You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

447 lines
13KB

  1. /*
  2. * Copyright (c) 2013
  3. * MIPS Technologies, Inc., California.
  4. *
  5. * Redistribution and use in source and binary forms, with or without
  6. * modification, are permitted provided that the following conditions
  7. * are met:
  8. * 1. Redistributions of source code must retain the above copyright
  9. * notice, this list of conditions and the following disclaimer.
  10. * 2. Redistributions in binary form must reproduce the above copyright
  11. * notice, this list of conditions and the following disclaimer in the
  12. * documentation and/or other materials provided with the distribution.
  13. * 3. Neither the name of the MIPS Technologies, Inc., nor the names of its
  14. * contributors may be used to endorse or promote products derived from
  15. * this software without specific prior written permission.
  16. *
  17. * THIS SOFTWARE IS PROVIDED BY THE MIPS TECHNOLOGIES, INC. ``AS IS'' AND
  18. * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  19. * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  20. * ARE DISCLAIMED. IN NO EVENT SHALL THE MIPS TECHNOLOGIES, INC. BE LIABLE
  21. * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  22. * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
  23. * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  24. * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
  25. * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
  26. * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
  27. * SUCH DAMAGE.
  28. *
  29. * AAC decoder fixed-point implementation
  30. *
  31. * Copyright (c) 2005-2006 Oded Shimon ( ods15 ods15 dyndns org )
  32. * Copyright (c) 2006-2007 Maxim Gavrilov ( maxim.gavrilov gmail com )
  33. *
  34. * This file is part of FFmpeg.
  35. *
  36. * FFmpeg is free software; you can redistribute it and/or
  37. * modify it under the terms of the GNU Lesser General Public
  38. * License as published by the Free Software Foundation; either
  39. * version 2.1 of the License, or (at your option) any later version.
  40. *
  41. * FFmpeg is distributed in the hope that it will be useful,
  42. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  43. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  44. * Lesser General Public License for more details.
  45. *
  46. * You should have received a copy of the GNU Lesser General Public
  47. * License along with FFmpeg; if not, write to the Free Software
  48. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  49. */
  50. /**
  51. * @file
  52. * AAC decoder
  53. * @author Oded Shimon ( ods15 ods15 dyndns org )
  54. * @author Maxim Gavrilov ( maxim.gavrilov gmail com )
  55. *
  56. * Fixed point implementation
  57. * @author Stanislav Ocovaj ( stanislav.ocovaj imgtec com )
  58. */
  59. #define FFT_FLOAT 0
  60. #define FFT_FIXED_32 1
  61. #define USE_FIXED 1
  62. #include "libavutil/fixed_dsp.h"
  63. #include "libavutil/opt.h"
  64. #include "avcodec.h"
  65. #include "internal.h"
  66. #include "get_bits.h"
  67. #include "fft.h"
  68. #include "lpc.h"
  69. #include "kbdwin.h"
  70. #include "sinewin.h"
  71. #include "aac.h"
  72. #include "aactab.h"
  73. #include "aacdectab.h"
  74. #include "cbrt_tablegen.h"
  75. #include "sbr.h"
  76. #include "aacsbr.h"
  77. #include "mpeg4audio.h"
  78. #include "aacadtsdec.h"
  79. #include "profiles.h"
  80. #include "libavutil/intfloat.h"
  81. #include <math.h>
  82. #include <string.h>
  83. static av_always_inline void reset_predict_state(PredictorState *ps)
  84. {
  85. ps->r0.mant = 0;
  86. ps->r0.exp = 0;
  87. ps->r1.mant = 0;
  88. ps->r1.exp = 0;
  89. ps->cor0.mant = 0;
  90. ps->cor0.exp = 0;
  91. ps->cor1.mant = 0;
  92. ps->cor1.exp = 0;
  93. ps->var0.mant = 0x20000000;
  94. ps->var0.exp = 1;
  95. ps->var1.mant = 0x20000000;
  96. ps->var1.exp = 1;
  97. }
  98. static const int exp2tab[4] = { Q31(1.0000000000/2), Q31(1.1892071150/2), Q31(1.4142135624/2), Q31(1.6817928305/2) }; // 2^0, 2^0.25, 2^0.5, 2^0.75
  99. static inline int *DEC_SPAIR(int *dst, unsigned idx)
  100. {
  101. dst[0] = (idx & 15) - 4;
  102. dst[1] = (idx >> 4 & 15) - 4;
  103. return dst + 2;
  104. }
  105. static inline int *DEC_SQUAD(int *dst, unsigned idx)
  106. {
  107. dst[0] = (idx & 3) - 1;
  108. dst[1] = (idx >> 2 & 3) - 1;
  109. dst[2] = (idx >> 4 & 3) - 1;
  110. dst[3] = (idx >> 6 & 3) - 1;
  111. return dst + 4;
  112. }
  113. static inline int *DEC_UPAIR(int *dst, unsigned idx, unsigned sign)
  114. {
  115. dst[0] = (idx & 15) * (1 - (sign & 0xFFFFFFFE));
  116. dst[1] = (idx >> 4 & 15) * (1 - ((sign & 1) << 1));
  117. return dst + 2;
  118. }
  119. static inline int *DEC_UQUAD(int *dst, unsigned idx, unsigned sign)
  120. {
  121. unsigned nz = idx >> 12;
  122. dst[0] = (idx & 3) * (1 + (((int)sign >> 31) << 1));
  123. sign <<= nz & 1;
  124. nz >>= 1;
  125. dst[1] = (idx >> 2 & 3) * (1 + (((int)sign >> 31) << 1));
  126. sign <<= nz & 1;
  127. nz >>= 1;
  128. dst[2] = (idx >> 4 & 3) * (1 + (((int)sign >> 31) << 1));
  129. sign <<= nz & 1;
  130. nz >>= 1;
  131. dst[3] = (idx >> 6 & 3) * (1 + (((int)sign >> 31) << 1));
  132. return dst + 4;
  133. }
  134. static void vector_pow43(int *coefs, int len)
  135. {
  136. int i, coef;
  137. for (i=0; i<len; i++) {
  138. coef = coefs[i];
  139. if (coef < 0)
  140. coef = -(int)cbrt_tab[-coef];
  141. else
  142. coef = (int)cbrt_tab[coef];
  143. coefs[i] = coef;
  144. }
  145. }
  146. static void subband_scale(int *dst, int *src, int scale, int offset, int len)
  147. {
  148. int ssign = scale < 0 ? -1 : 1;
  149. int s = FFABS(scale);
  150. unsigned int round;
  151. int i, out, c = exp2tab[s & 3];
  152. s = offset - (s >> 2);
  153. if (s > 0) {
  154. round = 1 << (s-1);
  155. for (i=0; i<len; i++) {
  156. out = (int)(((int64_t)src[i] * c) >> 32);
  157. dst[i] = ((int)(out+round) >> s) * ssign;
  158. }
  159. }
  160. else {
  161. s = s + 32;
  162. round = 1 << (s-1);
  163. for (i=0; i<len; i++) {
  164. out = (int)((int64_t)((int64_t)src[i] * c + round) >> s);
  165. dst[i] = out * ssign;
  166. }
  167. }
  168. }
  169. static void noise_scale(int *coefs, int scale, int band_energy, int len)
  170. {
  171. int ssign = scale < 0 ? -1 : 1;
  172. int s = FFABS(scale);
  173. unsigned int round;
  174. int i, out, c = exp2tab[s & 3];
  175. int nlz = 0;
  176. while (band_energy > 0x7fff) {
  177. band_energy >>= 1;
  178. nlz++;
  179. }
  180. c /= band_energy;
  181. s = 21 + nlz - (s >> 2);
  182. if (s > 0) {
  183. round = 1 << (s-1);
  184. for (i=0; i<len; i++) {
  185. out = (int)(((int64_t)coefs[i] * c) >> 32);
  186. coefs[i] = ((int)(out+round) >> s) * ssign;
  187. }
  188. }
  189. else {
  190. s = s + 32;
  191. round = 1 << (s-1);
  192. for (i=0; i<len; i++) {
  193. out = (int)((int64_t)((int64_t)coefs[i] * c + round) >> s);
  194. coefs[i] = out * ssign;
  195. }
  196. }
  197. }
  198. static av_always_inline SoftFloat flt16_round(SoftFloat pf)
  199. {
  200. SoftFloat tmp;
  201. int s;
  202. tmp.exp = pf.exp;
  203. s = pf.mant >> 31;
  204. tmp.mant = (pf.mant ^ s) - s;
  205. tmp.mant = (tmp.mant + 0x00200000U) & 0xFFC00000U;
  206. tmp.mant = (tmp.mant ^ s) - s;
  207. return tmp;
  208. }
  209. static av_always_inline SoftFloat flt16_even(SoftFloat pf)
  210. {
  211. SoftFloat tmp;
  212. int s;
  213. tmp.exp = pf.exp;
  214. s = pf.mant >> 31;
  215. tmp.mant = (pf.mant ^ s) - s;
  216. tmp.mant = (tmp.mant + 0x001FFFFFU + (tmp.mant & 0x00400000U >> 16)) & 0xFFC00000U;
  217. tmp.mant = (tmp.mant ^ s) - s;
  218. return tmp;
  219. }
  220. static av_always_inline SoftFloat flt16_trunc(SoftFloat pf)
  221. {
  222. SoftFloat pun;
  223. int s;
  224. pun.exp = pf.exp;
  225. s = pf.mant >> 31;
  226. pun.mant = (pf.mant ^ s) - s;
  227. pun.mant = pun.mant & 0xFFC00000U;
  228. pun.mant = (pun.mant ^ s) - s;
  229. return pun;
  230. }
  231. static av_always_inline void predict(PredictorState *ps, int *coef,
  232. int output_enable)
  233. {
  234. const SoftFloat a = { 1023410176, 0 }; // 61.0 / 64
  235. const SoftFloat alpha = { 973078528, 0 }; // 29.0 / 32
  236. SoftFloat e0, e1;
  237. SoftFloat pv;
  238. SoftFloat k1, k2;
  239. SoftFloat r0 = ps->r0, r1 = ps->r1;
  240. SoftFloat cor0 = ps->cor0, cor1 = ps->cor1;
  241. SoftFloat var0 = ps->var0, var1 = ps->var1;
  242. SoftFloat tmp;
  243. if (var0.exp > 1 || (var0.exp == 1 && var0.mant > 0x20000000)) {
  244. k1 = av_mul_sf(cor0, flt16_even(av_div_sf(a, var0)));
  245. }
  246. else {
  247. k1.mant = 0;
  248. k1.exp = 0;
  249. }
  250. if (var1.exp > 1 || (var1.exp == 1 && var1.mant > 0x20000000)) {
  251. k2 = av_mul_sf(cor1, flt16_even(av_div_sf(a, var1)));
  252. }
  253. else {
  254. k2.mant = 0;
  255. k2.exp = 0;
  256. }
  257. tmp = av_mul_sf(k1, r0);
  258. pv = flt16_round(av_add_sf(tmp, av_mul_sf(k2, r1)));
  259. if (output_enable) {
  260. int shift = 28 - pv.exp;
  261. if (shift < 31)
  262. *coef += (pv.mant + (1 << (shift - 1))) >> shift;
  263. }
  264. e0 = av_int2sf(*coef, 2);
  265. e1 = av_sub_sf(e0, tmp);
  266. ps->cor1 = flt16_trunc(av_add_sf(av_mul_sf(alpha, cor1), av_mul_sf(r1, e1)));
  267. tmp = av_add_sf(av_mul_sf(r1, r1), av_mul_sf(e1, e1));
  268. tmp.exp--;
  269. ps->var1 = flt16_trunc(av_add_sf(av_mul_sf(alpha, var1), tmp));
  270. ps->cor0 = flt16_trunc(av_add_sf(av_mul_sf(alpha, cor0), av_mul_sf(r0, e0)));
  271. tmp = av_add_sf(av_mul_sf(r0, r0), av_mul_sf(e0, e0));
  272. tmp.exp--;
  273. ps->var0 = flt16_trunc(av_add_sf(av_mul_sf(alpha, var0), tmp));
  274. ps->r1 = flt16_trunc(av_mul_sf(a, av_sub_sf(r0, av_mul_sf(k1, e0))));
  275. ps->r0 = flt16_trunc(av_mul_sf(a, e0));
  276. }
  277. static const int cce_scale_fixed[8] = {
  278. Q30(1.0), //2^(0/8)
  279. Q30(1.0905077327), //2^(1/8)
  280. Q30(1.1892071150), //2^(2/8)
  281. Q30(1.2968395547), //2^(3/8)
  282. Q30(1.4142135624), //2^(4/8)
  283. Q30(1.5422108254), //2^(5/8)
  284. Q30(1.6817928305), //2^(6/8)
  285. Q30(1.8340080864), //2^(7/8)
  286. };
  287. /**
  288. * Apply dependent channel coupling (applied before IMDCT).
  289. *
  290. * @param index index into coupling gain array
  291. */
  292. static void apply_dependent_coupling_fixed(AACContext *ac,
  293. SingleChannelElement *target,
  294. ChannelElement *cce, int index)
  295. {
  296. IndividualChannelStream *ics = &cce->ch[0].ics;
  297. const uint16_t *offsets = ics->swb_offset;
  298. int *dest = target->coeffs;
  299. const int *src = cce->ch[0].coeffs;
  300. int g, i, group, k, idx = 0;
  301. if (ac->oc[1].m4ac.object_type == AOT_AAC_LTP) {
  302. av_log(ac->avctx, AV_LOG_ERROR,
  303. "Dependent coupling is not supported together with LTP\n");
  304. return;
  305. }
  306. for (g = 0; g < ics->num_window_groups; g++) {
  307. for (i = 0; i < ics->max_sfb; i++, idx++) {
  308. if (cce->ch[0].band_type[idx] != ZERO_BT) {
  309. const int gain = cce->coup.gain[index][idx];
  310. int shift, round, c, tmp;
  311. if (gain < 0) {
  312. c = -cce_scale_fixed[-gain & 7];
  313. shift = (-gain-1024) >> 3;
  314. }
  315. else {
  316. c = cce_scale_fixed[gain & 7];
  317. shift = (gain-1024) >> 3;
  318. }
  319. if (shift < 0) {
  320. shift = -shift;
  321. round = 1 << (shift - 1);
  322. for (group = 0; group < ics->group_len[g]; group++) {
  323. for (k = offsets[i]; k < offsets[i + 1]; k++) {
  324. tmp = (int)(((int64_t)src[group * 128 + k] * c + \
  325. (int64_t)0x1000000000) >> 37);
  326. dest[group * 128 + k] += (tmp + round) >> shift;
  327. }
  328. }
  329. }
  330. else {
  331. for (group = 0; group < ics->group_len[g]; group++) {
  332. for (k = offsets[i]; k < offsets[i + 1]; k++) {
  333. tmp = (int)(((int64_t)src[group * 128 + k] * c + \
  334. (int64_t)0x1000000000) >> 37);
  335. dest[group * 128 + k] += tmp << shift;
  336. }
  337. }
  338. }
  339. }
  340. }
  341. dest += ics->group_len[g] * 128;
  342. src += ics->group_len[g] * 128;
  343. }
  344. }
  345. /**
  346. * Apply independent channel coupling (applied after IMDCT).
  347. *
  348. * @param index index into coupling gain array
  349. */
  350. static void apply_independent_coupling_fixed(AACContext *ac,
  351. SingleChannelElement *target,
  352. ChannelElement *cce, int index)
  353. {
  354. int i, c, shift, round, tmp;
  355. const int gain = cce->coup.gain[index][0];
  356. const int *src = cce->ch[0].ret;
  357. int *dest = target->ret;
  358. const int len = 1024 << (ac->oc[1].m4ac.sbr == 1);
  359. c = cce_scale_fixed[gain & 7];
  360. shift = (gain-1024) >> 3;
  361. if (shift < 0) {
  362. shift = -shift;
  363. round = 1 << (shift - 1);
  364. for (i = 0; i < len; i++) {
  365. tmp = (int)(((int64_t)src[i] * c + (int64_t)0x1000000000) >> 37);
  366. dest[i] += (tmp + round) >> shift;
  367. }
  368. }
  369. else {
  370. for (i = 0; i < len; i++) {
  371. tmp = (int)(((int64_t)src[i] * c + (int64_t)0x1000000000) >> 37);
  372. dest[i] += tmp << shift;
  373. }
  374. }
  375. }
  376. #include "aacdec_template.c"
  377. AVCodec ff_aac_fixed_decoder = {
  378. .name = "aac_fixed",
  379. .long_name = NULL_IF_CONFIG_SMALL("AAC (Advanced Audio Coding)"),
  380. .type = AVMEDIA_TYPE_AUDIO,
  381. .id = AV_CODEC_ID_AAC,
  382. .priv_data_size = sizeof(AACContext),
  383. .init = aac_decode_init,
  384. .close = aac_decode_close,
  385. .decode = aac_decode_frame,
  386. .sample_fmts = (const enum AVSampleFormat[]) {
  387. AV_SAMPLE_FMT_S32P, AV_SAMPLE_FMT_NONE
  388. },
  389. .capabilities = AV_CODEC_CAP_CHANNEL_CONF | AV_CODEC_CAP_DR1,
  390. .caps_internal = FF_CODEC_CAP_INIT_THREADSAFE,
  391. .channel_layouts = aac_channel_layout,
  392. .profiles = NULL_IF_CONFIG_SMALL(ff_aac_profiles),
  393. .flush = flush,
  394. };