You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

2406 lines
72KB

  1. /*
  2. * MPEG Audio decoder
  3. * Copyright (c) 2001 Gerard Lantau.
  4. *
  5. * This program is free software; you can redistribute it and/or modify
  6. * it under the terms of the GNU General Public License as published by
  7. * the Free Software Foundation; either version 2 of the License, or
  8. * (at your option) any later version.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License
  16. * along with this program; if not, write to the Free Software
  17. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  18. */
  19. //#define DEBUG
  20. #include "avcodec.h"
  21. #include <math.h>
  22. #include "mpegaudio.h"
  23. /*
  24. * TODO:
  25. * - in low precision mode, use more 16 bit multiplies in synth filter
  26. * - test lsf / mpeg25 extensively.
  27. */
  28. /* define USE_HIGHPRECISION to have a bit exact (but slower) mpeg
  29. audio decoder */
  30. //#define USE_HIGHPRECISION
  31. #ifdef USE_HIGHPRECISION
  32. #define FRAC_BITS 23 /* fractional bits for sb_samples and dct */
  33. #define WFRAC_BITS 16 /* fractional bits for window */
  34. #else
  35. #define FRAC_BITS 15 /* fractional bits for sb_samples and dct */
  36. #define WFRAC_BITS 14 /* fractional bits for window */
  37. #endif
  38. #define FRAC_ONE (1 << FRAC_BITS)
  39. #define MULL(a,b) (((INT64)(a) * (INT64)(b)) >> FRAC_BITS)
  40. #define MUL64(a,b) ((INT64)(a) * (INT64)(b))
  41. #define FIX(a) ((int)((a) * FRAC_ONE))
  42. /* WARNING: only correct for posititive numbers */
  43. #define FIXR(a) ((int)((a) * FRAC_ONE + 0.5))
  44. #define FRAC_RND(a) (((a) + (FRAC_ONE/2)) >> FRAC_BITS)
  45. #if FRAC_BITS <= 15
  46. typedef INT16 MPA_INT;
  47. #else
  48. typedef INT32 MPA_INT;
  49. #endif
  50. /****************/
  51. #define HEADER_SIZE 4
  52. #define BACKSTEP_SIZE 512
  53. typedef struct MPADecodeContext {
  54. UINT8 inbuf1[2][MPA_MAX_CODED_FRAME_SIZE + BACKSTEP_SIZE]; /* input buffer */
  55. int inbuf_index;
  56. UINT8 *inbuf_ptr, *inbuf;
  57. int frame_size;
  58. int free_format_frame_size; /* frame size in case of free format
  59. (zero if currently unknown) */
  60. /* next header (used in free format parsing) */
  61. UINT32 free_format_next_header;
  62. int error_protection;
  63. int layer;
  64. int sample_rate;
  65. int sample_rate_index; /* between 0 and 8 */
  66. int bit_rate;
  67. int old_frame_size;
  68. GetBitContext gb;
  69. int nb_channels;
  70. int mode;
  71. int mode_ext;
  72. int lsf;
  73. MPA_INT synth_buf[MPA_MAX_CHANNELS][512 * 2];
  74. int synth_buf_offset[MPA_MAX_CHANNELS];
  75. INT32 sb_samples[MPA_MAX_CHANNELS][36][SBLIMIT];
  76. INT32 mdct_buf[MPA_MAX_CHANNELS][SBLIMIT * 18]; /* previous samples, for layer 3 MDCT */
  77. #ifdef DEBUG
  78. int frame_count;
  79. #endif
  80. } MPADecodeContext;
  81. /* layer 3 "granule" */
  82. typedef struct GranuleDef {
  83. UINT8 scfsi;
  84. int part2_3_length;
  85. int big_values;
  86. int global_gain;
  87. int scalefac_compress;
  88. UINT8 block_type;
  89. UINT8 switch_point;
  90. int table_select[3];
  91. int subblock_gain[3];
  92. UINT8 scalefac_scale;
  93. UINT8 count1table_select;
  94. int region_size[3]; /* number of huffman codes in each region */
  95. int preflag;
  96. int short_start, long_end; /* long/short band indexes */
  97. UINT8 scale_factors[40];
  98. INT32 sb_hybrid[SBLIMIT * 18]; /* 576 samples */
  99. } GranuleDef;
  100. #define MODE_EXT_MS_STEREO 2
  101. #define MODE_EXT_I_STEREO 1
  102. /* layer 3 huffman tables */
  103. typedef struct HuffTable {
  104. int xsize;
  105. const UINT8 *bits;
  106. const UINT16 *codes;
  107. } HuffTable;
  108. #include "mpegaudiodectab.h"
  109. /* vlc structure for decoding layer 3 huffman tables */
  110. static VLC huff_vlc[16];
  111. static UINT8 *huff_code_table[16];
  112. static VLC huff_quad_vlc[2];
  113. /* computed from band_size_long */
  114. static UINT16 band_index_long[9][23];
  115. /* XXX: free when all decoders are closed */
  116. #define TABLE_4_3_SIZE (8191 + 16)
  117. static UINT8 *table_4_3_exp;
  118. #if FRAC_BITS <= 15
  119. static UINT16 *table_4_3_value;
  120. #else
  121. static UINT32 *table_4_3_value;
  122. #endif
  123. /* intensity stereo coef table */
  124. static INT32 is_table[2][16];
  125. static INT32 is_table_lsf[2][2][16];
  126. static INT32 csa_table[8][2];
  127. static INT32 mdct_win[8][36];
  128. /* lower 2 bits: modulo 3, higher bits: shift */
  129. static UINT16 scale_factor_modshift[64];
  130. /* [i][j]: 2^(-j/3) * FRAC_ONE * 2^(i+2) / (2^(i+2) - 1) */
  131. static INT32 scale_factor_mult[15][3];
  132. /* mult table for layer 2 group quantization */
  133. #define SCALE_GEN(v) \
  134. { FIXR(1.0 * (v)), FIXR(0.7937005259 * (v)), FIXR(0.6299605249 * (v)) }
  135. static INT32 scale_factor_mult2[3][3] = {
  136. SCALE_GEN(1.0 / 3.0), /* 3 steps */
  137. SCALE_GEN(1.0 / 5.0), /* 5 steps */
  138. SCALE_GEN(1.0 / 9.0), /* 9 steps */
  139. };
  140. /* 2^(n/4) */
  141. static UINT32 scale_factor_mult3[4] = {
  142. FIXR(1.0),
  143. FIXR(1.18920711500272106671),
  144. FIXR(1.41421356237309504880),
  145. FIXR(1.68179283050742908605),
  146. };
  147. static MPA_INT window[512];
  148. /* layer 1 unscaling */
  149. /* n = number of bits of the mantissa minus 1 */
  150. static inline int l1_unscale(int n, int mant, int scale_factor)
  151. {
  152. int shift, mod;
  153. INT64 val;
  154. shift = scale_factor_modshift[scale_factor];
  155. mod = shift & 3;
  156. shift >>= 2;
  157. val = MUL64(mant + (-1 << n) + 1, scale_factor_mult[n-1][mod]);
  158. shift += n;
  159. return (int)((val + (1 << (shift - 1))) >> shift);
  160. }
  161. static inline int l2_unscale_group(int steps, int mant, int scale_factor)
  162. {
  163. int shift, mod, val;
  164. shift = scale_factor_modshift[scale_factor];
  165. mod = shift & 3;
  166. shift >>= 2;
  167. /* XXX: store the result directly */
  168. val = (2 * (mant - (steps >> 1))) * scale_factor_mult2[steps >> 2][mod];
  169. return (val + (1 << (shift - 1))) >> shift;
  170. }
  171. /* compute value^(4/3) * 2^(exponent/4). It normalized to FRAC_BITS */
  172. static inline int l3_unscale(int value, int exponent)
  173. {
  174. #if FRAC_BITS <= 15
  175. unsigned int m;
  176. #else
  177. UINT64 m;
  178. #endif
  179. int e;
  180. e = table_4_3_exp[value];
  181. e += (exponent >> 2);
  182. e = FRAC_BITS - e;
  183. #if FRAC_BITS <= 15
  184. if (e > 31)
  185. e = 31;
  186. #endif
  187. m = table_4_3_value[value];
  188. #if FRAC_BITS <= 15
  189. m = (m * scale_factor_mult3[exponent & 3]);
  190. m = (m + (1 << (e-1))) >> e;
  191. return m;
  192. #else
  193. m = MUL64(m, scale_factor_mult3[exponent & 3]);
  194. m = (m + (UINT64_C(1) << (e-1))) >> e;
  195. return m;
  196. #endif
  197. }
  198. static int decode_init(AVCodecContext * avctx)
  199. {
  200. MPADecodeContext *s = avctx->priv_data;
  201. static int init;
  202. int i, j, k;
  203. if(!init) {
  204. /* scale factors table for layer 1/2 */
  205. for(i=0;i<64;i++) {
  206. int shift, mod;
  207. /* 1.0 (i = 3) is normalized to 2 ^ FRAC_BITS */
  208. shift = (i / 3) - 1;
  209. mod = i % 3;
  210. #if FRAC_BITS <= 15
  211. if (shift > 31)
  212. shift = 31;
  213. #endif
  214. scale_factor_modshift[i] = mod | (shift << 2);
  215. }
  216. /* scale factor multiply for layer 1 */
  217. for(i=0;i<15;i++) {
  218. int n, norm;
  219. n = i + 2;
  220. norm = ((INT64_C(1) << n) * FRAC_ONE) / ((1 << n) - 1);
  221. scale_factor_mult[i][0] = MULL(FIXR(1.0), norm);
  222. scale_factor_mult[i][1] = MULL(FIXR(0.7937005259), norm);
  223. scale_factor_mult[i][2] = MULL(FIXR(0.6299605249), norm);
  224. dprintf("%d: norm=%x s=%x %x %x\n",
  225. i, norm,
  226. scale_factor_mult[i][0],
  227. scale_factor_mult[i][1],
  228. scale_factor_mult[i][2]);
  229. }
  230. /* window */
  231. /* max = 18760, max sum over all 16 coefs : 44736 */
  232. for(i=0;i<257;i++) {
  233. int v;
  234. v = mpa_enwindow[i];
  235. #if WFRAC_BITS < 16
  236. v = (v + (1 << (16 - WFRAC_BITS - 1))) >> (16 - WFRAC_BITS);
  237. #endif
  238. window[i] = v;
  239. if ((i & 63) != 0)
  240. v = -v;
  241. if (i != 0)
  242. window[512 - i] = v;
  243. }
  244. /* huffman decode tables */
  245. huff_code_table[0] = NULL;
  246. for(i=1;i<16;i++) {
  247. const HuffTable *h = &mpa_huff_tables[i];
  248. int xsize, n, x, y;
  249. UINT8 *code_table;
  250. xsize = h->xsize;
  251. n = xsize * xsize;
  252. /* XXX: fail test */
  253. init_vlc(&huff_vlc[i], 8, n,
  254. h->bits, 1, 1, h->codes, 2, 2);
  255. code_table = av_mallocz(n);
  256. j = 0;
  257. for(x=0;x<xsize;x++) {
  258. for(y=0;y<xsize;y++)
  259. code_table[j++] = (x << 4) | y;
  260. }
  261. huff_code_table[i] = code_table;
  262. }
  263. for(i=0;i<2;i++) {
  264. init_vlc(&huff_quad_vlc[i], i == 0 ? 7 : 4, 16,
  265. mpa_quad_bits[i], 1, 1, mpa_quad_codes[i], 1, 1);
  266. }
  267. for(i=0;i<9;i++) {
  268. k = 0;
  269. for(j=0;j<22;j++) {
  270. band_index_long[i][j] = k;
  271. k += band_size_long[i][j];
  272. }
  273. band_index_long[i][22] = k;
  274. }
  275. /* compute n ^ (4/3) and store it in mantissa/exp format */
  276. table_4_3_exp = av_mallocz(TABLE_4_3_SIZE *
  277. sizeof(table_4_3_exp[0]));
  278. if (!table_4_3_exp)
  279. return -1;
  280. table_4_3_value = av_mallocz(TABLE_4_3_SIZE *
  281. sizeof(table_4_3_value[0]));
  282. if (!table_4_3_value) {
  283. free(table_4_3_exp);
  284. return -1;
  285. }
  286. for(i=1;i<TABLE_4_3_SIZE;i++) {
  287. double f, fm;
  288. int e, m;
  289. f = pow((double)i, 4.0 / 3.0);
  290. fm = frexp(f, &e);
  291. m = FIXR(2 * fm);
  292. #if FRAC_BITS <= 15
  293. if ((unsigned short)m != m)
  294. m = 65535;
  295. #endif
  296. /* normalized to FRAC_BITS */
  297. table_4_3_value[i] = m;
  298. table_4_3_exp[i] = e - 1;
  299. }
  300. for(i=0;i<7;i++) {
  301. float f;
  302. int v;
  303. if (i != 6) {
  304. f = tan((double)i * M_PI / 12.0);
  305. v = FIXR(f / (1.0 + f));
  306. } else {
  307. v = FIXR(1.0);
  308. }
  309. is_table[0][i] = v;
  310. is_table[1][6 - i] = v;
  311. }
  312. /* invalid values */
  313. for(i=7;i<16;i++)
  314. is_table[0][i] = is_table[1][i] = 0.0;
  315. for(i=0;i<16;i++) {
  316. double f;
  317. int e, k;
  318. for(j=0;j<2;j++) {
  319. e = -(j + 1) * ((i + 1) >> 1);
  320. f = pow(2.0, e / 4.0);
  321. k = i & 1;
  322. is_table_lsf[j][k ^ 1][i] = FIXR(f);
  323. is_table_lsf[j][k][i] = FIXR(1.0);
  324. dprintf("is_table_lsf %d %d: %x %x\n",
  325. i, j, is_table_lsf[j][0][i], is_table_lsf[j][1][i]);
  326. }
  327. }
  328. for(i=0;i<8;i++) {
  329. float ci, cs, ca;
  330. ci = ci_table[i];
  331. cs = 1.0 / sqrt(1.0 + ci * ci);
  332. ca = cs * ci;
  333. csa_table[i][0] = FIX(cs);
  334. csa_table[i][1] = FIX(ca);
  335. }
  336. /* compute mdct windows */
  337. for(i=0;i<36;i++) {
  338. int v;
  339. v = FIXR(sin(M_PI * (i + 0.5) / 36.0));
  340. mdct_win[0][i] = v;
  341. mdct_win[1][i] = v;
  342. mdct_win[3][i] = v;
  343. }
  344. for(i=0;i<6;i++) {
  345. mdct_win[1][18 + i] = FIXR(1.0);
  346. mdct_win[1][24 + i] = FIXR(sin(M_PI * ((i + 6) + 0.5) / 12.0));
  347. mdct_win[1][30 + i] = FIXR(0.0);
  348. mdct_win[3][i] = FIXR(0.0);
  349. mdct_win[3][6 + i] = FIXR(sin(M_PI * (i + 0.5) / 12.0));
  350. mdct_win[3][12 + i] = FIXR(1.0);
  351. }
  352. for(i=0;i<12;i++)
  353. mdct_win[2][i] = FIXR(sin(M_PI * (i + 0.5) / 12.0));
  354. /* NOTE: we do frequency inversion adter the MDCT by changing
  355. the sign of the right window coefs */
  356. for(j=0;j<4;j++) {
  357. for(i=0;i<36;i+=2) {
  358. mdct_win[j + 4][i] = mdct_win[j][i];
  359. mdct_win[j + 4][i + 1] = -mdct_win[j][i + 1];
  360. }
  361. }
  362. #if defined(DEBUG)
  363. for(j=0;j<8;j++) {
  364. printf("win%d=\n", j);
  365. for(i=0;i<36;i++)
  366. printf("%f, ", (double)mdct_win[j][i] / FRAC_ONE);
  367. printf("\n");
  368. }
  369. #endif
  370. init = 1;
  371. }
  372. s->inbuf_index = 0;
  373. s->inbuf = &s->inbuf1[s->inbuf_index][BACKSTEP_SIZE];
  374. s->inbuf_ptr = s->inbuf;
  375. #ifdef DEBUG
  376. s->frame_count = 0;
  377. #endif
  378. return 0;
  379. }
  380. /* tab[i][j] = 1.0 / (2.0 * cos(pi*(2*k+1) / 2^(6 - j))) */;
  381. /* cos(i*pi/64) */
  382. #define COS0_0 FIXR(0.50060299823519630134)
  383. #define COS0_1 FIXR(0.50547095989754365998)
  384. #define COS0_2 FIXR(0.51544730992262454697)
  385. #define COS0_3 FIXR(0.53104259108978417447)
  386. #define COS0_4 FIXR(0.55310389603444452782)
  387. #define COS0_5 FIXR(0.58293496820613387367)
  388. #define COS0_6 FIXR(0.62250412303566481615)
  389. #define COS0_7 FIXR(0.67480834145500574602)
  390. #define COS0_8 FIXR(0.74453627100229844977)
  391. #define COS0_9 FIXR(0.83934964541552703873)
  392. #define COS0_10 FIXR(0.97256823786196069369)
  393. #define COS0_11 FIXR(1.16943993343288495515)
  394. #define COS0_12 FIXR(1.48416461631416627724)
  395. #define COS0_13 FIXR(2.05778100995341155085)
  396. #define COS0_14 FIXR(3.40760841846871878570)
  397. #define COS0_15 FIXR(10.19000812354805681150)
  398. #define COS1_0 FIXR(0.50241928618815570551)
  399. #define COS1_1 FIXR(0.52249861493968888062)
  400. #define COS1_2 FIXR(0.56694403481635770368)
  401. #define COS1_3 FIXR(0.64682178335999012954)
  402. #define COS1_4 FIXR(0.78815462345125022473)
  403. #define COS1_5 FIXR(1.06067768599034747134)
  404. #define COS1_6 FIXR(1.72244709823833392782)
  405. #define COS1_7 FIXR(5.10114861868916385802)
  406. #define COS2_0 FIXR(0.50979557910415916894)
  407. #define COS2_1 FIXR(0.60134488693504528054)
  408. #define COS2_2 FIXR(0.89997622313641570463)
  409. #define COS2_3 FIXR(2.56291544774150617881)
  410. #define COS3_0 FIXR(0.54119610014619698439)
  411. #define COS3_1 FIXR(1.30656296487637652785)
  412. #define COS4_0 FIXR(0.70710678118654752439)
  413. /* butterfly operator */
  414. #define BF(a, b, c)\
  415. {\
  416. tmp0 = tab[a] + tab[b];\
  417. tmp1 = tab[a] - tab[b];\
  418. tab[a] = tmp0;\
  419. tab[b] = MULL(tmp1, c);\
  420. }
  421. #define BF1(a, b, c, d)\
  422. {\
  423. BF(a, b, COS4_0);\
  424. BF(c, d, -COS4_0);\
  425. tab[c] += tab[d];\
  426. }
  427. #define BF2(a, b, c, d)\
  428. {\
  429. BF(a, b, COS4_0);\
  430. BF(c, d, -COS4_0);\
  431. tab[c] += tab[d];\
  432. tab[a] += tab[c];\
  433. tab[c] += tab[b];\
  434. tab[b] += tab[d];\
  435. }
  436. #define ADD(a, b) tab[a] += tab[b]
  437. /* DCT32 without 1/sqrt(2) coef zero scaling. */
  438. static void dct32(INT32 *out, INT32 *tab)
  439. {
  440. int tmp0, tmp1;
  441. /* pass 1 */
  442. BF(0, 31, COS0_0);
  443. BF(1, 30, COS0_1);
  444. BF(2, 29, COS0_2);
  445. BF(3, 28, COS0_3);
  446. BF(4, 27, COS0_4);
  447. BF(5, 26, COS0_5);
  448. BF(6, 25, COS0_6);
  449. BF(7, 24, COS0_7);
  450. BF(8, 23, COS0_8);
  451. BF(9, 22, COS0_9);
  452. BF(10, 21, COS0_10);
  453. BF(11, 20, COS0_11);
  454. BF(12, 19, COS0_12);
  455. BF(13, 18, COS0_13);
  456. BF(14, 17, COS0_14);
  457. BF(15, 16, COS0_15);
  458. /* pass 2 */
  459. BF(0, 15, COS1_0);
  460. BF(1, 14, COS1_1);
  461. BF(2, 13, COS1_2);
  462. BF(3, 12, COS1_3);
  463. BF(4, 11, COS1_4);
  464. BF(5, 10, COS1_5);
  465. BF(6, 9, COS1_6);
  466. BF(7, 8, COS1_7);
  467. BF(16, 31, -COS1_0);
  468. BF(17, 30, -COS1_1);
  469. BF(18, 29, -COS1_2);
  470. BF(19, 28, -COS1_3);
  471. BF(20, 27, -COS1_4);
  472. BF(21, 26, -COS1_5);
  473. BF(22, 25, -COS1_6);
  474. BF(23, 24, -COS1_7);
  475. /* pass 3 */
  476. BF(0, 7, COS2_0);
  477. BF(1, 6, COS2_1);
  478. BF(2, 5, COS2_2);
  479. BF(3, 4, COS2_3);
  480. BF(8, 15, -COS2_0);
  481. BF(9, 14, -COS2_1);
  482. BF(10, 13, -COS2_2);
  483. BF(11, 12, -COS2_3);
  484. BF(16, 23, COS2_0);
  485. BF(17, 22, COS2_1);
  486. BF(18, 21, COS2_2);
  487. BF(19, 20, COS2_3);
  488. BF(24, 31, -COS2_0);
  489. BF(25, 30, -COS2_1);
  490. BF(26, 29, -COS2_2);
  491. BF(27, 28, -COS2_3);
  492. /* pass 4 */
  493. BF(0, 3, COS3_0);
  494. BF(1, 2, COS3_1);
  495. BF(4, 7, -COS3_0);
  496. BF(5, 6, -COS3_1);
  497. BF(8, 11, COS3_0);
  498. BF(9, 10, COS3_1);
  499. BF(12, 15, -COS3_0);
  500. BF(13, 14, -COS3_1);
  501. BF(16, 19, COS3_0);
  502. BF(17, 18, COS3_1);
  503. BF(20, 23, -COS3_0);
  504. BF(21, 22, -COS3_1);
  505. BF(24, 27, COS3_0);
  506. BF(25, 26, COS3_1);
  507. BF(28, 31, -COS3_0);
  508. BF(29, 30, -COS3_1);
  509. /* pass 5 */
  510. BF1(0, 1, 2, 3);
  511. BF2(4, 5, 6, 7);
  512. BF1(8, 9, 10, 11);
  513. BF2(12, 13, 14, 15);
  514. BF1(16, 17, 18, 19);
  515. BF2(20, 21, 22, 23);
  516. BF1(24, 25, 26, 27);
  517. BF2(28, 29, 30, 31);
  518. /* pass 6 */
  519. ADD( 8, 12);
  520. ADD(12, 10);
  521. ADD(10, 14);
  522. ADD(14, 9);
  523. ADD( 9, 13);
  524. ADD(13, 11);
  525. ADD(11, 15);
  526. out[ 0] = tab[0];
  527. out[16] = tab[1];
  528. out[ 8] = tab[2];
  529. out[24] = tab[3];
  530. out[ 4] = tab[4];
  531. out[20] = tab[5];
  532. out[12] = tab[6];
  533. out[28] = tab[7];
  534. out[ 2] = tab[8];
  535. out[18] = tab[9];
  536. out[10] = tab[10];
  537. out[26] = tab[11];
  538. out[ 6] = tab[12];
  539. out[22] = tab[13];
  540. out[14] = tab[14];
  541. out[30] = tab[15];
  542. ADD(24, 28);
  543. ADD(28, 26);
  544. ADD(26, 30);
  545. ADD(30, 25);
  546. ADD(25, 29);
  547. ADD(29, 27);
  548. ADD(27, 31);
  549. out[ 1] = tab[16] + tab[24];
  550. out[17] = tab[17] + tab[25];
  551. out[ 9] = tab[18] + tab[26];
  552. out[25] = tab[19] + tab[27];
  553. out[ 5] = tab[20] + tab[28];
  554. out[21] = tab[21] + tab[29];
  555. out[13] = tab[22] + tab[30];
  556. out[29] = tab[23] + tab[31];
  557. out[ 3] = tab[24] + tab[20];
  558. out[19] = tab[25] + tab[21];
  559. out[11] = tab[26] + tab[22];
  560. out[27] = tab[27] + tab[23];
  561. out[ 7] = tab[28] + tab[18];
  562. out[23] = tab[29] + tab[19];
  563. out[15] = tab[30] + tab[17];
  564. out[31] = tab[31];
  565. }
  566. #define OUT_SHIFT (WFRAC_BITS + FRAC_BITS - 15)
  567. #if FRAC_BITS <= 15
  568. #define OUT_SAMPLE(sum)\
  569. {\
  570. int sum1;\
  571. sum1 = (sum + (1 << (OUT_SHIFT - 1))) >> OUT_SHIFT;\
  572. if (sum1 < -32768)\
  573. sum1 = -32768;\
  574. else if (sum1 > 32767)\
  575. sum1 = 32767;\
  576. *samples = sum1;\
  577. samples += incr;\
  578. }
  579. #define SUM8(off, op) \
  580. { \
  581. sum op w[0 * 64 + off] * p[0 * 64];\
  582. sum op w[1 * 64 + off] * p[1 * 64];\
  583. sum op w[2 * 64 + off] * p[2 * 64];\
  584. sum op w[3 * 64 + off] * p[3 * 64];\
  585. sum op w[4 * 64 + off] * p[4 * 64];\
  586. sum op w[5 * 64 + off] * p[5 * 64];\
  587. sum op w[6 * 64 + off] * p[6 * 64];\
  588. sum op w[7 * 64 + off] * p[7 * 64];\
  589. }
  590. #else
  591. #define OUT_SAMPLE(sum)\
  592. {\
  593. int sum1;\
  594. sum1 = (int)((sum + (INT64_C(1) << (OUT_SHIFT - 1))) >> OUT_SHIFT);\
  595. if (sum1 < -32768)\
  596. sum1 = -32768;\
  597. else if (sum1 > 32767)\
  598. sum1 = 32767;\
  599. *samples = sum1;\
  600. samples += incr;\
  601. }
  602. #define SUM8(off, op) \
  603. { \
  604. sum op MUL64(w[0 * 64 + off], p[0 * 64]);\
  605. sum op MUL64(w[1 * 64 + off], p[1 * 64]);\
  606. sum op MUL64(w[2 * 64 + off], p[2 * 64]);\
  607. sum op MUL64(w[3 * 64 + off], p[3 * 64]);\
  608. sum op MUL64(w[4 * 64 + off], p[4 * 64]);\
  609. sum op MUL64(w[5 * 64 + off], p[5 * 64]);\
  610. sum op MUL64(w[6 * 64 + off], p[6 * 64]);\
  611. sum op MUL64(w[7 * 64 + off], p[7 * 64]);\
  612. }
  613. #endif
  614. /* 32 sub band synthesis filter. Input: 32 sub band samples, Output:
  615. 32 samples. */
  616. /* XXX: optimize by avoiding ring buffer usage */
  617. static void synth_filter(MPADecodeContext *s1,
  618. int ch, INT16 *samples, int incr,
  619. INT32 sb_samples[SBLIMIT])
  620. {
  621. INT32 tmp[32];
  622. register MPA_INT *synth_buf, *p;
  623. register MPA_INT *w;
  624. int j, offset, v;
  625. #if FRAC_BITS <= 15
  626. int sum;
  627. #else
  628. INT64 sum;
  629. #endif
  630. dct32(tmp, sb_samples);
  631. offset = s1->synth_buf_offset[ch];
  632. synth_buf = s1->synth_buf[ch] + offset;
  633. for(j=0;j<32;j++) {
  634. v = tmp[j];
  635. #if FRAC_BITS <= 15
  636. if (v > 32767)
  637. v = 32767;
  638. else if (v < -32768)
  639. v = -32768;
  640. #endif
  641. synth_buf[j] = v;
  642. }
  643. /* copy to avoid wrap */
  644. memcpy(synth_buf + 512, synth_buf, 32 * sizeof(MPA_INT));
  645. w = window;
  646. for(j=0;j<16;j++) {
  647. sum = 0;
  648. p = synth_buf + 16 + j; /* 0-15 */
  649. SUM8(0, +=);
  650. p = synth_buf + 48 - j; /* 32-47 */
  651. SUM8(32, -=);
  652. OUT_SAMPLE(sum);
  653. w++;
  654. }
  655. p = synth_buf + 32; /* 48 */
  656. sum = 0;
  657. SUM8(32, -=);
  658. OUT_SAMPLE(sum);
  659. w++;
  660. for(j=17;j<32;j++) {
  661. sum = 0;
  662. p = synth_buf + 48 - j; /* 17-31 */
  663. SUM8(0, -=);
  664. p = synth_buf + 16 + j; /* 49-63 */
  665. SUM8(32, -=);
  666. OUT_SAMPLE(sum);
  667. w++;
  668. }
  669. offset = (offset - 32) & 511;
  670. s1->synth_buf_offset[ch] = offset;
  671. }
  672. /* cos(pi*i/24) */
  673. #define C1 FIXR(0.99144486137381041114)
  674. #define C3 FIXR(0.92387953251128675612)
  675. #define C5 FIXR(0.79335334029123516458)
  676. #define C7 FIXR(0.60876142900872063941)
  677. #define C9 FIXR(0.38268343236508977173)
  678. #define C11 FIXR(0.13052619222005159154)
  679. /* 12 points IMDCT. We compute it "by hand" by factorizing obvious
  680. cases. */
  681. static void imdct12(int *out, int *in)
  682. {
  683. int tmp;
  684. INT64 in1_3, in1_9, in4_3, in4_9;
  685. in1_3 = MUL64(in[1], C3);
  686. in1_9 = MUL64(in[1], C9);
  687. in4_3 = MUL64(in[4], C3);
  688. in4_9 = MUL64(in[4], C9);
  689. tmp = FRAC_RND(MUL64(in[0], C7) - in1_3 - MUL64(in[2], C11) +
  690. MUL64(in[3], C1) - in4_9 - MUL64(in[5], C5));
  691. out[0] = tmp;
  692. out[5] = -tmp;
  693. tmp = FRAC_RND(MUL64(in[0] - in[3], C9) - in1_3 +
  694. MUL64(in[2] + in[5], C3) - in4_9);
  695. out[1] = tmp;
  696. out[4] = -tmp;
  697. tmp = FRAC_RND(MUL64(in[0], C11) - in1_9 + MUL64(in[2], C7) -
  698. MUL64(in[3], C5) + in4_3 - MUL64(in[5], C1));
  699. out[2] = tmp;
  700. out[3] = -tmp;
  701. tmp = FRAC_RND(MUL64(-in[0], C5) + in1_9 + MUL64(in[2], C1) +
  702. MUL64(in[3], C11) - in4_3 - MUL64(in[5], C7));
  703. out[6] = tmp;
  704. out[11] = tmp;
  705. tmp = FRAC_RND(MUL64(-in[0] + in[3], C3) - in1_9 +
  706. MUL64(in[2] + in[5], C9) + in4_3);
  707. out[7] = tmp;
  708. out[10] = tmp;
  709. tmp = FRAC_RND(-MUL64(in[0], C1) - in1_3 - MUL64(in[2], C5) -
  710. MUL64(in[3], C7) - in4_9 - MUL64(in[5], C11));
  711. out[8] = tmp;
  712. out[9] = tmp;
  713. }
  714. #undef C1
  715. #undef C3
  716. #undef C5
  717. #undef C7
  718. #undef C9
  719. #undef C11
  720. /* cos(pi*i/18) */
  721. #define C1 FIXR(0.98480775301220805936)
  722. #define C2 FIXR(0.93969262078590838405)
  723. #define C3 FIXR(0.86602540378443864676)
  724. #define C4 FIXR(0.76604444311897803520)
  725. #define C5 FIXR(0.64278760968653932632)
  726. #define C6 FIXR(0.5)
  727. #define C7 FIXR(0.34202014332566873304)
  728. #define C8 FIXR(0.17364817766693034885)
  729. /* 0.5 / cos(pi*(2*i+1)/36) */
  730. static const int icos36[9] = {
  731. FIXR(0.50190991877167369479),
  732. FIXR(0.51763809020504152469),
  733. FIXR(0.55168895948124587824),
  734. FIXR(0.61038729438072803416),
  735. FIXR(0.70710678118654752439),
  736. FIXR(0.87172339781054900991),
  737. FIXR(1.18310079157624925896),
  738. FIXR(1.93185165257813657349),
  739. FIXR(5.73685662283492756461),
  740. };
  741. static const int icos72[18] = {
  742. /* 0.5 / cos(pi*(2*i+19)/72) */
  743. FIXR(0.74009361646113053152),
  744. FIXR(0.82133981585229078570),
  745. FIXR(0.93057949835178895673),
  746. FIXR(1.08284028510010010928),
  747. FIXR(1.30656296487637652785),
  748. FIXR(1.66275476171152078719),
  749. FIXR(2.31011315767264929558),
  750. FIXR(3.83064878777019433457),
  751. FIXR(11.46279281302667383546),
  752. /* 0.5 / cos(pi*(2*(i + 18) +19)/72) */
  753. FIXR(-0.67817085245462840086),
  754. FIXR(-0.63023620700513223342),
  755. FIXR(-0.59284452371708034528),
  756. FIXR(-0.56369097343317117734),
  757. FIXR(-0.54119610014619698439),
  758. FIXR(-0.52426456257040533932),
  759. FIXR(-0.51213975715725461845),
  760. FIXR(-0.50431448029007636036),
  761. FIXR(-0.50047634258165998492),
  762. };
  763. /* using Lee like decomposition followed by hand coded 9 points DCT */
  764. static void imdct36(int *out, int *in)
  765. {
  766. int i, j, t0, t1, t2, t3, s0, s1, s2, s3;
  767. int tmp[18], *tmp1, *in1;
  768. INT64 in3_3, in6_6;
  769. for(i=17;i>=1;i--)
  770. in[i] += in[i-1];
  771. for(i=17;i>=3;i-=2)
  772. in[i] += in[i-2];
  773. for(j=0;j<2;j++) {
  774. tmp1 = tmp + j;
  775. in1 = in + j;
  776. in3_3 = MUL64(in1[2*3], C3);
  777. in6_6 = MUL64(in1[2*6], C6);
  778. tmp1[0] = FRAC_RND(MUL64(in1[2*1], C1) + in3_3 +
  779. MUL64(in1[2*5], C5) + MUL64(in1[2*7], C7));
  780. tmp1[2] = in1[2*0] + FRAC_RND(MUL64(in1[2*2], C2) +
  781. MUL64(in1[2*4], C4) + in6_6 +
  782. MUL64(in1[2*8], C8));
  783. tmp1[4] = FRAC_RND(MUL64(in1[2*1] - in1[2*5] - in1[2*7], C3));
  784. tmp1[6] = FRAC_RND(MUL64(in1[2*2] - in1[2*4] - in1[2*8], C6)) -
  785. in1[2*6] + in1[2*0];
  786. tmp1[8] = FRAC_RND(MUL64(in1[2*1], C5) - in3_3 -
  787. MUL64(in1[2*5], C7) + MUL64(in1[2*7], C1));
  788. tmp1[10] = in1[2*0] + FRAC_RND(MUL64(-in1[2*2], C8) -
  789. MUL64(in1[2*4], C2) + in6_6 +
  790. MUL64(in1[2*8], C4));
  791. tmp1[12] = FRAC_RND(MUL64(in1[2*1], C7) - in3_3 +
  792. MUL64(in1[2*5], C1) -
  793. MUL64(in1[2*7], C5));
  794. tmp1[14] = in1[2*0] + FRAC_RND(MUL64(-in1[2*2], C4) +
  795. MUL64(in1[2*4], C8) + in6_6 -
  796. MUL64(in1[2*8], C2));
  797. tmp1[16] = in1[2*0] - in1[2*2] + in1[2*4] - in1[2*6] + in1[2*8];
  798. }
  799. i = 0;
  800. for(j=0;j<4;j++) {
  801. t0 = tmp[i];
  802. t1 = tmp[i + 2];
  803. s0 = t1 + t0;
  804. s2 = t1 - t0;
  805. t2 = tmp[i + 1];
  806. t3 = tmp[i + 3];
  807. s1 = MULL(t3 + t2, icos36[j]);
  808. s3 = MULL(t3 - t2, icos36[8 - j]);
  809. t0 = MULL(s0 + s1, icos72[9 + 8 - j]);
  810. t1 = MULL(s0 - s1, icos72[8 - j]);
  811. out[18 + 9 + j] = t0;
  812. out[18 + 8 - j] = t0;
  813. out[9 + j] = -t1;
  814. out[8 - j] = t1;
  815. t0 = MULL(s2 + s3, icos72[9+j]);
  816. t1 = MULL(s2 - s3, icos72[j]);
  817. out[18 + 9 + (8 - j)] = t0;
  818. out[18 + j] = t0;
  819. out[9 + (8 - j)] = -t1;
  820. out[j] = t1;
  821. i += 4;
  822. }
  823. s0 = tmp[16];
  824. s1 = MULL(tmp[17], icos36[4]);
  825. t0 = MULL(s0 + s1, icos72[9 + 4]);
  826. t1 = MULL(s0 - s1, icos72[4]);
  827. out[18 + 9 + 4] = t0;
  828. out[18 + 8 - 4] = t0;
  829. out[9 + 4] = -t1;
  830. out[8 - 4] = t1;
  831. }
  832. /* fast header check for resync */
  833. static int check_header(UINT32 header)
  834. {
  835. /* header */
  836. if ((header & 0xffe00000) != 0xffe00000)
  837. return -1;
  838. /* layer check */
  839. if (((header >> 17) & 3) == 0)
  840. return -1;
  841. /* bit rate */
  842. if (((header >> 12) & 0xf) == 0xf)
  843. return -1;
  844. /* frequency */
  845. if (((header >> 10) & 3) == 3)
  846. return -1;
  847. return 0;
  848. }
  849. /* header + layer + bitrate + freq + lsf/mpeg25 */
  850. #define SAME_HEADER_MASK \
  851. (0xffe00000 | (3 << 17) | (0xf << 12) | (3 << 10) | (3 << 19))
  852. /* header decoding. MUST check the header before because no
  853. consistency check is done there. Return 1 if free format found and
  854. that the frame size must be computed externally */
  855. static int decode_header(MPADecodeContext *s, UINT32 header)
  856. {
  857. int sample_rate, frame_size, mpeg25, padding;
  858. int sample_rate_index, bitrate_index;
  859. if (header & (1<<20)) {
  860. s->lsf = (header & (1<<19)) ? 0 : 1;
  861. mpeg25 = 0;
  862. } else {
  863. s->lsf = 1;
  864. mpeg25 = 1;
  865. }
  866. s->layer = 4 - ((header >> 17) & 3);
  867. /* extract frequency */
  868. sample_rate_index = (header >> 10) & 3;
  869. sample_rate = mpa_freq_tab[sample_rate_index] >> (s->lsf + mpeg25);
  870. if (sample_rate == 0)
  871. return 1;
  872. sample_rate_index += 3 * (s->lsf + mpeg25);
  873. s->sample_rate_index = sample_rate_index;
  874. s->error_protection = ((header >> 16) & 1) ^ 1;
  875. bitrate_index = (header >> 12) & 0xf;
  876. padding = (header >> 9) & 1;
  877. //extension = (header >> 8) & 1;
  878. s->mode = (header >> 6) & 3;
  879. s->mode_ext = (header >> 4) & 3;
  880. //copyright = (header >> 3) & 1;
  881. //original = (header >> 2) & 1;
  882. //emphasis = header & 3;
  883. if (s->mode == MPA_MONO)
  884. s->nb_channels = 1;
  885. else
  886. s->nb_channels = 2;
  887. if (bitrate_index != 0) {
  888. frame_size = mpa_bitrate_tab[s->lsf][s->layer - 1][bitrate_index];
  889. s->bit_rate = frame_size * 1000;
  890. switch(s->layer) {
  891. case 1:
  892. frame_size = (frame_size * 12000) / sample_rate;
  893. frame_size = (frame_size + padding) * 4;
  894. break;
  895. case 2:
  896. frame_size = (frame_size * 144000) / sample_rate;
  897. frame_size += padding;
  898. break;
  899. default:
  900. case 3:
  901. frame_size = (frame_size * 144000) / (sample_rate << s->lsf);
  902. frame_size += padding;
  903. break;
  904. }
  905. s->frame_size = frame_size;
  906. } else {
  907. /* if no frame size computed, signal it */
  908. if (!s->free_format_frame_size)
  909. return 1;
  910. /* free format: compute bitrate and real frame size from the
  911. frame size we extracted by reading the bitstream */
  912. s->frame_size = s->free_format_frame_size;
  913. switch(s->layer) {
  914. case 1:
  915. s->frame_size += padding * 4;
  916. s->bit_rate = (s->frame_size * sample_rate) / 48000;
  917. break;
  918. case 2:
  919. s->frame_size += padding;
  920. s->bit_rate = (s->frame_size * sample_rate) / 144000;
  921. break;
  922. default:
  923. case 3:
  924. s->frame_size += padding;
  925. s->bit_rate = (s->frame_size * (sample_rate << s->lsf)) / 144000;
  926. break;
  927. }
  928. }
  929. s->sample_rate = sample_rate;
  930. #ifdef DEBUG
  931. printf("layer%d, %d Hz, %d kbits/s, ",
  932. s->layer, s->sample_rate, s->bit_rate);
  933. if (s->nb_channels == 2) {
  934. if (s->layer == 3) {
  935. if (s->mode_ext & MODE_EXT_MS_STEREO)
  936. printf("ms-");
  937. if (s->mode_ext & MODE_EXT_I_STEREO)
  938. printf("i-");
  939. }
  940. printf("stereo");
  941. } else {
  942. printf("mono");
  943. }
  944. printf("\n");
  945. #endif
  946. return 0;
  947. }
  948. /* return the number of decoded frames */
  949. static int mp_decode_layer1(MPADecodeContext *s)
  950. {
  951. int bound, i, v, n, ch, j, mant;
  952. UINT8 allocation[MPA_MAX_CHANNELS][SBLIMIT];
  953. UINT8 scale_factors[MPA_MAX_CHANNELS][SBLIMIT];
  954. if (s->mode == MPA_JSTEREO)
  955. bound = (s->mode_ext + 1) * 4;
  956. else
  957. bound = SBLIMIT;
  958. /* allocation bits */
  959. for(i=0;i<bound;i++) {
  960. for(ch=0;ch<s->nb_channels;ch++) {
  961. allocation[ch][i] = get_bits(&s->gb, 4);
  962. }
  963. }
  964. for(i=bound;i<SBLIMIT;i++) {
  965. allocation[0][i] = get_bits(&s->gb, 4);
  966. }
  967. /* scale factors */
  968. for(i=0;i<bound;i++) {
  969. for(ch=0;ch<s->nb_channels;ch++) {
  970. if (allocation[ch][i])
  971. scale_factors[ch][i] = get_bits(&s->gb, 6);
  972. }
  973. }
  974. for(i=bound;i<SBLIMIT;i++) {
  975. if (allocation[0][i]) {
  976. scale_factors[0][i] = get_bits(&s->gb, 6);
  977. scale_factors[1][i] = get_bits(&s->gb, 6);
  978. }
  979. }
  980. /* compute samples */
  981. for(j=0;j<12;j++) {
  982. for(i=0;i<bound;i++) {
  983. for(ch=0;ch<s->nb_channels;ch++) {
  984. n = allocation[ch][i];
  985. if (n) {
  986. mant = get_bits(&s->gb, n + 1);
  987. v = l1_unscale(n, mant, scale_factors[ch][i]);
  988. } else {
  989. v = 0;
  990. }
  991. s->sb_samples[ch][j][i] = v;
  992. }
  993. }
  994. for(i=bound;i<SBLIMIT;i++) {
  995. n = allocation[0][i];
  996. if (n) {
  997. mant = get_bits(&s->gb, n + 1);
  998. v = l1_unscale(n, mant, scale_factors[0][i]);
  999. s->sb_samples[0][j][i] = v;
  1000. v = l1_unscale(n, mant, scale_factors[1][i]);
  1001. s->sb_samples[1][j][i] = v;
  1002. } else {
  1003. s->sb_samples[0][j][i] = 0;
  1004. s->sb_samples[1][j][i] = 0;
  1005. }
  1006. }
  1007. }
  1008. return 12;
  1009. }
  1010. /* bitrate is in kb/s */
  1011. int l2_select_table(int bitrate, int nb_channels, int freq, int lsf)
  1012. {
  1013. int ch_bitrate, table;
  1014. ch_bitrate = bitrate / nb_channels;
  1015. if (!lsf) {
  1016. if ((freq == 48000 && ch_bitrate >= 56) ||
  1017. (ch_bitrate >= 56 && ch_bitrate <= 80))
  1018. table = 0;
  1019. else if (freq != 48000 && ch_bitrate >= 96)
  1020. table = 1;
  1021. else if (freq != 32000 && ch_bitrate <= 48)
  1022. table = 2;
  1023. else
  1024. table = 3;
  1025. } else {
  1026. table = 4;
  1027. }
  1028. return table;
  1029. }
  1030. static int mp_decode_layer2(MPADecodeContext *s)
  1031. {
  1032. int sblimit; /* number of used subbands */
  1033. const unsigned char *alloc_table;
  1034. int table, bit_alloc_bits, i, j, ch, bound, v;
  1035. unsigned char bit_alloc[MPA_MAX_CHANNELS][SBLIMIT];
  1036. unsigned char scale_code[MPA_MAX_CHANNELS][SBLIMIT];
  1037. unsigned char scale_factors[MPA_MAX_CHANNELS][SBLIMIT][3], *sf;
  1038. int scale, qindex, bits, steps, k, l, m, b;
  1039. /* select decoding table */
  1040. table = l2_select_table(s->bit_rate / 1000, s->nb_channels,
  1041. s->sample_rate, s->lsf);
  1042. sblimit = sblimit_table[table];
  1043. alloc_table = alloc_tables[table];
  1044. if (s->mode == MPA_JSTEREO)
  1045. bound = (s->mode_ext + 1) * 4;
  1046. else
  1047. bound = sblimit;
  1048. dprintf("bound=%d sblimit=%d\n", bound, sblimit);
  1049. /* parse bit allocation */
  1050. j = 0;
  1051. for(i=0;i<bound;i++) {
  1052. bit_alloc_bits = alloc_table[j];
  1053. for(ch=0;ch<s->nb_channels;ch++) {
  1054. bit_alloc[ch][i] = get_bits(&s->gb, bit_alloc_bits);
  1055. }
  1056. j += 1 << bit_alloc_bits;
  1057. }
  1058. for(i=bound;i<sblimit;i++) {
  1059. bit_alloc_bits = alloc_table[j];
  1060. v = get_bits(&s->gb, bit_alloc_bits);
  1061. bit_alloc[0][i] = v;
  1062. bit_alloc[1][i] = v;
  1063. j += 1 << bit_alloc_bits;
  1064. }
  1065. #ifdef DEBUG
  1066. {
  1067. for(ch=0;ch<s->nb_channels;ch++) {
  1068. for(i=0;i<sblimit;i++)
  1069. printf(" %d", bit_alloc[ch][i]);
  1070. printf("\n");
  1071. }
  1072. }
  1073. #endif
  1074. /* scale codes */
  1075. for(i=0;i<sblimit;i++) {
  1076. for(ch=0;ch<s->nb_channels;ch++) {
  1077. if (bit_alloc[ch][i])
  1078. scale_code[ch][i] = get_bits(&s->gb, 2);
  1079. }
  1080. }
  1081. /* scale factors */
  1082. for(i=0;i<sblimit;i++) {
  1083. for(ch=0;ch<s->nb_channels;ch++) {
  1084. if (bit_alloc[ch][i]) {
  1085. sf = scale_factors[ch][i];
  1086. switch(scale_code[ch][i]) {
  1087. default:
  1088. case 0:
  1089. sf[0] = get_bits(&s->gb, 6);
  1090. sf[1] = get_bits(&s->gb, 6);
  1091. sf[2] = get_bits(&s->gb, 6);
  1092. break;
  1093. case 2:
  1094. sf[0] = get_bits(&s->gb, 6);
  1095. sf[1] = sf[0];
  1096. sf[2] = sf[0];
  1097. break;
  1098. case 1:
  1099. sf[0] = get_bits(&s->gb, 6);
  1100. sf[2] = get_bits(&s->gb, 6);
  1101. sf[1] = sf[0];
  1102. break;
  1103. case 3:
  1104. sf[0] = get_bits(&s->gb, 6);
  1105. sf[2] = get_bits(&s->gb, 6);
  1106. sf[1] = sf[2];
  1107. break;
  1108. }
  1109. }
  1110. }
  1111. }
  1112. #ifdef DEBUG
  1113. for(ch=0;ch<s->nb_channels;ch++) {
  1114. for(i=0;i<sblimit;i++) {
  1115. if (bit_alloc[ch][i]) {
  1116. sf = scale_factors[ch][i];
  1117. printf(" %d %d %d", sf[0], sf[1], sf[2]);
  1118. } else {
  1119. printf(" -");
  1120. }
  1121. }
  1122. printf("\n");
  1123. }
  1124. #endif
  1125. /* samples */
  1126. for(k=0;k<3;k++) {
  1127. for(l=0;l<12;l+=3) {
  1128. j = 0;
  1129. for(i=0;i<bound;i++) {
  1130. bit_alloc_bits = alloc_table[j];
  1131. for(ch=0;ch<s->nb_channels;ch++) {
  1132. b = bit_alloc[ch][i];
  1133. if (b) {
  1134. scale = scale_factors[ch][i][k];
  1135. qindex = alloc_table[j+b];
  1136. bits = quant_bits[qindex];
  1137. if (bits < 0) {
  1138. /* 3 values at the same time */
  1139. v = get_bits(&s->gb, -bits);
  1140. steps = quant_steps[qindex];
  1141. s->sb_samples[ch][k * 12 + l + 0][i] =
  1142. l2_unscale_group(steps, v % steps, scale);
  1143. v = v / steps;
  1144. s->sb_samples[ch][k * 12 + l + 1][i] =
  1145. l2_unscale_group(steps, v % steps, scale);
  1146. v = v / steps;
  1147. s->sb_samples[ch][k * 12 + l + 2][i] =
  1148. l2_unscale_group(steps, v, scale);
  1149. } else {
  1150. for(m=0;m<3;m++) {
  1151. v = get_bits(&s->gb, bits);
  1152. v = l1_unscale(bits - 1, v, scale);
  1153. s->sb_samples[ch][k * 12 + l + m][i] = v;
  1154. }
  1155. }
  1156. } else {
  1157. s->sb_samples[ch][k * 12 + l + 0][i] = 0;
  1158. s->sb_samples[ch][k * 12 + l + 1][i] = 0;
  1159. s->sb_samples[ch][k * 12 + l + 2][i] = 0;
  1160. }
  1161. }
  1162. /* next subband in alloc table */
  1163. j += 1 << bit_alloc_bits;
  1164. }
  1165. /* XXX: find a way to avoid this duplication of code */
  1166. for(i=bound;i<sblimit;i++) {
  1167. bit_alloc_bits = alloc_table[j];
  1168. b = bit_alloc[0][i];
  1169. if (b) {
  1170. int mant, scale0, scale1;
  1171. scale0 = scale_factors[0][i][k];
  1172. scale1 = scale_factors[1][i][k];
  1173. qindex = alloc_table[j+b];
  1174. bits = quant_bits[qindex];
  1175. if (bits < 0) {
  1176. /* 3 values at the same time */
  1177. v = get_bits(&s->gb, -bits);
  1178. steps = quant_steps[qindex];
  1179. mant = v % steps;
  1180. v = v / steps;
  1181. s->sb_samples[0][k * 12 + l + 0][i] =
  1182. l2_unscale_group(steps, mant, scale0);
  1183. s->sb_samples[1][k * 12 + l + 0][i] =
  1184. l2_unscale_group(steps, mant, scale1);
  1185. mant = v % steps;
  1186. v = v / steps;
  1187. s->sb_samples[0][k * 12 + l + 1][i] =
  1188. l2_unscale_group(steps, mant, scale0);
  1189. s->sb_samples[1][k * 12 + l + 1][i] =
  1190. l2_unscale_group(steps, mant, scale1);
  1191. s->sb_samples[0][k * 12 + l + 2][i] =
  1192. l2_unscale_group(steps, v, scale0);
  1193. s->sb_samples[1][k * 12 + l + 2][i] =
  1194. l2_unscale_group(steps, v, scale1);
  1195. } else {
  1196. for(m=0;m<3;m++) {
  1197. mant = get_bits(&s->gb, bits);
  1198. s->sb_samples[0][k * 12 + l + m][i] =
  1199. l1_unscale(bits - 1, mant, scale0);
  1200. s->sb_samples[1][k * 12 + l + m][i] =
  1201. l1_unscale(bits - 1, mant, scale1);
  1202. }
  1203. }
  1204. } else {
  1205. s->sb_samples[0][k * 12 + l + 0][i] = 0;
  1206. s->sb_samples[0][k * 12 + l + 1][i] = 0;
  1207. s->sb_samples[0][k * 12 + l + 2][i] = 0;
  1208. s->sb_samples[1][k * 12 + l + 0][i] = 0;
  1209. s->sb_samples[1][k * 12 + l + 1][i] = 0;
  1210. s->sb_samples[1][k * 12 + l + 2][i] = 0;
  1211. }
  1212. /* next subband in alloc table */
  1213. j += 1 << bit_alloc_bits;
  1214. }
  1215. /* fill remaining samples to zero */
  1216. for(i=sblimit;i<SBLIMIT;i++) {
  1217. for(ch=0;ch<s->nb_channels;ch++) {
  1218. s->sb_samples[ch][k * 12 + l + 0][i] = 0;
  1219. s->sb_samples[ch][k * 12 + l + 1][i] = 0;
  1220. s->sb_samples[ch][k * 12 + l + 2][i] = 0;
  1221. }
  1222. }
  1223. }
  1224. }
  1225. return 3 * 12;
  1226. }
  1227. /*
  1228. * Seek back in the stream for backstep bytes (at most 511 bytes)
  1229. */
  1230. static void seek_to_maindata(MPADecodeContext *s, long backstep)
  1231. {
  1232. UINT8 *ptr;
  1233. /* compute current position in stream */
  1234. #ifdef ALT_BITSTREAM_READER
  1235. ptr = s->gb.buffer + (s->gb.index>>3);
  1236. #else
  1237. ptr = s->gb.buf_ptr - (s->gb.bit_cnt >> 3);
  1238. #endif
  1239. /* copy old data before current one */
  1240. ptr -= backstep;
  1241. memcpy(ptr, s->inbuf1[s->inbuf_index ^ 1] +
  1242. BACKSTEP_SIZE + s->old_frame_size - backstep, backstep);
  1243. /* init get bits again */
  1244. init_get_bits(&s->gb, ptr, s->frame_size + backstep);
  1245. /* prepare next buffer */
  1246. s->inbuf_index ^= 1;
  1247. s->inbuf = &s->inbuf1[s->inbuf_index][BACKSTEP_SIZE];
  1248. s->old_frame_size = s->frame_size;
  1249. }
  1250. static inline void lsf_sf_expand(int *slen,
  1251. int sf, int n1, int n2, int n3)
  1252. {
  1253. if (n3) {
  1254. slen[3] = sf % n3;
  1255. sf /= n3;
  1256. } else {
  1257. slen[3] = 0;
  1258. }
  1259. if (n2) {
  1260. slen[2] = sf % n2;
  1261. sf /= n2;
  1262. } else {
  1263. slen[2] = 0;
  1264. }
  1265. slen[1] = sf % n1;
  1266. sf /= n1;
  1267. slen[0] = sf;
  1268. }
  1269. static void exponents_from_scale_factors(MPADecodeContext *s,
  1270. GranuleDef *g,
  1271. INT16 *exponents)
  1272. {
  1273. const UINT8 *bstab, *pretab;
  1274. int len, i, j, k, l, v0, shift, gain, gains[3];
  1275. INT16 *exp_ptr;
  1276. exp_ptr = exponents;
  1277. gain = g->global_gain - 210;
  1278. shift = g->scalefac_scale + 1;
  1279. bstab = band_size_long[s->sample_rate_index];
  1280. pretab = mpa_pretab[g->preflag];
  1281. for(i=0;i<g->long_end;i++) {
  1282. v0 = gain - ((g->scale_factors[i] + pretab[i]) << shift);
  1283. len = bstab[i];
  1284. for(j=len;j>0;j--)
  1285. *exp_ptr++ = v0;
  1286. }
  1287. if (g->short_start < 13) {
  1288. bstab = band_size_short[s->sample_rate_index];
  1289. gains[0] = gain - (g->subblock_gain[0] << 3);
  1290. gains[1] = gain - (g->subblock_gain[1] << 3);
  1291. gains[2] = gain - (g->subblock_gain[2] << 3);
  1292. k = g->long_end;
  1293. for(i=g->short_start;i<13;i++) {
  1294. len = bstab[i];
  1295. for(l=0;l<3;l++) {
  1296. v0 = gains[l] - (g->scale_factors[k++] << shift);
  1297. for(j=len;j>0;j--)
  1298. *exp_ptr++ = v0;
  1299. }
  1300. }
  1301. }
  1302. }
  1303. /* handle n = 0 too */
  1304. static inline int get_bitsz(GetBitContext *s, int n)
  1305. {
  1306. if (n == 0)
  1307. return 0;
  1308. else
  1309. return get_bits(s, n);
  1310. }
  1311. static int huffman_decode(MPADecodeContext *s, GranuleDef *g,
  1312. INT16 *exponents, int end_pos)
  1313. {
  1314. int s_index;
  1315. int linbits, code, x, y, l, v, i, j, k, pos;
  1316. UINT8 *last_buf_ptr;
  1317. UINT32 last_bit_buf;
  1318. int last_bit_cnt;
  1319. VLC *vlc;
  1320. UINT8 *code_table;
  1321. /* low frequencies (called big values) */
  1322. s_index = 0;
  1323. for(i=0;i<3;i++) {
  1324. j = g->region_size[i];
  1325. if (j == 0)
  1326. continue;
  1327. /* select vlc table */
  1328. k = g->table_select[i];
  1329. l = mpa_huff_data[k][0];
  1330. linbits = mpa_huff_data[k][1];
  1331. vlc = &huff_vlc[l];
  1332. code_table = huff_code_table[l];
  1333. /* read huffcode and compute each couple */
  1334. for(;j>0;j--) {
  1335. if (get_bits_count(&s->gb) >= end_pos)
  1336. break;
  1337. if (code_table) {
  1338. code = get_vlc(&s->gb, vlc);
  1339. if (code < 0)
  1340. return -1;
  1341. y = code_table[code];
  1342. x = y >> 4;
  1343. y = y & 0x0f;
  1344. } else {
  1345. x = 0;
  1346. y = 0;
  1347. }
  1348. dprintf("region=%d n=%d x=%d y=%d exp=%d\n",
  1349. i, g->region_size[i] - j, x, y, exponents[s_index]);
  1350. if (x) {
  1351. if (x == 15)
  1352. x += get_bitsz(&s->gb, linbits);
  1353. v = l3_unscale(x, exponents[s_index]);
  1354. if (get_bits1(&s->gb))
  1355. v = -v;
  1356. } else {
  1357. v = 0;
  1358. }
  1359. g->sb_hybrid[s_index++] = v;
  1360. if (y) {
  1361. if (y == 15)
  1362. y += get_bitsz(&s->gb, linbits);
  1363. v = l3_unscale(y, exponents[s_index]);
  1364. if (get_bits1(&s->gb))
  1365. v = -v;
  1366. } else {
  1367. v = 0;
  1368. }
  1369. g->sb_hybrid[s_index++] = v;
  1370. }
  1371. }
  1372. /* high frequencies */
  1373. vlc = &huff_quad_vlc[g->count1table_select];
  1374. last_buf_ptr = NULL;
  1375. last_bit_buf = 0;
  1376. last_bit_cnt = 0;
  1377. while (s_index <= 572) {
  1378. pos = get_bits_count(&s->gb);
  1379. if (pos >= end_pos) {
  1380. if (pos > end_pos && last_buf_ptr != NULL) {
  1381. /* some encoders generate an incorrect size for this
  1382. part. We must go back into the data */
  1383. s_index -= 4;
  1384. #ifdef ALT_BITSTREAM_READER
  1385. s->gb.buffer = last_buf_ptr;
  1386. s->gb.index = last_bit_cnt;
  1387. #else
  1388. s->gb.buf_ptr = last_buf_ptr;
  1389. s->gb.bit_buf = last_bit_buf;
  1390. s->gb.bit_cnt = last_bit_cnt;
  1391. #endif
  1392. }
  1393. break;
  1394. }
  1395. #ifdef ALT_BITSTREAM_READER
  1396. last_buf_ptr = s->gb.buffer;
  1397. last_bit_cnt = s->gb.index;
  1398. #else
  1399. last_buf_ptr = s->gb.buf_ptr;
  1400. last_bit_buf = s->gb.bit_buf;
  1401. last_bit_cnt = s->gb.bit_cnt;
  1402. #endif
  1403. code = get_vlc(&s->gb, vlc);
  1404. dprintf("t=%d code=%d\n", g->count1table_select, code);
  1405. if (code < 0)
  1406. return -1;
  1407. for(i=0;i<4;i++) {
  1408. if (code & (8 >> i)) {
  1409. /* non zero value. Could use a hand coded function for
  1410. 'one' value */
  1411. v = l3_unscale(1, exponents[s_index]);
  1412. if(get_bits1(&s->gb))
  1413. v = -v;
  1414. } else {
  1415. v = 0;
  1416. }
  1417. g->sb_hybrid[s_index++] = v;
  1418. }
  1419. }
  1420. while (s_index < 576)
  1421. g->sb_hybrid[s_index++] = 0;
  1422. return 0;
  1423. }
  1424. /* Reorder short blocks from bitstream order to interleaved order. It
  1425. would be faster to do it in parsing, but the code would be far more
  1426. complicated */
  1427. static void reorder_block(MPADecodeContext *s, GranuleDef *g)
  1428. {
  1429. int i, j, k, len;
  1430. INT32 *ptr, *dst, *ptr1;
  1431. INT32 tmp[576];
  1432. if (g->block_type != 2)
  1433. return;
  1434. if (g->switch_point) {
  1435. if (s->sample_rate_index != 8) {
  1436. ptr = g->sb_hybrid + 36;
  1437. } else {
  1438. ptr = g->sb_hybrid + 48;
  1439. }
  1440. } else {
  1441. ptr = g->sb_hybrid;
  1442. }
  1443. for(i=g->short_start;i<13;i++) {
  1444. len = band_size_short[s->sample_rate_index][i];
  1445. ptr1 = ptr;
  1446. for(k=0;k<3;k++) {
  1447. dst = tmp + k;
  1448. for(j=len;j>0;j--) {
  1449. *dst = *ptr++;
  1450. dst += 3;
  1451. }
  1452. }
  1453. memcpy(ptr1, tmp, len * 3 * sizeof(INT32));
  1454. }
  1455. }
  1456. #define ISQRT2 FIXR(0.70710678118654752440)
  1457. static void compute_stereo(MPADecodeContext *s,
  1458. GranuleDef *g0, GranuleDef *g1)
  1459. {
  1460. int i, j, k, l;
  1461. INT32 v1, v2;
  1462. int sf_max, tmp0, tmp1, sf, len, non_zero_found;
  1463. INT32 (*is_tab)[16];
  1464. INT32 *tab0, *tab1;
  1465. int non_zero_found_short[3];
  1466. /* intensity stereo */
  1467. if (s->mode_ext & MODE_EXT_I_STEREO) {
  1468. if (!s->lsf) {
  1469. is_tab = is_table;
  1470. sf_max = 7;
  1471. } else {
  1472. is_tab = is_table_lsf[g1->scalefac_compress & 1];
  1473. sf_max = 16;
  1474. }
  1475. tab0 = g0->sb_hybrid + 576;
  1476. tab1 = g1->sb_hybrid + 576;
  1477. non_zero_found_short[0] = 0;
  1478. non_zero_found_short[1] = 0;
  1479. non_zero_found_short[2] = 0;
  1480. k = (13 - g1->short_start) * 3 + g1->long_end - 3;
  1481. for(i = 12;i >= g1->short_start;i--) {
  1482. /* for last band, use previous scale factor */
  1483. if (i != 11)
  1484. k -= 3;
  1485. len = band_size_short[s->sample_rate_index][i];
  1486. for(l=2;l>=0;l--) {
  1487. tab0 -= len;
  1488. tab1 -= len;
  1489. if (!non_zero_found_short[l]) {
  1490. /* test if non zero band. if so, stop doing i-stereo */
  1491. for(j=0;j<len;j++) {
  1492. if (tab1[j] != 0) {
  1493. non_zero_found_short[l] = 1;
  1494. goto found1;
  1495. }
  1496. }
  1497. sf = g1->scale_factors[k + l];
  1498. if (sf >= sf_max)
  1499. goto found1;
  1500. v1 = is_tab[0][sf];
  1501. v2 = is_tab[1][sf];
  1502. for(j=0;j<len;j++) {
  1503. tmp0 = tab0[j];
  1504. tab0[j] = MULL(tmp0, v1);
  1505. tab1[j] = MULL(tmp0, v2);
  1506. }
  1507. } else {
  1508. found1:
  1509. if (s->mode_ext & MODE_EXT_MS_STEREO) {
  1510. /* lower part of the spectrum : do ms stereo
  1511. if enabled */
  1512. for(j=0;j<len;j++) {
  1513. tmp0 = tab0[j];
  1514. tmp1 = tab1[j];
  1515. tab0[j] = MULL(tmp0 + tmp1, ISQRT2);
  1516. tab1[j] = MULL(tmp0 - tmp1, ISQRT2);
  1517. }
  1518. }
  1519. }
  1520. }
  1521. }
  1522. non_zero_found = non_zero_found_short[0] |
  1523. non_zero_found_short[1] |
  1524. non_zero_found_short[2];
  1525. for(i = g1->long_end - 1;i >= 0;i--) {
  1526. len = band_size_long[s->sample_rate_index][i];
  1527. tab0 -= len;
  1528. tab1 -= len;
  1529. /* test if non zero band. if so, stop doing i-stereo */
  1530. if (!non_zero_found) {
  1531. for(j=0;j<len;j++) {
  1532. if (tab1[j] != 0) {
  1533. non_zero_found = 1;
  1534. goto found2;
  1535. }
  1536. }
  1537. /* for last band, use previous scale factor */
  1538. k = (i == 21) ? 20 : i;
  1539. sf = g1->scale_factors[k];
  1540. if (sf >= sf_max)
  1541. goto found2;
  1542. v1 = is_tab[0][sf];
  1543. v2 = is_tab[1][sf];
  1544. for(j=0;j<len;j++) {
  1545. tmp0 = tab0[j];
  1546. tab0[j] = MULL(tmp0, v1);
  1547. tab1[j] = MULL(tmp0, v2);
  1548. }
  1549. } else {
  1550. found2:
  1551. if (s->mode_ext & MODE_EXT_MS_STEREO) {
  1552. /* lower part of the spectrum : do ms stereo
  1553. if enabled */
  1554. for(j=0;j<len;j++) {
  1555. tmp0 = tab0[j];
  1556. tmp1 = tab1[j];
  1557. tab0[j] = MULL(tmp0 + tmp1, ISQRT2);
  1558. tab1[j] = MULL(tmp0 - tmp1, ISQRT2);
  1559. }
  1560. }
  1561. }
  1562. }
  1563. } else if (s->mode_ext & MODE_EXT_MS_STEREO) {
  1564. /* ms stereo ONLY */
  1565. /* NOTE: the 1/sqrt(2) normalization factor is included in the
  1566. global gain */
  1567. tab0 = g0->sb_hybrid;
  1568. tab1 = g1->sb_hybrid;
  1569. for(i=0;i<576;i++) {
  1570. tmp0 = tab0[i];
  1571. tmp1 = tab1[i];
  1572. tab0[i] = tmp0 + tmp1;
  1573. tab1[i] = tmp0 - tmp1;
  1574. }
  1575. }
  1576. }
  1577. static void compute_antialias(MPADecodeContext *s,
  1578. GranuleDef *g)
  1579. {
  1580. INT32 *ptr, *p0, *p1, *csa;
  1581. int n, tmp0, tmp1, i, j;
  1582. /* we antialias only "long" bands */
  1583. if (g->block_type == 2) {
  1584. if (!g->switch_point)
  1585. return;
  1586. /* XXX: check this for 8000Hz case */
  1587. n = 1;
  1588. } else {
  1589. n = SBLIMIT - 1;
  1590. }
  1591. ptr = g->sb_hybrid + 18;
  1592. for(i = n;i > 0;i--) {
  1593. p0 = ptr - 1;
  1594. p1 = ptr;
  1595. csa = &csa_table[0][0];
  1596. for(j=0;j<8;j++) {
  1597. tmp0 = *p0;
  1598. tmp1 = *p1;
  1599. *p0 = FRAC_RND(MUL64(tmp0, csa[0]) - MUL64(tmp1, csa[1]));
  1600. *p1 = FRAC_RND(MUL64(tmp0, csa[1]) + MUL64(tmp1, csa[0]));
  1601. p0--;
  1602. p1++;
  1603. csa += 2;
  1604. }
  1605. ptr += 18;
  1606. }
  1607. }
  1608. static void compute_imdct(MPADecodeContext *s,
  1609. GranuleDef *g,
  1610. INT32 *sb_samples,
  1611. INT32 *mdct_buf)
  1612. {
  1613. INT32 *ptr, *win, *win1, *buf, *buf2, *out_ptr, *ptr1;
  1614. INT32 in[6];
  1615. INT32 out[36];
  1616. INT32 out2[12];
  1617. int i, j, k, mdct_long_end, v, sblimit;
  1618. /* find last non zero block */
  1619. ptr = g->sb_hybrid + 576;
  1620. ptr1 = g->sb_hybrid + 2 * 18;
  1621. while (ptr >= ptr1) {
  1622. ptr -= 6;
  1623. v = ptr[0] | ptr[1] | ptr[2] | ptr[3] | ptr[4] | ptr[5];
  1624. if (v != 0)
  1625. break;
  1626. }
  1627. sblimit = ((ptr - g->sb_hybrid) / 18) + 1;
  1628. if (g->block_type == 2) {
  1629. /* XXX: check for 8000 Hz */
  1630. if (g->switch_point)
  1631. mdct_long_end = 2;
  1632. else
  1633. mdct_long_end = 0;
  1634. } else {
  1635. mdct_long_end = sblimit;
  1636. }
  1637. buf = mdct_buf;
  1638. ptr = g->sb_hybrid;
  1639. for(j=0;j<mdct_long_end;j++) {
  1640. imdct36(out, ptr);
  1641. /* apply window & overlap with previous buffer */
  1642. out_ptr = sb_samples + j;
  1643. /* select window */
  1644. if (g->switch_point && j < 2)
  1645. win1 = mdct_win[0];
  1646. else
  1647. win1 = mdct_win[g->block_type];
  1648. /* select frequency inversion */
  1649. win = win1 + ((4 * 36) & -(j & 1));
  1650. for(i=0;i<18;i++) {
  1651. *out_ptr = MULL(out[i], win[i]) + buf[i];
  1652. buf[i] = MULL(out[i + 18], win[i + 18]);
  1653. out_ptr += SBLIMIT;
  1654. }
  1655. ptr += 18;
  1656. buf += 18;
  1657. }
  1658. for(j=mdct_long_end;j<sblimit;j++) {
  1659. for(i=0;i<6;i++) {
  1660. out[i] = 0;
  1661. out[6 + i] = 0;
  1662. out[30+i] = 0;
  1663. }
  1664. /* select frequency inversion */
  1665. win = mdct_win[2] + ((4 * 36) & -(j & 1));
  1666. buf2 = out + 6;
  1667. for(k=0;k<3;k++) {
  1668. /* reorder input for short mdct */
  1669. ptr1 = ptr + k;
  1670. for(i=0;i<6;i++) {
  1671. in[i] = *ptr1;
  1672. ptr1 += 3;
  1673. }
  1674. imdct12(out2, in);
  1675. /* apply 12 point window and do small overlap */
  1676. for(i=0;i<6;i++) {
  1677. buf2[i] = MULL(out2[i], win[i]) + buf2[i];
  1678. buf2[i + 6] = MULL(out2[i + 6], win[i + 6]);
  1679. }
  1680. buf2 += 6;
  1681. }
  1682. /* overlap */
  1683. out_ptr = sb_samples + j;
  1684. for(i=0;i<18;i++) {
  1685. *out_ptr = out[i] + buf[i];
  1686. buf[i] = out[i + 18];
  1687. out_ptr += SBLIMIT;
  1688. }
  1689. ptr += 18;
  1690. buf += 18;
  1691. }
  1692. /* zero bands */
  1693. for(j=sblimit;j<SBLIMIT;j++) {
  1694. /* overlap */
  1695. out_ptr = sb_samples + j;
  1696. for(i=0;i<18;i++) {
  1697. *out_ptr = buf[i];
  1698. buf[i] = 0;
  1699. out_ptr += SBLIMIT;
  1700. }
  1701. buf += 18;
  1702. }
  1703. }
  1704. #ifdef DEBUG
  1705. void sample_dump(int fnum, INT32 *tab, int n)
  1706. {
  1707. static FILE *files[16], *f;
  1708. char buf[512];
  1709. f = files[fnum];
  1710. if (!f) {
  1711. sprintf(buf, "/tmp/out%d.pcm", fnum);
  1712. f = fopen(buf, "w");
  1713. if (!f)
  1714. return;
  1715. files[fnum] = f;
  1716. }
  1717. if (fnum == 0) {
  1718. int i;
  1719. static int pos = 0;
  1720. printf("pos=%d\n", pos);
  1721. for(i=0;i<n;i++) {
  1722. printf(" %f", (double)tab[i] / 32768.0);
  1723. if ((i % 18) == 17)
  1724. printf("\n");
  1725. }
  1726. pos += n;
  1727. }
  1728. fwrite(tab, 1, n * sizeof(INT32), f);
  1729. }
  1730. #endif
  1731. /* main layer3 decoding function */
  1732. static int mp_decode_layer3(MPADecodeContext *s)
  1733. {
  1734. int nb_granules, main_data_begin, private_bits;
  1735. int gr, ch, blocksplit_flag, i, j, k, n, bits_pos, bits_left;
  1736. GranuleDef granules[2][2], *g;
  1737. INT16 exponents[576];
  1738. /* read side info */
  1739. if (s->lsf) {
  1740. main_data_begin = get_bits(&s->gb, 8);
  1741. if (s->nb_channels == 2)
  1742. private_bits = get_bits(&s->gb, 2);
  1743. else
  1744. private_bits = get_bits(&s->gb, 1);
  1745. nb_granules = 1;
  1746. } else {
  1747. main_data_begin = get_bits(&s->gb, 9);
  1748. if (s->nb_channels == 2)
  1749. private_bits = get_bits(&s->gb, 3);
  1750. else
  1751. private_bits = get_bits(&s->gb, 5);
  1752. nb_granules = 2;
  1753. for(ch=0;ch<s->nb_channels;ch++) {
  1754. granules[ch][0].scfsi = 0; /* all scale factors are transmitted */
  1755. granules[ch][1].scfsi = get_bits(&s->gb, 4);
  1756. }
  1757. }
  1758. for(gr=0;gr<nb_granules;gr++) {
  1759. for(ch=0;ch<s->nb_channels;ch++) {
  1760. dprintf("gr=%d ch=%d: side_info\n", gr, ch);
  1761. g = &granules[ch][gr];
  1762. g->part2_3_length = get_bits(&s->gb, 12);
  1763. g->big_values = get_bits(&s->gb, 9);
  1764. g->global_gain = get_bits(&s->gb, 8);
  1765. /* if MS stereo only is selected, we precompute the
  1766. 1/sqrt(2) renormalization factor */
  1767. if ((s->mode_ext & (MODE_EXT_MS_STEREO | MODE_EXT_I_STEREO)) ==
  1768. MODE_EXT_MS_STEREO)
  1769. g->global_gain -= 2;
  1770. if (s->lsf)
  1771. g->scalefac_compress = get_bits(&s->gb, 9);
  1772. else
  1773. g->scalefac_compress = get_bits(&s->gb, 4);
  1774. blocksplit_flag = get_bits(&s->gb, 1);
  1775. if (blocksplit_flag) {
  1776. g->block_type = get_bits(&s->gb, 2);
  1777. if (g->block_type == 0)
  1778. return -1;
  1779. g->switch_point = get_bits(&s->gb, 1);
  1780. for(i=0;i<2;i++)
  1781. g->table_select[i] = get_bits(&s->gb, 5);
  1782. for(i=0;i<3;i++)
  1783. g->subblock_gain[i] = get_bits(&s->gb, 3);
  1784. /* compute huffman coded region sizes */
  1785. if (g->block_type == 2)
  1786. g->region_size[0] = (36 / 2);
  1787. else {
  1788. if (s->sample_rate_index <= 2)
  1789. g->region_size[0] = (36 / 2);
  1790. else if (s->sample_rate_index != 8)
  1791. g->region_size[0] = (54 / 2);
  1792. else
  1793. g->region_size[0] = (108 / 2);
  1794. }
  1795. g->region_size[1] = (576 / 2);
  1796. } else {
  1797. int region_address1, region_address2, l;
  1798. g->block_type = 0;
  1799. g->switch_point = 0;
  1800. for(i=0;i<3;i++)
  1801. g->table_select[i] = get_bits(&s->gb, 5);
  1802. /* compute huffman coded region sizes */
  1803. region_address1 = get_bits(&s->gb, 4);
  1804. region_address2 = get_bits(&s->gb, 3);
  1805. dprintf("region1=%d region2=%d\n",
  1806. region_address1, region_address2);
  1807. g->region_size[0] =
  1808. band_index_long[s->sample_rate_index][region_address1 + 1] >> 1;
  1809. l = region_address1 + region_address2 + 2;
  1810. /* should not overflow */
  1811. if (l > 22)
  1812. l = 22;
  1813. g->region_size[1] =
  1814. band_index_long[s->sample_rate_index][l] >> 1;
  1815. }
  1816. /* convert region offsets to region sizes and truncate
  1817. size to big_values */
  1818. g->region_size[2] = (576 / 2);
  1819. j = 0;
  1820. for(i=0;i<3;i++) {
  1821. k = g->region_size[i];
  1822. if (k > g->big_values)
  1823. k = g->big_values;
  1824. g->region_size[i] = k - j;
  1825. j = k;
  1826. }
  1827. /* compute band indexes */
  1828. if (g->block_type == 2) {
  1829. if (g->switch_point) {
  1830. /* if switched mode, we handle the 36 first samples as
  1831. long blocks. For 8000Hz, we handle the 48 first
  1832. exponents as long blocks (XXX: check this!) */
  1833. if (s->sample_rate_index <= 2)
  1834. g->long_end = 8;
  1835. else if (s->sample_rate_index != 8)
  1836. g->long_end = 6;
  1837. else
  1838. g->long_end = 4; /* 8000 Hz */
  1839. if (s->sample_rate_index != 8)
  1840. g->short_start = 3;
  1841. else
  1842. g->short_start = 2;
  1843. } else {
  1844. g->long_end = 0;
  1845. g->short_start = 0;
  1846. }
  1847. } else {
  1848. g->short_start = 13;
  1849. g->long_end = 22;
  1850. }
  1851. g->preflag = 0;
  1852. if (!s->lsf)
  1853. g->preflag = get_bits(&s->gb, 1);
  1854. g->scalefac_scale = get_bits(&s->gb, 1);
  1855. g->count1table_select = get_bits(&s->gb, 1);
  1856. dprintf("block_type=%d switch_point=%d\n",
  1857. g->block_type, g->switch_point);
  1858. }
  1859. }
  1860. /* now we get bits from the main_data_begin offset */
  1861. dprintf("seekback: %d\n", main_data_begin);
  1862. seek_to_maindata(s, main_data_begin);
  1863. for(gr=0;gr<nb_granules;gr++) {
  1864. for(ch=0;ch<s->nb_channels;ch++) {
  1865. g = &granules[ch][gr];
  1866. bits_pos = get_bits_count(&s->gb);
  1867. if (!s->lsf) {
  1868. UINT8 *sc;
  1869. int slen, slen1, slen2;
  1870. /* MPEG1 scale factors */
  1871. slen1 = slen_table[0][g->scalefac_compress];
  1872. slen2 = slen_table[1][g->scalefac_compress];
  1873. dprintf("slen1=%d slen2=%d\n", slen1, slen2);
  1874. if (g->block_type == 2) {
  1875. n = g->switch_point ? 17 : 18;
  1876. j = 0;
  1877. for(i=0;i<n;i++)
  1878. g->scale_factors[j++] = get_bitsz(&s->gb, slen1);
  1879. for(i=0;i<18;i++)
  1880. g->scale_factors[j++] = get_bitsz(&s->gb, slen2);
  1881. for(i=0;i<3;i++)
  1882. g->scale_factors[j++] = 0;
  1883. } else {
  1884. sc = granules[ch][0].scale_factors;
  1885. j = 0;
  1886. for(k=0;k<4;k++) {
  1887. n = (k == 0 ? 6 : 5);
  1888. if ((g->scfsi & (0x8 >> k)) == 0) {
  1889. slen = (k < 2) ? slen1 : slen2;
  1890. for(i=0;i<n;i++)
  1891. g->scale_factors[j++] = get_bitsz(&s->gb, slen);
  1892. } else {
  1893. /* simply copy from last granule */
  1894. for(i=0;i<n;i++) {
  1895. g->scale_factors[j] = sc[j];
  1896. j++;
  1897. }
  1898. }
  1899. }
  1900. g->scale_factors[j++] = 0;
  1901. }
  1902. #ifdef DEBUG
  1903. {
  1904. printf("scfsi=%x gr=%d ch=%d scale_factors:\n",
  1905. g->scfsi, gr, ch);
  1906. for(i=0;i<j;i++)
  1907. printf(" %d", g->scale_factors[i]);
  1908. printf("\n");
  1909. }
  1910. #endif
  1911. } else {
  1912. int tindex, tindex2, slen[4], sl, sf;
  1913. /* LSF scale factors */
  1914. if (g->block_type == 2) {
  1915. tindex = g->switch_point ? 2 : 1;
  1916. } else {
  1917. tindex = 0;
  1918. }
  1919. sf = g->scalefac_compress;
  1920. if ((s->mode_ext & MODE_EXT_I_STEREO) && ch == 1) {
  1921. /* intensity stereo case */
  1922. sf >>= 1;
  1923. if (sf < 180) {
  1924. lsf_sf_expand(slen, sf, 6, 6, 0);
  1925. tindex2 = 3;
  1926. } else if (sf < 244) {
  1927. lsf_sf_expand(slen, sf - 180, 4, 4, 0);
  1928. tindex2 = 4;
  1929. } else {
  1930. lsf_sf_expand(slen, sf - 244, 3, 0, 0);
  1931. tindex2 = 5;
  1932. }
  1933. } else {
  1934. /* normal case */
  1935. if (sf < 400) {
  1936. lsf_sf_expand(slen, sf, 5, 4, 4);
  1937. tindex2 = 0;
  1938. } else if (sf < 500) {
  1939. lsf_sf_expand(slen, sf - 400, 5, 4, 0);
  1940. tindex2 = 1;
  1941. } else {
  1942. lsf_sf_expand(slen, sf - 500, 3, 0, 0);
  1943. tindex2 = 2;
  1944. g->preflag = 1;
  1945. }
  1946. }
  1947. j = 0;
  1948. for(k=0;k<4;k++) {
  1949. n = lsf_nsf_table[tindex2][tindex][k];
  1950. sl = slen[k];
  1951. for(i=0;i<n;i++)
  1952. g->scale_factors[j++] = get_bitsz(&s->gb, sl);
  1953. }
  1954. /* XXX: should compute exact size */
  1955. for(;j<40;j++)
  1956. g->scale_factors[j] = 0;
  1957. #ifdef DEBUG
  1958. {
  1959. printf("gr=%d ch=%d scale_factors:\n",
  1960. gr, ch);
  1961. for(i=0;i<40;i++)
  1962. printf(" %d", g->scale_factors[i]);
  1963. printf("\n");
  1964. }
  1965. #endif
  1966. }
  1967. exponents_from_scale_factors(s, g, exponents);
  1968. /* read Huffman coded residue */
  1969. if (huffman_decode(s, g, exponents,
  1970. bits_pos + g->part2_3_length) < 0)
  1971. return -1;
  1972. #if defined(DEBUG) && 0
  1973. sample_dump(3, g->sb_hybrid, 576);
  1974. #endif
  1975. /* skip extension bits */
  1976. bits_left = g->part2_3_length - (get_bits_count(&s->gb) - bits_pos);
  1977. if (bits_left < 0) {
  1978. dprintf("bits_left=%d\n", bits_left);
  1979. return -1;
  1980. }
  1981. while (bits_left >= 16) {
  1982. skip_bits(&s->gb, 16);
  1983. bits_left -= 16;
  1984. }
  1985. if (bits_left > 0)
  1986. skip_bits(&s->gb, bits_left);
  1987. } /* ch */
  1988. if (s->nb_channels == 2)
  1989. compute_stereo(s, &granules[0][gr], &granules[1][gr]);
  1990. for(ch=0;ch<s->nb_channels;ch++) {
  1991. g = &granules[ch][gr];
  1992. reorder_block(s, g);
  1993. #ifdef DEBUG
  1994. sample_dump(0, g->sb_hybrid, 576);
  1995. #endif
  1996. compute_antialias(s, g);
  1997. #ifdef DEBUG
  1998. sample_dump(1, g->sb_hybrid, 576);
  1999. #endif
  2000. compute_imdct(s, g, &s->sb_samples[ch][18 * gr][0], s->mdct_buf[ch]);
  2001. #ifdef DEBUG
  2002. sample_dump(2, &s->sb_samples[ch][18 * gr][0], 576);
  2003. #endif
  2004. }
  2005. } /* gr */
  2006. return nb_granules * 18;
  2007. }
  2008. static int mp_decode_frame(MPADecodeContext *s,
  2009. short *samples)
  2010. {
  2011. int i, nb_frames, ch;
  2012. short *samples_ptr;
  2013. init_get_bits(&s->gb, s->inbuf + HEADER_SIZE,
  2014. s->inbuf_ptr - s->inbuf - HEADER_SIZE);
  2015. /* skip error protection field */
  2016. if (s->error_protection)
  2017. get_bits(&s->gb, 16);
  2018. dprintf("frame %d:\n", s->frame_count);
  2019. switch(s->layer) {
  2020. case 1:
  2021. nb_frames = mp_decode_layer1(s);
  2022. break;
  2023. case 2:
  2024. nb_frames = mp_decode_layer2(s);
  2025. break;
  2026. case 3:
  2027. default:
  2028. nb_frames = mp_decode_layer3(s);
  2029. break;
  2030. }
  2031. #if defined(DEBUG)
  2032. for(i=0;i<nb_frames;i++) {
  2033. for(ch=0;ch<s->nb_channels;ch++) {
  2034. int j;
  2035. printf("%d-%d:", i, ch);
  2036. for(j=0;j<SBLIMIT;j++)
  2037. printf(" %0.6f", (double)s->sb_samples[ch][i][j] / FRAC_ONE);
  2038. printf("\n");
  2039. }
  2040. }
  2041. #endif
  2042. /* apply the synthesis filter */
  2043. for(ch=0;ch<s->nb_channels;ch++) {
  2044. samples_ptr = samples + ch;
  2045. for(i=0;i<nb_frames;i++) {
  2046. synth_filter(s, ch, samples_ptr, s->nb_channels,
  2047. s->sb_samples[ch][i]);
  2048. samples_ptr += 32 * s->nb_channels;
  2049. }
  2050. }
  2051. #ifdef DEBUG
  2052. s->frame_count++;
  2053. #endif
  2054. return nb_frames * 32 * sizeof(short) * s->nb_channels;
  2055. }
  2056. static int decode_frame(AVCodecContext * avctx,
  2057. void *data, int *data_size,
  2058. UINT8 * buf, int buf_size)
  2059. {
  2060. MPADecodeContext *s = avctx->priv_data;
  2061. UINT32 header;
  2062. UINT8 *buf_ptr;
  2063. int len, out_size;
  2064. short *out_samples = data;
  2065. *data_size = 0;
  2066. buf_ptr = buf;
  2067. while (buf_size > 0) {
  2068. len = s->inbuf_ptr - s->inbuf;
  2069. if (s->frame_size == 0) {
  2070. /* special case for next header for first frame in free
  2071. format case (XXX: find a simpler method) */
  2072. if (s->free_format_next_header != 0) {
  2073. s->inbuf[0] = s->free_format_next_header >> 24;
  2074. s->inbuf[1] = s->free_format_next_header >> 16;
  2075. s->inbuf[2] = s->free_format_next_header >> 8;
  2076. s->inbuf[3] = s->free_format_next_header;
  2077. s->inbuf_ptr = s->inbuf + 4;
  2078. s->free_format_next_header = 0;
  2079. goto got_header;
  2080. }
  2081. /* no header seen : find one. We need at least HEADER_SIZE
  2082. bytes to parse it */
  2083. len = HEADER_SIZE - len;
  2084. if (len > buf_size)
  2085. len = buf_size;
  2086. if (len > 0) {
  2087. memcpy(s->inbuf_ptr, buf_ptr, len);
  2088. buf_ptr += len;
  2089. buf_size -= len;
  2090. s->inbuf_ptr += len;
  2091. }
  2092. if ((s->inbuf_ptr - s->inbuf) >= HEADER_SIZE) {
  2093. got_header:
  2094. header = (s->inbuf[0] << 24) | (s->inbuf[1] << 16) |
  2095. (s->inbuf[2] << 8) | s->inbuf[3];
  2096. if (check_header(header) < 0) {
  2097. /* no sync found : move by one byte (inefficient, but simple!) */
  2098. memcpy(s->inbuf, s->inbuf + 1, s->inbuf_ptr - s->inbuf - 1);
  2099. s->inbuf_ptr--;
  2100. dprintf("skip %x\n", header);
  2101. /* reset free format frame size to give a chance
  2102. to get a new bitrate */
  2103. s->free_format_frame_size = 0;
  2104. } else {
  2105. if (decode_header(s, header) == 1) {
  2106. /* free format: compute frame size */
  2107. s->frame_size = -1;
  2108. memcpy(s->inbuf, s->inbuf + 1, s->inbuf_ptr - s->inbuf - 1);
  2109. s->inbuf_ptr--;
  2110. } else {
  2111. /* update codec info */
  2112. avctx->sample_rate = s->sample_rate;
  2113. avctx->channels = s->nb_channels;
  2114. avctx->bit_rate = s->bit_rate;
  2115. }
  2116. }
  2117. }
  2118. } else if (s->frame_size == -1) {
  2119. /* free format : find next sync to compute frame size */
  2120. len = MPA_MAX_CODED_FRAME_SIZE - len;
  2121. if (len > buf_size)
  2122. len = buf_size;
  2123. if (len == 0) {
  2124. /* frame too long: resync */
  2125. s->frame_size = 0;
  2126. } else {
  2127. UINT8 *p, *pend;
  2128. UINT32 header1;
  2129. int padding;
  2130. memcpy(s->inbuf_ptr, buf_ptr, len);
  2131. /* check for header */
  2132. p = s->inbuf_ptr - 3;
  2133. pend = s->inbuf_ptr + len - 4;
  2134. while (p <= pend) {
  2135. header = (p[0] << 24) | (p[1] << 16) |
  2136. (p[2] << 8) | p[3];
  2137. header1 = (s->inbuf[0] << 24) | (s->inbuf[1] << 16) |
  2138. (s->inbuf[2] << 8) | s->inbuf[3];
  2139. /* check with high probability that we have a
  2140. valid header */
  2141. if ((header & SAME_HEADER_MASK) ==
  2142. (header1 & SAME_HEADER_MASK)) {
  2143. /* header found: update pointers */
  2144. len = (p + 4) - s->inbuf_ptr;
  2145. buf_ptr += len;
  2146. buf_size -= len;
  2147. s->inbuf_ptr = p;
  2148. /* compute frame size */
  2149. s->free_format_next_header = header;
  2150. s->free_format_frame_size = s->inbuf_ptr - s->inbuf;
  2151. padding = (header1 >> 9) & 1;
  2152. if (s->layer == 1)
  2153. s->free_format_frame_size -= padding * 4;
  2154. else
  2155. s->free_format_frame_size -= padding;
  2156. dprintf("free frame size=%d padding=%d\n",
  2157. s->free_format_frame_size, padding);
  2158. decode_header(s, header1);
  2159. goto next_data;
  2160. }
  2161. p++;
  2162. }
  2163. /* not found: simply increase pointers */
  2164. buf_ptr += len;
  2165. s->inbuf_ptr += len;
  2166. buf_size -= len;
  2167. }
  2168. } else if (len < s->frame_size) {
  2169. if (s->frame_size > MPA_MAX_CODED_FRAME_SIZE)
  2170. s->frame_size = MPA_MAX_CODED_FRAME_SIZE;
  2171. len = s->frame_size - len;
  2172. if (len > buf_size)
  2173. len = buf_size;
  2174. else if (len < 4)
  2175. len = buf_size > 4 ? 4 : buf_size;
  2176. memcpy(s->inbuf_ptr, buf_ptr, len);
  2177. buf_ptr += len;
  2178. s->inbuf_ptr += len;
  2179. buf_size -= len;
  2180. } else {
  2181. out_size = mp_decode_frame(s, out_samples);
  2182. s->inbuf_ptr = s->inbuf;
  2183. s->frame_size = 0;
  2184. *data_size = out_size;
  2185. break;
  2186. }
  2187. next_data:
  2188. }
  2189. return buf_ptr - buf;
  2190. }
  2191. AVCodec mp3_decoder =
  2192. {
  2193. "mpegaudio",
  2194. CODEC_TYPE_AUDIO,
  2195. CODEC_ID_MP2,
  2196. sizeof(MPADecodeContext),
  2197. decode_init,
  2198. NULL,
  2199. NULL,
  2200. decode_frame,
  2201. };