You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

314 lines
7.9KB

  1. /*
  2. * Sample rate convertion for both audio and video
  3. * Copyright (c) 2000 Gerard Lantau.
  4. *
  5. * This program is free software; you can redistribute it and/or modify
  6. * it under the terms of the GNU General Public License as published by
  7. * the Free Software Foundation; either version 2 of the License, or
  8. * (at your option) any later version.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License
  16. * along with this program; if not, write to the Free Software
  17. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  18. */
  19. #include "avcodec.h"
  20. #include <math.h>
  21. typedef struct {
  22. /* fractional resampling */
  23. UINT32 incr; /* fractional increment */
  24. UINT32 frac;
  25. int last_sample;
  26. /* integer down sample */
  27. int iratio; /* integer divison ratio */
  28. int icount, isum;
  29. int inv;
  30. } ReSampleChannelContext;
  31. struct ReSampleContext {
  32. ReSampleChannelContext channel_ctx[2];
  33. float ratio;
  34. /* channel convert */
  35. int input_channels, output_channels, filter_channels;
  36. };
  37. #define FRAC_BITS 16
  38. #define FRAC (1 << FRAC_BITS)
  39. static void init_mono_resample(ReSampleChannelContext *s, float ratio)
  40. {
  41. ratio = 1.0 / ratio;
  42. s->iratio = (int)floor(ratio);
  43. if (s->iratio == 0)
  44. s->iratio = 1;
  45. s->incr = (int)((ratio / s->iratio) * FRAC);
  46. s->frac = 0;
  47. s->last_sample = 0;
  48. s->icount = s->iratio;
  49. s->isum = 0;
  50. s->inv = (FRAC / s->iratio);
  51. }
  52. /* fractional audio resampling */
  53. static int fractional_resample(ReSampleChannelContext *s, short *output, short *input, int nb_samples)
  54. {
  55. unsigned int frac, incr;
  56. int l0, l1;
  57. short *q, *p, *pend;
  58. l0 = s->last_sample;
  59. incr = s->incr;
  60. frac = s->frac;
  61. p = input;
  62. pend = input + nb_samples;
  63. q = output;
  64. l1 = *p++;
  65. for(;;) {
  66. /* interpolate */
  67. *q++ = (l0 * (FRAC - frac) + l1 * frac) >> FRAC_BITS;
  68. frac = frac + s->incr;
  69. while (frac >= FRAC) {
  70. if (p >= pend)
  71. goto the_end;
  72. frac -= FRAC;
  73. l0 = l1;
  74. l1 = *p++;
  75. }
  76. }
  77. the_end:
  78. s->last_sample = l1;
  79. s->frac = frac;
  80. return q - output;
  81. }
  82. static int integer_downsample(ReSampleChannelContext *s, short *output, short *input, int nb_samples)
  83. {
  84. short *q, *p, *pend;
  85. int c, sum;
  86. p = input;
  87. pend = input + nb_samples;
  88. q = output;
  89. c = s->icount;
  90. sum = s->isum;
  91. for(;;) {
  92. sum += *p++;
  93. if (--c == 0) {
  94. *q++ = (sum * s->inv) >> FRAC_BITS;
  95. c = s->iratio;
  96. sum = 0;
  97. }
  98. if (p >= pend)
  99. break;
  100. }
  101. s->isum = sum;
  102. s->icount = c;
  103. return q - output;
  104. }
  105. /* n1: number of samples */
  106. static void stereo_to_mono(short *output, short *input, int n1)
  107. {
  108. short *p, *q;
  109. int n = n1;
  110. p = input;
  111. q = output;
  112. while (n >= 4) {
  113. q[0] = (p[0] + p[1]) >> 1;
  114. q[1] = (p[2] + p[3]) >> 1;
  115. q[2] = (p[4] + p[5]) >> 1;
  116. q[3] = (p[6] + p[7]) >> 1;
  117. q += 4;
  118. p += 8;
  119. n -= 4;
  120. }
  121. while (n > 0) {
  122. q[0] = (p[0] + p[1]) >> 1;
  123. q++;
  124. p += 2;
  125. n--;
  126. }
  127. }
  128. /* n1: number of samples */
  129. static void mono_to_stereo(short *output, short *input, int n1)
  130. {
  131. short *p, *q;
  132. int n = n1;
  133. int v;
  134. p = input;
  135. q = output;
  136. while (n >= 4) {
  137. v = p[0]; q[0] = v; q[1] = v;
  138. v = p[1]; q[2] = v; q[3] = v;
  139. v = p[2]; q[4] = v; q[5] = v;
  140. v = p[3]; q[6] = v; q[7] = v;
  141. q += 8;
  142. p += 4;
  143. n -= 4;
  144. }
  145. while (n > 0) {
  146. v = p[0]; q[0] = v; q[1] = v;
  147. q += 2;
  148. p += 1;
  149. n--;
  150. }
  151. }
  152. /* XXX: should use more abstract 'N' channels system */
  153. static void stereo_split(short *output1, short *output2, short *input, int n)
  154. {
  155. int i;
  156. for(i=0;i<n;i++) {
  157. *output1++ = *input++;
  158. *output2++ = *input++;
  159. }
  160. }
  161. static void stereo_mux(short *output, short *input1, short *input2, int n)
  162. {
  163. int i;
  164. for(i=0;i<n;i++) {
  165. *output++ = *input1++;
  166. *output++ = *input2++;
  167. }
  168. }
  169. static int mono_resample(ReSampleChannelContext *s, short *output, short *input, int nb_samples)
  170. {
  171. short *buf1;
  172. short *buftmp;
  173. buf1= (short*) malloc( nb_samples * sizeof(short) );
  174. /* first downsample by an integer factor with averaging filter */
  175. if (s->iratio > 1) {
  176. buftmp = buf1;
  177. nb_samples = integer_downsample(s, buftmp, input, nb_samples);
  178. } else {
  179. buftmp = input;
  180. }
  181. /* then do a fractional resampling with linear interpolation */
  182. if (s->incr != FRAC) {
  183. nb_samples = fractional_resample(s, output, buftmp, nb_samples);
  184. } else {
  185. memcpy(output, buftmp, nb_samples * sizeof(short));
  186. }
  187. free(buf1);
  188. return nb_samples;
  189. }
  190. ReSampleContext *audio_resample_init(int output_channels, int input_channels,
  191. int output_rate, int input_rate)
  192. {
  193. ReSampleContext *s;
  194. int i;
  195. if (output_channels > 2 || input_channels > 2)
  196. return NULL;
  197. s = av_mallocz(sizeof(ReSampleContext));
  198. if (!s)
  199. return NULL;
  200. s->ratio = (float)output_rate / (float)input_rate;
  201. s->input_channels = input_channels;
  202. s->output_channels = output_channels;
  203. s->filter_channels = s->input_channels;
  204. if (s->output_channels < s->filter_channels)
  205. s->filter_channels = s->output_channels;
  206. for(i=0;i<s->filter_channels;i++) {
  207. init_mono_resample(&s->channel_ctx[i], s->ratio);
  208. }
  209. return s;
  210. }
  211. /* resample audio. 'nb_samples' is the number of input samples */
  212. /* XXX: optimize it ! */
  213. /* XXX: do it with polyphase filters, since the quality here is
  214. HORRIBLE. Return the number of samples available in output */
  215. int audio_resample(ReSampleContext *s, short *output, short *input, int nb_samples)
  216. {
  217. int i, nb_samples1;
  218. short *bufin[2];
  219. short *bufout[2];
  220. short *buftmp2[2], *buftmp3[2];
  221. int lenout;
  222. if (s->input_channels == s->output_channels && s->ratio == 1.0) {
  223. /* nothing to do */
  224. memcpy(output, input, nb_samples * s->input_channels * sizeof(short));
  225. return nb_samples;
  226. }
  227. /* XXX: move those malloc to resample init code */
  228. bufin[0]= (short*) malloc( nb_samples * sizeof(short) );
  229. bufin[1]= (short*) malloc( nb_samples * sizeof(short) );
  230. /* make some zoom to avoid round pb */
  231. lenout= (int)(nb_samples * s->ratio) + 16;
  232. bufout[0]= (short*) malloc( lenout * sizeof(short) );
  233. bufout[1]= (short*) malloc( lenout * sizeof(short) );
  234. if (s->input_channels == 2 &&
  235. s->output_channels == 1) {
  236. buftmp2[0] = bufin[0];
  237. buftmp3[0] = output;
  238. stereo_to_mono(buftmp2[0], input, nb_samples);
  239. } else if (s->output_channels == 2 && s->input_channels == 1) {
  240. buftmp2[0] = input;
  241. buftmp3[0] = bufout[0];
  242. } else if (s->output_channels == 2) {
  243. buftmp2[0] = bufin[0];
  244. buftmp2[1] = bufin[1];
  245. buftmp3[0] = bufout[0];
  246. buftmp3[1] = bufout[1];
  247. stereo_split(buftmp2[0], buftmp2[1], input, nb_samples);
  248. } else {
  249. buftmp2[0] = input;
  250. buftmp3[0] = output;
  251. }
  252. /* resample each channel */
  253. nb_samples1 = 0; /* avoid warning */
  254. for(i=0;i<s->filter_channels;i++) {
  255. nb_samples1 = mono_resample(&s->channel_ctx[i], buftmp3[i], buftmp2[i], nb_samples);
  256. }
  257. if (s->output_channels == 2 && s->input_channels == 1) {
  258. mono_to_stereo(output, buftmp3[0], nb_samples1);
  259. } else if (s->output_channels == 2) {
  260. stereo_mux(output, buftmp3[0], buftmp3[1], nb_samples1);
  261. }
  262. free(bufin[0]);
  263. free(bufin[1]);
  264. free(bufout[0]);
  265. free(bufout[1]);
  266. return nb_samples1;
  267. }
  268. void audio_resample_close(ReSampleContext *s)
  269. {
  270. free(s);
  271. }