past[i] + c * isp_q[3][i];
  181. }
  182. }
  183. /**
  184. * Decode an adaptive codebook index into pitch lag (except 6k60, 8k85 modes).
  185. * Calculate integer lag and fractional lag always using 1/4 resolution.
  186. * In 1st and 3rd subframes the index is relative to last subframe integer lag.
  187. *
  188. * @param[out] lag_int Decoded integer pitch lag
  189. * @param[out] lag_frac Decoded fractional pitch lag
  190. * @param[in] pitch_index Adaptive codebook pitch index
  191. * @param[in,out] base_lag_int Base integer lag used in relative subframes
  192. * @param[in] subframe Current subframe index (0 to 3)
  193. */
  194. static void decode_pitch_lag_high(int *lag_int, int *lag_frac, int pitch_index,
  195. uint8_t *base_lag_int, int subframe)
  196. {
  197. if (subframe == 0 || subframe == 2) {
  198. if (pitch_index < 376) {
  199. *lag_int = (pitch_index + 137) >> 2;
  200. *lag_frac = pitch_index - (*lag_int << 2) + 136;
  201. } else if (pitch_index < 440) {
  202. *lag_int = (pitch_index + 257 - 376) >> 1;
  203. *lag_frac = (pitch_index - (*lag_int << 1) + 256 - 376) << 1;
  204. /* the actual resolution is 1/2 but expressed as 1/4 */
  205. } else {
  206. *lag_int = pitch_index - 280;
  207. *lag_frac = 0;
  208. }
  209. /* minimum lag for next subframe */
  210. *base_lag_int = av_clip(*lag_int - 8 - (*lag_frac < 0),
  211. AMRWB_P_DELAY_MIN, AMRWB_P_DELAY_MAX - 15);
  212. // XXX: the spec states clearly that *base_lag_int should be
  213. // the nearest integer to *lag_int (minus 8), but the ref code
  214. // actually always uses its floor, I'm following the latter
  215. } else {
  216. *lag_int = (pitch_index + 1) >> 2;
  217. *lag_frac = pitch_index - (*lag_int << 2);
  218. *lag_int += *base_lag_int;
  219. }
  220. }
  221. /**
  222. * Decode an adaptive codebook index into pitch lag for 8k85 and 6k60 modes.
  223. * The description is analogous to decode_pitch_lag_high, but in 6k60 the
  224. * relative index is used for all subframes except the first.
  225. */
  226. static void decode_pitch_lag_low(int *lag_int, int *lag_frac, int pitch_index,
  227. uint8_t *base_lag_int, int subframe, enum Mode mode)
  228. {
  229. if (subframe == 0 || (subframe == 2 && mode != MODE_6k60)) {
  230. if (pitch_index < 116) {
  231. *lag_int = (pitch_index + 69) >> 1;
  232. *lag_frac = (pitch_index - (*lag_int << 1) + 68) << 1;
  233. } else {
  234. *lag_int = pitch_index - 24;
  235. *lag_frac = 0;
  236. }
  237. // XXX: same problem as before
  238. *base_lag_int = av_clip(*lag_int - 8 - (*lag_frac < 0),
  239. AMRWB_P_DELAY_MIN, AMRWB_P_DELAY_MAX - 15);
  240. } else {
  241. *lag_int = (pitch_index + 1) >> 1;
  242. *lag_frac = (pitch_index - (*lag_int << 1)) << 1;
  243. *lag_int += *base_lag_int;
  244. }
  245. }
  246. /**
  247. * Find the pitch vector by interpolating the past excitation at the
  248. * pitch delay, which is obtained in this function.
  249. *
  250. * @param[in,out] ctx The context
  251. * @param[in] amr_subframe Current subframe data
  252. * @param[in] subframe Current subframe index (0 to 3)
  253. */
  254. static void decode_pitch_vector(AMRWBContext *ctx,
  255. const AMRWBSubFrame *amr_subframe,
  256. const int subframe)
  257. {
  258. int pitch_lag_int, pitch_lag_frac;
  259. int i;
  260. float *exc = ctx->excitation;
  261. enum Mode mode = ctx->fr_cur_mode;
  262. if (mode <= MODE_8k85) {
  263. decode_pitch_lag_low(&pitch_lag_int, &pitch_lag_frac, amr_subframe->adap,
  264. &ctx->base_pitch_lag, subframe, mode);
  265. } else
  266. decode_pitch_lag_high(&pitch_lag_int, &pitch_lag_frac, amr_subframe->adap,
  267. &ctx->base_pitch_lag, subframe);
  268. ctx->pitch_lag_int = pitch_lag_int;
  269. pitch_lag_int += pitch_lag_frac > 0;
  270. /* Calculate the pitch vector by interpolating the past excitation at the
  271. pitch lag using a hamming windowed sinc function */
  272. ff_acelp_interpolatef(exc, exc + 1 - pitch_lag_int,
  273. ac_inter, 4,
  274. pitch_lag_frac + (pitch_lag_frac > 0 ? 0 : 4),
  275. LP_ORDER, AMRWB_SFR_SIZE + 1);
  276. /* Check which pitch signal path should be used
  277. * 6k60 and 8k85 modes have the ltp flag set to 0 */
  278. if (amr_subframe->ltp) {
  279. memcpy(ctx->pitch_vector, exc, AMRWB_SFR_SIZE * sizeof(float));
  280. } else {
  281. for (i = 0; i < AMRWB_SFR_SIZE; i++)
  282. ctx->pitch_vector[i] = 0.18 * exc[i - 1] + 0.64 * exc[i] +
  283. 0.18 * exc[i + 1];
  284. memcpy(exc, ctx->pitch_vector, AMRWB_SFR_SIZE * sizeof(float));
  285. }
  286. }
  287. /** Get x bits in the index interval [lsb,lsb+len-1] inclusive */
  288. #define BIT_STR(x,lsb,len) (((x) >> (lsb)) & ((1 << (len)) - 1))
  289. /** Get the bit at specified position */
  290. #define BIT_POS(x, p) (((x) >> (p)) & 1)
  291. /**
  292. * The next six functions decode_[i]p_track decode exactly i pulses
  293. * positions and amplitudes (-1 or 1) in a subframe track using
  294. * an encoded pulse indexing (TS 26.190 section 5.8.2).
  295. *
  296. * The results are given in out[], in which a negative number means
  297. * amplitude -1 and vice versa (i.e., ampl(x) = x / abs(x) ).
  298. *
  299. * @param[out] out Output buffer (writes i elements)
  300. * @param[in] code Pulse index (no. of bits varies, see below)
  301. * @param[in] m (log2) Number of potential positions
  302. * @param[in] off Offset for decoded positions
  303. */
  304. static inline void decode_1p_track(int *out, int code, int m, int off)
  305. {
  306. int pos = BIT_STR(code, 0, m) + off; ///code: m+1 bits
  307. out[0] = BIT_POS(code, m) ? -pos : pos;
  308. }
  309. static inline void decode_2p_track(int *out, int code, int m, int off) ///code: 2m+1 bits
  310. {
  311. int pos0 = BIT_STR(code, m, m) + off;
  312. int pos1 = BIT_STR(code, 0, m) + off;
  313. out[0] = BIT_POS(code, 2*m) ? -pos0 : pos0;
  314. out[1] = BIT_POS(code, 2*m) ? -pos1 : pos1;
  315. out[1] = pos0 > pos1 ? -out[1] : out[1];
  316. }
  317. static void decode_3p_track(int *out, int code, int m, int off) ///code: 3m+1 bits
  318. {
  319. int half_2p = BIT_POS(code, 2*m - 1) << (m - 1);
  320. decode_2p_track(out, BIT_STR(code, 0, 2*m - 1),
  321. m - 1, off + half_2p);
  322. decode_1p_track(out + 2, BIT_STR(code, 2*m, m + 1), m, off);
  323. }
  324. static void decode_4p_track(int *out, int code, int m, int off) ///code: 4m bits
  325. {
  326. int half_4p, subhalf_2p;
  327. int b_offset = 1 << (m - 1);
  328. switch (BIT_STR(code, 4*m - 2, 2)) { /* case ID (2 bits) */
  329. case 0: /* 0 pulses in A, 4 pulses in B or vice versa */
  330. half_4p = BIT_POS(code, 4*m - 3) << (m - 1); // which has 4 pulses
  331. subhalf_2p = BIT_POS(code, 2*m - 3) << (m - 2);
  332. decode_2p_track(out, BIT_STR(code, 0, 2*m - 3),
  333. m - 2, off + half_4p + subhalf_2p);
  334. decode_2p_track(out + 2, BIT_STR(code, 2*m - 2, 2*m - 1),
  335. m - 1, off + half_4p);
  336. break;
  337. case 1: /* 1 pulse in A, 3 pulses in B */
  338. decode_1p_track(out, BIT_STR(code, 3*m - 2, m),
  339. m - 1, off);
  340. decode_3p_track(out + 1, BIT_STR(code, 0, 3*m - 2),
  341. m - 1, off + b_offset);
  342. break;
  343. case 2: /* 2 pulses in each half */
  344. decode_2p_track(out, BIT_STR(code, 2*m - 1, 2*m - 1),
  345. m - 1, off);
  346. decode_2p_track(out + 2, BIT_STR(code, 0, 2*m - 1),
  347. m - 1, off + b_offset);
  348. break;
  349. case 3: /* 3 pulses in A, 1 pulse in B */
  350. decode_3p_track(out, BIT_STR(code, m, 3*m - 2),
  351. m - 1, off);
  352. decode_1p_track(out + 3, BIT_STR(code, 0, m),
  353. m - 1, off + b_offset);
  354. break;
  355. }
  356. }
  357. static void decode_5p_track(int *out, int code, int m, int off) ///code: 5m bits
  358. {
  359. int half_3p = BIT_POS(code, 5*m - 1) << (m - 1);
  360. decode_3p_track(out, BIT_STR(code, 2*m + 1, 3*m - 2),
  361. m - 1, off + half_3p);
  362. decode_2p_track(out + 3, BIT_STR(code, 0, 2*m + 1), m, off);
  363. }
  364. static void decode_6p_track(int *out, int code, int m, int off) ///code: 6m-2 bits
  365. {
  366. int b_offset = 1 << (m - 1);
  367. /* which half has more pulses in cases 0 to 2 */
  368. int half_more = BIT_POS(code, 6*m - 5) << (m - 1);
  369. int half_other = b_offset - half_more;
  370. switch (BIT_STR(code, 6*m - 4, 2)) { /* case ID (2 bits) */
  371. case 0: /* 0 pulses in A, 6 pulses in B or vice versa */
  372. decode_1p_track(out, BIT_STR(code, 0, m),
  373. m - 1, off + half_more);
  374. decode_5p_track(out + 1, BIT_STR(code, m, 5*m - 5),
  375. m - 1, off + half_more);
  376. break;
  377. case 1: /* 1 pulse in A, 5 pulses in B or vice versa */
  378. decode_1p_track(out, BIT_STR(code, 0, m),
  379. m - 1, off + half_other);
  380. decode_5p_track(out + 1, BIT_STR(code, m, 5*m - 5),
  381. m - 1, off + half_more);
  382. break;
  383. case 2: /* 2 pulses in A, 4 pulses in B or vice versa */
  384. decode_2p_track(out, BIT_STR(code, 0, 2*m - 1),
  385. m - 1, off + half_other);
  386. decode_4p_track(out + 2, BIT_STR(code, 2*m - 1, 4*m - 4),
  387. m - 1, off + half_more);
  388. break;
  389. case 3: /* 3 pulses in A, 3 pulses in B */
  390. decode_3p_track(out, BIT_STR(code, 3*m - 2, 3*m - 2),
  391. m - 1, off);
  392. decode_3p_track(out + 3, BIT_STR(code, 0, 3*m - 2),
  393. m - 1, off + b_offset);
  394. break;
  395. }
  396. }
  397. /**
  398. * Decode the algebraic codebook index to pulse positions and signs,
  399. * then construct the algebraic codebook vector.
  400. *
  401. * @param[out] fixed_vector Buffer for the fixed codebook excitation
  402. * @param[in] pulse_hi MSBs part of the pulse index array (higher modes only)
  403. * @param[in] pulse_lo LSBs part of the pulse index array
  404. * @param[in] mode Mode of the current frame
  405. */
  406. static void decode_fixed_vector(float *fixed_vector, const uint16_t *pulse_hi,
  407. const uint16_t *pulse_lo, const enum Mode mode)
  408. {
  409. /* sig_pos stores for each track the decoded pulse position indexes
  410. * (1-based) multiplied by its corresponding amplitude (+1 or -1) */
  411. int sig_pos[4][6];
  412. int spacing = (mode == MODE_6k60) ? 2 : 4;
  413. int i, j;
  414. switch (mode) {
  415. case MODE_6k60:
  416. for (i = 0; i < 2; i++)
  417. decode_1p_track(sig_pos[i], pulse_lo[i], 5, 1);
  418. break;
  419. case MODE_8k85:
  420. for (i = 0; i < 4; i++)
  421. decode_1p_track(sig_pos[i], pulse_lo[i], 4, 1);
  422. break;
  423. case MODE_12k65:
  424. for (i = 0; i < 4; i++)
  425. decode_2p_track(sig_pos[i], pulse_lo[i], 4, 1);
  426. break;
  427. case MODE_14k25:
  428. for (i = 0; i < 2; i++)
  429. decode_3p_track(sig_pos[i], pulse_lo[i], 4, 1);
  430. for (i = 2; i < 4; i++)
  431. decode_2p_track(sig_pos[i], pulse_lo[i], 4, 1);
  432. break;
  433. case MODE_15k85:
  434. for (i = 0; i < 4; i++)
  435. decode_3p_track(sig_pos[i], pulse_lo[i], 4, 1);
  436. break;
  437. case MODE_18k25:
  438. for (i = 0; i < 4; i++)
  439. decode_4p_track(sig_pos[i], (int) pulse_lo[i] +
  440. ((int) pulse_hi[i] << 14), 4, 1);
  441. break;
  442. case MODE_19k85:
  443. for (i = 0; i < 2; i++)
  444. decode_5p_track(sig_pos[i], (int) pulse_lo[i] +
  445. ((int) pulse_hi[i] << 10), 4, 1);
  446. for (i = 2; i < 4; i++)
  447. decode_4p_track(sig_pos[i], (int) pulse_lo[i] +
  448. ((int) pulse_hi[i] << 14), 4, 1);
  449. break;
  450. case MODE_23k05:
  451. case MODE_23k85:
  452. for (i = 0; i < 4; i++)
  453. decode_6p_track(sig_pos[i], (int) pulse_lo[i] +
  454. ((int) pulse_hi[i] << 11), 4, 1);
  455. break;
  456. }
  457. memset(fixed_vector, 0, sizeof(float) * AMRWB_SFR_SIZE);
  458. for (i = 0; i < 4; i++)
  459. for (j = 0; j < pulses_nb_per_mode_tr[mode][i]; j++) {
  460. int pos = (FFABS(sig_pos[i][j]) - 1) * spacing + i;
  461. fixed_vector[pos] += sig_pos[i][j] < 0 ? -1.0 : 1.0;
  462. }
  463. }
  464. /**
  465. * Decode pitch gain and fixed gain correction factor.
  466. *
  467. * @param[in] vq_gain Vector-quantized index for gains
  468. * @param[in] mode Mode of the current frame
  469. * @param[out] fixed_gain_factor Decoded fixed gain correction factor
  470. * @param[out] pitch_gain Decoded pitch gain
  471. */
  472. static void decode_gains(const uint8_t vq_gain, const enum Mode mode,
  473. float *fixed_gain_factor, float *pitch_gain)
  474. {
  475. const int16_t *gains = (mode <= MODE_8k85 ? qua_gain_6b[vq_gain] :
  476. qua_gain_7b[vq_gain]);
  477. *pitch_gain = gains[0] * (1.0f / (1 << 14));
  478. *fixed_gain_factor = gains[1] * (1.0f / (1 << 11));
  479. }
  480. /**
  481. * Apply pitch sharpening filters to the fixed codebook vector.
  482. *
  483. * @param[in] ctx The context
  484. * @param[in,out] fixed_vector Fixed codebook excitation
  485. */
  486. // XXX: Spec states this procedure should be applied when the pitch
  487. // lag is less than 64, but this checking seems absent in reference and AMR-NB
  488. static void pitch_sharpening(AMRWBContext *ctx, float *fixed_vector)
  489. {
  490. int i;
  491. /* Tilt part */
  492. for (i = AMRWB_SFR_SIZE - 1; i != 0; i--)
  493. fixed_vector[i] -= fixed_vector[i - 1] * ctx->tilt_coef;
  494. /* Periodicity enhancement part */
  495. for (i = ctx->pitch_lag_int; i < AMRWB_SFR_SIZE; i++)
  496. fixed_vector[i] += fixed_vector[i - ctx->pitch_lag_int] * 0.85;
  497. }
  498. /**
  499. * Calculate the voicing factor (-1.0 = unvoiced to 1.0 = voiced).
  500. *
  501. * @param[in] p_vector, f_vector Pitch and fixed excitation vectors
  502. * @param[in] p_gain, f_gain Pitch and fixed gains
  503. */
  504. // XXX: There is something wrong with the precision here! The magnitudes
  505. // of the energies are not correct. Please check the reference code carefully
  506. static float voice_factor(float *p_vector, float p_gain,
  507. float *f_vector, float f_gain)
  508. {
  509. double p_ener = (double) ff_dot_productf(p_vector, p_vector,
  510. AMRWB_SFR_SIZE) * p_gain * p_gain;
  511. double f_ener = (double) ff_dot_productf(f_vector, f_vector,
  512. AMRWB_SFR_SIZE) * f_gain * f_gain;
  513. return (p_ener - f_ener) / (p_ener + f_ener);
  514. }
  515. /**
  516. * Reduce fixed vector sparseness by smoothing with one of three IR filters,
  517. * also known as "adaptive phase dispersion".
  518. *
  519. * @param[in] ctx The context
  520. * @param[in,out] fixed_vector Unfiltered fixed vector
  521. * @param[out] buf Space for modified vector if necessary
  522. *
  523. * @return The potentially overwritten filtered fixed vector address
  524. */
  525. static float *anti_sparseness(AMRWBContext *ctx,
  526. float *fixed_vector, float *buf)
  527. {
  528. int ir_filter_nr;
  529. if (ctx->fr_cur_mode > MODE_8k85) // no filtering in higher modes
  530. return fixed_vector;
  531. if (ctx->pitch_gain[0] < 0.6) {
  532. ir_filter_nr = 0; // strong filtering
  533. } else if (ctx->pitch_gain[0] < 0.9) {
  534. ir_filter_nr = 1; // medium filtering
  535. } else
  536. ir_filter_nr = 2; // no filtering
  537. /* detect 'onset' */
  538. if (ctx->fixed_gain[0] > 3.0 * ctx->fixed_gain[1]) {
  539. if (ir_filter_nr < 2)
  540. ir_filter_nr++;
  541. } else {
  542. int i, count = 0;
  543. for (i = 0; i < 6; i++)
  544. if (ctx->pitch_gain[i] < 0.6)
  545. count++;
  546. if (count > 2)
  547. ir_filter_nr = 0;
  548. if (ir_filter_nr > ctx->prev_ir_filter_nr + 1)
  549. ir_filter_nr--;
  550. }
  551. /* update ir filter strength history */
  552. ctx->prev_ir_filter_nr = ir_filter_nr;
  553. ir_filter_nr += (ctx->fr_cur_mode == MODE_8k85);
  554. if (ir_filter_nr < 2) {
  555. int i;
  556. const float *coef = ir_filters_lookup[ir_filter_nr];
  557. /* Circular convolution code in the reference
  558. * decoder was modified to avoid using one
  559. * extra array. The filtered vector is given by:
  560. *
  561. * c2(n) = sum(i,0,len-1){ c(i) * coef( (n - i + len) % len ) }
  562. */
  563. memset(buf, 0, sizeof(float) * AMRWB_SFR_SIZE);
  564. for (i = 0; i < AMRWB_SFR_SIZE; i++)
  565. if (fixed_vector[i])
  566. ff_celp_circ_addf(buf, buf, coef, i, fixed_vector[i],
  567. AMRWB_SFR_SIZE);
  568. fixed_vector = buf;
  569. }
  570. return fixed_vector;
  571. }
  572. /**
  573. * Calculate a stability factor {teta} based on distance between
  574. * current and past isf. A value of 1 shows maximum signal stability.
  575. */
  576. static float stability_factor(const float *isf, const float *isf_past)
  577. {
  578. int i;
  579. float acc = 0.0;
  580. for (i = 0; i < LP_ORDER - 1; i++)
  581. acc += (isf[i] - isf_past[i]) * (isf[i] - isf_past[i]);
  582. // XXX: This part is not so clear from the reference code
  583. // the result is more accurate changing the "/ 256" to "* 512"
  584. return FFMAX(0.0, 1.25 - acc * 0.8 * 512);
  585. }
  586. /**
  587. * Apply a non-linear fixed gain smoothing in order to reduce
  588. * fluctuation in the energy of excitation.
  589. *
  590. * @param[in] fixed_gain Unsmoothed fixed gain
  591. * @param[in,out] prev_tr_gain Previous threshold gain (updated)
  592. * @param[in] voice_fac Frame voicing factor
  593. * @param[in] stab_fac Frame stability factor
  594. *
  595. * @return The smoothed gain
  596. */
  597. static float noise_enhancer(float fixed_gain, float *prev_tr_gain,
  598. float voice_fac, float stab_fac)
  599. {
  600. float sm_fac = 0.5 * (1 - voice_fac) * stab_fac;
  601. float g0;
  602. // XXX: the following fixed-point constants used to in(de)crement
  603. // gain by 1.5dB were taken from the reference code, maybe it could
  604. // be simpler
  605. if (fixed_gain < *prev_tr_gain) {
  606. g0 = FFMIN(*prev_tr_gain, fixed_gain + fixed_gain *
  607. (6226 * (1.0f / (1 << 15)))); // +1.5 dB
  608. } else
  609. g0 = FFMAX(*prev_tr_gain, fixed_gain *
  610. (27536 * (1.0f / (1 << 15)))); // -1.5 dB
  611. *prev_tr_gain = g0; // update next frame threshold
  612. return sm_fac * g0 + (1 - sm_fac) * fixed_gain;
  613. }
  614. /**
  615. * Filter the fixed_vector to emphasize the higher frequencies.
  616. *
  617. * @param[in,out] fixed_vector Fixed codebook vector
  618. * @param[in] voice_fac Frame voicing factor
  619. */
  620. static void pitch_enhancer(float *fixed_vector, float voice_fac)
  621. {
  622. int i;
  623. float cpe = 0.125 * (1 + voice_fac);
  624. float last = fixed_vector[0]; // holds c(i - 1)
  625. fixed_vector[0] -= cpe * fixed_vector[1];
  626. for (i = 1; i < AMRWB_SFR_SIZE - 1; i++) {
  627. float cur = fixed_vector[i];
  628. fixed_vector[i] -= cpe * (last + fixed_vector[i + 1]);
  629. last = cur;
  630. }
  631. fixed_vector[AMRWB_SFR_SIZE - 1] -= cpe * last;
  632. }
  633. /**
  634. * Conduct 16th order linear predictive coding synthesis from excitation.
  635. *
  636. * @param[in] ctx Pointer to the AMRWBContext
  637. * @param[in] lpc Pointer to the LPC coefficients
  638. * @param[out] excitation Buffer for synthesis final excitation
  639. * @param[in] fixed_gain Fixed codebook gain for synthesis
  640. * @param[in] fixed_vector Algebraic codebook vector
  641. * @param[in,out] samples Pointer to the output samples and memory
  642. */
  643. static void synthesis(AMRWBContext *ctx, float *lpc, float *excitation,
  644. float fixed_gain, const float *fixed_vector,
  645. float *samples)
  646. {
  647. ff_weighted_vector_sumf(excitation, ctx->pitch_vector, fixed_vector,
  648. ctx->pitch_gain[0], fixed_gain, AMRWB_SFR_SIZE);
  649. /* emphasize pitch vector contribution in low bitrate modes */
  650. if (ctx->pitch_gain[0] > 0.5 && ctx->fr_cur_mode <= MODE_8k85) {
  651. int i;
  652. float energy = ff_dot_productf(excitation, excitation,
  653. AMRWB_SFR_SIZE);
  654. // XXX: Weird part in both ref code and spec. A unknown parameter
  655. // {beta} seems to be identical to the current pitch gain
  656. float pitch_factor = 0.25 * ctx->pitch_gain[0] * ctx->pitch_gain[0];
  657. for (i = 0; i < AMRWB_SFR_SIZE; i++)
  658. excitation[i] += pitch_factor * ctx->pitch_vector[i];
  659. ff_scale_vector_to_given_sum_of_squares(excitation, excitation,
  660. energy, AMRWB_SFR_SIZE);
  661. }
  662. ff_celp_lp_synthesis_filterf(samples, lpc, excitation,
  663. AMRWB_SFR_SIZE, LP_ORDER);
  664. }
  665. /**
  666. * Apply to synthesis a de-emphasis filter of the form:
  667. * H(z) = 1 / (1 - m * z^-1)
  668. *
  669. * @param[out] out Output buffer
  670. * @param[in] in Input samples array with in[-1]
  671. * @param[in] m Filter coefficient
  672. * @param[in,out] mem State from last filtering
  673. */
  674. static void de_emphasis(float *out, float *in, float m, float mem[1])
  675. {
  676. int i;
  677. out[0] = in[0] + m * mem[0];
  678. for (i = 1; i < AMRWB_SFR_SIZE; i++)
  679. out[i] = in[i] + out[i - 1] * m;
  680. mem[0] = out[AMRWB_SFR_SIZE - 1];
  681. }
  682. /**
  683. * Upsample a signal by 5/4 ratio (from 12.8kHz to 16kHz) using
  684. * a FIR interpolation filter. Uses past data from before *in address.
  685. *
  686. * @param[out] out Buffer for interpolated signal
  687. * @param[in] in Current signal data (length 0.8*o_size)
  688. * @param[in] o_size Output signal length
  689. */
  690. static void upsample_5_4(float *out, const float *in, int o_size)
  691. {
  692. const float *in0 = in - UPS_FIR_SIZE + 1;
  693. int i, j, k;
  694. int int_part = 0, frac_part;
  695. i = 0;
  696. for (j = 0; j < o_size / 5; j++) {
  697. out[i] = in[int_part];
  698. frac_part = 4;
  699. i++;
  700. for (k = 1; k < 5; k++) {
  701. out[i] = ff_dot_productf(in0 + int_part, upsample_fir[4 - frac_part],
  702. UPS_MEM_SIZE);
  703. int_part++;
  704. frac_part--;
  705. i++;
  706. }
  707. }
  708. }
  709. /**
  710. * Calculate the high-band gain based on encoded index (23k85 mode) or
  711. * on the low-band speech signal and the Voice Activity Detection flag.
  712. *
  713. * @param[in] ctx The context
  714. * @param[in] synth LB speech synthesis at 12.8k
  715. * @param[in] hb_idx Gain index for mode 23k85 only
  716. * @param[in] vad VAD flag for the frame
  717. */
  718. static float find_hb_gain(AMRWBContext *ctx, const float *synth,
  719. uint16_t hb_idx, uint8_t vad)
  720. {
  721. int wsp = (vad > 0);
  722. float tilt;
  723. if (ctx->fr_cur_mode == MODE_23k85)
  724. return qua_hb_gain[hb_idx] * (1.0f / (1 << 14));
  725. tilt = ff_dot_productf(synth, synth + 1, AMRWB_SFR_SIZE - 1) /
  726. ff_dot_productf(synth, synth, AMRWB_SFR_SIZE);
  727. /* return gain bounded by [0.1, 1.0] */
  728. return av_clipf((1.0 - FFMAX(0.0, tilt)) * (1.25 - 0.25 * wsp), 0.1, 1.0);
  729. }
  730. /**
  731. * Generate the high-band excitation with the same energy from the lower
  732. * one and scaled by the given gain.
  733. *
  734. * @param[in] ctx The context
  735. * @param[out] hb_exc Buffer for the excitation
  736. * @param[in] synth_exc Low-band excitation used for synthesis
  737. * @param[in] hb_gain Wanted excitation gain
  738. */
  739. static void scaled_hb_excitation(AMRWBContext *ctx, float *hb_exc,
  740. const float *synth_exc, float hb_gain)
  741. {
  742. int i;
  743. float energy = ff_dot_productf(synth_exc, synth_exc, AMRWB_SFR_SIZE);
  744. /* Generate a white-noise excitation */
  745. for (i = 0; i < AMRWB_SFR_SIZE_16k; i++)
  746. hb_exc[i] = 32768.0 - (uint16_t) av_lfg_get(&ctx->prng);
  747. ff_scale_vector_to_given_sum_of_squares(hb_exc, hb_exc,
  748. energy * hb_gain * hb_gain,
  749. AMRWB_SFR_SIZE_16k);
  750. }
  751. /**
  752. * Calculate the auto-correlation for the ISF difference vector.
  753. */
  754. static float auto_correlation(float *diff_isf, float mean, int lag)
  755. {
  756. int i;
  757. float sum = 0.0;
  758. for (i = 7; i < LP_ORDER - 2; i++) {
  759. float prod = (diff_isf[i] - mean) * (diff_isf[i - lag] - mean);
  760. sum += prod * prod;
  761. }
  762. return sum;
  763. }
  764. /**
  765. * Extrapolate a ISF vector to the 16kHz range (20th order LP)
  766. * used at mode 6k60 LP filter for the high frequency band.
  767. *
  768. * @param[out] isf Buffer for extrapolated isf; contains LP_ORDER
  769. * values on input
  770. */
  771. static void extrapolate_isf(float isf[LP_ORDER_16k])
  772. {
  773. float diff_isf[LP_ORDER - 2], diff_mean;
  774. float *diff_hi = diff_isf - LP_ORDER + 1; // diff array for extrapolated indexes
  775. float corr_lag[3];
  776. float est, scale;
  777. int i, i_max_corr;
  778. isf[LP_ORDER_16k - 1] = isf[LP_ORDER - 1];
  779. /* Calculate the difference vector */
  780. for (i = 0; i < LP_ORDER - 2; i++)
  781. diff_isf[i] = isf[i + 1] - isf[i];
  782. diff_mean = 0.0;
  783. for (i = 2; i < LP_ORDER - 2; i++)
  784. diff_mean += diff_isf[i] * (1.0f / (LP_ORDER - 4));
  785. /* Find which is the maximum autocorrelation */
  786. i_max_corr = 0;
  787. for (i = 0; i < 3; i++) {
  788. corr_lag[i] = auto_correlation(diff_isf, diff_mean, i + 2);
  789. if (corr_lag[i] > corr_lag[i_max_corr])
  790. i_max_corr = i;
  791. }
  792. i_max_corr++;
  793. for (i = LP_ORDER - 1; i < LP_ORDER_16k - 1; i++)
  794. isf[i] = isf[i - 1] + isf[i - 1 - i_max_corr]
  795. - isf[i - 2 - i_max_corr];
  796. /* Calculate an estimate for ISF(18) and scale ISF based on the error */
  797. est = 7965 + (isf[2] - isf[3] - isf[4]) / 6.0;
  798. scale = 0.5 * (FFMIN(est, 7600) - isf[LP_ORDER - 2]) /
  799. (isf[LP_ORDER_16k - 2] - isf[LP_ORDER - 2]);
  800. for (i = LP_ORDER - 1; i < LP_ORDER_16k - 1; i++)
  801. diff_hi[i] = scale * (isf[i] - isf[i - 1]);
  802. /* Stability insurance */
  803. for (i = LP_ORDER; i < LP_ORDER_16k - 1; i++)
  804. if (diff_hi[i] + diff_hi[i - 1] < 5.0) {
  805. if (diff_hi[i] > diff_hi[i - 1]) {
  806. diff_hi[i - 1] = 5.0 - diff_hi[i];
  807. } else
  808. diff_hi[i] = 5.0 - diff_hi[i - 1];
  809. }
  810. for (i = LP_ORDER - 1; i < LP_ORDER_16k - 1; i++)
  811. isf[i] = isf[i - 1] + diff_hi[i] * (1.0f / (1 << 15));
  812. /* Scale the ISF vector for 16000 Hz */
  813. for (i = 0; i < LP_ORDER_16k - 1; i++)
  814. isf[i] *= 0.8;
  815. }
  816. /**
  817. * Spectral expand the LP coefficients using the equation:
  818. * y[i] = x[i] * (gamma ** i)
  819. *
  820. * @param[out] out Output buffer (may use input array)
  821. * @param[in] lpc LP coefficients array
  822. * @param[in] gamma Weighting factor
  823. * @param[in] size LP array size
  824. */
  825. static void lpc_weighting(float *out, const float *lpc, float gamma, int size)
  826. {
  827. int i;
  828. float fac = gamma;
  829. for (i = 0; i < size; i++) {
  830. out[i] = lpc[i] * fac;
  831. fac *= gamma;
  832. }
  833. }
  834. /**
  835. * Conduct 20th order linear predictive coding synthesis for the high
  836. * frequency band excitation at 16kHz.
  837. *
  838. * @param[in] ctx The context
  839. * @param[in] subframe Current subframe index (0 to 3)
  840. * @param[in,out] samples Pointer to the output speech samples
  841. * @param[in] exc Generated white-noise scaled excitation
  842. * @param[in] isf Current frame isf vector
  843. * @param[in] isf_past Past frame final isf vector
  844. */
  845. static void hb_synthesis(AMRWBContext *ctx, int subframe, float *samples,
  846. const float *exc, const float *isf, const float *isf_past)
  847. {
  848. float hb_lpc[LP_ORDER_16k];
  849. enum Mode mode = ctx->fr_cur_mode;
  850. if (mode == MODE_6k60) {
  851. float e_isf[LP_ORDER_16k]; // ISF vector for extrapolation
  852. double e_isp[LP_ORDER_16k];
  853. ff_weighted_vector_sumf(e_isf, isf_past, isf, isfp_inter[subframe],
  854. 1.0 - isfp_inter[subframe], LP_ORDER);
  855. extrapolate_isf(e_isf);
  856. e_isf[LP_ORDER_16k - 1] *= 2.0;
  857. ff_acelp_lsf2lspd(e_isp, e_isf, LP_ORDER_16k);
  858. ff_amrwb_lsp2lpc(e_isp, hb_lpc, LP_ORDER_16k);
  859. lpc_weighting(hb_lpc, hb_lpc, 0.9, LP_ORDER_16k);
  860. } else {
  861. lpc_weighting(hb_lpc, ctx->lp_coef[subframe], 0.6, LP_ORDER);
  862. }
  863. ff_celp_lp_synthesis_filterf(samples, hb_lpc, exc, AMRWB_SFR_SIZE_16k,
  864. (mode == MODE_6k60) ? LP_ORDER_16k : LP_ORDER);
  865. }
  866. /**
  867. * Apply a 15th order filter to high-band samples.
  868. * The filter characteristic depends on the given coefficients.
  869. *
  870. * @param[out] out Buffer for filtered output
  871. * @param[in] fir_coef Filter coefficients
  872. * @param[in,out] mem State from last filtering (updated)
  873. * @param[in] in Input speech data (high-band)
  874. *
  875. * @remark It is safe to pass the same array in in and out parameters
  876. */
  877. static void hb_fir_filter(float *out, const float fir_coef[HB_FIR_SIZE + 1],
  878. float mem[HB_FIR_SIZE], const float *in)
  879. {
  880. int i, j;
  881. float data[AMRWB_SFR_SIZE_16k + HB_FIR_SIZE]; // past and current samples
  882. memcpy(data, mem, HB_FIR_SIZE * sizeof(float));
  883. memcpy(data + HB_FIR_SIZE, in, AMRWB_SFR_SIZE_16k * sizeof(float));
  884. for (i = 0; i < AMRWB_SFR_SIZE_16k; i++) {
  885. out[i] = 0.0;
  886. for (j = 0; j <= HB_FIR_SIZE; j++)
  887. out[i] += data[i + j] * fir_coef[j];
  888. }
  889. memcpy(mem, data + AMRWB_SFR_SIZE_16k, HB_FIR_SIZE * sizeof(float));
  890. }
  891. /**
  892. * Update context state before the next subframe.
  893. */
  894. static void update_sub_state(AMRWBContext *ctx)
  895. {
  896. memmove(&ctx->excitation_buf[0], &ctx->excitation_buf[AMRWB_SFR_SIZE],
  897. (AMRWB_P_DELAY_MAX + LP_ORDER + 1) * sizeof(float));
  898. memmove(&ctx->pitch_gain[1], &ctx->pitch_gain[0], 5 * sizeof(float));
  899. memmove(&ctx->fixed_gain[1], &ctx->fixed_gain[0], 1 * sizeof(float));
  900. memmove(&ctx->samples_az[0], &ctx->samples_az[AMRWB_SFR_SIZE],
  901. LP_ORDER * sizeof(float));
  902. memmove(&ctx->samples_up[0], &ctx->samples_up[AMRWB_SFR_SIZE],
  903. UPS_MEM_SIZE * sizeof(float));
  904. memmove(&ctx->samples_hb[0], &ctx->samples_hb[AMRWB_SFR_SIZE_16k],
  905. LP_ORDER_16k * sizeof(float));
  906. }
  907. static int amrwb_decode_frame(AVCodecContext *avctx, void *data,
  908. int *got_frame_ptr, AVPacket *avpkt)
  909. {
  910. AMRWBContext *ctx = avctx->priv_data;
  911. AMRWBFrame *cf = &ctx->frame;
  912. const uint8_t *buf = avpkt->data;
  913. int buf_size = avpkt->size;
  914. int expected_fr_size, header_size;
  915. float *buf_out;
  916. float spare_vector[AMRWB_SFR_SIZE]; // extra stack space to hold result from anti-sparseness processing
  917. float fixed_gain_factor; // fixed gain correction factor (gamma)
  918. float *synth_fixed_vector; // pointer to the fixed vector that synthesis should use
  919. float synth_fixed_gain; // the fixed gain that synthesis should use
  920. float voice_fac, stab_fac; // parameters used for gain smoothing
  921. float synth_exc[AMRWB_SFR_SIZE]; // post-processed excitation for synthesis
  922. float hb_exc[AMRWB_SFR_SIZE_16k]; // excitation for the high frequency band
  923. float hb_samples[AMRWB_SFR_SIZE_16k]; // filtered high-band samples from synthesis
  924. float hb_gain;
  925. int sub, i, ret;
  926. /* get output buffer */
  927. ctx->avframe.nb_samples = 4 * AMRWB_SFR_SIZE_16k;
  928. if ((ret = avctx->get_buffer(avctx, &ctx->avframe)) < 0) {
  929. av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
  930. return ret;
  931. }
  932. buf_out = (float *)ctx->avframe.data[0];
  933. header_size = decode_mime_header(ctx, buf);
  934. if (ctx->fr_cur_mode > MODE_SID) {
  935. av_log(avctx, AV_LOG_ERROR,
  936. "Invalid mode %d\n", ctx->fr_cur_mode);
  937. return AVERROR_INVALIDDATA;
  938. }
  939. expected_fr_size = ((cf_sizes_wb[ctx->fr_cur_mode] + 7) >> 3) + 1;
  940. if (buf_size < expected_fr_size) {
  941. av_log(avctx, AV_LOG_ERROR,
  942. "Frame too small (%d bytes). Truncated file?\n", buf_size);
  943. *got_frame_ptr = 0;
  944. return AVERROR_INVALIDDATA;
  945. }
  946. if (!ctx->fr_quality || ctx->fr_cur_mode > MODE_SID)
  947. av_log(avctx, AV_LOG_ERROR, "Encountered a bad or corrupted frame\n");
  948. if (ctx->fr_cur_mode == MODE_SID) { /* Comfort noise frame */
  949. av_log_missing_feature(avctx, "SID mode", 1);
  950. return -1;
  951. }
  952. ff_amr_bit_reorder((uint16_t *) &ctx->frame, sizeof(AMRWBFrame),
  953. buf + header_size, amr_bit_orderings_by_mode[ctx->fr_cur_mode]);
  954. /* Decode the quantized ISF vector */
  955. if (ctx->fr_cur_mode == MODE_6k60) {
  956. decode_isf_indices_36b(cf->isp_id, ctx->isf_cur);
  957. } else {
  958. decode_isf_indices_46b(cf->isp_id, ctx->isf_cur);
  959. }
  960. isf_add_mean_and_past(ctx->isf_cur, ctx->isf_q_past);
  961. ff_set_min_dist_lsf(ctx->isf_cur, MIN_ISF_SPACING, LP_ORDER - 1);
  962. stab_fac = stability_factor(ctx->isf_cur, ctx->isf_past_final);
  963. ctx->isf_cur[LP_ORDER - 1] *= 2.0;
  964. ff_acelp_lsf2lspd(ctx->isp[3], ctx->isf_cur, LP_ORDER);
  965. /* Generate a ISP vector for each subframe */
  966. if (ctx->first_frame) {
  967. ctx->first_frame = 0;
  968. memcpy(ctx->isp_sub4_past, ctx->isp[3], LP_ORDER * sizeof(double));
  969. }
  970. interpolate_isp(ctx->isp, ctx->isp_sub4_past);
  971. for (sub = 0; sub < 4; sub++)
  972. ff_amrwb_lsp2lpc(ctx->isp[sub], ctx->lp_coef[sub], LP_ORDER);
  973. for (sub = 0; sub < 4; sub++) {
  974. const AMRWBSubFrame *cur_subframe = &cf->subframe[sub];
  975. float *sub_buf = buf_out + sub * AMRWB_SFR_SIZE_16k;
  976. /* Decode adaptive codebook (pitch vector) */
  977. decode_pitch_vector(ctx, cur_subframe, sub);
  978. /* Decode innovative codebook (fixed vector) */
  979. decode_fixed_vector(ctx->fixed_vector, cur_subframe->pul_ih,
  980. cur_subframe->pul_il, ctx->fr_cur_mode);
  981. pitch_sharpening(ctx, ctx->fixed_vector);
  982. decode_gains(cur_subframe->vq_gain, ctx->fr_cur_mode,
  983. &fixed_gain_factor, &ctx->pitch_gain[0]);
  984. ctx->fixed_gain[0] =
  985. ff_amr_set_fixed_gain(fixed_gain_factor,
  986. ff_dot_productf(ctx->fixed_vector, ctx->fixed_vector,
  987. AMRWB_SFR_SIZE) / AMRWB_SFR_SIZE,
  988. ctx->prediction_error,
  989. ENERGY_MEAN, energy_pred_fac);
  990. /* Calculate voice factor and store tilt for next subframe */
  991. voice_fac = voice_factor(ctx->pitch_vector, ctx->pitch_gain[0],
  992. ctx->fixed_vector, ctx->fixed_gain[0]);
  993. ctx->tilt_coef = voice_fac * 0.25 + 0.25;
  994. /* Construct current excitation */
  995. for (i = 0; i < AMRWB_SFR_SIZE; i++) {
  996. ctx->excitation[i] *= ctx->pitch_gain[0];
  997. ctx->excitation[i] += ctx->fixed_gain[0] * ctx->fixed_vector[i];
  998. ctx->excitation[i] = truncf(ctx->excitation[i]);
  999. }
  1000. /* Post-processing of excitation elements */
  1001. synth_fixed_gain = noise_enhancer(ctx->fixed_gain[0], &ctx->prev_tr_gain,
  1002. voice_fac, stab_fac);
  1003. synth_fixed_vector = anti_sparseness(ctx, ctx->fixed_vector,
  1004. spare_vector);
  1005. pitch_enhancer(synth_fixed_vector, voice_fac);
  1006. synthesis(ctx, ctx->lp_coef[sub], synth_exc, synth_fixed_gain,
  1007. synth_fixed_vector, &ctx->samples_az[LP_ORDER]);
  1008. /* Synthesis speech post-processing */
  1009. de_emphasis(&ctx->samples_up[UPS_MEM_SIZE],
  1010. &ctx->samples_az[LP_ORDER], PREEMPH_FAC, ctx->demph_mem);
  1011. ff_acelp_apply_order_2_transfer_function(&ctx->samples_up[UPS_MEM_SIZE],
  1012. &ctx->samples_up[UPS_MEM_SIZE], hpf_zeros, hpf_31_poles,
  1013. hpf_31_gain, ctx->hpf_31_mem, AMRWB_SFR_SIZE);
  1014. upsample_5_4(sub_buf, &ctx->samples_up[UPS_FIR_SIZE],
  1015. AMRWB_SFR_SIZE_16k);
  1016. /* High frequency band (6.4 - 7.0 kHz) generation part */
  1017. ff_acelp_apply_order_2_transfer_function(hb_samples,
  1018. &ctx->samples_up[UPS_MEM_SIZE], hpf_zeros, hpf_400_poles,
  1019. hpf_400_gain, ctx->hpf_400_mem, AMRWB_SFR_SIZE);
  1020. hb_gain = find_hb_gain(ctx, hb_samples,
  1021. cur_subframe->hb_gain, cf->vad);
  1022. scaled_hb_excitation(ctx, hb_exc, synth_exc, hb_gain);
  1023. hb_synthesis(ctx, sub, &ctx->samples_hb[LP_ORDER_16k],
  1024. hb_exc, ctx->isf_cur, ctx->isf_past_final);
  1025. /* High-band post-processing filters */
  1026. hb_fir_filter(hb_samples, bpf_6_7_coef, ctx->bpf_6_7_mem,
  1027. &ctx->samples_hb[LP_ORDER_16k]);
  1028. if (ctx->fr_cur_mode == MODE_23k85)
  1029. hb_fir_filter(hb_samples, lpf_7_coef, ctx->lpf_7_mem,
  1030. hb_samples);
  1031. /* Add the low and high frequency bands */
  1032. for (i = 0; i < AMRWB_SFR_SIZE_16k; i++)
  1033. sub_buf[i] = (sub_buf[i] + hb_samples[i]) * (1.0f / (1 << 15));
  1034. /* Update buffers and history */
  1035. update_sub_state(ctx);
  1036. }
  1037. /* update state for next frame */
  1038. memcpy(ctx->isp_sub4_past, ctx->isp[3], LP_ORDER * sizeof(ctx->isp[3][0]));
  1039. memcpy(ctx->isf_past_final, ctx->isf_cur, LP_ORDER * sizeof(float));
  1040. *got_frame_ptr = 1;
  1041. *(AVFrame *)data = ctx->avframe;
  1042. return expected_fr_size;
  1043. }
  1044. AVCodec ff_amrwb_decoder = {
  1045. .name = "amrwb",
  1046. .type = AVMEDIA_TYPE_AUDIO,
  1047. .id = CODEC_ID_AMR_WB,
  1048. .priv_data_size = sizeof(AMRWBContext),
  1049. .init = amrwb_decode_init,
  1050. .decode = amrwb_decode_frame,
  1051. .capabilities = CODEC_CAP_DR1,
  1052. .long_name = NULL_IF_CONFIG_SMALL("Adaptive Multi-Rate WideBand"),
  1053. .sample_fmts = (const enum AVSampleFormat[]){ AV_SAMPLE_FMT_FLT,
  1054. AV_SAMPLE_FMT_NONE },
  1055. };