You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1717 lines
63KB

  1. /*
  2. * AAC Spectral Band Replication decoding functions
  3. * Copyright (c) 2008-2009 Robert Swain ( rob opendot cl )
  4. * Copyright (c) 2009-2010 Alex Converse <alex.converse@gmail.com>
  5. *
  6. * This file is part of Libav.
  7. *
  8. * Libav is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU Lesser General Public
  10. * License as published by the Free Software Foundation; either
  11. * version 2.1 of the License, or (at your option) any later version.
  12. *
  13. * Libav is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * Lesser General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU Lesser General Public
  19. * License along with Libav; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  21. */
  22. /**
  23. * @file
  24. * AAC Spectral Band Replication decoding functions
  25. * @author Robert Swain ( rob opendot cl )
  26. */
  27. #include "aac.h"
  28. #include "sbr.h"
  29. #include "aacsbr.h"
  30. #include "aacsbrdata.h"
  31. #include "fft.h"
  32. #include "aacps.h"
  33. #include "sbrdsp.h"
  34. #include "libavutil/libm.h"
  35. #include <stdint.h>
  36. #include <float.h>
  37. #define ENVELOPE_ADJUSTMENT_OFFSET 2
  38. #define NOISE_FLOOR_OFFSET 6.0f
  39. /**
  40. * SBR VLC tables
  41. */
  42. enum {
  43. T_HUFFMAN_ENV_1_5DB,
  44. F_HUFFMAN_ENV_1_5DB,
  45. T_HUFFMAN_ENV_BAL_1_5DB,
  46. F_HUFFMAN_ENV_BAL_1_5DB,
  47. T_HUFFMAN_ENV_3_0DB,
  48. F_HUFFMAN_ENV_3_0DB,
  49. T_HUFFMAN_ENV_BAL_3_0DB,
  50. F_HUFFMAN_ENV_BAL_3_0DB,
  51. T_HUFFMAN_NOISE_3_0DB,
  52. T_HUFFMAN_NOISE_BAL_3_0DB,
  53. };
  54. /**
  55. * bs_frame_class - frame class of current SBR frame (14496-3 sp04 p98)
  56. */
  57. enum {
  58. FIXFIX,
  59. FIXVAR,
  60. VARFIX,
  61. VARVAR,
  62. };
  63. enum {
  64. EXTENSION_ID_PS = 2,
  65. };
  66. static VLC vlc_sbr[10];
  67. static const int8_t vlc_sbr_lav[10] =
  68. { 60, 60, 24, 24, 31, 31, 12, 12, 31, 12 };
  69. static const DECLARE_ALIGNED(16, float, zero64)[64];
  70. #define SBR_INIT_VLC_STATIC(num, size) \
  71. INIT_VLC_STATIC(&vlc_sbr[num], 9, sbr_tmp[num].table_size / sbr_tmp[num].elem_size, \
  72. sbr_tmp[num].sbr_bits , 1, 1, \
  73. sbr_tmp[num].sbr_codes, sbr_tmp[num].elem_size, sbr_tmp[num].elem_size, \
  74. size)
  75. #define SBR_VLC_ROW(name) \
  76. { name ## _codes, name ## _bits, sizeof(name ## _codes), sizeof(name ## _codes[0]) }
  77. av_cold void ff_aac_sbr_init(void)
  78. {
  79. int n;
  80. static const struct {
  81. const void *sbr_codes, *sbr_bits;
  82. const unsigned int table_size, elem_size;
  83. } sbr_tmp[] = {
  84. SBR_VLC_ROW(t_huffman_env_1_5dB),
  85. SBR_VLC_ROW(f_huffman_env_1_5dB),
  86. SBR_VLC_ROW(t_huffman_env_bal_1_5dB),
  87. SBR_VLC_ROW(f_huffman_env_bal_1_5dB),
  88. SBR_VLC_ROW(t_huffman_env_3_0dB),
  89. SBR_VLC_ROW(f_huffman_env_3_0dB),
  90. SBR_VLC_ROW(t_huffman_env_bal_3_0dB),
  91. SBR_VLC_ROW(f_huffman_env_bal_3_0dB),
  92. SBR_VLC_ROW(t_huffman_noise_3_0dB),
  93. SBR_VLC_ROW(t_huffman_noise_bal_3_0dB),
  94. };
  95. // SBR VLC table initialization
  96. SBR_INIT_VLC_STATIC(0, 1098);
  97. SBR_INIT_VLC_STATIC(1, 1092);
  98. SBR_INIT_VLC_STATIC(2, 768);
  99. SBR_INIT_VLC_STATIC(3, 1026);
  100. SBR_INIT_VLC_STATIC(4, 1058);
  101. SBR_INIT_VLC_STATIC(5, 1052);
  102. SBR_INIT_VLC_STATIC(6, 544);
  103. SBR_INIT_VLC_STATIC(7, 544);
  104. SBR_INIT_VLC_STATIC(8, 592);
  105. SBR_INIT_VLC_STATIC(9, 512);
  106. for (n = 1; n < 320; n++)
  107. sbr_qmf_window_us[320 + n] = sbr_qmf_window_us[320 - n];
  108. sbr_qmf_window_us[384] = -sbr_qmf_window_us[384];
  109. sbr_qmf_window_us[512] = -sbr_qmf_window_us[512];
  110. for (n = 0; n < 320; n++)
  111. sbr_qmf_window_ds[n] = sbr_qmf_window_us[2*n];
  112. ff_ps_init();
  113. }
  114. /** Places SBR in pure upsampling mode. */
  115. static void sbr_turnoff(SpectralBandReplication *sbr) {
  116. sbr->start = 0;
  117. // Init defults used in pure upsampling mode
  118. sbr->kx[1] = 32; //Typo in spec, kx' inits to 32
  119. sbr->m[1] = 0;
  120. // Reset values for first SBR header
  121. sbr->data[0].e_a[1] = sbr->data[1].e_a[1] = -1;
  122. memset(&sbr->spectrum_params, -1, sizeof(SpectrumParameters));
  123. }
  124. av_cold void ff_aac_sbr_ctx_init(AACContext *ac, SpectralBandReplication *sbr)
  125. {
  126. float mdct_scale;
  127. sbr->kx[0] = sbr->kx[1];
  128. sbr_turnoff(sbr);
  129. sbr->data[0].synthesis_filterbank_samples_offset = SBR_SYNTHESIS_BUF_SIZE - (1280 - 128);
  130. sbr->data[1].synthesis_filterbank_samples_offset = SBR_SYNTHESIS_BUF_SIZE - (1280 - 128);
  131. /* SBR requires samples to be scaled to +/-32768.0 to work correctly.
  132. * mdct scale factors are adjusted to scale up from +/-1.0 at analysis
  133. * and scale back down at synthesis. */
  134. mdct_scale = ac->avctx->sample_fmt == AV_SAMPLE_FMT_FLT ? 32768.0f : 1.0f;
  135. ff_mdct_init(&sbr->mdct, 7, 1, 1.0 / (64 * mdct_scale));
  136. ff_mdct_init(&sbr->mdct_ana, 7, 1, -2.0 * mdct_scale);
  137. ff_ps_ctx_init(&sbr->ps);
  138. ff_sbrdsp_init(&sbr->dsp);
  139. }
  140. av_cold void ff_aac_sbr_ctx_close(SpectralBandReplication *sbr)
  141. {
  142. ff_mdct_end(&sbr->mdct);
  143. ff_mdct_end(&sbr->mdct_ana);
  144. }
  145. static int qsort_comparison_function_int16(const void *a, const void *b)
  146. {
  147. return *(const int16_t *)a - *(const int16_t *)b;
  148. }
  149. static inline int in_table_int16(const int16_t *table, int last_el, int16_t needle)
  150. {
  151. int i;
  152. for (i = 0; i <= last_el; i++)
  153. if (table[i] == needle)
  154. return 1;
  155. return 0;
  156. }
  157. /// Limiter Frequency Band Table (14496-3 sp04 p198)
  158. static void sbr_make_f_tablelim(SpectralBandReplication *sbr)
  159. {
  160. int k;
  161. if (sbr->bs_limiter_bands > 0) {
  162. static const float bands_warped[3] = { 1.32715174233856803909f, //2^(0.49/1.2)
  163. 1.18509277094158210129f, //2^(0.49/2)
  164. 1.11987160404675912501f }; //2^(0.49/3)
  165. const float lim_bands_per_octave_warped = bands_warped[sbr->bs_limiter_bands - 1];
  166. int16_t patch_borders[7];
  167. uint16_t *in = sbr->f_tablelim + 1, *out = sbr->f_tablelim;
  168. patch_borders[0] = sbr->kx[1];
  169. for (k = 1; k <= sbr->num_patches; k++)
  170. patch_borders[k] = patch_borders[k-1] + sbr->patch_num_subbands[k-1];
  171. memcpy(sbr->f_tablelim, sbr->f_tablelow,
  172. (sbr->n[0] + 1) * sizeof(sbr->f_tablelow[0]));
  173. if (sbr->num_patches > 1)
  174. memcpy(sbr->f_tablelim + sbr->n[0] + 1, patch_borders + 1,
  175. (sbr->num_patches - 1) * sizeof(patch_borders[0]));
  176. qsort(sbr->f_tablelim, sbr->num_patches + sbr->n[0],
  177. sizeof(sbr->f_tablelim[0]),
  178. qsort_comparison_function_int16);
  179. sbr->n_lim = sbr->n[0] + sbr->num_patches - 1;
  180. while (out < sbr->f_tablelim + sbr->n_lim) {
  181. if (*in >= *out * lim_bands_per_octave_warped) {
  182. *++out = *in++;
  183. } else if (*in == *out ||
  184. !in_table_int16(patch_borders, sbr->num_patches, *in)) {
  185. in++;
  186. sbr->n_lim--;
  187. } else if (!in_table_int16(patch_borders, sbr->num_patches, *out)) {
  188. *out = *in++;
  189. sbr->n_lim--;
  190. } else {
  191. *++out = *in++;
  192. }
  193. }
  194. } else {
  195. sbr->f_tablelim[0] = sbr->f_tablelow[0];
  196. sbr->f_tablelim[1] = sbr->f_tablelow[sbr->n[0]];
  197. sbr->n_lim = 1;
  198. }
  199. }
  200. static unsigned int read_sbr_header(SpectralBandReplication *sbr, GetBitContext *gb)
  201. {
  202. unsigned int cnt = get_bits_count(gb);
  203. uint8_t bs_header_extra_1;
  204. uint8_t bs_header_extra_2;
  205. int old_bs_limiter_bands = sbr->bs_limiter_bands;
  206. SpectrumParameters old_spectrum_params;
  207. sbr->start = 1;
  208. // Save last spectrum parameters variables to compare to new ones
  209. memcpy(&old_spectrum_params, &sbr->spectrum_params, sizeof(SpectrumParameters));
  210. sbr->bs_amp_res_header = get_bits1(gb);
  211. sbr->spectrum_params.bs_start_freq = get_bits(gb, 4);
  212. sbr->spectrum_params.bs_stop_freq = get_bits(gb, 4);
  213. sbr->spectrum_params.bs_xover_band = get_bits(gb, 3);
  214. skip_bits(gb, 2); // bs_reserved
  215. bs_header_extra_1 = get_bits1(gb);
  216. bs_header_extra_2 = get_bits1(gb);
  217. if (bs_header_extra_1) {
  218. sbr->spectrum_params.bs_freq_scale = get_bits(gb, 2);
  219. sbr->spectrum_params.bs_alter_scale = get_bits1(gb);
  220. sbr->spectrum_params.bs_noise_bands = get_bits(gb, 2);
  221. } else {
  222. sbr->spectrum_params.bs_freq_scale = 2;
  223. sbr->spectrum_params.bs_alter_scale = 1;
  224. sbr->spectrum_params.bs_noise_bands = 2;
  225. }
  226. // Check if spectrum parameters changed
  227. if (memcmp(&old_spectrum_params, &sbr->spectrum_params, sizeof(SpectrumParameters)))
  228. sbr->reset = 1;
  229. if (bs_header_extra_2) {
  230. sbr->bs_limiter_bands = get_bits(gb, 2);
  231. sbr->bs_limiter_gains = get_bits(gb, 2);
  232. sbr->bs_interpol_freq = get_bits1(gb);
  233. sbr->bs_smoothing_mode = get_bits1(gb);
  234. } else {
  235. sbr->bs_limiter_bands = 2;
  236. sbr->bs_limiter_gains = 2;
  237. sbr->bs_interpol_freq = 1;
  238. sbr->bs_smoothing_mode = 1;
  239. }
  240. if (sbr->bs_limiter_bands != old_bs_limiter_bands && !sbr->reset)
  241. sbr_make_f_tablelim(sbr);
  242. return get_bits_count(gb) - cnt;
  243. }
  244. static int array_min_int16(const int16_t *array, int nel)
  245. {
  246. int i, min = array[0];
  247. for (i = 1; i < nel; i++)
  248. min = FFMIN(array[i], min);
  249. return min;
  250. }
  251. static void make_bands(int16_t* bands, int start, int stop, int num_bands)
  252. {
  253. int k, previous, present;
  254. float base, prod;
  255. base = powf((float)stop / start, 1.0f / num_bands);
  256. prod = start;
  257. previous = start;
  258. for (k = 0; k < num_bands-1; k++) {
  259. prod *= base;
  260. present = lrintf(prod);
  261. bands[k] = present - previous;
  262. previous = present;
  263. }
  264. bands[num_bands-1] = stop - previous;
  265. }
  266. static int check_n_master(AVCodecContext *avctx, int n_master, int bs_xover_band)
  267. {
  268. // Requirements (14496-3 sp04 p205)
  269. if (n_master <= 0) {
  270. av_log(avctx, AV_LOG_ERROR, "Invalid n_master: %d\n", n_master);
  271. return -1;
  272. }
  273. if (bs_xover_band >= n_master) {
  274. av_log(avctx, AV_LOG_ERROR,
  275. "Invalid bitstream, crossover band index beyond array bounds: %d\n",
  276. bs_xover_band);
  277. return -1;
  278. }
  279. return 0;
  280. }
  281. /// Master Frequency Band Table (14496-3 sp04 p194)
  282. static int sbr_make_f_master(AACContext *ac, SpectralBandReplication *sbr,
  283. SpectrumParameters *spectrum)
  284. {
  285. unsigned int temp, max_qmf_subbands;
  286. unsigned int start_min, stop_min;
  287. int k;
  288. const int8_t *sbr_offset_ptr;
  289. int16_t stop_dk[13];
  290. if (sbr->sample_rate < 32000) {
  291. temp = 3000;
  292. } else if (sbr->sample_rate < 64000) {
  293. temp = 4000;
  294. } else
  295. temp = 5000;
  296. start_min = ((temp << 7) + (sbr->sample_rate >> 1)) / sbr->sample_rate;
  297. stop_min = ((temp << 8) + (sbr->sample_rate >> 1)) / sbr->sample_rate;
  298. switch (sbr->sample_rate) {
  299. case 16000:
  300. sbr_offset_ptr = sbr_offset[0];
  301. break;
  302. case 22050:
  303. sbr_offset_ptr = sbr_offset[1];
  304. break;
  305. case 24000:
  306. sbr_offset_ptr = sbr_offset[2];
  307. break;
  308. case 32000:
  309. sbr_offset_ptr = sbr_offset[3];
  310. break;
  311. case 44100: case 48000: case 64000:
  312. sbr_offset_ptr = sbr_offset[4];
  313. break;
  314. case 88200: case 96000: case 128000: case 176400: case 192000:
  315. sbr_offset_ptr = sbr_offset[5];
  316. break;
  317. default:
  318. av_log(ac->avctx, AV_LOG_ERROR,
  319. "Unsupported sample rate for SBR: %d\n", sbr->sample_rate);
  320. return -1;
  321. }
  322. sbr->k[0] = start_min + sbr_offset_ptr[spectrum->bs_start_freq];
  323. if (spectrum->bs_stop_freq < 14) {
  324. sbr->k[2] = stop_min;
  325. make_bands(stop_dk, stop_min, 64, 13);
  326. qsort(stop_dk, 13, sizeof(stop_dk[0]), qsort_comparison_function_int16);
  327. for (k = 0; k < spectrum->bs_stop_freq; k++)
  328. sbr->k[2] += stop_dk[k];
  329. } else if (spectrum->bs_stop_freq == 14) {
  330. sbr->k[2] = 2*sbr->k[0];
  331. } else if (spectrum->bs_stop_freq == 15) {
  332. sbr->k[2] = 3*sbr->k[0];
  333. } else {
  334. av_log(ac->avctx, AV_LOG_ERROR,
  335. "Invalid bs_stop_freq: %d\n", spectrum->bs_stop_freq);
  336. return -1;
  337. }
  338. sbr->k[2] = FFMIN(64, sbr->k[2]);
  339. // Requirements (14496-3 sp04 p205)
  340. if (sbr->sample_rate <= 32000) {
  341. max_qmf_subbands = 48;
  342. } else if (sbr->sample_rate == 44100) {
  343. max_qmf_subbands = 35;
  344. } else if (sbr->sample_rate >= 48000)
  345. max_qmf_subbands = 32;
  346. if (sbr->k[2] - sbr->k[0] > max_qmf_subbands) {
  347. av_log(ac->avctx, AV_LOG_ERROR,
  348. "Invalid bitstream, too many QMF subbands: %d\n", sbr->k[2] - sbr->k[0]);
  349. return -1;
  350. }
  351. if (!spectrum->bs_freq_scale) {
  352. int dk, k2diff;
  353. dk = spectrum->bs_alter_scale + 1;
  354. sbr->n_master = ((sbr->k[2] - sbr->k[0] + (dk&2)) >> dk) << 1;
  355. if (check_n_master(ac->avctx, sbr->n_master, sbr->spectrum_params.bs_xover_band))
  356. return -1;
  357. for (k = 1; k <= sbr->n_master; k++)
  358. sbr->f_master[k] = dk;
  359. k2diff = sbr->k[2] - sbr->k[0] - sbr->n_master * dk;
  360. if (k2diff < 0) {
  361. sbr->f_master[1]--;
  362. sbr->f_master[2]-= (k2diff < -1);
  363. } else if (k2diff) {
  364. sbr->f_master[sbr->n_master]++;
  365. }
  366. sbr->f_master[0] = sbr->k[0];
  367. for (k = 1; k <= sbr->n_master; k++)
  368. sbr->f_master[k] += sbr->f_master[k - 1];
  369. } else {
  370. int half_bands = 7 - spectrum->bs_freq_scale; // bs_freq_scale = {1,2,3}
  371. int two_regions, num_bands_0;
  372. int vdk0_max, vdk1_min;
  373. int16_t vk0[49];
  374. if (49 * sbr->k[2] > 110 * sbr->k[0]) {
  375. two_regions = 1;
  376. sbr->k[1] = 2 * sbr->k[0];
  377. } else {
  378. two_regions = 0;
  379. sbr->k[1] = sbr->k[2];
  380. }
  381. num_bands_0 = lrintf(half_bands * log2f(sbr->k[1] / (float)sbr->k[0])) * 2;
  382. if (num_bands_0 <= 0) { // Requirements (14496-3 sp04 p205)
  383. av_log(ac->avctx, AV_LOG_ERROR, "Invalid num_bands_0: %d\n", num_bands_0);
  384. return -1;
  385. }
  386. vk0[0] = 0;
  387. make_bands(vk0+1, sbr->k[0], sbr->k[1], num_bands_0);
  388. qsort(vk0 + 1, num_bands_0, sizeof(vk0[1]), qsort_comparison_function_int16);
  389. vdk0_max = vk0[num_bands_0];
  390. vk0[0] = sbr->k[0];
  391. for (k = 1; k <= num_bands_0; k++) {
  392. if (vk0[k] <= 0) { // Requirements (14496-3 sp04 p205)
  393. av_log(ac->avctx, AV_LOG_ERROR, "Invalid vDk0[%d]: %d\n", k, vk0[k]);
  394. return -1;
  395. }
  396. vk0[k] += vk0[k-1];
  397. }
  398. if (two_regions) {
  399. int16_t vk1[49];
  400. float invwarp = spectrum->bs_alter_scale ? 0.76923076923076923077f
  401. : 1.0f; // bs_alter_scale = {0,1}
  402. int num_bands_1 = lrintf(half_bands * invwarp *
  403. log2f(sbr->k[2] / (float)sbr->k[1])) * 2;
  404. make_bands(vk1+1, sbr->k[1], sbr->k[2], num_bands_1);
  405. vdk1_min = array_min_int16(vk1 + 1, num_bands_1);
  406. if (vdk1_min < vdk0_max) {
  407. int change;
  408. qsort(vk1 + 1, num_bands_1, sizeof(vk1[1]), qsort_comparison_function_int16);
  409. change = FFMIN(vdk0_max - vk1[1], (vk1[num_bands_1] - vk1[1]) >> 1);
  410. vk1[1] += change;
  411. vk1[num_bands_1] -= change;
  412. }
  413. qsort(vk1 + 1, num_bands_1, sizeof(vk1[1]), qsort_comparison_function_int16);
  414. vk1[0] = sbr->k[1];
  415. for (k = 1; k <= num_bands_1; k++) {
  416. if (vk1[k] <= 0) { // Requirements (14496-3 sp04 p205)
  417. av_log(ac->avctx, AV_LOG_ERROR, "Invalid vDk1[%d]: %d\n", k, vk1[k]);
  418. return -1;
  419. }
  420. vk1[k] += vk1[k-1];
  421. }
  422. sbr->n_master = num_bands_0 + num_bands_1;
  423. if (check_n_master(ac->avctx, sbr->n_master, sbr->spectrum_params.bs_xover_band))
  424. return -1;
  425. memcpy(&sbr->f_master[0], vk0,
  426. (num_bands_0 + 1) * sizeof(sbr->f_master[0]));
  427. memcpy(&sbr->f_master[num_bands_0 + 1], vk1 + 1,
  428. num_bands_1 * sizeof(sbr->f_master[0]));
  429. } else {
  430. sbr->n_master = num_bands_0;
  431. if (check_n_master(ac->avctx, sbr->n_master, sbr->spectrum_params.bs_xover_band))
  432. return -1;
  433. memcpy(sbr->f_master, vk0, (num_bands_0 + 1) * sizeof(sbr->f_master[0]));
  434. }
  435. }
  436. return 0;
  437. }
  438. /// High Frequency Generation - Patch Construction (14496-3 sp04 p216 fig. 4.46)
  439. static int sbr_hf_calc_npatches(AACContext *ac, SpectralBandReplication *sbr)
  440. {
  441. int i, k, sb = 0;
  442. int msb = sbr->k[0];
  443. int usb = sbr->kx[1];
  444. int goal_sb = ((1000 << 11) + (sbr->sample_rate >> 1)) / sbr->sample_rate;
  445. sbr->num_patches = 0;
  446. if (goal_sb < sbr->kx[1] + sbr->m[1]) {
  447. for (k = 0; sbr->f_master[k] < goal_sb; k++) ;
  448. } else
  449. k = sbr->n_master;
  450. do {
  451. int odd = 0;
  452. for (i = k; i == k || sb > (sbr->k[0] - 1 + msb - odd); i--) {
  453. sb = sbr->f_master[i];
  454. odd = (sb + sbr->k[0]) & 1;
  455. }
  456. // Requirements (14496-3 sp04 p205) sets the maximum number of patches to 5.
  457. // After this check the final number of patches can still be six which is
  458. // illegal however the Coding Technologies decoder check stream has a final
  459. // count of 6 patches
  460. if (sbr->num_patches > 5) {
  461. av_log(ac->avctx, AV_LOG_ERROR, "Too many patches: %d\n", sbr->num_patches);
  462. return -1;
  463. }
  464. sbr->patch_num_subbands[sbr->num_patches] = FFMAX(sb - usb, 0);
  465. sbr->patch_start_subband[sbr->num_patches] = sbr->k[0] - odd - sbr->patch_num_subbands[sbr->num_patches];
  466. if (sbr->patch_num_subbands[sbr->num_patches] > 0) {
  467. usb = sb;
  468. msb = sb;
  469. sbr->num_patches++;
  470. } else
  471. msb = sbr->kx[1];
  472. if (sbr->f_master[k] - sb < 3)
  473. k = sbr->n_master;
  474. } while (sb != sbr->kx[1] + sbr->m[1]);
  475. if (sbr->patch_num_subbands[sbr->num_patches-1] < 3 && sbr->num_patches > 1)
  476. sbr->num_patches--;
  477. return 0;
  478. }
  479. /// Derived Frequency Band Tables (14496-3 sp04 p197)
  480. static int sbr_make_f_derived(AACContext *ac, SpectralBandReplication *sbr)
  481. {
  482. int k, temp;
  483. sbr->n[1] = sbr->n_master - sbr->spectrum_params.bs_xover_band;
  484. sbr->n[0] = (sbr->n[1] + 1) >> 1;
  485. memcpy(sbr->f_tablehigh, &sbr->f_master[sbr->spectrum_params.bs_xover_band],
  486. (sbr->n[1] + 1) * sizeof(sbr->f_master[0]));
  487. sbr->m[1] = sbr->f_tablehigh[sbr->n[1]] - sbr->f_tablehigh[0];
  488. sbr->kx[1] = sbr->f_tablehigh[0];
  489. // Requirements (14496-3 sp04 p205)
  490. if (sbr->kx[1] + sbr->m[1] > 64) {
  491. av_log(ac->avctx, AV_LOG_ERROR,
  492. "Stop frequency border too high: %d\n", sbr->kx[1] + sbr->m[1]);
  493. return -1;
  494. }
  495. if (sbr->kx[1] > 32) {
  496. av_log(ac->avctx, AV_LOG_ERROR, "Start frequency border too high: %d\n", sbr->kx[1]);
  497. return -1;
  498. }
  499. sbr->f_tablelow[0] = sbr->f_tablehigh[0];
  500. temp = sbr->n[1] & 1;
  501. for (k = 1; k <= sbr->n[0]; k++)
  502. sbr->f_tablelow[k] = sbr->f_tablehigh[2 * k - temp];
  503. sbr->n_q = FFMAX(1, lrintf(sbr->spectrum_params.bs_noise_bands *
  504. log2f(sbr->k[2] / (float)sbr->kx[1]))); // 0 <= bs_noise_bands <= 3
  505. if (sbr->n_q > 5) {
  506. av_log(ac->avctx, AV_LOG_ERROR, "Too many noise floor scale factors: %d\n", sbr->n_q);
  507. return -1;
  508. }
  509. sbr->f_tablenoise[0] = sbr->f_tablelow[0];
  510. temp = 0;
  511. for (k = 1; k <= sbr->n_q; k++) {
  512. temp += (sbr->n[0] - temp) / (sbr->n_q + 1 - k);
  513. sbr->f_tablenoise[k] = sbr->f_tablelow[temp];
  514. }
  515. if (sbr_hf_calc_npatches(ac, sbr) < 0)
  516. return -1;
  517. sbr_make_f_tablelim(sbr);
  518. sbr->data[0].f_indexnoise = 0;
  519. sbr->data[1].f_indexnoise = 0;
  520. return 0;
  521. }
  522. static av_always_inline void get_bits1_vector(GetBitContext *gb, uint8_t *vec,
  523. int elements)
  524. {
  525. int i;
  526. for (i = 0; i < elements; i++) {
  527. vec[i] = get_bits1(gb);
  528. }
  529. }
  530. /** ceil(log2(index+1)) */
  531. static const int8_t ceil_log2[] = {
  532. 0, 1, 2, 2, 3, 3,
  533. };
  534. static int read_sbr_grid(AACContext *ac, SpectralBandReplication *sbr,
  535. GetBitContext *gb, SBRData *ch_data)
  536. {
  537. int i;
  538. unsigned bs_pointer = 0;
  539. // frameLengthFlag ? 15 : 16; 960 sample length frames unsupported; this value is numTimeSlots
  540. int abs_bord_trail = 16;
  541. int num_rel_lead, num_rel_trail;
  542. unsigned bs_num_env_old = ch_data->bs_num_env;
  543. ch_data->bs_freq_res[0] = ch_data->bs_freq_res[ch_data->bs_num_env];
  544. ch_data->bs_amp_res = sbr->bs_amp_res_header;
  545. ch_data->t_env_num_env_old = ch_data->t_env[bs_num_env_old];
  546. switch (ch_data->bs_frame_class = get_bits(gb, 2)) {
  547. case FIXFIX:
  548. ch_data->bs_num_env = 1 << get_bits(gb, 2);
  549. num_rel_lead = ch_data->bs_num_env - 1;
  550. if (ch_data->bs_num_env == 1)
  551. ch_data->bs_amp_res = 0;
  552. if (ch_data->bs_num_env > 4) {
  553. av_log(ac->avctx, AV_LOG_ERROR,
  554. "Invalid bitstream, too many SBR envelopes in FIXFIX type SBR frame: %d\n",
  555. ch_data->bs_num_env);
  556. return -1;
  557. }
  558. ch_data->t_env[0] = 0;
  559. ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail;
  560. abs_bord_trail = (abs_bord_trail + (ch_data->bs_num_env >> 1)) /
  561. ch_data->bs_num_env;
  562. for (i = 0; i < num_rel_lead; i++)
  563. ch_data->t_env[i + 1] = ch_data->t_env[i] + abs_bord_trail;
  564. ch_data->bs_freq_res[1] = get_bits1(gb);
  565. for (i = 1; i < ch_data->bs_num_env; i++)
  566. ch_data->bs_freq_res[i + 1] = ch_data->bs_freq_res[1];
  567. break;
  568. case FIXVAR:
  569. abs_bord_trail += get_bits(gb, 2);
  570. num_rel_trail = get_bits(gb, 2);
  571. ch_data->bs_num_env = num_rel_trail + 1;
  572. ch_data->t_env[0] = 0;
  573. ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail;
  574. for (i = 0; i < num_rel_trail; i++)
  575. ch_data->t_env[ch_data->bs_num_env - 1 - i] =
  576. ch_data->t_env[ch_data->bs_num_env - i] - 2 * get_bits(gb, 2) - 2;
  577. bs_pointer = get_bits(gb, ceil_log2[ch_data->bs_num_env]);
  578. for (i = 0; i < ch_data->bs_num_env; i++)
  579. ch_data->bs_freq_res[ch_data->bs_num_env - i] = get_bits1(gb);
  580. break;
  581. case VARFIX:
  582. ch_data->t_env[0] = get_bits(gb, 2);
  583. num_rel_lead = get_bits(gb, 2);
  584. ch_data->bs_num_env = num_rel_lead + 1;
  585. ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail;
  586. for (i = 0; i < num_rel_lead; i++)
  587. ch_data->t_env[i + 1] = ch_data->t_env[i] + 2 * get_bits(gb, 2) + 2;
  588. bs_pointer = get_bits(gb, ceil_log2[ch_data->bs_num_env]);
  589. get_bits1_vector(gb, ch_data->bs_freq_res + 1, ch_data->bs_num_env);
  590. break;
  591. case VARVAR:
  592. ch_data->t_env[0] = get_bits(gb, 2);
  593. abs_bord_trail += get_bits(gb, 2);
  594. num_rel_lead = get_bits(gb, 2);
  595. num_rel_trail = get_bits(gb, 2);
  596. ch_data->bs_num_env = num_rel_lead + num_rel_trail + 1;
  597. if (ch_data->bs_num_env > 5) {
  598. av_log(ac->avctx, AV_LOG_ERROR,
  599. "Invalid bitstream, too many SBR envelopes in VARVAR type SBR frame: %d\n",
  600. ch_data->bs_num_env);
  601. return -1;
  602. }
  603. ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail;
  604. for (i = 0; i < num_rel_lead; i++)
  605. ch_data->t_env[i + 1] = ch_data->t_env[i] + 2 * get_bits(gb, 2) + 2;
  606. for (i = 0; i < num_rel_trail; i++)
  607. ch_data->t_env[ch_data->bs_num_env - 1 - i] =
  608. ch_data->t_env[ch_data->bs_num_env - i] - 2 * get_bits(gb, 2) - 2;
  609. bs_pointer = get_bits(gb, ceil_log2[ch_data->bs_num_env]);
  610. get_bits1_vector(gb, ch_data->bs_freq_res + 1, ch_data->bs_num_env);
  611. break;
  612. }
  613. if (bs_pointer > ch_data->bs_num_env + 1) {
  614. av_log(ac->avctx, AV_LOG_ERROR,
  615. "Invalid bitstream, bs_pointer points to a middle noise border outside the time borders table: %d\n",
  616. bs_pointer);
  617. return -1;
  618. }
  619. for (i = 1; i <= ch_data->bs_num_env; i++) {
  620. if (ch_data->t_env[i-1] > ch_data->t_env[i]) {
  621. av_log(ac->avctx, AV_LOG_ERROR, "Non monotone time borders\n");
  622. return -1;
  623. }
  624. }
  625. ch_data->bs_num_noise = (ch_data->bs_num_env > 1) + 1;
  626. ch_data->t_q[0] = ch_data->t_env[0];
  627. ch_data->t_q[ch_data->bs_num_noise] = ch_data->t_env[ch_data->bs_num_env];
  628. if (ch_data->bs_num_noise > 1) {
  629. unsigned int idx;
  630. if (ch_data->bs_frame_class == FIXFIX) {
  631. idx = ch_data->bs_num_env >> 1;
  632. } else if (ch_data->bs_frame_class & 1) { // FIXVAR or VARVAR
  633. idx = ch_data->bs_num_env - FFMAX(bs_pointer - 1, 1);
  634. } else { // VARFIX
  635. if (!bs_pointer)
  636. idx = 1;
  637. else if (bs_pointer == 1)
  638. idx = ch_data->bs_num_env - 1;
  639. else // bs_pointer > 1
  640. idx = bs_pointer - 1;
  641. }
  642. ch_data->t_q[1] = ch_data->t_env[idx];
  643. }
  644. ch_data->e_a[0] = -(ch_data->e_a[1] != bs_num_env_old); // l_APrev
  645. ch_data->e_a[1] = -1;
  646. if ((ch_data->bs_frame_class & 1) && bs_pointer) { // FIXVAR or VARVAR and bs_pointer != 0
  647. ch_data->e_a[1] = ch_data->bs_num_env + 1 - bs_pointer;
  648. } else if ((ch_data->bs_frame_class == 2) && (bs_pointer > 1)) // VARFIX and bs_pointer > 1
  649. ch_data->e_a[1] = bs_pointer - 1;
  650. return 0;
  651. }
  652. static void copy_sbr_grid(SBRData *dst, const SBRData *src) {
  653. //These variables are saved from the previous frame rather than copied
  654. dst->bs_freq_res[0] = dst->bs_freq_res[dst->bs_num_env];
  655. dst->t_env_num_env_old = dst->t_env[dst->bs_num_env];
  656. dst->e_a[0] = -(dst->e_a[1] != dst->bs_num_env);
  657. //These variables are read from the bitstream and therefore copied
  658. memcpy(dst->bs_freq_res+1, src->bs_freq_res+1, sizeof(dst->bs_freq_res)-sizeof(*dst->bs_freq_res));
  659. memcpy(dst->t_env, src->t_env, sizeof(dst->t_env));
  660. memcpy(dst->t_q, src->t_q, sizeof(dst->t_q));
  661. dst->bs_num_env = src->bs_num_env;
  662. dst->bs_amp_res = src->bs_amp_res;
  663. dst->bs_num_noise = src->bs_num_noise;
  664. dst->bs_frame_class = src->bs_frame_class;
  665. dst->e_a[1] = src->e_a[1];
  666. }
  667. /// Read how the envelope and noise floor data is delta coded
  668. static void read_sbr_dtdf(SpectralBandReplication *sbr, GetBitContext *gb,
  669. SBRData *ch_data)
  670. {
  671. get_bits1_vector(gb, ch_data->bs_df_env, ch_data->bs_num_env);
  672. get_bits1_vector(gb, ch_data->bs_df_noise, ch_data->bs_num_noise);
  673. }
  674. /// Read inverse filtering data
  675. static void read_sbr_invf(SpectralBandReplication *sbr, GetBitContext *gb,
  676. SBRData *ch_data)
  677. {
  678. int i;
  679. memcpy(ch_data->bs_invf_mode[1], ch_data->bs_invf_mode[0], 5 * sizeof(uint8_t));
  680. for (i = 0; i < sbr->n_q; i++)
  681. ch_data->bs_invf_mode[0][i] = get_bits(gb, 2);
  682. }
  683. static void read_sbr_envelope(SpectralBandReplication *sbr, GetBitContext *gb,
  684. SBRData *ch_data, int ch)
  685. {
  686. int bits;
  687. int i, j, k;
  688. VLC_TYPE (*t_huff)[2], (*f_huff)[2];
  689. int t_lav, f_lav;
  690. const int delta = (ch == 1 && sbr->bs_coupling == 1) + 1;
  691. const int odd = sbr->n[1] & 1;
  692. if (sbr->bs_coupling && ch) {
  693. if (ch_data->bs_amp_res) {
  694. bits = 5;
  695. t_huff = vlc_sbr[T_HUFFMAN_ENV_BAL_3_0DB].table;
  696. t_lav = vlc_sbr_lav[T_HUFFMAN_ENV_BAL_3_0DB];
  697. f_huff = vlc_sbr[F_HUFFMAN_ENV_BAL_3_0DB].table;
  698. f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_BAL_3_0DB];
  699. } else {
  700. bits = 6;
  701. t_huff = vlc_sbr[T_HUFFMAN_ENV_BAL_1_5DB].table;
  702. t_lav = vlc_sbr_lav[T_HUFFMAN_ENV_BAL_1_5DB];
  703. f_huff = vlc_sbr[F_HUFFMAN_ENV_BAL_1_5DB].table;
  704. f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_BAL_1_5DB];
  705. }
  706. } else {
  707. if (ch_data->bs_amp_res) {
  708. bits = 6;
  709. t_huff = vlc_sbr[T_HUFFMAN_ENV_3_0DB].table;
  710. t_lav = vlc_sbr_lav[T_HUFFMAN_ENV_3_0DB];
  711. f_huff = vlc_sbr[F_HUFFMAN_ENV_3_0DB].table;
  712. f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_3_0DB];
  713. } else {
  714. bits = 7;
  715. t_huff = vlc_sbr[T_HUFFMAN_ENV_1_5DB].table;
  716. t_lav = vlc_sbr_lav[T_HUFFMAN_ENV_1_5DB];
  717. f_huff = vlc_sbr[F_HUFFMAN_ENV_1_5DB].table;
  718. f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_1_5DB];
  719. }
  720. }
  721. for (i = 0; i < ch_data->bs_num_env; i++) {
  722. if (ch_data->bs_df_env[i]) {
  723. // bs_freq_res[0] == bs_freq_res[bs_num_env] from prev frame
  724. if (ch_data->bs_freq_res[i + 1] == ch_data->bs_freq_res[i]) {
  725. for (j = 0; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++)
  726. ch_data->env_facs[i + 1][j] = ch_data->env_facs[i][j] + delta * (get_vlc2(gb, t_huff, 9, 3) - t_lav);
  727. } else if (ch_data->bs_freq_res[i + 1]) {
  728. for (j = 0; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++) {
  729. k = (j + odd) >> 1; // find k such that f_tablelow[k] <= f_tablehigh[j] < f_tablelow[k + 1]
  730. ch_data->env_facs[i + 1][j] = ch_data->env_facs[i][k] + delta * (get_vlc2(gb, t_huff, 9, 3) - t_lav);
  731. }
  732. } else {
  733. for (j = 0; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++) {
  734. k = j ? 2*j - odd : 0; // find k such that f_tablehigh[k] == f_tablelow[j]
  735. ch_data->env_facs[i + 1][j] = ch_data->env_facs[i][k] + delta * (get_vlc2(gb, t_huff, 9, 3) - t_lav);
  736. }
  737. }
  738. } else {
  739. ch_data->env_facs[i + 1][0] = delta * get_bits(gb, bits); // bs_env_start_value_balance
  740. for (j = 1; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++)
  741. ch_data->env_facs[i + 1][j] = ch_data->env_facs[i + 1][j - 1] + delta * (get_vlc2(gb, f_huff, 9, 3) - f_lav);
  742. }
  743. }
  744. //assign 0th elements of env_facs from last elements
  745. memcpy(ch_data->env_facs[0], ch_data->env_facs[ch_data->bs_num_env],
  746. sizeof(ch_data->env_facs[0]));
  747. }
  748. static void read_sbr_noise(SpectralBandReplication *sbr, GetBitContext *gb,
  749. SBRData *ch_data, int ch)
  750. {
  751. int i, j;
  752. VLC_TYPE (*t_huff)[2], (*f_huff)[2];
  753. int t_lav, f_lav;
  754. int delta = (ch == 1 && sbr->bs_coupling == 1) + 1;
  755. if (sbr->bs_coupling && ch) {
  756. t_huff = vlc_sbr[T_HUFFMAN_NOISE_BAL_3_0DB].table;
  757. t_lav = vlc_sbr_lav[T_HUFFMAN_NOISE_BAL_3_0DB];
  758. f_huff = vlc_sbr[F_HUFFMAN_ENV_BAL_3_0DB].table;
  759. f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_BAL_3_0DB];
  760. } else {
  761. t_huff = vlc_sbr[T_HUFFMAN_NOISE_3_0DB].table;
  762. t_lav = vlc_sbr_lav[T_HUFFMAN_NOISE_3_0DB];
  763. f_huff = vlc_sbr[F_HUFFMAN_ENV_3_0DB].table;
  764. f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_3_0DB];
  765. }
  766. for (i = 0; i < ch_data->bs_num_noise; i++) {
  767. if (ch_data->bs_df_noise[i]) {
  768. for (j = 0; j < sbr->n_q; j++)
  769. ch_data->noise_facs[i + 1][j] = ch_data->noise_facs[i][j] + delta * (get_vlc2(gb, t_huff, 9, 2) - t_lav);
  770. } else {
  771. ch_data->noise_facs[i + 1][0] = delta * get_bits(gb, 5); // bs_noise_start_value_balance or bs_noise_start_value_level
  772. for (j = 1; j < sbr->n_q; j++)
  773. ch_data->noise_facs[i + 1][j] = ch_data->noise_facs[i + 1][j - 1] + delta * (get_vlc2(gb, f_huff, 9, 3) - f_lav);
  774. }
  775. }
  776. //assign 0th elements of noise_facs from last elements
  777. memcpy(ch_data->noise_facs[0], ch_data->noise_facs[ch_data->bs_num_noise],
  778. sizeof(ch_data->noise_facs[0]));
  779. }
  780. static void read_sbr_extension(AACContext *ac, SpectralBandReplication *sbr,
  781. GetBitContext *gb,
  782. int bs_extension_id, int *num_bits_left)
  783. {
  784. switch (bs_extension_id) {
  785. case EXTENSION_ID_PS:
  786. if (!ac->oc[1].m4ac.ps) {
  787. av_log(ac->avctx, AV_LOG_ERROR, "Parametric Stereo signaled to be not-present but was found in the bitstream.\n");
  788. skip_bits_long(gb, *num_bits_left); // bs_fill_bits
  789. *num_bits_left = 0;
  790. } else {
  791. #if 1
  792. *num_bits_left -= ff_ps_read_data(ac->avctx, gb, &sbr->ps, *num_bits_left);
  793. #else
  794. av_log_missing_feature(ac->avctx, "Parametric Stereo is", 0);
  795. skip_bits_long(gb, *num_bits_left); // bs_fill_bits
  796. *num_bits_left = 0;
  797. #endif
  798. }
  799. break;
  800. default:
  801. av_log_missing_feature(ac->avctx, "Reserved SBR extensions are", 1);
  802. skip_bits_long(gb, *num_bits_left); // bs_fill_bits
  803. *num_bits_left = 0;
  804. break;
  805. }
  806. }
  807. static int read_sbr_single_channel_element(AACContext *ac,
  808. SpectralBandReplication *sbr,
  809. GetBitContext *gb)
  810. {
  811. if (get_bits1(gb)) // bs_data_extra
  812. skip_bits(gb, 4); // bs_reserved
  813. if (read_sbr_grid(ac, sbr, gb, &sbr->data[0]))
  814. return -1;
  815. read_sbr_dtdf(sbr, gb, &sbr->data[0]);
  816. read_sbr_invf(sbr, gb, &sbr->data[0]);
  817. read_sbr_envelope(sbr, gb, &sbr->data[0], 0);
  818. read_sbr_noise(sbr, gb, &sbr->data[0], 0);
  819. if ((sbr->data[0].bs_add_harmonic_flag = get_bits1(gb)))
  820. get_bits1_vector(gb, sbr->data[0].bs_add_harmonic, sbr->n[1]);
  821. return 0;
  822. }
  823. static int read_sbr_channel_pair_element(AACContext *ac,
  824. SpectralBandReplication *sbr,
  825. GetBitContext *gb)
  826. {
  827. if (get_bits1(gb)) // bs_data_extra
  828. skip_bits(gb, 8); // bs_reserved
  829. if ((sbr->bs_coupling = get_bits1(gb))) {
  830. if (read_sbr_grid(ac, sbr, gb, &sbr->data[0]))
  831. return -1;
  832. copy_sbr_grid(&sbr->data[1], &sbr->data[0]);
  833. read_sbr_dtdf(sbr, gb, &sbr->data[0]);
  834. read_sbr_dtdf(sbr, gb, &sbr->data[1]);
  835. read_sbr_invf(sbr, gb, &sbr->data[0]);
  836. memcpy(sbr->data[1].bs_invf_mode[1], sbr->data[1].bs_invf_mode[0], sizeof(sbr->data[1].bs_invf_mode[0]));
  837. memcpy(sbr->data[1].bs_invf_mode[0], sbr->data[0].bs_invf_mode[0], sizeof(sbr->data[1].bs_invf_mode[0]));
  838. read_sbr_envelope(sbr, gb, &sbr->data[0], 0);
  839. read_sbr_noise(sbr, gb, &sbr->data[0], 0);
  840. read_sbr_envelope(sbr, gb, &sbr->data[1], 1);
  841. read_sbr_noise(sbr, gb, &sbr->data[1], 1);
  842. } else {
  843. if (read_sbr_grid(ac, sbr, gb, &sbr->data[0]) ||
  844. read_sbr_grid(ac, sbr, gb, &sbr->data[1]))
  845. return -1;
  846. read_sbr_dtdf(sbr, gb, &sbr->data[0]);
  847. read_sbr_dtdf(sbr, gb, &sbr->data[1]);
  848. read_sbr_invf(sbr, gb, &sbr->data[0]);
  849. read_sbr_invf(sbr, gb, &sbr->data[1]);
  850. read_sbr_envelope(sbr, gb, &sbr->data[0], 0);
  851. read_sbr_envelope(sbr, gb, &sbr->data[1], 1);
  852. read_sbr_noise(sbr, gb, &sbr->data[0], 0);
  853. read_sbr_noise(sbr, gb, &sbr->data[1], 1);
  854. }
  855. if ((sbr->data[0].bs_add_harmonic_flag = get_bits1(gb)))
  856. get_bits1_vector(gb, sbr->data[0].bs_add_harmonic, sbr->n[1]);
  857. if ((sbr->data[1].bs_add_harmonic_flag = get_bits1(gb)))
  858. get_bits1_vector(gb, sbr->data[1].bs_add_harmonic, sbr->n[1]);
  859. return 0;
  860. }
  861. static unsigned int read_sbr_data(AACContext *ac, SpectralBandReplication *sbr,
  862. GetBitContext *gb, int id_aac)
  863. {
  864. unsigned int cnt = get_bits_count(gb);
  865. if (id_aac == TYPE_SCE || id_aac == TYPE_CCE) {
  866. if (read_sbr_single_channel_element(ac, sbr, gb)) {
  867. sbr_turnoff(sbr);
  868. return get_bits_count(gb) - cnt;
  869. }
  870. } else if (id_aac == TYPE_CPE) {
  871. if (read_sbr_channel_pair_element(ac, sbr, gb)) {
  872. sbr_turnoff(sbr);
  873. return get_bits_count(gb) - cnt;
  874. }
  875. } else {
  876. av_log(ac->avctx, AV_LOG_ERROR,
  877. "Invalid bitstream - cannot apply SBR to element type %d\n", id_aac);
  878. sbr_turnoff(sbr);
  879. return get_bits_count(gb) - cnt;
  880. }
  881. if (get_bits1(gb)) { // bs_extended_data
  882. int num_bits_left = get_bits(gb, 4); // bs_extension_size
  883. if (num_bits_left == 15)
  884. num_bits_left += get_bits(gb, 8); // bs_esc_count
  885. num_bits_left <<= 3;
  886. while (num_bits_left > 7) {
  887. num_bits_left -= 2;
  888. read_sbr_extension(ac, sbr, gb, get_bits(gb, 2), &num_bits_left); // bs_extension_id
  889. }
  890. if (num_bits_left < 0) {
  891. av_log(ac->avctx, AV_LOG_ERROR, "SBR Extension over read.\n");
  892. }
  893. if (num_bits_left > 0)
  894. skip_bits(gb, num_bits_left);
  895. }
  896. return get_bits_count(gb) - cnt;
  897. }
  898. static void sbr_reset(AACContext *ac, SpectralBandReplication *sbr)
  899. {
  900. int err;
  901. err = sbr_make_f_master(ac, sbr, &sbr->spectrum_params);
  902. if (err >= 0)
  903. err = sbr_make_f_derived(ac, sbr);
  904. if (err < 0) {
  905. av_log(ac->avctx, AV_LOG_ERROR,
  906. "SBR reset failed. Switching SBR to pure upsampling mode.\n");
  907. sbr_turnoff(sbr);
  908. }
  909. }
  910. /**
  911. * Decode Spectral Band Replication extension data; reference: table 4.55.
  912. *
  913. * @param crc flag indicating the presence of CRC checksum
  914. * @param cnt length of TYPE_FIL syntactic element in bytes
  915. *
  916. * @return Returns number of bytes consumed from the TYPE_FIL element.
  917. */
  918. int ff_decode_sbr_extension(AACContext *ac, SpectralBandReplication *sbr,
  919. GetBitContext *gb_host, int crc, int cnt, int id_aac)
  920. {
  921. unsigned int num_sbr_bits = 0, num_align_bits;
  922. unsigned bytes_read;
  923. GetBitContext gbc = *gb_host, *gb = &gbc;
  924. skip_bits_long(gb_host, cnt*8 - 4);
  925. sbr->reset = 0;
  926. if (!sbr->sample_rate)
  927. sbr->sample_rate = 2 * ac->oc[1].m4ac.sample_rate; //TODO use the nominal sample rate for arbitrary sample rate support
  928. if (!ac->oc[1].m4ac.ext_sample_rate)
  929. ac->oc[1].m4ac.ext_sample_rate = 2 * ac->oc[1].m4ac.sample_rate;
  930. if (crc) {
  931. skip_bits(gb, 10); // bs_sbr_crc_bits; TODO - implement CRC check
  932. num_sbr_bits += 10;
  933. }
  934. //Save some state from the previous frame.
  935. sbr->kx[0] = sbr->kx[1];
  936. sbr->m[0] = sbr->m[1];
  937. sbr->kx_and_m_pushed = 1;
  938. num_sbr_bits++;
  939. if (get_bits1(gb)) // bs_header_flag
  940. num_sbr_bits += read_sbr_header(sbr, gb);
  941. if (sbr->reset)
  942. sbr_reset(ac, sbr);
  943. if (sbr->start)
  944. num_sbr_bits += read_sbr_data(ac, sbr, gb, id_aac);
  945. num_align_bits = ((cnt << 3) - 4 - num_sbr_bits) & 7;
  946. bytes_read = ((num_sbr_bits + num_align_bits + 4) >> 3);
  947. if (bytes_read > cnt) {
  948. av_log(ac->avctx, AV_LOG_ERROR,
  949. "Expected to read %d SBR bytes actually read %d.\n", cnt, bytes_read);
  950. }
  951. return cnt;
  952. }
  953. /// Dequantization and stereo decoding (14496-3 sp04 p203)
  954. static void sbr_dequant(SpectralBandReplication *sbr, int id_aac)
  955. {
  956. int k, e;
  957. int ch;
  958. if (id_aac == TYPE_CPE && sbr->bs_coupling) {
  959. float alpha = sbr->data[0].bs_amp_res ? 1.0f : 0.5f;
  960. float pan_offset = sbr->data[0].bs_amp_res ? 12.0f : 24.0f;
  961. for (e = 1; e <= sbr->data[0].bs_num_env; e++) {
  962. for (k = 0; k < sbr->n[sbr->data[0].bs_freq_res[e]]; k++) {
  963. float temp1 = exp2f(sbr->data[0].env_facs[e][k] * alpha + 7.0f);
  964. float temp2 = exp2f((pan_offset - sbr->data[1].env_facs[e][k]) * alpha);
  965. float fac = temp1 / (1.0f + temp2);
  966. sbr->data[0].env_facs[e][k] = fac;
  967. sbr->data[1].env_facs[e][k] = fac * temp2;
  968. }
  969. }
  970. for (e = 1; e <= sbr->data[0].bs_num_noise; e++) {
  971. for (k = 0; k < sbr->n_q; k++) {
  972. float temp1 = exp2f(NOISE_FLOOR_OFFSET - sbr->data[0].noise_facs[e][k] + 1);
  973. float temp2 = exp2f(12 - sbr->data[1].noise_facs[e][k]);
  974. float fac = temp1 / (1.0f + temp2);
  975. sbr->data[0].noise_facs[e][k] = fac;
  976. sbr->data[1].noise_facs[e][k] = fac * temp2;
  977. }
  978. }
  979. } else { // SCE or one non-coupled CPE
  980. for (ch = 0; ch < (id_aac == TYPE_CPE) + 1; ch++) {
  981. float alpha = sbr->data[ch].bs_amp_res ? 1.0f : 0.5f;
  982. for (e = 1; e <= sbr->data[ch].bs_num_env; e++)
  983. for (k = 0; k < sbr->n[sbr->data[ch].bs_freq_res[e]]; k++)
  984. sbr->data[ch].env_facs[e][k] =
  985. exp2f(alpha * sbr->data[ch].env_facs[e][k] + 6.0f);
  986. for (e = 1; e <= sbr->data[ch].bs_num_noise; e++)
  987. for (k = 0; k < sbr->n_q; k++)
  988. sbr->data[ch].noise_facs[e][k] =
  989. exp2f(NOISE_FLOOR_OFFSET - sbr->data[ch].noise_facs[e][k]);
  990. }
  991. }
  992. }
  993. /**
  994. * Analysis QMF Bank (14496-3 sp04 p206)
  995. *
  996. * @param x pointer to the beginning of the first sample window
  997. * @param W array of complex-valued samples split into subbands
  998. */
  999. static void sbr_qmf_analysis(DSPContext *dsp, FFTContext *mdct,
  1000. SBRDSPContext *sbrdsp, const float *in, float *x,
  1001. float z[320], float W[2][32][32][2])
  1002. {
  1003. int i;
  1004. memcpy(W[0], W[1], sizeof(W[0]));
  1005. memcpy(x , x+1024, (320-32)*sizeof(x[0]));
  1006. memcpy(x+288, in, 1024*sizeof(x[0]));
  1007. for (i = 0; i < 32; i++) { // numTimeSlots*RATE = 16*2 as 960 sample frames
  1008. // are not supported
  1009. dsp->vector_fmul_reverse(z, sbr_qmf_window_ds, x, 320);
  1010. sbrdsp->sum64x5(z);
  1011. sbrdsp->qmf_pre_shuffle(z);
  1012. mdct->imdct_half(mdct, z, z+64);
  1013. sbrdsp->qmf_post_shuffle(W[1][i], z);
  1014. x += 32;
  1015. }
  1016. }
  1017. /**
  1018. * Synthesis QMF Bank (14496-3 sp04 p206) and Downsampled Synthesis QMF Bank
  1019. * (14496-3 sp04 p206)
  1020. */
  1021. static void sbr_qmf_synthesis(DSPContext *dsp, FFTContext *mdct,
  1022. SBRDSPContext *sbrdsp,
  1023. float *out, float X[2][38][64],
  1024. float mdct_buf[2][64],
  1025. float *v0, int *v_off, const unsigned int div)
  1026. {
  1027. int i, n;
  1028. const float *sbr_qmf_window = div ? sbr_qmf_window_ds : sbr_qmf_window_us;
  1029. const int step = 128 >> div;
  1030. float *v;
  1031. for (i = 0; i < 32; i++) {
  1032. if (*v_off < step) {
  1033. int saved_samples = (1280 - 128) >> div;
  1034. memcpy(&v0[SBR_SYNTHESIS_BUF_SIZE - saved_samples], v0, saved_samples * sizeof(float));
  1035. *v_off = SBR_SYNTHESIS_BUF_SIZE - saved_samples - step;
  1036. } else {
  1037. *v_off -= step;
  1038. }
  1039. v = v0 + *v_off;
  1040. if (div) {
  1041. for (n = 0; n < 32; n++) {
  1042. X[0][i][ n] = -X[0][i][n];
  1043. X[0][i][32+n] = X[1][i][31-n];
  1044. }
  1045. mdct->imdct_half(mdct, mdct_buf[0], X[0][i]);
  1046. sbrdsp->qmf_deint_neg(v, mdct_buf[0]);
  1047. } else {
  1048. sbrdsp->neg_odd_64(X[1][i]);
  1049. mdct->imdct_half(mdct, mdct_buf[0], X[0][i]);
  1050. mdct->imdct_half(mdct, mdct_buf[1], X[1][i]);
  1051. sbrdsp->qmf_deint_bfly(v, mdct_buf[1], mdct_buf[0]);
  1052. }
  1053. dsp->vector_fmul_add(out, v , sbr_qmf_window , zero64, 64 >> div);
  1054. dsp->vector_fmul_add(out, v + ( 192 >> div), sbr_qmf_window + ( 64 >> div), out , 64 >> div);
  1055. dsp->vector_fmul_add(out, v + ( 256 >> div), sbr_qmf_window + (128 >> div), out , 64 >> div);
  1056. dsp->vector_fmul_add(out, v + ( 448 >> div), sbr_qmf_window + (192 >> div), out , 64 >> div);
  1057. dsp->vector_fmul_add(out, v + ( 512 >> div), sbr_qmf_window + (256 >> div), out , 64 >> div);
  1058. dsp->vector_fmul_add(out, v + ( 704 >> div), sbr_qmf_window + (320 >> div), out , 64 >> div);
  1059. dsp->vector_fmul_add(out, v + ( 768 >> div), sbr_qmf_window + (384 >> div), out , 64 >> div);
  1060. dsp->vector_fmul_add(out, v + ( 960 >> div), sbr_qmf_window + (448 >> div), out , 64 >> div);
  1061. dsp->vector_fmul_add(out, v + (1024 >> div), sbr_qmf_window + (512 >> div), out , 64 >> div);
  1062. dsp->vector_fmul_add(out, v + (1216 >> div), sbr_qmf_window + (576 >> div), out , 64 >> div);
  1063. out += 64 >> div;
  1064. }
  1065. }
  1066. /** High Frequency Generation (14496-3 sp04 p214+) and Inverse Filtering
  1067. * (14496-3 sp04 p214)
  1068. * Warning: This routine does not seem numerically stable.
  1069. */
  1070. static void sbr_hf_inverse_filter(SBRDSPContext *dsp,
  1071. float (*alpha0)[2], float (*alpha1)[2],
  1072. const float X_low[32][40][2], int k0)
  1073. {
  1074. int k;
  1075. for (k = 0; k < k0; k++) {
  1076. LOCAL_ALIGNED_16(float, phi, [3], [2][2]);
  1077. float dk;
  1078. dsp->autocorrelate(X_low[k], phi);
  1079. dk = phi[2][1][0] * phi[1][0][0] -
  1080. (phi[1][1][0] * phi[1][1][0] + phi[1][1][1] * phi[1][1][1]) / 1.000001f;
  1081. if (!dk) {
  1082. alpha1[k][0] = 0;
  1083. alpha1[k][1] = 0;
  1084. } else {
  1085. float temp_real, temp_im;
  1086. temp_real = phi[0][0][0] * phi[1][1][0] -
  1087. phi[0][0][1] * phi[1][1][1] -
  1088. phi[0][1][0] * phi[1][0][0];
  1089. temp_im = phi[0][0][0] * phi[1][1][1] +
  1090. phi[0][0][1] * phi[1][1][0] -
  1091. phi[0][1][1] * phi[1][0][0];
  1092. alpha1[k][0] = temp_real / dk;
  1093. alpha1[k][1] = temp_im / dk;
  1094. }
  1095. if (!phi[1][0][0]) {
  1096. alpha0[k][0] = 0;
  1097. alpha0[k][1] = 0;
  1098. } else {
  1099. float temp_real, temp_im;
  1100. temp_real = phi[0][0][0] + alpha1[k][0] * phi[1][1][0] +
  1101. alpha1[k][1] * phi[1][1][1];
  1102. temp_im = phi[0][0][1] + alpha1[k][1] * phi[1][1][0] -
  1103. alpha1[k][0] * phi[1][1][1];
  1104. alpha0[k][0] = -temp_real / phi[1][0][0];
  1105. alpha0[k][1] = -temp_im / phi[1][0][0];
  1106. }
  1107. if (alpha1[k][0] * alpha1[k][0] + alpha1[k][1] * alpha1[k][1] >= 16.0f ||
  1108. alpha0[k][0] * alpha0[k][0] + alpha0[k][1] * alpha0[k][1] >= 16.0f) {
  1109. alpha1[k][0] = 0;
  1110. alpha1[k][1] = 0;
  1111. alpha0[k][0] = 0;
  1112. alpha0[k][1] = 0;
  1113. }
  1114. }
  1115. }
  1116. /// Chirp Factors (14496-3 sp04 p214)
  1117. static void sbr_chirp(SpectralBandReplication *sbr, SBRData *ch_data)
  1118. {
  1119. int i;
  1120. float new_bw;
  1121. static const float bw_tab[] = { 0.0f, 0.75f, 0.9f, 0.98f };
  1122. for (i = 0; i < sbr->n_q; i++) {
  1123. if (ch_data->bs_invf_mode[0][i] + ch_data->bs_invf_mode[1][i] == 1) {
  1124. new_bw = 0.6f;
  1125. } else
  1126. new_bw = bw_tab[ch_data->bs_invf_mode[0][i]];
  1127. if (new_bw < ch_data->bw_array[i]) {
  1128. new_bw = 0.75f * new_bw + 0.25f * ch_data->bw_array[i];
  1129. } else
  1130. new_bw = 0.90625f * new_bw + 0.09375f * ch_data->bw_array[i];
  1131. ch_data->bw_array[i] = new_bw < 0.015625f ? 0.0f : new_bw;
  1132. }
  1133. }
  1134. /// Generate the subband filtered lowband
  1135. static int sbr_lf_gen(AACContext *ac, SpectralBandReplication *sbr,
  1136. float X_low[32][40][2], const float W[2][32][32][2])
  1137. {
  1138. int i, k;
  1139. const int t_HFGen = 8;
  1140. const int i_f = 32;
  1141. memset(X_low, 0, 32*sizeof(*X_low));
  1142. for (k = 0; k < sbr->kx[1]; k++) {
  1143. for (i = t_HFGen; i < i_f + t_HFGen; i++) {
  1144. X_low[k][i][0] = W[1][i - t_HFGen][k][0];
  1145. X_low[k][i][1] = W[1][i - t_HFGen][k][1];
  1146. }
  1147. }
  1148. for (k = 0; k < sbr->kx[0]; k++) {
  1149. for (i = 0; i < t_HFGen; i++) {
  1150. X_low[k][i][0] = W[0][i + i_f - t_HFGen][k][0];
  1151. X_low[k][i][1] = W[0][i + i_f - t_HFGen][k][1];
  1152. }
  1153. }
  1154. return 0;
  1155. }
  1156. /// High Frequency Generator (14496-3 sp04 p215)
  1157. static int sbr_hf_gen(AACContext *ac, SpectralBandReplication *sbr,
  1158. float X_high[64][40][2], const float X_low[32][40][2],
  1159. const float (*alpha0)[2], const float (*alpha1)[2],
  1160. const float bw_array[5], const uint8_t *t_env,
  1161. int bs_num_env)
  1162. {
  1163. int j, x;
  1164. int g = 0;
  1165. int k = sbr->kx[1];
  1166. for (j = 0; j < sbr->num_patches; j++) {
  1167. for (x = 0; x < sbr->patch_num_subbands[j]; x++, k++) {
  1168. const int p = sbr->patch_start_subband[j] + x;
  1169. while (g <= sbr->n_q && k >= sbr->f_tablenoise[g])
  1170. g++;
  1171. g--;
  1172. if (g < 0) {
  1173. av_log(ac->avctx, AV_LOG_ERROR,
  1174. "ERROR : no subband found for frequency %d\n", k);
  1175. return -1;
  1176. }
  1177. sbr->dsp.hf_gen(X_high[k] + ENVELOPE_ADJUSTMENT_OFFSET,
  1178. X_low[p] + ENVELOPE_ADJUSTMENT_OFFSET,
  1179. alpha0[p], alpha1[p], bw_array[g],
  1180. 2 * t_env[0], 2 * t_env[bs_num_env]);
  1181. }
  1182. }
  1183. if (k < sbr->m[1] + sbr->kx[1])
  1184. memset(X_high + k, 0, (sbr->m[1] + sbr->kx[1] - k) * sizeof(*X_high));
  1185. return 0;
  1186. }
  1187. /// Generate the subband filtered lowband
  1188. static int sbr_x_gen(SpectralBandReplication *sbr, float X[2][38][64],
  1189. const float Y0[38][64][2], const float Y1[38][64][2],
  1190. const float X_low[32][40][2], int ch)
  1191. {
  1192. int k, i;
  1193. const int i_f = 32;
  1194. const int i_Temp = FFMAX(2*sbr->data[ch].t_env_num_env_old - i_f, 0);
  1195. memset(X, 0, 2*sizeof(*X));
  1196. for (k = 0; k < sbr->kx[0]; k++) {
  1197. for (i = 0; i < i_Temp; i++) {
  1198. X[0][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][0];
  1199. X[1][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][1];
  1200. }
  1201. }
  1202. for (; k < sbr->kx[0] + sbr->m[0]; k++) {
  1203. for (i = 0; i < i_Temp; i++) {
  1204. X[0][i][k] = Y0[i + i_f][k][0];
  1205. X[1][i][k] = Y0[i + i_f][k][1];
  1206. }
  1207. }
  1208. for (k = 0; k < sbr->kx[1]; k++) {
  1209. for (i = i_Temp; i < 38; i++) {
  1210. X[0][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][0];
  1211. X[1][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][1];
  1212. }
  1213. }
  1214. for (; k < sbr->kx[1] + sbr->m[1]; k++) {
  1215. for (i = i_Temp; i < i_f; i++) {
  1216. X[0][i][k] = Y1[i][k][0];
  1217. X[1][i][k] = Y1[i][k][1];
  1218. }
  1219. }
  1220. return 0;
  1221. }
  1222. /** High Frequency Adjustment (14496-3 sp04 p217) and Mapping
  1223. * (14496-3 sp04 p217)
  1224. */
  1225. static int sbr_mapping(AACContext *ac, SpectralBandReplication *sbr,
  1226. SBRData *ch_data, int e_a[2])
  1227. {
  1228. int e, i, m;
  1229. memset(ch_data->s_indexmapped[1], 0, 7*sizeof(ch_data->s_indexmapped[1]));
  1230. for (e = 0; e < ch_data->bs_num_env; e++) {
  1231. const unsigned int ilim = sbr->n[ch_data->bs_freq_res[e + 1]];
  1232. uint16_t *table = ch_data->bs_freq_res[e + 1] ? sbr->f_tablehigh : sbr->f_tablelow;
  1233. int k;
  1234. if (sbr->kx[1] != table[0]) {
  1235. av_log(ac->avctx, AV_LOG_ERROR, "kx != f_table{high,low}[0]. "
  1236. "Derived frequency tables were not regenerated.\n");
  1237. sbr_turnoff(sbr);
  1238. return AVERROR_BUG;
  1239. }
  1240. for (i = 0; i < ilim; i++)
  1241. for (m = table[i]; m < table[i + 1]; m++)
  1242. sbr->e_origmapped[e][m - sbr->kx[1]] = ch_data->env_facs[e+1][i];
  1243. // ch_data->bs_num_noise > 1 => 2 noise floors
  1244. k = (ch_data->bs_num_noise > 1) && (ch_data->t_env[e] >= ch_data->t_q[1]);
  1245. for (i = 0; i < sbr->n_q; i++)
  1246. for (m = sbr->f_tablenoise[i]; m < sbr->f_tablenoise[i + 1]; m++)
  1247. sbr->q_mapped[e][m - sbr->kx[1]] = ch_data->noise_facs[k+1][i];
  1248. for (i = 0; i < sbr->n[1]; i++) {
  1249. if (ch_data->bs_add_harmonic_flag) {
  1250. const unsigned int m_midpoint =
  1251. (sbr->f_tablehigh[i] + sbr->f_tablehigh[i + 1]) >> 1;
  1252. ch_data->s_indexmapped[e + 1][m_midpoint - sbr->kx[1]] = ch_data->bs_add_harmonic[i] *
  1253. (e >= e_a[1] || (ch_data->s_indexmapped[0][m_midpoint - sbr->kx[1]] == 1));
  1254. }
  1255. }
  1256. for (i = 0; i < ilim; i++) {
  1257. int additional_sinusoid_present = 0;
  1258. for (m = table[i]; m < table[i + 1]; m++) {
  1259. if (ch_data->s_indexmapped[e + 1][m - sbr->kx[1]]) {
  1260. additional_sinusoid_present = 1;
  1261. break;
  1262. }
  1263. }
  1264. memset(&sbr->s_mapped[e][table[i] - sbr->kx[1]], additional_sinusoid_present,
  1265. (table[i + 1] - table[i]) * sizeof(sbr->s_mapped[e][0]));
  1266. }
  1267. }
  1268. memcpy(ch_data->s_indexmapped[0], ch_data->s_indexmapped[ch_data->bs_num_env], sizeof(ch_data->s_indexmapped[0]));
  1269. return 0;
  1270. }
  1271. /// Estimation of current envelope (14496-3 sp04 p218)
  1272. static void sbr_env_estimate(float (*e_curr)[48], float X_high[64][40][2],
  1273. SpectralBandReplication *sbr, SBRData *ch_data)
  1274. {
  1275. int e, m;
  1276. int kx1 = sbr->kx[1];
  1277. if (sbr->bs_interpol_freq) {
  1278. for (e = 0; e < ch_data->bs_num_env; e++) {
  1279. const float recip_env_size = 0.5f / (ch_data->t_env[e + 1] - ch_data->t_env[e]);
  1280. int ilb = ch_data->t_env[e] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
  1281. int iub = ch_data->t_env[e + 1] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
  1282. for (m = 0; m < sbr->m[1]; m++) {
  1283. float sum = sbr->dsp.sum_square(X_high[m+kx1] + ilb, iub - ilb);
  1284. e_curr[e][m] = sum * recip_env_size;
  1285. }
  1286. }
  1287. } else {
  1288. int k, p;
  1289. for (e = 0; e < ch_data->bs_num_env; e++) {
  1290. const int env_size = 2 * (ch_data->t_env[e + 1] - ch_data->t_env[e]);
  1291. int ilb = ch_data->t_env[e] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
  1292. int iub = ch_data->t_env[e + 1] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
  1293. const uint16_t *table = ch_data->bs_freq_res[e + 1] ? sbr->f_tablehigh : sbr->f_tablelow;
  1294. for (p = 0; p < sbr->n[ch_data->bs_freq_res[e + 1]]; p++) {
  1295. float sum = 0.0f;
  1296. const int den = env_size * (table[p + 1] - table[p]);
  1297. for (k = table[p]; k < table[p + 1]; k++) {
  1298. sum += sbr->dsp.sum_square(X_high[k] + ilb, iub - ilb);
  1299. }
  1300. sum /= den;
  1301. for (k = table[p]; k < table[p + 1]; k++) {
  1302. e_curr[e][k - kx1] = sum;
  1303. }
  1304. }
  1305. }
  1306. }
  1307. }
  1308. /**
  1309. * Calculation of levels of additional HF signal components (14496-3 sp04 p219)
  1310. * and Calculation of gain (14496-3 sp04 p219)
  1311. */
  1312. static void sbr_gain_calc(AACContext *ac, SpectralBandReplication *sbr,
  1313. SBRData *ch_data, const int e_a[2])
  1314. {
  1315. int e, k, m;
  1316. // max gain limits : -3dB, 0dB, 3dB, inf dB (limiter off)
  1317. static const float limgain[4] = { 0.70795, 1.0, 1.41254, 10000000000 };
  1318. for (e = 0; e < ch_data->bs_num_env; e++) {
  1319. int delta = !((e == e_a[1]) || (e == e_a[0]));
  1320. for (k = 0; k < sbr->n_lim; k++) {
  1321. float gain_boost, gain_max;
  1322. float sum[2] = { 0.0f, 0.0f };
  1323. for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
  1324. const float temp = sbr->e_origmapped[e][m] / (1.0f + sbr->q_mapped[e][m]);
  1325. sbr->q_m[e][m] = sqrtf(temp * sbr->q_mapped[e][m]);
  1326. sbr->s_m[e][m] = sqrtf(temp * ch_data->s_indexmapped[e + 1][m]);
  1327. if (!sbr->s_mapped[e][m]) {
  1328. sbr->gain[e][m] = sqrtf(sbr->e_origmapped[e][m] /
  1329. ((1.0f + sbr->e_curr[e][m]) *
  1330. (1.0f + sbr->q_mapped[e][m] * delta)));
  1331. } else {
  1332. sbr->gain[e][m] = sqrtf(sbr->e_origmapped[e][m] * sbr->q_mapped[e][m] /
  1333. ((1.0f + sbr->e_curr[e][m]) *
  1334. (1.0f + sbr->q_mapped[e][m])));
  1335. }
  1336. }
  1337. for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
  1338. sum[0] += sbr->e_origmapped[e][m];
  1339. sum[1] += sbr->e_curr[e][m];
  1340. }
  1341. gain_max = limgain[sbr->bs_limiter_gains] * sqrtf((FLT_EPSILON + sum[0]) / (FLT_EPSILON + sum[1]));
  1342. gain_max = FFMIN(100000.f, gain_max);
  1343. for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
  1344. float q_m_max = sbr->q_m[e][m] * gain_max / sbr->gain[e][m];
  1345. sbr->q_m[e][m] = FFMIN(sbr->q_m[e][m], q_m_max);
  1346. sbr->gain[e][m] = FFMIN(sbr->gain[e][m], gain_max);
  1347. }
  1348. sum[0] = sum[1] = 0.0f;
  1349. for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
  1350. sum[0] += sbr->e_origmapped[e][m];
  1351. sum[1] += sbr->e_curr[e][m] * sbr->gain[e][m] * sbr->gain[e][m]
  1352. + sbr->s_m[e][m] * sbr->s_m[e][m]
  1353. + (delta && !sbr->s_m[e][m]) * sbr->q_m[e][m] * sbr->q_m[e][m];
  1354. }
  1355. gain_boost = sqrtf((FLT_EPSILON + sum[0]) / (FLT_EPSILON + sum[1]));
  1356. gain_boost = FFMIN(1.584893192f, gain_boost);
  1357. for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
  1358. sbr->gain[e][m] *= gain_boost;
  1359. sbr->q_m[e][m] *= gain_boost;
  1360. sbr->s_m[e][m] *= gain_boost;
  1361. }
  1362. }
  1363. }
  1364. }
  1365. /// Assembling HF Signals (14496-3 sp04 p220)
  1366. static void sbr_hf_assemble(float Y1[38][64][2],
  1367. const float X_high[64][40][2],
  1368. SpectralBandReplication *sbr, SBRData *ch_data,
  1369. const int e_a[2])
  1370. {
  1371. int e, i, j, m;
  1372. const int h_SL = 4 * !sbr->bs_smoothing_mode;
  1373. const int kx = sbr->kx[1];
  1374. const int m_max = sbr->m[1];
  1375. static const float h_smooth[5] = {
  1376. 0.33333333333333,
  1377. 0.30150283239582,
  1378. 0.21816949906249,
  1379. 0.11516383427084,
  1380. 0.03183050093751,
  1381. };
  1382. static const int8_t phi[2][4] = {
  1383. { 1, 0, -1, 0}, // real
  1384. { 0, 1, 0, -1}, // imaginary
  1385. };
  1386. float (*g_temp)[48] = ch_data->g_temp, (*q_temp)[48] = ch_data->q_temp;
  1387. int indexnoise = ch_data->f_indexnoise;
  1388. int indexsine = ch_data->f_indexsine;
  1389. if (sbr->reset) {
  1390. for (i = 0; i < h_SL; i++) {
  1391. memcpy(g_temp[i + 2*ch_data->t_env[0]], sbr->gain[0], m_max * sizeof(sbr->gain[0][0]));
  1392. memcpy(q_temp[i + 2*ch_data->t_env[0]], sbr->q_m[0], m_max * sizeof(sbr->q_m[0][0]));
  1393. }
  1394. } else if (h_SL) {
  1395. memcpy(g_temp[2*ch_data->t_env[0]], g_temp[2*ch_data->t_env_num_env_old], 4*sizeof(g_temp[0]));
  1396. memcpy(q_temp[2*ch_data->t_env[0]], q_temp[2*ch_data->t_env_num_env_old], 4*sizeof(q_temp[0]));
  1397. }
  1398. for (e = 0; e < ch_data->bs_num_env; e++) {
  1399. for (i = 2 * ch_data->t_env[e]; i < 2 * ch_data->t_env[e + 1]; i++) {
  1400. memcpy(g_temp[h_SL + i], sbr->gain[e], m_max * sizeof(sbr->gain[0][0]));
  1401. memcpy(q_temp[h_SL + i], sbr->q_m[e], m_max * sizeof(sbr->q_m[0][0]));
  1402. }
  1403. }
  1404. for (e = 0; e < ch_data->bs_num_env; e++) {
  1405. for (i = 2 * ch_data->t_env[e]; i < 2 * ch_data->t_env[e + 1]; i++) {
  1406. int phi_sign = (1 - 2*(kx & 1));
  1407. LOCAL_ALIGNED_16(float, g_filt_tab, [48]);
  1408. LOCAL_ALIGNED_16(float, q_filt_tab, [48]);
  1409. float *g_filt, *q_filt;
  1410. if (h_SL && e != e_a[0] && e != e_a[1]) {
  1411. g_filt = g_filt_tab;
  1412. q_filt = q_filt_tab;
  1413. for (m = 0; m < m_max; m++) {
  1414. const int idx1 = i + h_SL;
  1415. g_filt[m] = 0.0f;
  1416. q_filt[m] = 0.0f;
  1417. for (j = 0; j <= h_SL; j++) {
  1418. g_filt[m] += g_temp[idx1 - j][m] * h_smooth[j];
  1419. q_filt[m] += q_temp[idx1 - j][m] * h_smooth[j];
  1420. }
  1421. }
  1422. } else {
  1423. g_filt = g_temp[i + h_SL];
  1424. q_filt = q_temp[i];
  1425. }
  1426. sbr->dsp.hf_g_filt(Y1[i] + kx, X_high + kx, g_filt, m_max,
  1427. i + ENVELOPE_ADJUSTMENT_OFFSET);
  1428. if (e != e_a[0] && e != e_a[1]) {
  1429. sbr->dsp.hf_apply_noise[indexsine](Y1[i] + kx, sbr->s_m[e],
  1430. q_filt, indexnoise,
  1431. kx, m_max);
  1432. } else {
  1433. for (m = 0; m < m_max; m++) {
  1434. Y1[i][m + kx][0] +=
  1435. sbr->s_m[e][m] * phi[0][indexsine];
  1436. Y1[i][m + kx][1] +=
  1437. sbr->s_m[e][m] * (phi[1][indexsine] * phi_sign);
  1438. phi_sign = -phi_sign;
  1439. }
  1440. }
  1441. indexnoise = (indexnoise + m_max) & 0x1ff;
  1442. indexsine = (indexsine + 1) & 3;
  1443. }
  1444. }
  1445. ch_data->f_indexnoise = indexnoise;
  1446. ch_data->f_indexsine = indexsine;
  1447. }
  1448. void ff_sbr_apply(AACContext *ac, SpectralBandReplication *sbr, int id_aac,
  1449. float* L, float* R)
  1450. {
  1451. int downsampled = ac->oc[1].m4ac.ext_sample_rate < sbr->sample_rate;
  1452. int ch;
  1453. int nch = (id_aac == TYPE_CPE) ? 2 : 1;
  1454. int err;
  1455. if (!sbr->kx_and_m_pushed) {
  1456. sbr->kx[0] = sbr->kx[1];
  1457. sbr->m[0] = sbr->m[1];
  1458. } else {
  1459. sbr->kx_and_m_pushed = 0;
  1460. }
  1461. if (sbr->start) {
  1462. sbr_dequant(sbr, id_aac);
  1463. }
  1464. for (ch = 0; ch < nch; ch++) {
  1465. /* decode channel */
  1466. sbr_qmf_analysis(&ac->dsp, &sbr->mdct_ana, &sbr->dsp, ch ? R : L, sbr->data[ch].analysis_filterbank_samples,
  1467. (float*)sbr->qmf_filter_scratch,
  1468. sbr->data[ch].W);
  1469. sbr_lf_gen(ac, sbr, sbr->X_low, sbr->data[ch].W);
  1470. sbr->data[ch].Ypos ^= 1;
  1471. if (sbr->start) {
  1472. sbr_hf_inverse_filter(&sbr->dsp, sbr->alpha0, sbr->alpha1, sbr->X_low, sbr->k[0]);
  1473. sbr_chirp(sbr, &sbr->data[ch]);
  1474. sbr_hf_gen(ac, sbr, sbr->X_high, sbr->X_low, sbr->alpha0, sbr->alpha1,
  1475. sbr->data[ch].bw_array, sbr->data[ch].t_env,
  1476. sbr->data[ch].bs_num_env);
  1477. // hf_adj
  1478. err = sbr_mapping(ac, sbr, &sbr->data[ch], sbr->data[ch].e_a);
  1479. if (!err) {
  1480. sbr_env_estimate(sbr->e_curr, sbr->X_high, sbr, &sbr->data[ch]);
  1481. sbr_gain_calc(ac, sbr, &sbr->data[ch], sbr->data[ch].e_a);
  1482. sbr_hf_assemble(sbr->data[ch].Y[sbr->data[ch].Ypos],
  1483. sbr->X_high, sbr, &sbr->data[ch],
  1484. sbr->data[ch].e_a);
  1485. }
  1486. }
  1487. /* synthesis */
  1488. sbr_x_gen(sbr, sbr->X[ch],
  1489. sbr->data[ch].Y[1-sbr->data[ch].Ypos],
  1490. sbr->data[ch].Y[ sbr->data[ch].Ypos],
  1491. sbr->X_low, ch);
  1492. }
  1493. if (ac->oc[1].m4ac.ps == 1) {
  1494. if (sbr->ps.start) {
  1495. ff_ps_apply(ac->avctx, &sbr->ps, sbr->X[0], sbr->X[1], sbr->kx[1] + sbr->m[1]);
  1496. } else {
  1497. memcpy(sbr->X[1], sbr->X[0], sizeof(sbr->X[0]));
  1498. }
  1499. nch = 2;
  1500. }
  1501. sbr_qmf_synthesis(&ac->dsp, &sbr->mdct, &sbr->dsp, L, sbr->X[0], sbr->qmf_filter_scratch,
  1502. sbr->data[0].synthesis_filterbank_samples,
  1503. &sbr->data[0].synthesis_filterbank_samples_offset,
  1504. downsampled);
  1505. if (nch == 2)
  1506. sbr_qmf_synthesis(&ac->dsp, &sbr->mdct, &sbr->dsp, R, sbr->X[1], sbr->qmf_filter_scratch,
  1507. sbr->data[1].synthesis_filterbank_samples,
  1508. &sbr->data[1].synthesis_filterbank_samples_offset,
  1509. downsampled);
  1510. }