You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

3694 lines
132KB

  1. /*
  2. * VC-1 and WMV3 decoder
  3. * Copyright (c) 2006-2007 Konstantin Shishkov
  4. * Partly based on vc9.c (c) 2005 Anonymous, Alex Beregszaszi, Michael Niedermayer
  5. *
  6. * This file is part of Libav.
  7. *
  8. * Libav is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU Lesser General Public
  10. * License as published by the Free Software Foundation; either
  11. * version 2.1 of the License, or (at your option) any later version.
  12. *
  13. * Libav is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * Lesser General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU Lesser General Public
  19. * License along with Libav; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  21. */
  22. /**
  23. * @file
  24. * VC-1 and WMV3 decoder
  25. *
  26. */
  27. #include "internal.h"
  28. #include "dsputil.h"
  29. #include "avcodec.h"
  30. #include "mpegvideo.h"
  31. #include "h263.h"
  32. #include "vc1.h"
  33. #include "vc1data.h"
  34. #include "vc1acdata.h"
  35. #include "msmpeg4data.h"
  36. #include "unary.h"
  37. #include "simple_idct.h"
  38. #include "mathops.h"
  39. #include "vdpau_internal.h"
  40. #undef NDEBUG
  41. #include <assert.h>
  42. #define MB_INTRA_VLC_BITS 9
  43. #define DC_VLC_BITS 9
  44. #define AC_VLC_BITS 9
  45. static const uint16_t table_mb_intra[64][2];
  46. static const uint16_t vlc_offs[] = {
  47. 0, 520, 552, 616, 1128, 1160, 1224, 1740, 1772, 1836, 1900, 2436,
  48. 2986, 3050, 3610, 4154, 4218, 4746, 5326, 5390, 5902, 6554, 7658, 8620,
  49. 9262, 10202, 10756, 11310, 12228, 15078
  50. };
  51. /**
  52. * Init VC-1 specific tables and VC1Context members
  53. * @param v The VC1Context to initialize
  54. * @return Status
  55. */
  56. static int vc1_init_common(VC1Context *v)
  57. {
  58. static int done = 0;
  59. int i = 0;
  60. static VLC_TYPE vlc_table[15078][2];
  61. v->hrd_rate = v->hrd_buffer = NULL;
  62. /* VLC tables */
  63. if(!done)
  64. {
  65. INIT_VLC_STATIC(&ff_vc1_bfraction_vlc, VC1_BFRACTION_VLC_BITS, 23,
  66. ff_vc1_bfraction_bits, 1, 1,
  67. ff_vc1_bfraction_codes, 1, 1, 1 << VC1_BFRACTION_VLC_BITS);
  68. INIT_VLC_STATIC(&ff_vc1_norm2_vlc, VC1_NORM2_VLC_BITS, 4,
  69. ff_vc1_norm2_bits, 1, 1,
  70. ff_vc1_norm2_codes, 1, 1, 1 << VC1_NORM2_VLC_BITS);
  71. INIT_VLC_STATIC(&ff_vc1_norm6_vlc, VC1_NORM6_VLC_BITS, 64,
  72. ff_vc1_norm6_bits, 1, 1,
  73. ff_vc1_norm6_codes, 2, 2, 556);
  74. INIT_VLC_STATIC(&ff_vc1_imode_vlc, VC1_IMODE_VLC_BITS, 7,
  75. ff_vc1_imode_bits, 1, 1,
  76. ff_vc1_imode_codes, 1, 1, 1 << VC1_IMODE_VLC_BITS);
  77. for (i=0; i<3; i++)
  78. {
  79. ff_vc1_ttmb_vlc[i].table = &vlc_table[vlc_offs[i*3+0]];
  80. ff_vc1_ttmb_vlc[i].table_allocated = vlc_offs[i*3+1] - vlc_offs[i*3+0];
  81. init_vlc(&ff_vc1_ttmb_vlc[i], VC1_TTMB_VLC_BITS, 16,
  82. ff_vc1_ttmb_bits[i], 1, 1,
  83. ff_vc1_ttmb_codes[i], 2, 2, INIT_VLC_USE_NEW_STATIC);
  84. ff_vc1_ttblk_vlc[i].table = &vlc_table[vlc_offs[i*3+1]];
  85. ff_vc1_ttblk_vlc[i].table_allocated = vlc_offs[i*3+2] - vlc_offs[i*3+1];
  86. init_vlc(&ff_vc1_ttblk_vlc[i], VC1_TTBLK_VLC_BITS, 8,
  87. ff_vc1_ttblk_bits[i], 1, 1,
  88. ff_vc1_ttblk_codes[i], 1, 1, INIT_VLC_USE_NEW_STATIC);
  89. ff_vc1_subblkpat_vlc[i].table = &vlc_table[vlc_offs[i*3+2]];
  90. ff_vc1_subblkpat_vlc[i].table_allocated = vlc_offs[i*3+3] - vlc_offs[i*3+2];
  91. init_vlc(&ff_vc1_subblkpat_vlc[i], VC1_SUBBLKPAT_VLC_BITS, 15,
  92. ff_vc1_subblkpat_bits[i], 1, 1,
  93. ff_vc1_subblkpat_codes[i], 1, 1, INIT_VLC_USE_NEW_STATIC);
  94. }
  95. for(i=0; i<4; i++)
  96. {
  97. ff_vc1_4mv_block_pattern_vlc[i].table = &vlc_table[vlc_offs[i*3+9]];
  98. ff_vc1_4mv_block_pattern_vlc[i].table_allocated = vlc_offs[i*3+10] - vlc_offs[i*3+9];
  99. init_vlc(&ff_vc1_4mv_block_pattern_vlc[i], VC1_4MV_BLOCK_PATTERN_VLC_BITS, 16,
  100. ff_vc1_4mv_block_pattern_bits[i], 1, 1,
  101. ff_vc1_4mv_block_pattern_codes[i], 1, 1, INIT_VLC_USE_NEW_STATIC);
  102. ff_vc1_cbpcy_p_vlc[i].table = &vlc_table[vlc_offs[i*3+10]];
  103. ff_vc1_cbpcy_p_vlc[i].table_allocated = vlc_offs[i*3+11] - vlc_offs[i*3+10];
  104. init_vlc(&ff_vc1_cbpcy_p_vlc[i], VC1_CBPCY_P_VLC_BITS, 64,
  105. ff_vc1_cbpcy_p_bits[i], 1, 1,
  106. ff_vc1_cbpcy_p_codes[i], 2, 2, INIT_VLC_USE_NEW_STATIC);
  107. ff_vc1_mv_diff_vlc[i].table = &vlc_table[vlc_offs[i*3+11]];
  108. ff_vc1_mv_diff_vlc[i].table_allocated = vlc_offs[i*3+12] - vlc_offs[i*3+11];
  109. init_vlc(&ff_vc1_mv_diff_vlc[i], VC1_MV_DIFF_VLC_BITS, 73,
  110. ff_vc1_mv_diff_bits[i], 1, 1,
  111. ff_vc1_mv_diff_codes[i], 2, 2, INIT_VLC_USE_NEW_STATIC);
  112. }
  113. for(i=0; i<8; i++){
  114. ff_vc1_ac_coeff_table[i].table = &vlc_table[vlc_offs[i+21]];
  115. ff_vc1_ac_coeff_table[i].table_allocated = vlc_offs[i+22] - vlc_offs[i+21];
  116. init_vlc(&ff_vc1_ac_coeff_table[i], AC_VLC_BITS, vc1_ac_sizes[i],
  117. &vc1_ac_tables[i][0][1], 8, 4,
  118. &vc1_ac_tables[i][0][0], 8, 4, INIT_VLC_USE_NEW_STATIC);
  119. }
  120. done = 1;
  121. }
  122. /* Other defaults */
  123. v->pq = -1;
  124. v->mvrange = 0; /* 7.1.1.18, p80 */
  125. return 0;
  126. }
  127. /***********************************************************************/
  128. /**
  129. * @defgroup vc1bitplane VC-1 Bitplane decoding
  130. * @see 8.7, p56
  131. * @{
  132. */
  133. /**
  134. * Imode types
  135. * @{
  136. */
  137. enum Imode {
  138. IMODE_RAW,
  139. IMODE_NORM2,
  140. IMODE_DIFF2,
  141. IMODE_NORM6,
  142. IMODE_DIFF6,
  143. IMODE_ROWSKIP,
  144. IMODE_COLSKIP
  145. };
  146. /** @} */ //imode defines
  147. /** @} */ //Bitplane group
  148. static void vc1_loop_filter_iblk(VC1Context *v, int pq)
  149. {
  150. MpegEncContext *s = &v->s;
  151. int j;
  152. if (!s->first_slice_line) {
  153. v->vc1dsp.vc1_v_loop_filter16(s->dest[0], s->linesize, pq);
  154. if (s->mb_x)
  155. v->vc1dsp.vc1_h_loop_filter16(s->dest[0] - 16*s->linesize, s->linesize, pq);
  156. v->vc1dsp.vc1_h_loop_filter16(s->dest[0] - 16*s->linesize+8, s->linesize, pq);
  157. for(j = 0; j < 2; j++){
  158. v->vc1dsp.vc1_v_loop_filter8(s->dest[j+1], s->uvlinesize, pq);
  159. if (s->mb_x)
  160. v->vc1dsp.vc1_h_loop_filter8(s->dest[j+1]-8*s->uvlinesize, s->uvlinesize, pq);
  161. }
  162. }
  163. v->vc1dsp.vc1_v_loop_filter16(s->dest[0] + 8*s->linesize, s->linesize, pq);
  164. if (s->mb_y == s->mb_height-1) {
  165. if (s->mb_x) {
  166. v->vc1dsp.vc1_h_loop_filter16(s->dest[0], s->linesize, pq);
  167. v->vc1dsp.vc1_h_loop_filter8(s->dest[1], s->uvlinesize, pq);
  168. v->vc1dsp.vc1_h_loop_filter8(s->dest[2], s->uvlinesize, pq);
  169. }
  170. v->vc1dsp.vc1_h_loop_filter16(s->dest[0] + 8, s->linesize, pq);
  171. }
  172. }
  173. /** Do motion compensation over 1 macroblock
  174. * Mostly adapted hpel_motion and qpel_motion from mpegvideo.c
  175. */
  176. static void vc1_mc_1mv(VC1Context *v, int dir)
  177. {
  178. MpegEncContext *s = &v->s;
  179. DSPContext *dsp = &v->s.dsp;
  180. uint8_t *srcY, *srcU, *srcV;
  181. int dxy, mx, my, uvmx, uvmy, src_x, src_y, uvsrc_x, uvsrc_y;
  182. if(!v->s.last_picture.data[0])return;
  183. mx = s->mv[dir][0][0];
  184. my = s->mv[dir][0][1];
  185. // store motion vectors for further use in B frames
  186. if(s->pict_type == FF_P_TYPE) {
  187. s->current_picture.motion_val[1][s->block_index[0]][0] = mx;
  188. s->current_picture.motion_val[1][s->block_index[0]][1] = my;
  189. }
  190. uvmx = (mx + ((mx & 3) == 3)) >> 1;
  191. uvmy = (my + ((my & 3) == 3)) >> 1;
  192. v->luma_mv[s->mb_x][0] = uvmx;
  193. v->luma_mv[s->mb_x][1] = uvmy;
  194. if(v->fastuvmc) {
  195. uvmx = uvmx + ((uvmx<0)?(uvmx&1):-(uvmx&1));
  196. uvmy = uvmy + ((uvmy<0)?(uvmy&1):-(uvmy&1));
  197. }
  198. if(!dir) {
  199. srcY = s->last_picture.data[0];
  200. srcU = s->last_picture.data[1];
  201. srcV = s->last_picture.data[2];
  202. } else {
  203. srcY = s->next_picture.data[0];
  204. srcU = s->next_picture.data[1];
  205. srcV = s->next_picture.data[2];
  206. }
  207. src_x = s->mb_x * 16 + (mx >> 2);
  208. src_y = s->mb_y * 16 + (my >> 2);
  209. uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
  210. uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
  211. if(v->profile != PROFILE_ADVANCED){
  212. src_x = av_clip( src_x, -16, s->mb_width * 16);
  213. src_y = av_clip( src_y, -16, s->mb_height * 16);
  214. uvsrc_x = av_clip(uvsrc_x, -8, s->mb_width * 8);
  215. uvsrc_y = av_clip(uvsrc_y, -8, s->mb_height * 8);
  216. }else{
  217. src_x = av_clip( src_x, -17, s->avctx->coded_width);
  218. src_y = av_clip( src_y, -18, s->avctx->coded_height + 1);
  219. uvsrc_x = av_clip(uvsrc_x, -8, s->avctx->coded_width >> 1);
  220. uvsrc_y = av_clip(uvsrc_y, -8, s->avctx->coded_height >> 1);
  221. }
  222. srcY += src_y * s->linesize + src_x;
  223. srcU += uvsrc_y * s->uvlinesize + uvsrc_x;
  224. srcV += uvsrc_y * s->uvlinesize + uvsrc_x;
  225. /* for grayscale we should not try to read from unknown area */
  226. if(s->flags & CODEC_FLAG_GRAY) {
  227. srcU = s->edge_emu_buffer + 18 * s->linesize;
  228. srcV = s->edge_emu_buffer + 18 * s->linesize;
  229. }
  230. if(v->rangeredfrm || (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  231. || (unsigned)(src_x - s->mspel) > s->h_edge_pos - (mx&3) - 16 - s->mspel*3
  232. || (unsigned)(src_y - s->mspel) > s->v_edge_pos - (my&3) - 16 - s->mspel*3){
  233. uint8_t *uvbuf= s->edge_emu_buffer + 19 * s->linesize;
  234. srcY -= s->mspel * (1 + s->linesize);
  235. s->dsp.emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize, 17+s->mspel*2, 17+s->mspel*2,
  236. src_x - s->mspel, src_y - s->mspel, s->h_edge_pos, s->v_edge_pos);
  237. srcY = s->edge_emu_buffer;
  238. s->dsp.emulated_edge_mc(uvbuf , srcU, s->uvlinesize, 8+1, 8+1,
  239. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  240. s->dsp.emulated_edge_mc(uvbuf + 16, srcV, s->uvlinesize, 8+1, 8+1,
  241. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  242. srcU = uvbuf;
  243. srcV = uvbuf + 16;
  244. /* if we deal with range reduction we need to scale source blocks */
  245. if(v->rangeredfrm) {
  246. int i, j;
  247. uint8_t *src, *src2;
  248. src = srcY;
  249. for(j = 0; j < 17 + s->mspel*2; j++) {
  250. for(i = 0; i < 17 + s->mspel*2; i++) src[i] = ((src[i] - 128) >> 1) + 128;
  251. src += s->linesize;
  252. }
  253. src = srcU; src2 = srcV;
  254. for(j = 0; j < 9; j++) {
  255. for(i = 0; i < 9; i++) {
  256. src[i] = ((src[i] - 128) >> 1) + 128;
  257. src2[i] = ((src2[i] - 128) >> 1) + 128;
  258. }
  259. src += s->uvlinesize;
  260. src2 += s->uvlinesize;
  261. }
  262. }
  263. /* if we deal with intensity compensation we need to scale source blocks */
  264. if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  265. int i, j;
  266. uint8_t *src, *src2;
  267. src = srcY;
  268. for(j = 0; j < 17 + s->mspel*2; j++) {
  269. for(i = 0; i < 17 + s->mspel*2; i++) src[i] = v->luty[src[i]];
  270. src += s->linesize;
  271. }
  272. src = srcU; src2 = srcV;
  273. for(j = 0; j < 9; j++) {
  274. for(i = 0; i < 9; i++) {
  275. src[i] = v->lutuv[src[i]];
  276. src2[i] = v->lutuv[src2[i]];
  277. }
  278. src += s->uvlinesize;
  279. src2 += s->uvlinesize;
  280. }
  281. }
  282. srcY += s->mspel * (1 + s->linesize);
  283. }
  284. if(s->mspel) {
  285. dxy = ((my & 3) << 2) | (mx & 3);
  286. v->vc1dsp.put_vc1_mspel_pixels_tab[dxy](s->dest[0] , srcY , s->linesize, v->rnd);
  287. v->vc1dsp.put_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8, srcY + 8, s->linesize, v->rnd);
  288. srcY += s->linesize * 8;
  289. v->vc1dsp.put_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8 * s->linesize , srcY , s->linesize, v->rnd);
  290. v->vc1dsp.put_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8 * s->linesize + 8, srcY + 8, s->linesize, v->rnd);
  291. } else { // hpel mc - always used for luma
  292. dxy = (my & 2) | ((mx & 2) >> 1);
  293. if(!v->rnd)
  294. dsp->put_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
  295. else
  296. dsp->put_no_rnd_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
  297. }
  298. if(s->flags & CODEC_FLAG_GRAY) return;
  299. /* Chroma MC always uses qpel bilinear */
  300. uvmx = (uvmx&3)<<1;
  301. uvmy = (uvmy&3)<<1;
  302. if(!v->rnd){
  303. dsp->put_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  304. dsp->put_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  305. }else{
  306. v->vc1dsp.put_no_rnd_vc1_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  307. v->vc1dsp.put_no_rnd_vc1_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  308. }
  309. }
  310. /** Do motion compensation for 4-MV macroblock - luminance block
  311. */
  312. static void vc1_mc_4mv_luma(VC1Context *v, int n)
  313. {
  314. MpegEncContext *s = &v->s;
  315. DSPContext *dsp = &v->s.dsp;
  316. uint8_t *srcY;
  317. int dxy, mx, my, src_x, src_y;
  318. int off;
  319. if(!v->s.last_picture.data[0])return;
  320. mx = s->mv[0][n][0];
  321. my = s->mv[0][n][1];
  322. srcY = s->last_picture.data[0];
  323. off = s->linesize * 4 * (n&2) + (n&1) * 8;
  324. src_x = s->mb_x * 16 + (n&1) * 8 + (mx >> 2);
  325. src_y = s->mb_y * 16 + (n&2) * 4 + (my >> 2);
  326. if(v->profile != PROFILE_ADVANCED){
  327. src_x = av_clip( src_x, -16, s->mb_width * 16);
  328. src_y = av_clip( src_y, -16, s->mb_height * 16);
  329. }else{
  330. src_x = av_clip( src_x, -17, s->avctx->coded_width);
  331. src_y = av_clip( src_y, -18, s->avctx->coded_height + 1);
  332. }
  333. srcY += src_y * s->linesize + src_x;
  334. if(v->rangeredfrm || (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  335. || (unsigned)(src_x - s->mspel) > s->h_edge_pos - (mx&3) - 8 - s->mspel*2
  336. || (unsigned)(src_y - s->mspel) > s->v_edge_pos - (my&3) - 8 - s->mspel*2){
  337. srcY -= s->mspel * (1 + s->linesize);
  338. s->dsp.emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize, 9+s->mspel*2, 9+s->mspel*2,
  339. src_x - s->mspel, src_y - s->mspel, s->h_edge_pos, s->v_edge_pos);
  340. srcY = s->edge_emu_buffer;
  341. /* if we deal with range reduction we need to scale source blocks */
  342. if(v->rangeredfrm) {
  343. int i, j;
  344. uint8_t *src;
  345. src = srcY;
  346. for(j = 0; j < 9 + s->mspel*2; j++) {
  347. for(i = 0; i < 9 + s->mspel*2; i++) src[i] = ((src[i] - 128) >> 1) + 128;
  348. src += s->linesize;
  349. }
  350. }
  351. /* if we deal with intensity compensation we need to scale source blocks */
  352. if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  353. int i, j;
  354. uint8_t *src;
  355. src = srcY;
  356. for(j = 0; j < 9 + s->mspel*2; j++) {
  357. for(i = 0; i < 9 + s->mspel*2; i++) src[i] = v->luty[src[i]];
  358. src += s->linesize;
  359. }
  360. }
  361. srcY += s->mspel * (1 + s->linesize);
  362. }
  363. if(s->mspel) {
  364. dxy = ((my & 3) << 2) | (mx & 3);
  365. v->vc1dsp.put_vc1_mspel_pixels_tab[dxy](s->dest[0] + off, srcY, s->linesize, v->rnd);
  366. } else { // hpel mc - always used for luma
  367. dxy = (my & 2) | ((mx & 2) >> 1);
  368. if(!v->rnd)
  369. dsp->put_pixels_tab[1][dxy](s->dest[0] + off, srcY, s->linesize, 8);
  370. else
  371. dsp->put_no_rnd_pixels_tab[1][dxy](s->dest[0] + off, srcY, s->linesize, 8);
  372. }
  373. }
  374. static inline int median4(int a, int b, int c, int d)
  375. {
  376. if(a < b) {
  377. if(c < d) return (FFMIN(b, d) + FFMAX(a, c)) / 2;
  378. else return (FFMIN(b, c) + FFMAX(a, d)) / 2;
  379. } else {
  380. if(c < d) return (FFMIN(a, d) + FFMAX(b, c)) / 2;
  381. else return (FFMIN(a, c) + FFMAX(b, d)) / 2;
  382. }
  383. }
  384. /** Do motion compensation for 4-MV macroblock - both chroma blocks
  385. */
  386. static void vc1_mc_4mv_chroma(VC1Context *v)
  387. {
  388. MpegEncContext *s = &v->s;
  389. DSPContext *dsp = &v->s.dsp;
  390. uint8_t *srcU, *srcV;
  391. int uvmx, uvmy, uvsrc_x, uvsrc_y;
  392. int i, idx, tx = 0, ty = 0;
  393. int mvx[4], mvy[4], intra[4];
  394. static const int count[16] = { 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4};
  395. if(!v->s.last_picture.data[0])return;
  396. if(s->flags & CODEC_FLAG_GRAY) return;
  397. for(i = 0; i < 4; i++) {
  398. mvx[i] = s->mv[0][i][0];
  399. mvy[i] = s->mv[0][i][1];
  400. intra[i] = v->mb_type[0][s->block_index[i]];
  401. }
  402. /* calculate chroma MV vector from four luma MVs */
  403. idx = (intra[3] << 3) | (intra[2] << 2) | (intra[1] << 1) | intra[0];
  404. if(!idx) { // all blocks are inter
  405. tx = median4(mvx[0], mvx[1], mvx[2], mvx[3]);
  406. ty = median4(mvy[0], mvy[1], mvy[2], mvy[3]);
  407. } else if(count[idx] == 1) { // 3 inter blocks
  408. switch(idx) {
  409. case 0x1:
  410. tx = mid_pred(mvx[1], mvx[2], mvx[3]);
  411. ty = mid_pred(mvy[1], mvy[2], mvy[3]);
  412. break;
  413. case 0x2:
  414. tx = mid_pred(mvx[0], mvx[2], mvx[3]);
  415. ty = mid_pred(mvy[0], mvy[2], mvy[3]);
  416. break;
  417. case 0x4:
  418. tx = mid_pred(mvx[0], mvx[1], mvx[3]);
  419. ty = mid_pred(mvy[0], mvy[1], mvy[3]);
  420. break;
  421. case 0x8:
  422. tx = mid_pred(mvx[0], mvx[1], mvx[2]);
  423. ty = mid_pred(mvy[0], mvy[1], mvy[2]);
  424. break;
  425. }
  426. } else if(count[idx] == 2) {
  427. int t1 = 0, t2 = 0;
  428. for(i=0; i<3;i++) if(!intra[i]) {t1 = i; break;}
  429. for(i= t1+1; i<4; i++)if(!intra[i]) {t2 = i; break;}
  430. tx = (mvx[t1] + mvx[t2]) / 2;
  431. ty = (mvy[t1] + mvy[t2]) / 2;
  432. } else {
  433. s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
  434. s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
  435. v->luma_mv[s->mb_x][0] = v->luma_mv[s->mb_x][1] = 0;
  436. return; //no need to do MC for inter blocks
  437. }
  438. s->current_picture.motion_val[1][s->block_index[0]][0] = tx;
  439. s->current_picture.motion_val[1][s->block_index[0]][1] = ty;
  440. uvmx = (tx + ((tx&3) == 3)) >> 1;
  441. uvmy = (ty + ((ty&3) == 3)) >> 1;
  442. v->luma_mv[s->mb_x][0] = uvmx;
  443. v->luma_mv[s->mb_x][1] = uvmy;
  444. if(v->fastuvmc) {
  445. uvmx = uvmx + ((uvmx<0)?(uvmx&1):-(uvmx&1));
  446. uvmy = uvmy + ((uvmy<0)?(uvmy&1):-(uvmy&1));
  447. }
  448. uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
  449. uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
  450. if(v->profile != PROFILE_ADVANCED){
  451. uvsrc_x = av_clip(uvsrc_x, -8, s->mb_width * 8);
  452. uvsrc_y = av_clip(uvsrc_y, -8, s->mb_height * 8);
  453. }else{
  454. uvsrc_x = av_clip(uvsrc_x, -8, s->avctx->coded_width >> 1);
  455. uvsrc_y = av_clip(uvsrc_y, -8, s->avctx->coded_height >> 1);
  456. }
  457. srcU = s->last_picture.data[1] + uvsrc_y * s->uvlinesize + uvsrc_x;
  458. srcV = s->last_picture.data[2] + uvsrc_y * s->uvlinesize + uvsrc_x;
  459. if(v->rangeredfrm || (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  460. || (unsigned)uvsrc_x > (s->h_edge_pos >> 1) - 9
  461. || (unsigned)uvsrc_y > (s->v_edge_pos >> 1) - 9){
  462. s->dsp.emulated_edge_mc(s->edge_emu_buffer , srcU, s->uvlinesize, 8+1, 8+1,
  463. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  464. s->dsp.emulated_edge_mc(s->edge_emu_buffer + 16, srcV, s->uvlinesize, 8+1, 8+1,
  465. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  466. srcU = s->edge_emu_buffer;
  467. srcV = s->edge_emu_buffer + 16;
  468. /* if we deal with range reduction we need to scale source blocks */
  469. if(v->rangeredfrm) {
  470. int i, j;
  471. uint8_t *src, *src2;
  472. src = srcU; src2 = srcV;
  473. for(j = 0; j < 9; j++) {
  474. for(i = 0; i < 9; i++) {
  475. src[i] = ((src[i] - 128) >> 1) + 128;
  476. src2[i] = ((src2[i] - 128) >> 1) + 128;
  477. }
  478. src += s->uvlinesize;
  479. src2 += s->uvlinesize;
  480. }
  481. }
  482. /* if we deal with intensity compensation we need to scale source blocks */
  483. if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  484. int i, j;
  485. uint8_t *src, *src2;
  486. src = srcU; src2 = srcV;
  487. for(j = 0; j < 9; j++) {
  488. for(i = 0; i < 9; i++) {
  489. src[i] = v->lutuv[src[i]];
  490. src2[i] = v->lutuv[src2[i]];
  491. }
  492. src += s->uvlinesize;
  493. src2 += s->uvlinesize;
  494. }
  495. }
  496. }
  497. /* Chroma MC always uses qpel bilinear */
  498. uvmx = (uvmx&3)<<1;
  499. uvmy = (uvmy&3)<<1;
  500. if(!v->rnd){
  501. dsp->put_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  502. dsp->put_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  503. }else{
  504. v->vc1dsp.put_no_rnd_vc1_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  505. v->vc1dsp.put_no_rnd_vc1_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  506. }
  507. }
  508. /***********************************************************************/
  509. /**
  510. * @defgroup vc1block VC-1 Block-level functions
  511. * @see 7.1.4, p91 and 8.1.1.7, p(1)04
  512. * @{
  513. */
  514. /**
  515. * @def GET_MQUANT
  516. * @brief Get macroblock-level quantizer scale
  517. */
  518. #define GET_MQUANT() \
  519. if (v->dquantfrm) \
  520. { \
  521. int edges = 0; \
  522. if (v->dqprofile == DQPROFILE_ALL_MBS) \
  523. { \
  524. if (v->dqbilevel) \
  525. { \
  526. mquant = (get_bits1(gb)) ? v->altpq : v->pq; \
  527. } \
  528. else \
  529. { \
  530. mqdiff = get_bits(gb, 3); \
  531. if (mqdiff != 7) mquant = v->pq + mqdiff; \
  532. else mquant = get_bits(gb, 5); \
  533. } \
  534. } \
  535. if(v->dqprofile == DQPROFILE_SINGLE_EDGE) \
  536. edges = 1 << v->dqsbedge; \
  537. else if(v->dqprofile == DQPROFILE_DOUBLE_EDGES) \
  538. edges = (3 << v->dqsbedge) % 15; \
  539. else if(v->dqprofile == DQPROFILE_FOUR_EDGES) \
  540. edges = 15; \
  541. if((edges&1) && !s->mb_x) \
  542. mquant = v->altpq; \
  543. if((edges&2) && s->first_slice_line) \
  544. mquant = v->altpq; \
  545. if((edges&4) && s->mb_x == (s->mb_width - 1)) \
  546. mquant = v->altpq; \
  547. if((edges&8) && s->mb_y == (s->mb_height - 1)) \
  548. mquant = v->altpq; \
  549. }
  550. /**
  551. * @def GET_MVDATA(_dmv_x, _dmv_y)
  552. * @brief Get MV differentials
  553. * @see MVDATA decoding from 8.3.5.2, p(1)20
  554. * @param _dmv_x Horizontal differential for decoded MV
  555. * @param _dmv_y Vertical differential for decoded MV
  556. */
  557. #define GET_MVDATA(_dmv_x, _dmv_y) \
  558. index = 1 + get_vlc2(gb, ff_vc1_mv_diff_vlc[s->mv_table_index].table,\
  559. VC1_MV_DIFF_VLC_BITS, 2); \
  560. if (index > 36) \
  561. { \
  562. mb_has_coeffs = 1; \
  563. index -= 37; \
  564. } \
  565. else mb_has_coeffs = 0; \
  566. s->mb_intra = 0; \
  567. if (!index) { _dmv_x = _dmv_y = 0; } \
  568. else if (index == 35) \
  569. { \
  570. _dmv_x = get_bits(gb, v->k_x - 1 + s->quarter_sample); \
  571. _dmv_y = get_bits(gb, v->k_y - 1 + s->quarter_sample); \
  572. } \
  573. else if (index == 36) \
  574. { \
  575. _dmv_x = 0; \
  576. _dmv_y = 0; \
  577. s->mb_intra = 1; \
  578. } \
  579. else \
  580. { \
  581. index1 = index%6; \
  582. if (!s->quarter_sample && index1 == 5) val = 1; \
  583. else val = 0; \
  584. if(size_table[index1] - val > 0) \
  585. val = get_bits(gb, size_table[index1] - val); \
  586. else val = 0; \
  587. sign = 0 - (val&1); \
  588. _dmv_x = (sign ^ ((val>>1) + offset_table[index1])) - sign; \
  589. \
  590. index1 = index/6; \
  591. if (!s->quarter_sample && index1 == 5) val = 1; \
  592. else val = 0; \
  593. if(size_table[index1] - val > 0) \
  594. val = get_bits(gb, size_table[index1] - val); \
  595. else val = 0; \
  596. sign = 0 - (val&1); \
  597. _dmv_y = (sign ^ ((val>>1) + offset_table[index1])) - sign; \
  598. }
  599. /** Predict and set motion vector
  600. */
  601. static inline void vc1_pred_mv(VC1Context *v, int n, int dmv_x, int dmv_y, int mv1, int r_x, int r_y, uint8_t* is_intra)
  602. {
  603. MpegEncContext *s = &v->s;
  604. int xy, wrap, off = 0;
  605. int16_t *A, *B, *C;
  606. int px, py;
  607. int sum;
  608. /* scale MV difference to be quad-pel */
  609. dmv_x <<= 1 - s->quarter_sample;
  610. dmv_y <<= 1 - s->quarter_sample;
  611. wrap = s->b8_stride;
  612. xy = s->block_index[n];
  613. if(s->mb_intra){
  614. s->mv[0][n][0] = s->current_picture.motion_val[0][xy][0] = 0;
  615. s->mv[0][n][1] = s->current_picture.motion_val[0][xy][1] = 0;
  616. s->current_picture.motion_val[1][xy][0] = 0;
  617. s->current_picture.motion_val[1][xy][1] = 0;
  618. if(mv1) { /* duplicate motion data for 1-MV block */
  619. s->current_picture.motion_val[0][xy + 1][0] = 0;
  620. s->current_picture.motion_val[0][xy + 1][1] = 0;
  621. s->current_picture.motion_val[0][xy + wrap][0] = 0;
  622. s->current_picture.motion_val[0][xy + wrap][1] = 0;
  623. s->current_picture.motion_val[0][xy + wrap + 1][0] = 0;
  624. s->current_picture.motion_val[0][xy + wrap + 1][1] = 0;
  625. v->luma_mv[s->mb_x][0] = v->luma_mv[s->mb_x][1] = 0;
  626. s->current_picture.motion_val[1][xy + 1][0] = 0;
  627. s->current_picture.motion_val[1][xy + 1][1] = 0;
  628. s->current_picture.motion_val[1][xy + wrap][0] = 0;
  629. s->current_picture.motion_val[1][xy + wrap][1] = 0;
  630. s->current_picture.motion_val[1][xy + wrap + 1][0] = 0;
  631. s->current_picture.motion_val[1][xy + wrap + 1][1] = 0;
  632. }
  633. return;
  634. }
  635. C = s->current_picture.motion_val[0][xy - 1];
  636. A = s->current_picture.motion_val[0][xy - wrap];
  637. if(mv1)
  638. off = (s->mb_x == (s->mb_width - 1)) ? -1 : 2;
  639. else {
  640. //in 4-MV mode different blocks have different B predictor position
  641. switch(n){
  642. case 0:
  643. off = (s->mb_x > 0) ? -1 : 1;
  644. break;
  645. case 1:
  646. off = (s->mb_x == (s->mb_width - 1)) ? -1 : 1;
  647. break;
  648. case 2:
  649. off = 1;
  650. break;
  651. case 3:
  652. off = -1;
  653. }
  654. }
  655. B = s->current_picture.motion_val[0][xy - wrap + off];
  656. if(!s->first_slice_line || (n==2 || n==3)) { // predictor A is not out of bounds
  657. if(s->mb_width == 1) {
  658. px = A[0];
  659. py = A[1];
  660. } else {
  661. px = mid_pred(A[0], B[0], C[0]);
  662. py = mid_pred(A[1], B[1], C[1]);
  663. }
  664. } else if(s->mb_x || (n==1 || n==3)) { // predictor C is not out of bounds
  665. px = C[0];
  666. py = C[1];
  667. } else {
  668. px = py = 0;
  669. }
  670. /* Pullback MV as specified in 8.3.5.3.4 */
  671. {
  672. int qx, qy, X, Y;
  673. qx = (s->mb_x << 6) + ((n==1 || n==3) ? 32 : 0);
  674. qy = (s->mb_y << 6) + ((n==2 || n==3) ? 32 : 0);
  675. X = (s->mb_width << 6) - 4;
  676. Y = (s->mb_height << 6) - 4;
  677. if(mv1) {
  678. if(qx + px < -60) px = -60 - qx;
  679. if(qy + py < -60) py = -60 - qy;
  680. } else {
  681. if(qx + px < -28) px = -28 - qx;
  682. if(qy + py < -28) py = -28 - qy;
  683. }
  684. if(qx + px > X) px = X - qx;
  685. if(qy + py > Y) py = Y - qy;
  686. }
  687. /* Calculate hybrid prediction as specified in 8.3.5.3.5 */
  688. if((!s->first_slice_line || (n==2 || n==3)) && (s->mb_x || (n==1 || n==3))) {
  689. if(is_intra[xy - wrap])
  690. sum = FFABS(px) + FFABS(py);
  691. else
  692. sum = FFABS(px - A[0]) + FFABS(py - A[1]);
  693. if(sum > 32) {
  694. if(get_bits1(&s->gb)) {
  695. px = A[0];
  696. py = A[1];
  697. } else {
  698. px = C[0];
  699. py = C[1];
  700. }
  701. } else {
  702. if(is_intra[xy - 1])
  703. sum = FFABS(px) + FFABS(py);
  704. else
  705. sum = FFABS(px - C[0]) + FFABS(py - C[1]);
  706. if(sum > 32) {
  707. if(get_bits1(&s->gb)) {
  708. px = A[0];
  709. py = A[1];
  710. } else {
  711. px = C[0];
  712. py = C[1];
  713. }
  714. }
  715. }
  716. }
  717. /* store MV using signed modulus of MV range defined in 4.11 */
  718. s->mv[0][n][0] = s->current_picture.motion_val[0][xy][0] = ((px + dmv_x + r_x) & ((r_x << 1) - 1)) - r_x;
  719. s->mv[0][n][1] = s->current_picture.motion_val[0][xy][1] = ((py + dmv_y + r_y) & ((r_y << 1) - 1)) - r_y;
  720. if(mv1) { /* duplicate motion data for 1-MV block */
  721. s->current_picture.motion_val[0][xy + 1][0] = s->current_picture.motion_val[0][xy][0];
  722. s->current_picture.motion_val[0][xy + 1][1] = s->current_picture.motion_val[0][xy][1];
  723. s->current_picture.motion_val[0][xy + wrap][0] = s->current_picture.motion_val[0][xy][0];
  724. s->current_picture.motion_val[0][xy + wrap][1] = s->current_picture.motion_val[0][xy][1];
  725. s->current_picture.motion_val[0][xy + wrap + 1][0] = s->current_picture.motion_val[0][xy][0];
  726. s->current_picture.motion_val[0][xy + wrap + 1][1] = s->current_picture.motion_val[0][xy][1];
  727. }
  728. }
  729. /** Motion compensation for direct or interpolated blocks in B-frames
  730. */
  731. static void vc1_interp_mc(VC1Context *v)
  732. {
  733. MpegEncContext *s = &v->s;
  734. DSPContext *dsp = &v->s.dsp;
  735. uint8_t *srcY, *srcU, *srcV;
  736. int dxy, mx, my, uvmx, uvmy, src_x, src_y, uvsrc_x, uvsrc_y;
  737. if(!v->s.next_picture.data[0])return;
  738. mx = s->mv[1][0][0];
  739. my = s->mv[1][0][1];
  740. uvmx = (mx + ((mx & 3) == 3)) >> 1;
  741. uvmy = (my + ((my & 3) == 3)) >> 1;
  742. if(v->fastuvmc) {
  743. uvmx = uvmx + ((uvmx<0)?-(uvmx&1):(uvmx&1));
  744. uvmy = uvmy + ((uvmy<0)?-(uvmy&1):(uvmy&1));
  745. }
  746. srcY = s->next_picture.data[0];
  747. srcU = s->next_picture.data[1];
  748. srcV = s->next_picture.data[2];
  749. src_x = s->mb_x * 16 + (mx >> 2);
  750. src_y = s->mb_y * 16 + (my >> 2);
  751. uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
  752. uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
  753. if(v->profile != PROFILE_ADVANCED){
  754. src_x = av_clip( src_x, -16, s->mb_width * 16);
  755. src_y = av_clip( src_y, -16, s->mb_height * 16);
  756. uvsrc_x = av_clip(uvsrc_x, -8, s->mb_width * 8);
  757. uvsrc_y = av_clip(uvsrc_y, -8, s->mb_height * 8);
  758. }else{
  759. src_x = av_clip( src_x, -17, s->avctx->coded_width);
  760. src_y = av_clip( src_y, -18, s->avctx->coded_height + 1);
  761. uvsrc_x = av_clip(uvsrc_x, -8, s->avctx->coded_width >> 1);
  762. uvsrc_y = av_clip(uvsrc_y, -8, s->avctx->coded_height >> 1);
  763. }
  764. srcY += src_y * s->linesize + src_x;
  765. srcU += uvsrc_y * s->uvlinesize + uvsrc_x;
  766. srcV += uvsrc_y * s->uvlinesize + uvsrc_x;
  767. /* for grayscale we should not try to read from unknown area */
  768. if(s->flags & CODEC_FLAG_GRAY) {
  769. srcU = s->edge_emu_buffer + 18 * s->linesize;
  770. srcV = s->edge_emu_buffer + 18 * s->linesize;
  771. }
  772. if(v->rangeredfrm
  773. || (unsigned)(src_x - s->mspel) > s->h_edge_pos - (mx&3) - 16 - s->mspel*3
  774. || (unsigned)(src_y - s->mspel) > s->v_edge_pos - (my&3) - 16 - s->mspel*3){
  775. uint8_t *uvbuf= s->edge_emu_buffer + 19 * s->linesize;
  776. srcY -= s->mspel * (1 + s->linesize);
  777. s->dsp.emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize, 17+s->mspel*2, 17+s->mspel*2,
  778. src_x - s->mspel, src_y - s->mspel, s->h_edge_pos, s->v_edge_pos);
  779. srcY = s->edge_emu_buffer;
  780. s->dsp.emulated_edge_mc(uvbuf , srcU, s->uvlinesize, 8+1, 8+1,
  781. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  782. s->dsp.emulated_edge_mc(uvbuf + 16, srcV, s->uvlinesize, 8+1, 8+1,
  783. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  784. srcU = uvbuf;
  785. srcV = uvbuf + 16;
  786. /* if we deal with range reduction we need to scale source blocks */
  787. if(v->rangeredfrm) {
  788. int i, j;
  789. uint8_t *src, *src2;
  790. src = srcY;
  791. for(j = 0; j < 17 + s->mspel*2; j++) {
  792. for(i = 0; i < 17 + s->mspel*2; i++) src[i] = ((src[i] - 128) >> 1) + 128;
  793. src += s->linesize;
  794. }
  795. src = srcU; src2 = srcV;
  796. for(j = 0; j < 9; j++) {
  797. for(i = 0; i < 9; i++) {
  798. src[i] = ((src[i] - 128) >> 1) + 128;
  799. src2[i] = ((src2[i] - 128) >> 1) + 128;
  800. }
  801. src += s->uvlinesize;
  802. src2 += s->uvlinesize;
  803. }
  804. }
  805. srcY += s->mspel * (1 + s->linesize);
  806. }
  807. if(s->mspel) {
  808. dxy = ((my & 3) << 2) | (mx & 3);
  809. v->vc1dsp.avg_vc1_mspel_pixels_tab[dxy](s->dest[0] , srcY , s->linesize, v->rnd);
  810. v->vc1dsp.avg_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8, srcY + 8, s->linesize, v->rnd);
  811. srcY += s->linesize * 8;
  812. v->vc1dsp.avg_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8 * s->linesize , srcY , s->linesize, v->rnd);
  813. v->vc1dsp.avg_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8 * s->linesize + 8, srcY + 8, s->linesize, v->rnd);
  814. } else { // hpel mc
  815. dxy = (my & 2) | ((mx & 2) >> 1);
  816. if(!v->rnd)
  817. dsp->avg_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
  818. else
  819. dsp->avg_no_rnd_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
  820. }
  821. if(s->flags & CODEC_FLAG_GRAY) return;
  822. /* Chroma MC always uses qpel blilinear */
  823. uvmx = (uvmx&3)<<1;
  824. uvmy = (uvmy&3)<<1;
  825. if(!v->rnd){
  826. dsp->avg_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  827. dsp->avg_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  828. }else{
  829. v->vc1dsp.avg_no_rnd_vc1_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  830. v->vc1dsp.avg_no_rnd_vc1_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  831. }
  832. }
  833. static av_always_inline int scale_mv(int value, int bfrac, int inv, int qs)
  834. {
  835. int n = bfrac;
  836. #if B_FRACTION_DEN==256
  837. if(inv)
  838. n -= 256;
  839. if(!qs)
  840. return 2 * ((value * n + 255) >> 9);
  841. return (value * n + 128) >> 8;
  842. #else
  843. if(inv)
  844. n -= B_FRACTION_DEN;
  845. if(!qs)
  846. return 2 * ((value * n + B_FRACTION_DEN - 1) / (2 * B_FRACTION_DEN));
  847. return (value * n + B_FRACTION_DEN/2) / B_FRACTION_DEN;
  848. #endif
  849. }
  850. /** Reconstruct motion vector for B-frame and do motion compensation
  851. */
  852. static inline void vc1_b_mc(VC1Context *v, int dmv_x[2], int dmv_y[2], int direct, int mode)
  853. {
  854. if(v->use_ic) {
  855. v->mv_mode2 = v->mv_mode;
  856. v->mv_mode = MV_PMODE_INTENSITY_COMP;
  857. }
  858. if(direct) {
  859. vc1_mc_1mv(v, 0);
  860. vc1_interp_mc(v);
  861. if(v->use_ic) v->mv_mode = v->mv_mode2;
  862. return;
  863. }
  864. if(mode == BMV_TYPE_INTERPOLATED) {
  865. vc1_mc_1mv(v, 0);
  866. vc1_interp_mc(v);
  867. if(v->use_ic) v->mv_mode = v->mv_mode2;
  868. return;
  869. }
  870. if(v->use_ic && (mode == BMV_TYPE_BACKWARD)) v->mv_mode = v->mv_mode2;
  871. vc1_mc_1mv(v, (mode == BMV_TYPE_BACKWARD));
  872. if(v->use_ic) v->mv_mode = v->mv_mode2;
  873. }
  874. static inline void vc1_pred_b_mv(VC1Context *v, int dmv_x[2], int dmv_y[2], int direct, int mvtype)
  875. {
  876. MpegEncContext *s = &v->s;
  877. int xy, wrap, off = 0;
  878. int16_t *A, *B, *C;
  879. int px, py;
  880. int sum;
  881. int r_x, r_y;
  882. const uint8_t *is_intra = v->mb_type[0];
  883. r_x = v->range_x;
  884. r_y = v->range_y;
  885. /* scale MV difference to be quad-pel */
  886. dmv_x[0] <<= 1 - s->quarter_sample;
  887. dmv_y[0] <<= 1 - s->quarter_sample;
  888. dmv_x[1] <<= 1 - s->quarter_sample;
  889. dmv_y[1] <<= 1 - s->quarter_sample;
  890. wrap = s->b8_stride;
  891. xy = s->block_index[0];
  892. if(s->mb_intra) {
  893. s->current_picture.motion_val[0][xy][0] =
  894. s->current_picture.motion_val[0][xy][1] =
  895. s->current_picture.motion_val[1][xy][0] =
  896. s->current_picture.motion_val[1][xy][1] = 0;
  897. return;
  898. }
  899. s->mv[0][0][0] = scale_mv(s->next_picture.motion_val[1][xy][0], v->bfraction, 0, s->quarter_sample);
  900. s->mv[0][0][1] = scale_mv(s->next_picture.motion_val[1][xy][1], v->bfraction, 0, s->quarter_sample);
  901. s->mv[1][0][0] = scale_mv(s->next_picture.motion_val[1][xy][0], v->bfraction, 1, s->quarter_sample);
  902. s->mv[1][0][1] = scale_mv(s->next_picture.motion_val[1][xy][1], v->bfraction, 1, s->quarter_sample);
  903. /* Pullback predicted motion vectors as specified in 8.4.5.4 */
  904. s->mv[0][0][0] = av_clip(s->mv[0][0][0], -60 - (s->mb_x << 6), (s->mb_width << 6) - 4 - (s->mb_x << 6));
  905. s->mv[0][0][1] = av_clip(s->mv[0][0][1], -60 - (s->mb_y << 6), (s->mb_height << 6) - 4 - (s->mb_y << 6));
  906. s->mv[1][0][0] = av_clip(s->mv[1][0][0], -60 - (s->mb_x << 6), (s->mb_width << 6) - 4 - (s->mb_x << 6));
  907. s->mv[1][0][1] = av_clip(s->mv[1][0][1], -60 - (s->mb_y << 6), (s->mb_height << 6) - 4 - (s->mb_y << 6));
  908. if(direct) {
  909. s->current_picture.motion_val[0][xy][0] = s->mv[0][0][0];
  910. s->current_picture.motion_val[0][xy][1] = s->mv[0][0][1];
  911. s->current_picture.motion_val[1][xy][0] = s->mv[1][0][0];
  912. s->current_picture.motion_val[1][xy][1] = s->mv[1][0][1];
  913. return;
  914. }
  915. if((mvtype == BMV_TYPE_FORWARD) || (mvtype == BMV_TYPE_INTERPOLATED)) {
  916. C = s->current_picture.motion_val[0][xy - 2];
  917. A = s->current_picture.motion_val[0][xy - wrap*2];
  918. off = (s->mb_x == (s->mb_width - 1)) ? -2 : 2;
  919. B = s->current_picture.motion_val[0][xy - wrap*2 + off];
  920. if(!s->mb_x) C[0] = C[1] = 0;
  921. if(!s->first_slice_line) { // predictor A is not out of bounds
  922. if(s->mb_width == 1) {
  923. px = A[0];
  924. py = A[1];
  925. } else {
  926. px = mid_pred(A[0], B[0], C[0]);
  927. py = mid_pred(A[1], B[1], C[1]);
  928. }
  929. } else if(s->mb_x) { // predictor C is not out of bounds
  930. px = C[0];
  931. py = C[1];
  932. } else {
  933. px = py = 0;
  934. }
  935. /* Pullback MV as specified in 8.3.5.3.4 */
  936. {
  937. int qx, qy, X, Y;
  938. if(v->profile < PROFILE_ADVANCED) {
  939. qx = (s->mb_x << 5);
  940. qy = (s->mb_y << 5);
  941. X = (s->mb_width << 5) - 4;
  942. Y = (s->mb_height << 5) - 4;
  943. if(qx + px < -28) px = -28 - qx;
  944. if(qy + py < -28) py = -28 - qy;
  945. if(qx + px > X) px = X - qx;
  946. if(qy + py > Y) py = Y - qy;
  947. } else {
  948. qx = (s->mb_x << 6);
  949. qy = (s->mb_y << 6);
  950. X = (s->mb_width << 6) - 4;
  951. Y = (s->mb_height << 6) - 4;
  952. if(qx + px < -60) px = -60 - qx;
  953. if(qy + py < -60) py = -60 - qy;
  954. if(qx + px > X) px = X - qx;
  955. if(qy + py > Y) py = Y - qy;
  956. }
  957. }
  958. /* Calculate hybrid prediction as specified in 8.3.5.3.5 */
  959. if(0 && !s->first_slice_line && s->mb_x) {
  960. if(is_intra[xy - wrap])
  961. sum = FFABS(px) + FFABS(py);
  962. else
  963. sum = FFABS(px - A[0]) + FFABS(py - A[1]);
  964. if(sum > 32) {
  965. if(get_bits1(&s->gb)) {
  966. px = A[0];
  967. py = A[1];
  968. } else {
  969. px = C[0];
  970. py = C[1];
  971. }
  972. } else {
  973. if(is_intra[xy - 2])
  974. sum = FFABS(px) + FFABS(py);
  975. else
  976. sum = FFABS(px - C[0]) + FFABS(py - C[1]);
  977. if(sum > 32) {
  978. if(get_bits1(&s->gb)) {
  979. px = A[0];
  980. py = A[1];
  981. } else {
  982. px = C[0];
  983. py = C[1];
  984. }
  985. }
  986. }
  987. }
  988. /* store MV using signed modulus of MV range defined in 4.11 */
  989. s->mv[0][0][0] = ((px + dmv_x[0] + r_x) & ((r_x << 1) - 1)) - r_x;
  990. s->mv[0][0][1] = ((py + dmv_y[0] + r_y) & ((r_y << 1) - 1)) - r_y;
  991. }
  992. if((mvtype == BMV_TYPE_BACKWARD) || (mvtype == BMV_TYPE_INTERPOLATED)) {
  993. C = s->current_picture.motion_val[1][xy - 2];
  994. A = s->current_picture.motion_val[1][xy - wrap*2];
  995. off = (s->mb_x == (s->mb_width - 1)) ? -2 : 2;
  996. B = s->current_picture.motion_val[1][xy - wrap*2 + off];
  997. if(!s->mb_x) C[0] = C[1] = 0;
  998. if(!s->first_slice_line) { // predictor A is not out of bounds
  999. if(s->mb_width == 1) {
  1000. px = A[0];
  1001. py = A[1];
  1002. } else {
  1003. px = mid_pred(A[0], B[0], C[0]);
  1004. py = mid_pred(A[1], B[1], C[1]);
  1005. }
  1006. } else if(s->mb_x) { // predictor C is not out of bounds
  1007. px = C[0];
  1008. py = C[1];
  1009. } else {
  1010. px = py = 0;
  1011. }
  1012. /* Pullback MV as specified in 8.3.5.3.4 */
  1013. {
  1014. int qx, qy, X, Y;
  1015. if(v->profile < PROFILE_ADVANCED) {
  1016. qx = (s->mb_x << 5);
  1017. qy = (s->mb_y << 5);
  1018. X = (s->mb_width << 5) - 4;
  1019. Y = (s->mb_height << 5) - 4;
  1020. if(qx + px < -28) px = -28 - qx;
  1021. if(qy + py < -28) py = -28 - qy;
  1022. if(qx + px > X) px = X - qx;
  1023. if(qy + py > Y) py = Y - qy;
  1024. } else {
  1025. qx = (s->mb_x << 6);
  1026. qy = (s->mb_y << 6);
  1027. X = (s->mb_width << 6) - 4;
  1028. Y = (s->mb_height << 6) - 4;
  1029. if(qx + px < -60) px = -60 - qx;
  1030. if(qy + py < -60) py = -60 - qy;
  1031. if(qx + px > X) px = X - qx;
  1032. if(qy + py > Y) py = Y - qy;
  1033. }
  1034. }
  1035. /* Calculate hybrid prediction as specified in 8.3.5.3.5 */
  1036. if(0 && !s->first_slice_line && s->mb_x) {
  1037. if(is_intra[xy - wrap])
  1038. sum = FFABS(px) + FFABS(py);
  1039. else
  1040. sum = FFABS(px - A[0]) + FFABS(py - A[1]);
  1041. if(sum > 32) {
  1042. if(get_bits1(&s->gb)) {
  1043. px = A[0];
  1044. py = A[1];
  1045. } else {
  1046. px = C[0];
  1047. py = C[1];
  1048. }
  1049. } else {
  1050. if(is_intra[xy - 2])
  1051. sum = FFABS(px) + FFABS(py);
  1052. else
  1053. sum = FFABS(px - C[0]) + FFABS(py - C[1]);
  1054. if(sum > 32) {
  1055. if(get_bits1(&s->gb)) {
  1056. px = A[0];
  1057. py = A[1];
  1058. } else {
  1059. px = C[0];
  1060. py = C[1];
  1061. }
  1062. }
  1063. }
  1064. }
  1065. /* store MV using signed modulus of MV range defined in 4.11 */
  1066. s->mv[1][0][0] = ((px + dmv_x[1] + r_x) & ((r_x << 1) - 1)) - r_x;
  1067. s->mv[1][0][1] = ((py + dmv_y[1] + r_y) & ((r_y << 1) - 1)) - r_y;
  1068. }
  1069. s->current_picture.motion_val[0][xy][0] = s->mv[0][0][0];
  1070. s->current_picture.motion_val[0][xy][1] = s->mv[0][0][1];
  1071. s->current_picture.motion_val[1][xy][0] = s->mv[1][0][0];
  1072. s->current_picture.motion_val[1][xy][1] = s->mv[1][0][1];
  1073. }
  1074. /** Get predicted DC value for I-frames only
  1075. * prediction dir: left=0, top=1
  1076. * @param s MpegEncContext
  1077. * @param overlap flag indicating that overlap filtering is used
  1078. * @param pq integer part of picture quantizer
  1079. * @param[in] n block index in the current MB
  1080. * @param dc_val_ptr Pointer to DC predictor
  1081. * @param dir_ptr Prediction direction for use in AC prediction
  1082. */
  1083. static inline int vc1_i_pred_dc(MpegEncContext *s, int overlap, int pq, int n,
  1084. int16_t **dc_val_ptr, int *dir_ptr)
  1085. {
  1086. int a, b, c, wrap, pred, scale;
  1087. int16_t *dc_val;
  1088. static const uint16_t dcpred[32] = {
  1089. -1, 1024, 512, 341, 256, 205, 171, 146, 128,
  1090. 114, 102, 93, 85, 79, 73, 68, 64,
  1091. 60, 57, 54, 51, 49, 47, 45, 43,
  1092. 41, 39, 38, 37, 35, 34, 33
  1093. };
  1094. /* find prediction - wmv3_dc_scale always used here in fact */
  1095. if (n < 4) scale = s->y_dc_scale;
  1096. else scale = s->c_dc_scale;
  1097. wrap = s->block_wrap[n];
  1098. dc_val= s->dc_val[0] + s->block_index[n];
  1099. /* B A
  1100. * C X
  1101. */
  1102. c = dc_val[ - 1];
  1103. b = dc_val[ - 1 - wrap];
  1104. a = dc_val[ - wrap];
  1105. if (pq < 9 || !overlap)
  1106. {
  1107. /* Set outer values */
  1108. if (s->first_slice_line && (n!=2 && n!=3)) b=a=dcpred[scale];
  1109. if (s->mb_x == 0 && (n!=1 && n!=3)) b=c=dcpred[scale];
  1110. }
  1111. else
  1112. {
  1113. /* Set outer values */
  1114. if (s->first_slice_line && (n!=2 && n!=3)) b=a=0;
  1115. if (s->mb_x == 0 && (n!=1 && n!=3)) b=c=0;
  1116. }
  1117. if (abs(a - b) <= abs(b - c)) {
  1118. pred = c;
  1119. *dir_ptr = 1;//left
  1120. } else {
  1121. pred = a;
  1122. *dir_ptr = 0;//top
  1123. }
  1124. /* update predictor */
  1125. *dc_val_ptr = &dc_val[0];
  1126. return pred;
  1127. }
  1128. /** Get predicted DC value
  1129. * prediction dir: left=0, top=1
  1130. * @param s MpegEncContext
  1131. * @param overlap flag indicating that overlap filtering is used
  1132. * @param pq integer part of picture quantizer
  1133. * @param[in] n block index in the current MB
  1134. * @param a_avail flag indicating top block availability
  1135. * @param c_avail flag indicating left block availability
  1136. * @param dc_val_ptr Pointer to DC predictor
  1137. * @param dir_ptr Prediction direction for use in AC prediction
  1138. */
  1139. static inline int vc1_pred_dc(MpegEncContext *s, int overlap, int pq, int n,
  1140. int a_avail, int c_avail,
  1141. int16_t **dc_val_ptr, int *dir_ptr)
  1142. {
  1143. int a, b, c, wrap, pred;
  1144. int16_t *dc_val;
  1145. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  1146. int q1, q2 = 0;
  1147. wrap = s->block_wrap[n];
  1148. dc_val= s->dc_val[0] + s->block_index[n];
  1149. /* B A
  1150. * C X
  1151. */
  1152. c = dc_val[ - 1];
  1153. b = dc_val[ - 1 - wrap];
  1154. a = dc_val[ - wrap];
  1155. /* scale predictors if needed */
  1156. q1 = s->current_picture.qscale_table[mb_pos];
  1157. if(c_avail && (n!= 1 && n!=3)) {
  1158. q2 = s->current_picture.qscale_table[mb_pos - 1];
  1159. if(q2 && q2 != q1)
  1160. c = (c * s->y_dc_scale_table[q2] * ff_vc1_dqscale[s->y_dc_scale_table[q1] - 1] + 0x20000) >> 18;
  1161. }
  1162. if(a_avail && (n!= 2 && n!=3)) {
  1163. q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
  1164. if(q2 && q2 != q1)
  1165. a = (a * s->y_dc_scale_table[q2] * ff_vc1_dqscale[s->y_dc_scale_table[q1] - 1] + 0x20000) >> 18;
  1166. }
  1167. if(a_avail && c_avail && (n!=3)) {
  1168. int off = mb_pos;
  1169. if(n != 1) off--;
  1170. if(n != 2) off -= s->mb_stride;
  1171. q2 = s->current_picture.qscale_table[off];
  1172. if(q2 && q2 != q1)
  1173. b = (b * s->y_dc_scale_table[q2] * ff_vc1_dqscale[s->y_dc_scale_table[q1] - 1] + 0x20000) >> 18;
  1174. }
  1175. if(a_avail && c_avail) {
  1176. if(abs(a - b) <= abs(b - c)) {
  1177. pred = c;
  1178. *dir_ptr = 1;//left
  1179. } else {
  1180. pred = a;
  1181. *dir_ptr = 0;//top
  1182. }
  1183. } else if(a_avail) {
  1184. pred = a;
  1185. *dir_ptr = 0;//top
  1186. } else if(c_avail) {
  1187. pred = c;
  1188. *dir_ptr = 1;//left
  1189. } else {
  1190. pred = 0;
  1191. *dir_ptr = 1;//left
  1192. }
  1193. /* update predictor */
  1194. *dc_val_ptr = &dc_val[0];
  1195. return pred;
  1196. }
  1197. /** @} */ // Block group
  1198. /**
  1199. * @defgroup vc1_std_mb VC1 Macroblock-level functions in Simple/Main Profiles
  1200. * @see 7.1.4, p91 and 8.1.1.7, p(1)04
  1201. * @{
  1202. */
  1203. static inline int vc1_coded_block_pred(MpegEncContext * s, int n, uint8_t **coded_block_ptr)
  1204. {
  1205. int xy, wrap, pred, a, b, c;
  1206. xy = s->block_index[n];
  1207. wrap = s->b8_stride;
  1208. /* B C
  1209. * A X
  1210. */
  1211. a = s->coded_block[xy - 1 ];
  1212. b = s->coded_block[xy - 1 - wrap];
  1213. c = s->coded_block[xy - wrap];
  1214. if (b == c) {
  1215. pred = a;
  1216. } else {
  1217. pred = c;
  1218. }
  1219. /* store value */
  1220. *coded_block_ptr = &s->coded_block[xy];
  1221. return pred;
  1222. }
  1223. /**
  1224. * Decode one AC coefficient
  1225. * @param v The VC1 context
  1226. * @param last Last coefficient
  1227. * @param skip How much zero coefficients to skip
  1228. * @param value Decoded AC coefficient value
  1229. * @param codingset set of VLC to decode data
  1230. * @see 8.1.3.4
  1231. */
  1232. static void vc1_decode_ac_coeff(VC1Context *v, int *last, int *skip, int *value, int codingset)
  1233. {
  1234. GetBitContext *gb = &v->s.gb;
  1235. int index, escape, run = 0, level = 0, lst = 0;
  1236. index = get_vlc2(gb, ff_vc1_ac_coeff_table[codingset].table, AC_VLC_BITS, 3);
  1237. if (index != vc1_ac_sizes[codingset] - 1) {
  1238. run = vc1_index_decode_table[codingset][index][0];
  1239. level = vc1_index_decode_table[codingset][index][1];
  1240. lst = index >= vc1_last_decode_table[codingset] || get_bits_left(gb) < 0;
  1241. if(get_bits1(gb))
  1242. level = -level;
  1243. } else {
  1244. escape = decode210(gb);
  1245. if (escape != 2) {
  1246. index = get_vlc2(gb, ff_vc1_ac_coeff_table[codingset].table, AC_VLC_BITS, 3);
  1247. run = vc1_index_decode_table[codingset][index][0];
  1248. level = vc1_index_decode_table[codingset][index][1];
  1249. lst = index >= vc1_last_decode_table[codingset];
  1250. if(escape == 0) {
  1251. if(lst)
  1252. level += vc1_last_delta_level_table[codingset][run];
  1253. else
  1254. level += vc1_delta_level_table[codingset][run];
  1255. } else {
  1256. if(lst)
  1257. run += vc1_last_delta_run_table[codingset][level] + 1;
  1258. else
  1259. run += vc1_delta_run_table[codingset][level] + 1;
  1260. }
  1261. if(get_bits1(gb))
  1262. level = -level;
  1263. } else {
  1264. int sign;
  1265. lst = get_bits1(gb);
  1266. if(v->s.esc3_level_length == 0) {
  1267. if(v->pq < 8 || v->dquantfrm) { // table 59
  1268. v->s.esc3_level_length = get_bits(gb, 3);
  1269. if(!v->s.esc3_level_length)
  1270. v->s.esc3_level_length = get_bits(gb, 2) + 8;
  1271. } else { //table 60
  1272. v->s.esc3_level_length = get_unary(gb, 1, 6) + 2;
  1273. }
  1274. v->s.esc3_run_length = 3 + get_bits(gb, 2);
  1275. }
  1276. run = get_bits(gb, v->s.esc3_run_length);
  1277. sign = get_bits1(gb);
  1278. level = get_bits(gb, v->s.esc3_level_length);
  1279. if(sign)
  1280. level = -level;
  1281. }
  1282. }
  1283. *last = lst;
  1284. *skip = run;
  1285. *value = level;
  1286. }
  1287. /** Decode intra block in intra frames - should be faster than decode_intra_block
  1288. * @param v VC1Context
  1289. * @param block block to decode
  1290. * @param[in] n subblock index
  1291. * @param coded are AC coeffs present or not
  1292. * @param codingset set of VLC to decode data
  1293. */
  1294. static int vc1_decode_i_block(VC1Context *v, DCTELEM block[64], int n, int coded, int codingset)
  1295. {
  1296. GetBitContext *gb = &v->s.gb;
  1297. MpegEncContext *s = &v->s;
  1298. int dc_pred_dir = 0; /* Direction of the DC prediction used */
  1299. int i;
  1300. int16_t *dc_val;
  1301. int16_t *ac_val, *ac_val2;
  1302. int dcdiff;
  1303. /* Get DC differential */
  1304. if (n < 4) {
  1305. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  1306. } else {
  1307. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  1308. }
  1309. if (dcdiff < 0){
  1310. av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
  1311. return -1;
  1312. }
  1313. if (dcdiff)
  1314. {
  1315. if (dcdiff == 119 /* ESC index value */)
  1316. {
  1317. /* TODO: Optimize */
  1318. if (v->pq == 1) dcdiff = get_bits(gb, 10);
  1319. else if (v->pq == 2) dcdiff = get_bits(gb, 9);
  1320. else dcdiff = get_bits(gb, 8);
  1321. }
  1322. else
  1323. {
  1324. if (v->pq == 1)
  1325. dcdiff = (dcdiff<<2) + get_bits(gb, 2) - 3;
  1326. else if (v->pq == 2)
  1327. dcdiff = (dcdiff<<1) + get_bits1(gb) - 1;
  1328. }
  1329. if (get_bits1(gb))
  1330. dcdiff = -dcdiff;
  1331. }
  1332. /* Prediction */
  1333. dcdiff += vc1_i_pred_dc(&v->s, v->overlap, v->pq, n, &dc_val, &dc_pred_dir);
  1334. *dc_val = dcdiff;
  1335. /* Store the quantized DC coeff, used for prediction */
  1336. if (n < 4) {
  1337. block[0] = dcdiff * s->y_dc_scale;
  1338. } else {
  1339. block[0] = dcdiff * s->c_dc_scale;
  1340. }
  1341. /* Skip ? */
  1342. if (!coded) {
  1343. goto not_coded;
  1344. }
  1345. //AC Decoding
  1346. i = 1;
  1347. {
  1348. int last = 0, skip, value;
  1349. const uint8_t *zz_table;
  1350. int scale;
  1351. int k;
  1352. scale = v->pq * 2 + v->halfpq;
  1353. if(v->s.ac_pred) {
  1354. if(!dc_pred_dir)
  1355. zz_table = v->zz_8x8[2];
  1356. else
  1357. zz_table = v->zz_8x8[3];
  1358. } else
  1359. zz_table = v->zz_8x8[1];
  1360. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  1361. ac_val2 = ac_val;
  1362. if(dc_pred_dir) //left
  1363. ac_val -= 16;
  1364. else //top
  1365. ac_val -= 16 * s->block_wrap[n];
  1366. while (!last) {
  1367. vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
  1368. i += skip;
  1369. if(i > 63)
  1370. break;
  1371. block[zz_table[i++]] = value;
  1372. }
  1373. /* apply AC prediction if needed */
  1374. if(s->ac_pred) {
  1375. if(dc_pred_dir) { //left
  1376. for(k = 1; k < 8; k++)
  1377. block[k] += ac_val[k];
  1378. } else { //top
  1379. for(k = 1; k < 8; k++)
  1380. block[k << 3] += ac_val[k + 8];
  1381. }
  1382. }
  1383. /* save AC coeffs for further prediction */
  1384. for(k = 1; k < 8; k++) {
  1385. ac_val2[k] = block[k];
  1386. ac_val2[k + 8] = block[k << 3];
  1387. }
  1388. /* scale AC coeffs */
  1389. for(k = 1; k < 64; k++)
  1390. if(block[k]) {
  1391. block[k] *= scale;
  1392. if(!v->pquantizer)
  1393. block[k] += (block[k] < 0) ? -v->pq : v->pq;
  1394. }
  1395. if(s->ac_pred) i = 63;
  1396. }
  1397. not_coded:
  1398. if(!coded) {
  1399. int k, scale;
  1400. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  1401. ac_val2 = ac_val;
  1402. i = 0;
  1403. scale = v->pq * 2 + v->halfpq;
  1404. memset(ac_val2, 0, 16 * 2);
  1405. if(dc_pred_dir) {//left
  1406. ac_val -= 16;
  1407. if(s->ac_pred)
  1408. memcpy(ac_val2, ac_val, 8 * 2);
  1409. } else {//top
  1410. ac_val -= 16 * s->block_wrap[n];
  1411. if(s->ac_pred)
  1412. memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
  1413. }
  1414. /* apply AC prediction if needed */
  1415. if(s->ac_pred) {
  1416. if(dc_pred_dir) { //left
  1417. for(k = 1; k < 8; k++) {
  1418. block[k] = ac_val[k] * scale;
  1419. if(!v->pquantizer && block[k])
  1420. block[k] += (block[k] < 0) ? -v->pq : v->pq;
  1421. }
  1422. } else { //top
  1423. for(k = 1; k < 8; k++) {
  1424. block[k << 3] = ac_val[k + 8] * scale;
  1425. if(!v->pquantizer && block[k << 3])
  1426. block[k << 3] += (block[k << 3] < 0) ? -v->pq : v->pq;
  1427. }
  1428. }
  1429. i = 63;
  1430. }
  1431. }
  1432. s->block_last_index[n] = i;
  1433. return 0;
  1434. }
  1435. /** Decode intra block in intra frames - should be faster than decode_intra_block
  1436. * @param v VC1Context
  1437. * @param block block to decode
  1438. * @param[in] n subblock number
  1439. * @param coded are AC coeffs present or not
  1440. * @param codingset set of VLC to decode data
  1441. * @param mquant quantizer value for this macroblock
  1442. */
  1443. static int vc1_decode_i_block_adv(VC1Context *v, DCTELEM block[64], int n, int coded, int codingset, int mquant)
  1444. {
  1445. GetBitContext *gb = &v->s.gb;
  1446. MpegEncContext *s = &v->s;
  1447. int dc_pred_dir = 0; /* Direction of the DC prediction used */
  1448. int i;
  1449. int16_t *dc_val;
  1450. int16_t *ac_val, *ac_val2;
  1451. int dcdiff;
  1452. int a_avail = v->a_avail, c_avail = v->c_avail;
  1453. int use_pred = s->ac_pred;
  1454. int scale;
  1455. int q1, q2 = 0;
  1456. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  1457. /* Get DC differential */
  1458. if (n < 4) {
  1459. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  1460. } else {
  1461. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  1462. }
  1463. if (dcdiff < 0){
  1464. av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
  1465. return -1;
  1466. }
  1467. if (dcdiff)
  1468. {
  1469. if (dcdiff == 119 /* ESC index value */)
  1470. {
  1471. /* TODO: Optimize */
  1472. if (mquant == 1) dcdiff = get_bits(gb, 10);
  1473. else if (mquant == 2) dcdiff = get_bits(gb, 9);
  1474. else dcdiff = get_bits(gb, 8);
  1475. }
  1476. else
  1477. {
  1478. if (mquant == 1)
  1479. dcdiff = (dcdiff<<2) + get_bits(gb, 2) - 3;
  1480. else if (mquant == 2)
  1481. dcdiff = (dcdiff<<1) + get_bits1(gb) - 1;
  1482. }
  1483. if (get_bits1(gb))
  1484. dcdiff = -dcdiff;
  1485. }
  1486. /* Prediction */
  1487. dcdiff += vc1_pred_dc(&v->s, v->overlap, mquant, n, v->a_avail, v->c_avail, &dc_val, &dc_pred_dir);
  1488. *dc_val = dcdiff;
  1489. /* Store the quantized DC coeff, used for prediction */
  1490. if (n < 4) {
  1491. block[0] = dcdiff * s->y_dc_scale;
  1492. } else {
  1493. block[0] = dcdiff * s->c_dc_scale;
  1494. }
  1495. //AC Decoding
  1496. i = 1;
  1497. /* check if AC is needed at all */
  1498. if(!a_avail && !c_avail) use_pred = 0;
  1499. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  1500. ac_val2 = ac_val;
  1501. scale = mquant * 2 + ((mquant == v->pq) ? v->halfpq : 0);
  1502. if(dc_pred_dir) //left
  1503. ac_val -= 16;
  1504. else //top
  1505. ac_val -= 16 * s->block_wrap[n];
  1506. q1 = s->current_picture.qscale_table[mb_pos];
  1507. if(dc_pred_dir && c_avail && mb_pos) q2 = s->current_picture.qscale_table[mb_pos - 1];
  1508. if(!dc_pred_dir && a_avail && mb_pos >= s->mb_stride) q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
  1509. if(dc_pred_dir && n==1) q2 = q1;
  1510. if(!dc_pred_dir && n==2) q2 = q1;
  1511. if(n==3) q2 = q1;
  1512. if(coded) {
  1513. int last = 0, skip, value;
  1514. const uint8_t *zz_table;
  1515. int k;
  1516. if(v->s.ac_pred) {
  1517. if(!dc_pred_dir)
  1518. zz_table = v->zz_8x8[2];
  1519. else
  1520. zz_table = v->zz_8x8[3];
  1521. } else
  1522. zz_table = v->zz_8x8[1];
  1523. while (!last) {
  1524. vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
  1525. i += skip;
  1526. if(i > 63)
  1527. break;
  1528. block[zz_table[i++]] = value;
  1529. }
  1530. /* apply AC prediction if needed */
  1531. if(use_pred) {
  1532. /* scale predictors if needed*/
  1533. if(q2 && q1!=q2) {
  1534. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  1535. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  1536. if(dc_pred_dir) { //left
  1537. for(k = 1; k < 8; k++)
  1538. block[k] += (ac_val[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  1539. } else { //top
  1540. for(k = 1; k < 8; k++)
  1541. block[k << 3] += (ac_val[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  1542. }
  1543. } else {
  1544. if(dc_pred_dir) { //left
  1545. for(k = 1; k < 8; k++)
  1546. block[k] += ac_val[k];
  1547. } else { //top
  1548. for(k = 1; k < 8; k++)
  1549. block[k << 3] += ac_val[k + 8];
  1550. }
  1551. }
  1552. }
  1553. /* save AC coeffs for further prediction */
  1554. for(k = 1; k < 8; k++) {
  1555. ac_val2[k] = block[k];
  1556. ac_val2[k + 8] = block[k << 3];
  1557. }
  1558. /* scale AC coeffs */
  1559. for(k = 1; k < 64; k++)
  1560. if(block[k]) {
  1561. block[k] *= scale;
  1562. if(!v->pquantizer)
  1563. block[k] += (block[k] < 0) ? -mquant : mquant;
  1564. }
  1565. if(use_pred) i = 63;
  1566. } else { // no AC coeffs
  1567. int k;
  1568. memset(ac_val2, 0, 16 * 2);
  1569. if(dc_pred_dir) {//left
  1570. if(use_pred) {
  1571. memcpy(ac_val2, ac_val, 8 * 2);
  1572. if(q2 && q1!=q2) {
  1573. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  1574. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  1575. for(k = 1; k < 8; k++)
  1576. ac_val2[k] = (ac_val2[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  1577. }
  1578. }
  1579. } else {//top
  1580. if(use_pred) {
  1581. memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
  1582. if(q2 && q1!=q2) {
  1583. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  1584. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  1585. for(k = 1; k < 8; k++)
  1586. ac_val2[k + 8] = (ac_val2[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  1587. }
  1588. }
  1589. }
  1590. /* apply AC prediction if needed */
  1591. if(use_pred) {
  1592. if(dc_pred_dir) { //left
  1593. for(k = 1; k < 8; k++) {
  1594. block[k] = ac_val2[k] * scale;
  1595. if(!v->pquantizer && block[k])
  1596. block[k] += (block[k] < 0) ? -mquant : mquant;
  1597. }
  1598. } else { //top
  1599. for(k = 1; k < 8; k++) {
  1600. block[k << 3] = ac_val2[k + 8] * scale;
  1601. if(!v->pquantizer && block[k << 3])
  1602. block[k << 3] += (block[k << 3] < 0) ? -mquant : mquant;
  1603. }
  1604. }
  1605. i = 63;
  1606. }
  1607. }
  1608. s->block_last_index[n] = i;
  1609. return 0;
  1610. }
  1611. /** Decode intra block in inter frames - more generic version than vc1_decode_i_block
  1612. * @param v VC1Context
  1613. * @param block block to decode
  1614. * @param[in] n subblock index
  1615. * @param coded are AC coeffs present or not
  1616. * @param mquant block quantizer
  1617. * @param codingset set of VLC to decode data
  1618. */
  1619. static int vc1_decode_intra_block(VC1Context *v, DCTELEM block[64], int n, int coded, int mquant, int codingset)
  1620. {
  1621. GetBitContext *gb = &v->s.gb;
  1622. MpegEncContext *s = &v->s;
  1623. int dc_pred_dir = 0; /* Direction of the DC prediction used */
  1624. int i;
  1625. int16_t *dc_val;
  1626. int16_t *ac_val, *ac_val2;
  1627. int dcdiff;
  1628. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  1629. int a_avail = v->a_avail, c_avail = v->c_avail;
  1630. int use_pred = s->ac_pred;
  1631. int scale;
  1632. int q1, q2 = 0;
  1633. s->dsp.clear_block(block);
  1634. /* XXX: Guard against dumb values of mquant */
  1635. mquant = (mquant < 1) ? 0 : ( (mquant>31) ? 31 : mquant );
  1636. /* Set DC scale - y and c use the same */
  1637. s->y_dc_scale = s->y_dc_scale_table[mquant];
  1638. s->c_dc_scale = s->c_dc_scale_table[mquant];
  1639. /* Get DC differential */
  1640. if (n < 4) {
  1641. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  1642. } else {
  1643. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  1644. }
  1645. if (dcdiff < 0){
  1646. av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
  1647. return -1;
  1648. }
  1649. if (dcdiff)
  1650. {
  1651. if (dcdiff == 119 /* ESC index value */)
  1652. {
  1653. /* TODO: Optimize */
  1654. if (mquant == 1) dcdiff = get_bits(gb, 10);
  1655. else if (mquant == 2) dcdiff = get_bits(gb, 9);
  1656. else dcdiff = get_bits(gb, 8);
  1657. }
  1658. else
  1659. {
  1660. if (mquant == 1)
  1661. dcdiff = (dcdiff<<2) + get_bits(gb, 2) - 3;
  1662. else if (mquant == 2)
  1663. dcdiff = (dcdiff<<1) + get_bits1(gb) - 1;
  1664. }
  1665. if (get_bits1(gb))
  1666. dcdiff = -dcdiff;
  1667. }
  1668. /* Prediction */
  1669. dcdiff += vc1_pred_dc(&v->s, v->overlap, mquant, n, a_avail, c_avail, &dc_val, &dc_pred_dir);
  1670. *dc_val = dcdiff;
  1671. /* Store the quantized DC coeff, used for prediction */
  1672. if (n < 4) {
  1673. block[0] = dcdiff * s->y_dc_scale;
  1674. } else {
  1675. block[0] = dcdiff * s->c_dc_scale;
  1676. }
  1677. //AC Decoding
  1678. i = 1;
  1679. /* check if AC is needed at all and adjust direction if needed */
  1680. if(!a_avail) dc_pred_dir = 1;
  1681. if(!c_avail) dc_pred_dir = 0;
  1682. if(!a_avail && !c_avail) use_pred = 0;
  1683. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  1684. ac_val2 = ac_val;
  1685. scale = mquant * 2 + v->halfpq;
  1686. if(dc_pred_dir) //left
  1687. ac_val -= 16;
  1688. else //top
  1689. ac_val -= 16 * s->block_wrap[n];
  1690. q1 = s->current_picture.qscale_table[mb_pos];
  1691. if(dc_pred_dir && c_avail && mb_pos) q2 = s->current_picture.qscale_table[mb_pos - 1];
  1692. if(!dc_pred_dir && a_avail && mb_pos >= s->mb_stride) q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
  1693. if(dc_pred_dir && n==1) q2 = q1;
  1694. if(!dc_pred_dir && n==2) q2 = q1;
  1695. if(n==3) q2 = q1;
  1696. if(coded) {
  1697. int last = 0, skip, value;
  1698. int k;
  1699. while (!last) {
  1700. vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
  1701. i += skip;
  1702. if(i > 63)
  1703. break;
  1704. block[v->zz_8x8[0][i++]] = value;
  1705. }
  1706. /* apply AC prediction if needed */
  1707. if(use_pred) {
  1708. /* scale predictors if needed*/
  1709. if(q2 && q1!=q2) {
  1710. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  1711. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  1712. if(dc_pred_dir) { //left
  1713. for(k = 1; k < 8; k++)
  1714. block[k] += (ac_val[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  1715. } else { //top
  1716. for(k = 1; k < 8; k++)
  1717. block[k << 3] += (ac_val[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  1718. }
  1719. } else {
  1720. if(dc_pred_dir) { //left
  1721. for(k = 1; k < 8; k++)
  1722. block[k] += ac_val[k];
  1723. } else { //top
  1724. for(k = 1; k < 8; k++)
  1725. block[k << 3] += ac_val[k + 8];
  1726. }
  1727. }
  1728. }
  1729. /* save AC coeffs for further prediction */
  1730. for(k = 1; k < 8; k++) {
  1731. ac_val2[k] = block[k];
  1732. ac_val2[k + 8] = block[k << 3];
  1733. }
  1734. /* scale AC coeffs */
  1735. for(k = 1; k < 64; k++)
  1736. if(block[k]) {
  1737. block[k] *= scale;
  1738. if(!v->pquantizer)
  1739. block[k] += (block[k] < 0) ? -mquant : mquant;
  1740. }
  1741. if(use_pred) i = 63;
  1742. } else { // no AC coeffs
  1743. int k;
  1744. memset(ac_val2, 0, 16 * 2);
  1745. if(dc_pred_dir) {//left
  1746. if(use_pred) {
  1747. memcpy(ac_val2, ac_val, 8 * 2);
  1748. if(q2 && q1!=q2) {
  1749. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  1750. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  1751. for(k = 1; k < 8; k++)
  1752. ac_val2[k] = (ac_val2[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  1753. }
  1754. }
  1755. } else {//top
  1756. if(use_pred) {
  1757. memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
  1758. if(q2 && q1!=q2) {
  1759. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  1760. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  1761. for(k = 1; k < 8; k++)
  1762. ac_val2[k + 8] = (ac_val2[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  1763. }
  1764. }
  1765. }
  1766. /* apply AC prediction if needed */
  1767. if(use_pred) {
  1768. if(dc_pred_dir) { //left
  1769. for(k = 1; k < 8; k++) {
  1770. block[k] = ac_val2[k] * scale;
  1771. if(!v->pquantizer && block[k])
  1772. block[k] += (block[k] < 0) ? -mquant : mquant;
  1773. }
  1774. } else { //top
  1775. for(k = 1; k < 8; k++) {
  1776. block[k << 3] = ac_val2[k + 8] * scale;
  1777. if(!v->pquantizer && block[k << 3])
  1778. block[k << 3] += (block[k << 3] < 0) ? -mquant : mquant;
  1779. }
  1780. }
  1781. i = 63;
  1782. }
  1783. }
  1784. s->block_last_index[n] = i;
  1785. return 0;
  1786. }
  1787. /** Decode P block
  1788. */
  1789. static int vc1_decode_p_block(VC1Context *v, DCTELEM block[64], int n, int mquant, int ttmb, int first_block,
  1790. uint8_t *dst, int linesize, int skip_block, int *ttmb_out)
  1791. {
  1792. MpegEncContext *s = &v->s;
  1793. GetBitContext *gb = &s->gb;
  1794. int i, j;
  1795. int subblkpat = 0;
  1796. int scale, off, idx, last, skip, value;
  1797. int ttblk = ttmb & 7;
  1798. int pat = 0;
  1799. s->dsp.clear_block(block);
  1800. if(ttmb == -1) {
  1801. ttblk = ff_vc1_ttblk_to_tt[v->tt_index][get_vlc2(gb, ff_vc1_ttblk_vlc[v->tt_index].table, VC1_TTBLK_VLC_BITS, 1)];
  1802. }
  1803. if(ttblk == TT_4X4) {
  1804. subblkpat = ~(get_vlc2(gb, ff_vc1_subblkpat_vlc[v->tt_index].table, VC1_SUBBLKPAT_VLC_BITS, 1) + 1);
  1805. }
  1806. if((ttblk != TT_8X8 && ttblk != TT_4X4)
  1807. && ((v->ttmbf || (ttmb != -1 && (ttmb & 8) && !first_block))
  1808. || (!v->res_rtm_flag && !first_block))) {
  1809. subblkpat = decode012(gb);
  1810. if(subblkpat) subblkpat ^= 3; //swap decoded pattern bits
  1811. if(ttblk == TT_8X4_TOP || ttblk == TT_8X4_BOTTOM) ttblk = TT_8X4;
  1812. if(ttblk == TT_4X8_RIGHT || ttblk == TT_4X8_LEFT) ttblk = TT_4X8;
  1813. }
  1814. scale = 2 * mquant + ((v->pq == mquant) ? v->halfpq : 0);
  1815. // convert transforms like 8X4_TOP to generic TT and SUBBLKPAT
  1816. if(ttblk == TT_8X4_TOP || ttblk == TT_8X4_BOTTOM) {
  1817. subblkpat = 2 - (ttblk == TT_8X4_TOP);
  1818. ttblk = TT_8X4;
  1819. }
  1820. if(ttblk == TT_4X8_RIGHT || ttblk == TT_4X8_LEFT) {
  1821. subblkpat = 2 - (ttblk == TT_4X8_LEFT);
  1822. ttblk = TT_4X8;
  1823. }
  1824. switch(ttblk) {
  1825. case TT_8X8:
  1826. pat = 0xF;
  1827. i = 0;
  1828. last = 0;
  1829. while (!last) {
  1830. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  1831. i += skip;
  1832. if(i > 63)
  1833. break;
  1834. idx = v->zz_8x8[0][i++];
  1835. block[idx] = value * scale;
  1836. if(!v->pquantizer)
  1837. block[idx] += (block[idx] < 0) ? -mquant : mquant;
  1838. }
  1839. if(!skip_block){
  1840. if(i==1)
  1841. v->vc1dsp.vc1_inv_trans_8x8_dc(dst, linesize, block);
  1842. else{
  1843. v->vc1dsp.vc1_inv_trans_8x8_add(dst, linesize, block);
  1844. }
  1845. }
  1846. break;
  1847. case TT_4X4:
  1848. pat = ~subblkpat & 0xF;
  1849. for(j = 0; j < 4; j++) {
  1850. last = subblkpat & (1 << (3 - j));
  1851. i = 0;
  1852. off = (j & 1) * 4 + (j & 2) * 16;
  1853. while (!last) {
  1854. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  1855. i += skip;
  1856. if(i > 15)
  1857. break;
  1858. idx = ff_vc1_simple_progressive_4x4_zz[i++];
  1859. block[idx + off] = value * scale;
  1860. if(!v->pquantizer)
  1861. block[idx + off] += (block[idx + off] < 0) ? -mquant : mquant;
  1862. }
  1863. if(!(subblkpat & (1 << (3 - j))) && !skip_block){
  1864. if(i==1)
  1865. v->vc1dsp.vc1_inv_trans_4x4_dc(dst + (j&1)*4 + (j&2)*2*linesize, linesize, block + off);
  1866. else
  1867. v->vc1dsp.vc1_inv_trans_4x4(dst + (j&1)*4 + (j&2)*2*linesize, linesize, block + off);
  1868. }
  1869. }
  1870. break;
  1871. case TT_8X4:
  1872. pat = ~((subblkpat & 2)*6 + (subblkpat & 1)*3) & 0xF;
  1873. for(j = 0; j < 2; j++) {
  1874. last = subblkpat & (1 << (1 - j));
  1875. i = 0;
  1876. off = j * 32;
  1877. while (!last) {
  1878. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  1879. i += skip;
  1880. if(i > 31)
  1881. break;
  1882. idx = v->zz_8x4[i++]+off;
  1883. block[idx] = value * scale;
  1884. if(!v->pquantizer)
  1885. block[idx] += (block[idx] < 0) ? -mquant : mquant;
  1886. }
  1887. if(!(subblkpat & (1 << (1 - j))) && !skip_block){
  1888. if(i==1)
  1889. v->vc1dsp.vc1_inv_trans_8x4_dc(dst + j*4*linesize, linesize, block + off);
  1890. else
  1891. v->vc1dsp.vc1_inv_trans_8x4(dst + j*4*linesize, linesize, block + off);
  1892. }
  1893. }
  1894. break;
  1895. case TT_4X8:
  1896. pat = ~(subblkpat*5) & 0xF;
  1897. for(j = 0; j < 2; j++) {
  1898. last = subblkpat & (1 << (1 - j));
  1899. i = 0;
  1900. off = j * 4;
  1901. while (!last) {
  1902. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  1903. i += skip;
  1904. if(i > 31)
  1905. break;
  1906. idx = v->zz_4x8[i++]+off;
  1907. block[idx] = value * scale;
  1908. if(!v->pquantizer)
  1909. block[idx] += (block[idx] < 0) ? -mquant : mquant;
  1910. }
  1911. if(!(subblkpat & (1 << (1 - j))) && !skip_block){
  1912. if(i==1)
  1913. v->vc1dsp.vc1_inv_trans_4x8_dc(dst + j*4, linesize, block + off);
  1914. else
  1915. v->vc1dsp.vc1_inv_trans_4x8(dst + j*4, linesize, block + off);
  1916. }
  1917. }
  1918. break;
  1919. }
  1920. if (ttmb_out)
  1921. *ttmb_out |= ttblk << (n * 4);
  1922. return pat;
  1923. }
  1924. /** @} */ // Macroblock group
  1925. static const int size_table [6] = { 0, 2, 3, 4, 5, 8 };
  1926. static const int offset_table[6] = { 0, 1, 3, 7, 15, 31 };
  1927. static av_always_inline void vc1_apply_p_v_loop_filter(VC1Context *v, int block_num)
  1928. {
  1929. MpegEncContext *s = &v->s;
  1930. int mb_cbp = v->cbp[s->mb_x - s->mb_stride],
  1931. block_cbp = mb_cbp >> (block_num * 4), bottom_cbp,
  1932. mb_is_intra = v->is_intra[s->mb_x - s->mb_stride],
  1933. block_is_intra = mb_is_intra >> (block_num * 4), bottom_is_intra;
  1934. int idx, linesize = block_num > 3 ? s->uvlinesize : s->linesize, ttblk;
  1935. uint8_t *dst;
  1936. if(block_num > 3) {
  1937. dst = s->dest[block_num - 3];
  1938. } else {
  1939. dst = s->dest[0] + (block_num & 1) * 8 + ((block_num & 2) * 4 - 8) * linesize;
  1940. }
  1941. if (s->mb_y != s->mb_height || block_num < 2) {
  1942. int16_t (*mv)[2];
  1943. int mv_stride;
  1944. if(block_num > 3) {
  1945. bottom_cbp = v->cbp[s->mb_x] >> (block_num * 4);
  1946. bottom_is_intra = v->is_intra[s->mb_x] >> (block_num * 4);
  1947. mv = &v->luma_mv[s->mb_x - s->mb_stride];
  1948. mv_stride = s->mb_stride;
  1949. } else {
  1950. bottom_cbp = (block_num < 2) ? (mb_cbp >> ((block_num + 2) * 4)) :
  1951. (v->cbp[s->mb_x] >> ((block_num - 2) * 4));
  1952. bottom_is_intra = (block_num < 2) ? (mb_is_intra >> ((block_num + 2) * 4)) :
  1953. (v->is_intra[s->mb_x] >> ((block_num - 2) * 4));
  1954. mv_stride = s->b8_stride;
  1955. mv = &s->current_picture.motion_val[0][s->block_index[block_num] - 2 * mv_stride];
  1956. }
  1957. if (bottom_is_intra & 1 || block_is_intra & 1 ||
  1958. mv[0][0] != mv[mv_stride][0] || mv[0][1] != mv[mv_stride][1]) {
  1959. v->vc1dsp.vc1_v_loop_filter8(dst, linesize, v->pq);
  1960. } else {
  1961. idx = ((bottom_cbp >> 2) | block_cbp) & 3;
  1962. if(idx == 3) {
  1963. v->vc1dsp.vc1_v_loop_filter8(dst, linesize, v->pq);
  1964. } else if (idx) {
  1965. if (idx == 1)
  1966. v->vc1dsp.vc1_v_loop_filter4(dst + 4, linesize, v->pq);
  1967. else
  1968. v->vc1dsp.vc1_v_loop_filter4(dst, linesize, v->pq);
  1969. }
  1970. }
  1971. }
  1972. dst -= 4 * linesize;
  1973. ttblk = (v->ttblk[s->mb_x - s->mb_stride] >> (block_num * 4)) & 0xf;
  1974. if (ttblk == TT_4X4 || ttblk == TT_8X4) {
  1975. idx = (block_cbp | (block_cbp >> 2)) & 3;
  1976. if (idx == 3) {
  1977. v->vc1dsp.vc1_v_loop_filter8(dst, linesize, v->pq);
  1978. } else if (idx) {
  1979. if (idx == 1)
  1980. v->vc1dsp.vc1_v_loop_filter4(dst + 4, linesize, v->pq);
  1981. else
  1982. v->vc1dsp.vc1_v_loop_filter4(dst, linesize, v->pq);
  1983. }
  1984. }
  1985. }
  1986. static av_always_inline void vc1_apply_p_h_loop_filter(VC1Context *v, int block_num)
  1987. {
  1988. MpegEncContext *s = &v->s;
  1989. int mb_cbp = v->cbp[s->mb_x - 1 - s->mb_stride],
  1990. block_cbp = mb_cbp >> (block_num * 4), right_cbp,
  1991. mb_is_intra = v->is_intra[s->mb_x - 1 - s->mb_stride],
  1992. block_is_intra = mb_is_intra >> (block_num * 4), right_is_intra;
  1993. int idx, linesize = block_num > 3 ? s->uvlinesize : s->linesize, ttblk;
  1994. uint8_t *dst;
  1995. if (block_num > 3) {
  1996. dst = s->dest[block_num - 3] - 8 * linesize;
  1997. } else {
  1998. dst = s->dest[0] + (block_num & 1) * 8 + ((block_num & 2) * 4 - 16) * linesize - 8;
  1999. }
  2000. if (s->mb_x != s->mb_width || !(block_num & 5)) {
  2001. int16_t (*mv)[2];
  2002. if(block_num > 3) {
  2003. right_cbp = v->cbp[s->mb_x - s->mb_stride] >> (block_num * 4);
  2004. right_is_intra = v->is_intra[s->mb_x - s->mb_stride] >> (block_num * 4);
  2005. mv = &v->luma_mv[s->mb_x - s->mb_stride - 1];
  2006. }else{
  2007. right_cbp = (block_num & 1) ? (v->cbp[s->mb_x - s->mb_stride] >> ((block_num - 1) * 4)) :
  2008. (mb_cbp >> ((block_num + 1) * 4));
  2009. right_is_intra = (block_num & 1) ? (v->is_intra[s->mb_x - s->mb_stride] >> ((block_num - 1) * 4)) :
  2010. (mb_is_intra >> ((block_num + 1) * 4));
  2011. mv = &s->current_picture.motion_val[0][s->block_index[block_num] - s->b8_stride * 2 - 2];
  2012. }
  2013. if (block_is_intra & 1 || right_is_intra & 1 || mv[0][0] != mv[1][0] || mv[0][1] != mv[1][1]) {
  2014. v->vc1dsp.vc1_h_loop_filter8(dst, linesize, v->pq);
  2015. } else {
  2016. idx = ((right_cbp >> 1) | block_cbp) & 5; // FIXME check
  2017. if (idx == 5) {
  2018. v->vc1dsp.vc1_h_loop_filter8(dst, linesize, v->pq);
  2019. } else if (idx) {
  2020. if (idx == 1)
  2021. v->vc1dsp.vc1_h_loop_filter4(dst+4*linesize, linesize, v->pq);
  2022. else
  2023. v->vc1dsp.vc1_h_loop_filter4(dst, linesize, v->pq);
  2024. }
  2025. }
  2026. }
  2027. dst -= 4;
  2028. ttblk = (v->ttblk[s->mb_x - s->mb_stride - 1] >> (block_num * 4)) & 0xf;
  2029. if (ttblk == TT_4X4 || ttblk == TT_4X8) {
  2030. idx = (block_cbp | (block_cbp >> 1)) & 5;
  2031. if (idx == 5) {
  2032. v->vc1dsp.vc1_h_loop_filter8(dst, linesize, v->pq);
  2033. } else if (idx) {
  2034. if (idx == 1)
  2035. v->vc1dsp.vc1_h_loop_filter4(dst + linesize*4, linesize, v->pq);
  2036. else
  2037. v->vc1dsp.vc1_h_loop_filter4(dst, linesize, v->pq);
  2038. }
  2039. }
  2040. }
  2041. static void vc1_apply_p_loop_filter(VC1Context *v)
  2042. {
  2043. MpegEncContext *s = &v->s;
  2044. int i;
  2045. for (i = 0; i < 6; i++) {
  2046. vc1_apply_p_v_loop_filter(v, i);
  2047. }
  2048. /* V always preceedes H, therefore we run H one MB before V;
  2049. * at the end of a row, we catch up to complete the row */
  2050. if (s->mb_x) {
  2051. for (i = 0; i < 6; i++) {
  2052. vc1_apply_p_h_loop_filter(v, i);
  2053. }
  2054. if (s->mb_x == s->mb_width - 1) {
  2055. s->mb_x++;
  2056. ff_update_block_index(s);
  2057. for (i = 0; i < 6; i++) {
  2058. vc1_apply_p_h_loop_filter(v, i);
  2059. }
  2060. }
  2061. }
  2062. }
  2063. /** Decode one P-frame MB (in Simple/Main profile)
  2064. */
  2065. static int vc1_decode_p_mb(VC1Context *v)
  2066. {
  2067. MpegEncContext *s = &v->s;
  2068. GetBitContext *gb = &s->gb;
  2069. int i;
  2070. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  2071. int cbp; /* cbp decoding stuff */
  2072. int mqdiff, mquant; /* MB quantization */
  2073. int ttmb = v->ttfrm; /* MB Transform type */
  2074. int mb_has_coeffs = 1; /* last_flag */
  2075. int dmv_x, dmv_y; /* Differential MV components */
  2076. int index, index1; /* LUT indexes */
  2077. int val, sign; /* temp values */
  2078. int first_block = 1;
  2079. int dst_idx, off;
  2080. int skipped, fourmv;
  2081. int block_cbp = 0, pat, block_tt = 0, block_intra = 0;
  2082. mquant = v->pq; /* Loosy initialization */
  2083. if (v->mv_type_is_raw)
  2084. fourmv = get_bits1(gb);
  2085. else
  2086. fourmv = v->mv_type_mb_plane[mb_pos];
  2087. if (v->skip_is_raw)
  2088. skipped = get_bits1(gb);
  2089. else
  2090. skipped = v->s.mbskip_table[mb_pos];
  2091. if (!fourmv) /* 1MV mode */
  2092. {
  2093. if (!skipped)
  2094. {
  2095. vc1_idct_func idct8x8_fn;
  2096. GET_MVDATA(dmv_x, dmv_y);
  2097. if (s->mb_intra) {
  2098. s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
  2099. s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
  2100. }
  2101. s->current_picture.mb_type[mb_pos] = s->mb_intra ? MB_TYPE_INTRA : MB_TYPE_16x16;
  2102. vc1_pred_mv(v, 0, dmv_x, dmv_y, 1, v->range_x, v->range_y, v->mb_type[0]);
  2103. /* FIXME Set DC val for inter block ? */
  2104. if (s->mb_intra && !mb_has_coeffs)
  2105. {
  2106. GET_MQUANT();
  2107. s->ac_pred = get_bits1(gb);
  2108. cbp = 0;
  2109. }
  2110. else if (mb_has_coeffs)
  2111. {
  2112. if (s->mb_intra) s->ac_pred = get_bits1(gb);
  2113. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  2114. GET_MQUANT();
  2115. }
  2116. else
  2117. {
  2118. mquant = v->pq;
  2119. cbp = 0;
  2120. }
  2121. s->current_picture.qscale_table[mb_pos] = mquant;
  2122. if (!v->ttmbf && !s->mb_intra && mb_has_coeffs)
  2123. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table,
  2124. VC1_TTMB_VLC_BITS, 2);
  2125. if(!s->mb_intra) vc1_mc_1mv(v, 0);
  2126. dst_idx = 0;
  2127. idct8x8_fn = v->vc1dsp.vc1_inv_trans_8x8_put_signed[!!v->rangeredfrm];
  2128. for (i=0; i<6; i++)
  2129. {
  2130. s->dc_val[0][s->block_index[i]] = 0;
  2131. dst_idx += i >> 2;
  2132. val = ((cbp >> (5 - i)) & 1);
  2133. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  2134. v->mb_type[0][s->block_index[i]] = s->mb_intra;
  2135. if(s->mb_intra) {
  2136. /* check if prediction blocks A and C are available */
  2137. v->a_avail = v->c_avail = 0;
  2138. if(i == 2 || i == 3 || !s->first_slice_line)
  2139. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  2140. if(i == 1 || i == 3 || s->mb_x)
  2141. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  2142. vc1_decode_intra_block(v, s->block[i], i, val, mquant, (i&4)?v->codingset2:v->codingset);
  2143. if((i>3) && (s->flags & CODEC_FLAG_GRAY)) continue;
  2144. idct8x8_fn(s->dest[dst_idx] + off,
  2145. i & 4 ? s->uvlinesize : s->linesize,
  2146. s->block[i]);
  2147. if(v->pq >= 9 && v->overlap) {
  2148. if(v->c_avail)
  2149. v->vc1dsp.vc1_h_overlap(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize);
  2150. if(v->a_avail)
  2151. v->vc1dsp.vc1_v_overlap(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize);
  2152. }
  2153. block_cbp |= 0xF << (i << 2);
  2154. block_intra |= 1 << i;
  2155. } else if(val) {
  2156. pat = vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block, s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize, (i&4) && (s->flags & CODEC_FLAG_GRAY), &block_tt);
  2157. block_cbp |= pat << (i << 2);
  2158. if(!v->ttmbf && ttmb < 8) ttmb = -1;
  2159. first_block = 0;
  2160. }
  2161. }
  2162. }
  2163. else //Skipped
  2164. {
  2165. s->mb_intra = 0;
  2166. for(i = 0; i < 6; i++) {
  2167. v->mb_type[0][s->block_index[i]] = 0;
  2168. s->dc_val[0][s->block_index[i]] = 0;
  2169. }
  2170. s->current_picture.mb_type[mb_pos] = MB_TYPE_SKIP;
  2171. s->current_picture.qscale_table[mb_pos] = 0;
  2172. vc1_pred_mv(v, 0, 0, 0, 1, v->range_x, v->range_y, v->mb_type[0]);
  2173. vc1_mc_1mv(v, 0);
  2174. }
  2175. } //1MV mode
  2176. else //4MV mode
  2177. {
  2178. if (!skipped /* unskipped MB */)
  2179. {
  2180. int intra_count = 0, coded_inter = 0;
  2181. int is_intra[6], is_coded[6];
  2182. vc1_idct_func idct8x8_fn;
  2183. /* Get CBPCY */
  2184. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  2185. for (i=0; i<6; i++)
  2186. {
  2187. val = ((cbp >> (5 - i)) & 1);
  2188. s->dc_val[0][s->block_index[i]] = 0;
  2189. s->mb_intra = 0;
  2190. if(i < 4) {
  2191. dmv_x = dmv_y = 0;
  2192. s->mb_intra = 0;
  2193. mb_has_coeffs = 0;
  2194. if(val) {
  2195. GET_MVDATA(dmv_x, dmv_y);
  2196. }
  2197. vc1_pred_mv(v, i, dmv_x, dmv_y, 0, v->range_x, v->range_y, v->mb_type[0]);
  2198. if(!s->mb_intra) vc1_mc_4mv_luma(v, i);
  2199. intra_count += s->mb_intra;
  2200. is_intra[i] = s->mb_intra;
  2201. is_coded[i] = mb_has_coeffs;
  2202. }
  2203. if(i&4){
  2204. is_intra[i] = (intra_count >= 3);
  2205. is_coded[i] = val;
  2206. }
  2207. if(i == 4) vc1_mc_4mv_chroma(v);
  2208. v->mb_type[0][s->block_index[i]] = is_intra[i];
  2209. if(!coded_inter) coded_inter = !is_intra[i] & is_coded[i];
  2210. }
  2211. // if there are no coded blocks then don't do anything more
  2212. dst_idx = 0;
  2213. if(!intra_count && !coded_inter)
  2214. goto end;
  2215. GET_MQUANT();
  2216. s->current_picture.qscale_table[mb_pos] = mquant;
  2217. /* test if block is intra and has pred */
  2218. {
  2219. int intrapred = 0;
  2220. for(i=0; i<6; i++)
  2221. if(is_intra[i]) {
  2222. if(((!s->first_slice_line || (i==2 || i==3)) && v->mb_type[0][s->block_index[i] - s->block_wrap[i]])
  2223. || ((s->mb_x || (i==1 || i==3)) && v->mb_type[0][s->block_index[i] - 1])) {
  2224. intrapred = 1;
  2225. break;
  2226. }
  2227. }
  2228. if(intrapred)s->ac_pred = get_bits1(gb);
  2229. else s->ac_pred = 0;
  2230. }
  2231. if (!v->ttmbf && coded_inter)
  2232. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  2233. idct8x8_fn = v->vc1dsp.vc1_inv_trans_8x8_put_signed[!!v->rangeredfrm];
  2234. for (i=0; i<6; i++)
  2235. {
  2236. dst_idx += i >> 2;
  2237. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  2238. s->mb_intra = is_intra[i];
  2239. if (is_intra[i]) {
  2240. /* check if prediction blocks A and C are available */
  2241. v->a_avail = v->c_avail = 0;
  2242. if(i == 2 || i == 3 || !s->first_slice_line)
  2243. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  2244. if(i == 1 || i == 3 || s->mb_x)
  2245. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  2246. vc1_decode_intra_block(v, s->block[i], i, is_coded[i], mquant, (i&4)?v->codingset2:v->codingset);
  2247. if((i>3) && (s->flags & CODEC_FLAG_GRAY)) continue;
  2248. idct8x8_fn(s->dest[dst_idx] + off,
  2249. (i&4)?s->uvlinesize:s->linesize,
  2250. s->block[i]);
  2251. if(v->pq >= 9 && v->overlap) {
  2252. if(v->c_avail)
  2253. v->vc1dsp.vc1_h_overlap(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize);
  2254. if(v->a_avail)
  2255. v->vc1dsp.vc1_v_overlap(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize);
  2256. }
  2257. block_cbp |= 0xF << (i << 2);
  2258. block_intra |= 1 << i;
  2259. } else if(is_coded[i]) {
  2260. pat = vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block, s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize, (i&4) && (s->flags & CODEC_FLAG_GRAY), &block_tt);
  2261. block_cbp |= pat << (i << 2);
  2262. if(!v->ttmbf && ttmb < 8) ttmb = -1;
  2263. first_block = 0;
  2264. }
  2265. }
  2266. }
  2267. else //Skipped MB
  2268. {
  2269. s->mb_intra = 0;
  2270. s->current_picture.qscale_table[mb_pos] = 0;
  2271. for (i=0; i<6; i++) {
  2272. v->mb_type[0][s->block_index[i]] = 0;
  2273. s->dc_val[0][s->block_index[i]] = 0;
  2274. }
  2275. for (i=0; i<4; i++)
  2276. {
  2277. vc1_pred_mv(v, i, 0, 0, 0, v->range_x, v->range_y, v->mb_type[0]);
  2278. vc1_mc_4mv_luma(v, i);
  2279. }
  2280. vc1_mc_4mv_chroma(v);
  2281. s->current_picture.qscale_table[mb_pos] = 0;
  2282. }
  2283. }
  2284. end:
  2285. v->cbp[s->mb_x] = block_cbp;
  2286. v->ttblk[s->mb_x] = block_tt;
  2287. v->is_intra[s->mb_x] = block_intra;
  2288. return 0;
  2289. }
  2290. /** Decode one B-frame MB (in Main profile)
  2291. */
  2292. static void vc1_decode_b_mb(VC1Context *v)
  2293. {
  2294. MpegEncContext *s = &v->s;
  2295. GetBitContext *gb = &s->gb;
  2296. int i;
  2297. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  2298. int cbp = 0; /* cbp decoding stuff */
  2299. int mqdiff, mquant; /* MB quantization */
  2300. int ttmb = v->ttfrm; /* MB Transform type */
  2301. int mb_has_coeffs = 0; /* last_flag */
  2302. int index, index1; /* LUT indexes */
  2303. int val, sign; /* temp values */
  2304. int first_block = 1;
  2305. int dst_idx, off;
  2306. int skipped, direct;
  2307. int dmv_x[2], dmv_y[2];
  2308. int bmvtype = BMV_TYPE_BACKWARD;
  2309. vc1_idct_func idct8x8_fn;
  2310. mquant = v->pq; /* Loosy initialization */
  2311. s->mb_intra = 0;
  2312. if (v->dmb_is_raw)
  2313. direct = get_bits1(gb);
  2314. else
  2315. direct = v->direct_mb_plane[mb_pos];
  2316. if (v->skip_is_raw)
  2317. skipped = get_bits1(gb);
  2318. else
  2319. skipped = v->s.mbskip_table[mb_pos];
  2320. dmv_x[0] = dmv_x[1] = dmv_y[0] = dmv_y[1] = 0;
  2321. for(i = 0; i < 6; i++) {
  2322. v->mb_type[0][s->block_index[i]] = 0;
  2323. s->dc_val[0][s->block_index[i]] = 0;
  2324. }
  2325. s->current_picture.qscale_table[mb_pos] = 0;
  2326. if (!direct) {
  2327. if (!skipped) {
  2328. GET_MVDATA(dmv_x[0], dmv_y[0]);
  2329. dmv_x[1] = dmv_x[0];
  2330. dmv_y[1] = dmv_y[0];
  2331. }
  2332. if(skipped || !s->mb_intra) {
  2333. bmvtype = decode012(gb);
  2334. switch(bmvtype) {
  2335. case 0:
  2336. bmvtype = (v->bfraction >= (B_FRACTION_DEN/2)) ? BMV_TYPE_BACKWARD : BMV_TYPE_FORWARD;
  2337. break;
  2338. case 1:
  2339. bmvtype = (v->bfraction >= (B_FRACTION_DEN/2)) ? BMV_TYPE_FORWARD : BMV_TYPE_BACKWARD;
  2340. break;
  2341. case 2:
  2342. bmvtype = BMV_TYPE_INTERPOLATED;
  2343. dmv_x[0] = dmv_y[0] = 0;
  2344. }
  2345. }
  2346. }
  2347. for(i = 0; i < 6; i++)
  2348. v->mb_type[0][s->block_index[i]] = s->mb_intra;
  2349. if (skipped) {
  2350. if(direct) bmvtype = BMV_TYPE_INTERPOLATED;
  2351. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  2352. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  2353. return;
  2354. }
  2355. if (direct) {
  2356. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  2357. GET_MQUANT();
  2358. s->mb_intra = 0;
  2359. s->current_picture.qscale_table[mb_pos] = mquant;
  2360. if(!v->ttmbf)
  2361. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  2362. dmv_x[0] = dmv_y[0] = dmv_x[1] = dmv_y[1] = 0;
  2363. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  2364. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  2365. } else {
  2366. if(!mb_has_coeffs && !s->mb_intra) {
  2367. /* no coded blocks - effectively skipped */
  2368. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  2369. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  2370. return;
  2371. }
  2372. if(s->mb_intra && !mb_has_coeffs) {
  2373. GET_MQUANT();
  2374. s->current_picture.qscale_table[mb_pos] = mquant;
  2375. s->ac_pred = get_bits1(gb);
  2376. cbp = 0;
  2377. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  2378. } else {
  2379. if(bmvtype == BMV_TYPE_INTERPOLATED) {
  2380. GET_MVDATA(dmv_x[0], dmv_y[0]);
  2381. if(!mb_has_coeffs) {
  2382. /* interpolated skipped block */
  2383. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  2384. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  2385. return;
  2386. }
  2387. }
  2388. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  2389. if(!s->mb_intra) {
  2390. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  2391. }
  2392. if(s->mb_intra)
  2393. s->ac_pred = get_bits1(gb);
  2394. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  2395. GET_MQUANT();
  2396. s->current_picture.qscale_table[mb_pos] = mquant;
  2397. if(!v->ttmbf && !s->mb_intra && mb_has_coeffs)
  2398. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  2399. }
  2400. }
  2401. dst_idx = 0;
  2402. idct8x8_fn = v->vc1dsp.vc1_inv_trans_8x8_put_signed[!!v->rangeredfrm];
  2403. for (i=0; i<6; i++)
  2404. {
  2405. s->dc_val[0][s->block_index[i]] = 0;
  2406. dst_idx += i >> 2;
  2407. val = ((cbp >> (5 - i)) & 1);
  2408. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  2409. v->mb_type[0][s->block_index[i]] = s->mb_intra;
  2410. if(s->mb_intra) {
  2411. /* check if prediction blocks A and C are available */
  2412. v->a_avail = v->c_avail = 0;
  2413. if(i == 2 || i == 3 || !s->first_slice_line)
  2414. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  2415. if(i == 1 || i == 3 || s->mb_x)
  2416. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  2417. vc1_decode_intra_block(v, s->block[i], i, val, mquant, (i&4)?v->codingset2:v->codingset);
  2418. if((i>3) && (s->flags & CODEC_FLAG_GRAY)) continue;
  2419. idct8x8_fn(s->dest[dst_idx] + off,
  2420. i & 4 ? s->uvlinesize : s->linesize,
  2421. s->block[i]);
  2422. } else if(val) {
  2423. vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block, s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize, (i&4) && (s->flags & CODEC_FLAG_GRAY), NULL);
  2424. if(!v->ttmbf && ttmb < 8) ttmb = -1;
  2425. first_block = 0;
  2426. }
  2427. }
  2428. }
  2429. /** Decode blocks of I-frame
  2430. */
  2431. static void vc1_decode_i_blocks(VC1Context *v)
  2432. {
  2433. int k;
  2434. MpegEncContext *s = &v->s;
  2435. int cbp, val;
  2436. uint8_t *coded_val;
  2437. int mb_pos;
  2438. vc1_idct_func idct8x8_fn;
  2439. /* select codingmode used for VLC tables selection */
  2440. switch(v->y_ac_table_index){
  2441. case 0:
  2442. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  2443. break;
  2444. case 1:
  2445. v->codingset = CS_HIGH_MOT_INTRA;
  2446. break;
  2447. case 2:
  2448. v->codingset = CS_MID_RATE_INTRA;
  2449. break;
  2450. }
  2451. switch(v->c_ac_table_index){
  2452. case 0:
  2453. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  2454. break;
  2455. case 1:
  2456. v->codingset2 = CS_HIGH_MOT_INTER;
  2457. break;
  2458. case 2:
  2459. v->codingset2 = CS_MID_RATE_INTER;
  2460. break;
  2461. }
  2462. /* Set DC scale - y and c use the same */
  2463. s->y_dc_scale = s->y_dc_scale_table[v->pq];
  2464. s->c_dc_scale = s->c_dc_scale_table[v->pq];
  2465. //do frame decode
  2466. s->mb_x = s->mb_y = 0;
  2467. s->mb_intra = 1;
  2468. s->first_slice_line = 1;
  2469. if(v->pq >= 9 && v->overlap) {
  2470. idct8x8_fn = v->vc1dsp.vc1_inv_trans_8x8_put_signed[!!v->rangeredfrm];
  2471. } else
  2472. idct8x8_fn = v->vc1dsp.vc1_inv_trans_8x8_put[!!v->rangeredfrm];
  2473. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  2474. s->mb_x = 0;
  2475. ff_init_block_index(s);
  2476. for(; s->mb_x < s->mb_width; s->mb_x++) {
  2477. uint8_t *dst[6];
  2478. ff_update_block_index(s);
  2479. dst[0] = s->dest[0];
  2480. dst[1] = dst[0] + 8;
  2481. dst[2] = s->dest[0] + s->linesize * 8;
  2482. dst[3] = dst[2] + 8;
  2483. dst[4] = s->dest[1];
  2484. dst[5] = s->dest[2];
  2485. s->dsp.clear_blocks(s->block[0]);
  2486. mb_pos = s->mb_x + s->mb_y * s->mb_width;
  2487. s->current_picture.mb_type[mb_pos] = MB_TYPE_INTRA;
  2488. s->current_picture.qscale_table[mb_pos] = v->pq;
  2489. s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
  2490. s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
  2491. // do actual MB decoding and displaying
  2492. cbp = get_vlc2(&v->s.gb, ff_msmp4_mb_i_vlc.table, MB_INTRA_VLC_BITS, 2);
  2493. v->s.ac_pred = get_bits1(&v->s.gb);
  2494. for(k = 0; k < 6; k++) {
  2495. val = ((cbp >> (5 - k)) & 1);
  2496. if (k < 4) {
  2497. int pred = vc1_coded_block_pred(&v->s, k, &coded_val);
  2498. val = val ^ pred;
  2499. *coded_val = val;
  2500. }
  2501. cbp |= val << (5 - k);
  2502. vc1_decode_i_block(v, s->block[k], k, val, (k<4)? v->codingset : v->codingset2);
  2503. if (k > 3 && (s->flags & CODEC_FLAG_GRAY)) continue;
  2504. idct8x8_fn(dst[k],
  2505. k & 4 ? s->uvlinesize : s->linesize,
  2506. s->block[k]);
  2507. }
  2508. if(v->pq >= 9 && v->overlap) {
  2509. if(s->mb_x) {
  2510. v->vc1dsp.vc1_h_overlap(s->dest[0], s->linesize);
  2511. v->vc1dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
  2512. if(!(s->flags & CODEC_FLAG_GRAY)) {
  2513. v->vc1dsp.vc1_h_overlap(s->dest[1], s->uvlinesize);
  2514. v->vc1dsp.vc1_h_overlap(s->dest[2], s->uvlinesize);
  2515. }
  2516. }
  2517. v->vc1dsp.vc1_h_overlap(s->dest[0] + 8, s->linesize);
  2518. v->vc1dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
  2519. if(!s->first_slice_line) {
  2520. v->vc1dsp.vc1_v_overlap(s->dest[0], s->linesize);
  2521. v->vc1dsp.vc1_v_overlap(s->dest[0] + 8, s->linesize);
  2522. if(!(s->flags & CODEC_FLAG_GRAY)) {
  2523. v->vc1dsp.vc1_v_overlap(s->dest[1], s->uvlinesize);
  2524. v->vc1dsp.vc1_v_overlap(s->dest[2], s->uvlinesize);
  2525. }
  2526. }
  2527. v->vc1dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
  2528. v->vc1dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
  2529. }
  2530. if(v->s.loop_filter) vc1_loop_filter_iblk(v, v->pq);
  2531. if(get_bits_count(&s->gb) > v->bits) {
  2532. ff_er_add_slice(s, 0, 0, s->mb_x, s->mb_y, (AC_END|DC_END|MV_END));
  2533. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i\n", get_bits_count(&s->gb), v->bits);
  2534. return;
  2535. }
  2536. }
  2537. if (!v->s.loop_filter)
  2538. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  2539. else if (s->mb_y)
  2540. ff_draw_horiz_band(s, (s->mb_y-1) * 16, 16);
  2541. s->first_slice_line = 0;
  2542. }
  2543. if (v->s.loop_filter)
  2544. ff_draw_horiz_band(s, (s->mb_height-1)*16, 16);
  2545. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  2546. }
  2547. /** Decode blocks of I-frame for advanced profile
  2548. */
  2549. static void vc1_decode_i_blocks_adv(VC1Context *v, int mby_start, int mby_end)
  2550. {
  2551. int k;
  2552. MpegEncContext *s = &v->s;
  2553. int cbp, val;
  2554. uint8_t *coded_val;
  2555. int mb_pos;
  2556. int mquant = v->pq;
  2557. int mqdiff;
  2558. int overlap;
  2559. GetBitContext *gb = &s->gb;
  2560. vc1_idct_func idct8x8_fn;
  2561. /* select codingmode used for VLC tables selection */
  2562. switch(v->y_ac_table_index){
  2563. case 0:
  2564. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  2565. break;
  2566. case 1:
  2567. v->codingset = CS_HIGH_MOT_INTRA;
  2568. break;
  2569. case 2:
  2570. v->codingset = CS_MID_RATE_INTRA;
  2571. break;
  2572. }
  2573. switch(v->c_ac_table_index){
  2574. case 0:
  2575. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  2576. break;
  2577. case 1:
  2578. v->codingset2 = CS_HIGH_MOT_INTER;
  2579. break;
  2580. case 2:
  2581. v->codingset2 = CS_MID_RATE_INTER;
  2582. break;
  2583. }
  2584. //do frame decode
  2585. s->mb_x = s->mb_y = 0;
  2586. s->mb_intra = 1;
  2587. s->first_slice_line = 1;
  2588. s->mb_y = mby_start;
  2589. if (mby_start) {
  2590. s->mb_x = 0;
  2591. ff_init_block_index(s);
  2592. memset(&s->coded_block[s->block_index[0]-s->b8_stride], 0,
  2593. s->b8_stride * sizeof(*s->coded_block));
  2594. }
  2595. idct8x8_fn = v->vc1dsp.vc1_inv_trans_8x8_put_signed[0];
  2596. for(; s->mb_y < mby_end; s->mb_y++) {
  2597. s->mb_x = 0;
  2598. ff_init_block_index(s);
  2599. for(;s->mb_x < s->mb_width; s->mb_x++) {
  2600. uint8_t *dst[6];
  2601. ff_update_block_index(s);
  2602. dst[0] = s->dest[0];
  2603. dst[1] = dst[0] + 8;
  2604. dst[2] = s->dest[0] + s->linesize * 8;
  2605. dst[3] = dst[2] + 8;
  2606. dst[4] = s->dest[1];
  2607. dst[5] = s->dest[2];
  2608. s->dsp.clear_blocks(s->block[0]);
  2609. mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  2610. s->current_picture.mb_type[mb_pos] = MB_TYPE_INTRA;
  2611. s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
  2612. s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
  2613. // do actual MB decoding and displaying
  2614. cbp = get_vlc2(&v->s.gb, ff_msmp4_mb_i_vlc.table, MB_INTRA_VLC_BITS, 2);
  2615. if(v->acpred_is_raw)
  2616. v->s.ac_pred = get_bits1(&v->s.gb);
  2617. else
  2618. v->s.ac_pred = v->acpred_plane[mb_pos];
  2619. if(v->condover == CONDOVER_SELECT) {
  2620. if(v->overflg_is_raw)
  2621. overlap = get_bits1(&v->s.gb);
  2622. else
  2623. overlap = v->over_flags_plane[mb_pos];
  2624. } else
  2625. overlap = (v->condover == CONDOVER_ALL);
  2626. GET_MQUANT();
  2627. s->current_picture.qscale_table[mb_pos] = mquant;
  2628. /* Set DC scale - y and c use the same */
  2629. s->y_dc_scale = s->y_dc_scale_table[mquant];
  2630. s->c_dc_scale = s->c_dc_scale_table[mquant];
  2631. for(k = 0; k < 6; k++) {
  2632. val = ((cbp >> (5 - k)) & 1);
  2633. if (k < 4) {
  2634. int pred = vc1_coded_block_pred(&v->s, k, &coded_val);
  2635. val = val ^ pred;
  2636. *coded_val = val;
  2637. }
  2638. cbp |= val << (5 - k);
  2639. v->a_avail = !s->first_slice_line || (k==2 || k==3);
  2640. v->c_avail = !!s->mb_x || (k==1 || k==3);
  2641. vc1_decode_i_block_adv(v, s->block[k], k, val, (k<4)? v->codingset : v->codingset2, mquant);
  2642. if (k > 3 && (s->flags & CODEC_FLAG_GRAY)) continue;
  2643. idct8x8_fn(dst[k],
  2644. k & 4 ? s->uvlinesize : s->linesize,
  2645. s->block[k]);
  2646. }
  2647. if(overlap) {
  2648. if(s->mb_x) {
  2649. v->vc1dsp.vc1_h_overlap(s->dest[0], s->linesize);
  2650. v->vc1dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
  2651. if(!(s->flags & CODEC_FLAG_GRAY)) {
  2652. v->vc1dsp.vc1_h_overlap(s->dest[1], s->uvlinesize);
  2653. v->vc1dsp.vc1_h_overlap(s->dest[2], s->uvlinesize);
  2654. }
  2655. }
  2656. v->vc1dsp.vc1_h_overlap(s->dest[0] + 8, s->linesize);
  2657. v->vc1dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
  2658. if(!s->first_slice_line) {
  2659. v->vc1dsp.vc1_v_overlap(s->dest[0], s->linesize);
  2660. v->vc1dsp.vc1_v_overlap(s->dest[0] + 8, s->linesize);
  2661. if(!(s->flags & CODEC_FLAG_GRAY)) {
  2662. v->vc1dsp.vc1_v_overlap(s->dest[1], s->uvlinesize);
  2663. v->vc1dsp.vc1_v_overlap(s->dest[2], s->uvlinesize);
  2664. }
  2665. }
  2666. v->vc1dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
  2667. v->vc1dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
  2668. }
  2669. if(v->s.loop_filter) vc1_loop_filter_iblk(v, v->pq);
  2670. if(get_bits_count(&s->gb) > v->bits) {
  2671. ff_er_add_slice(s, 0, mby_start, s->mb_x, s->mb_y, (AC_END|DC_END|MV_END));
  2672. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i\n", get_bits_count(&s->gb), v->bits);
  2673. return;
  2674. }
  2675. }
  2676. if (!v->s.loop_filter)
  2677. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  2678. else if (s->mb_y)
  2679. ff_draw_horiz_band(s, (s->mb_y-1) * 16, 16);
  2680. s->first_slice_line = 0;
  2681. }
  2682. if (v->s.loop_filter)
  2683. ff_draw_horiz_band(s, (s->mb_height-1)*16, 16);
  2684. ff_er_add_slice(s, 0, mby_start, s->mb_width - 1, mby_end - 1, (AC_END|DC_END|MV_END));
  2685. }
  2686. static void vc1_decode_p_blocks(VC1Context *v, int mby_start, int mby_end)
  2687. {
  2688. MpegEncContext *s = &v->s;
  2689. int apply_loop_filter;
  2690. /* select codingmode used for VLC tables selection */
  2691. switch(v->c_ac_table_index){
  2692. case 0:
  2693. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  2694. break;
  2695. case 1:
  2696. v->codingset = CS_HIGH_MOT_INTRA;
  2697. break;
  2698. case 2:
  2699. v->codingset = CS_MID_RATE_INTRA;
  2700. break;
  2701. }
  2702. switch(v->c_ac_table_index){
  2703. case 0:
  2704. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  2705. break;
  2706. case 1:
  2707. v->codingset2 = CS_HIGH_MOT_INTER;
  2708. break;
  2709. case 2:
  2710. v->codingset2 = CS_MID_RATE_INTER;
  2711. break;
  2712. }
  2713. apply_loop_filter = s->loop_filter && !(s->avctx->skip_loop_filter >= AVDISCARD_NONKEY);
  2714. s->first_slice_line = 1;
  2715. memset(v->cbp_base, 0, sizeof(v->cbp_base[0])*2*s->mb_stride);
  2716. for(s->mb_y = mby_start; s->mb_y < mby_end; s->mb_y++) {
  2717. s->mb_x = 0;
  2718. ff_init_block_index(s);
  2719. for(; s->mb_x < s->mb_width; s->mb_x++) {
  2720. ff_update_block_index(s);
  2721. vc1_decode_p_mb(v);
  2722. if (s->mb_y != mby_start && apply_loop_filter)
  2723. vc1_apply_p_loop_filter(v);
  2724. if(get_bits_count(&s->gb) > v->bits || get_bits_count(&s->gb) < 0) {
  2725. ff_er_add_slice(s, 0, mby_start, s->mb_x, s->mb_y, (AC_END|DC_END|MV_END));
  2726. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i at %ix%i\n", get_bits_count(&s->gb), v->bits,s->mb_x,s->mb_y);
  2727. return;
  2728. }
  2729. }
  2730. memmove(v->cbp_base, v->cbp, sizeof(v->cbp_base[0])*s->mb_stride);
  2731. memmove(v->ttblk_base, v->ttblk, sizeof(v->ttblk_base[0])*s->mb_stride);
  2732. memmove(v->is_intra_base, v->is_intra, sizeof(v->is_intra_base[0])*s->mb_stride);
  2733. memmove(v->luma_mv_base, v->luma_mv, sizeof(v->luma_mv_base[0])*s->mb_stride);
  2734. if (s->mb_y != mby_start) ff_draw_horiz_band(s, (s->mb_y-1) * 16, 16);
  2735. s->first_slice_line = 0;
  2736. }
  2737. if (apply_loop_filter) {
  2738. s->mb_x = 0;
  2739. ff_init_block_index(s);
  2740. for (; s->mb_x < s->mb_width; s->mb_x++) {
  2741. ff_update_block_index(s);
  2742. vc1_apply_p_loop_filter(v);
  2743. }
  2744. }
  2745. if (mby_end >= mby_start)
  2746. ff_draw_horiz_band(s, (mby_end-1) * 16, 16);
  2747. ff_er_add_slice(s, 0, mby_start, s->mb_width - 1, mby_end - 1, (AC_END|DC_END|MV_END));
  2748. }
  2749. static void vc1_decode_b_blocks(VC1Context *v, int mby_start, int mby_end)
  2750. {
  2751. MpegEncContext *s = &v->s;
  2752. /* select codingmode used for VLC tables selection */
  2753. switch(v->c_ac_table_index){
  2754. case 0:
  2755. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  2756. break;
  2757. case 1:
  2758. v->codingset = CS_HIGH_MOT_INTRA;
  2759. break;
  2760. case 2:
  2761. v->codingset = CS_MID_RATE_INTRA;
  2762. break;
  2763. }
  2764. switch(v->c_ac_table_index){
  2765. case 0:
  2766. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  2767. break;
  2768. case 1:
  2769. v->codingset2 = CS_HIGH_MOT_INTER;
  2770. break;
  2771. case 2:
  2772. v->codingset2 = CS_MID_RATE_INTER;
  2773. break;
  2774. }
  2775. s->first_slice_line = 1;
  2776. for(s->mb_y = mby_start; s->mb_y < mby_end; s->mb_y++) {
  2777. s->mb_x = 0;
  2778. ff_init_block_index(s);
  2779. for(; s->mb_x < s->mb_width; s->mb_x++) {
  2780. ff_update_block_index(s);
  2781. vc1_decode_b_mb(v);
  2782. if(get_bits_count(&s->gb) > v->bits || get_bits_count(&s->gb) < 0) {
  2783. ff_er_add_slice(s, 0, mby_start, s->mb_x, s->mb_y, (AC_END|DC_END|MV_END));
  2784. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i at %ix%i\n", get_bits_count(&s->gb), v->bits,s->mb_x,s->mb_y);
  2785. return;
  2786. }
  2787. if(v->s.loop_filter) vc1_loop_filter_iblk(v, v->pq);
  2788. }
  2789. if (!v->s.loop_filter)
  2790. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  2791. else if (s->mb_y)
  2792. ff_draw_horiz_band(s, (s->mb_y-1) * 16, 16);
  2793. s->first_slice_line = 0;
  2794. }
  2795. if (v->s.loop_filter)
  2796. ff_draw_horiz_band(s, (s->mb_height-1)*16, 16);
  2797. ff_er_add_slice(s, 0, mby_start, s->mb_width - 1, mby_end - 1, (AC_END|DC_END|MV_END));
  2798. }
  2799. static void vc1_decode_skip_blocks(VC1Context *v)
  2800. {
  2801. MpegEncContext *s = &v->s;
  2802. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  2803. s->first_slice_line = 1;
  2804. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  2805. s->mb_x = 0;
  2806. ff_init_block_index(s);
  2807. ff_update_block_index(s);
  2808. memcpy(s->dest[0], s->last_picture.data[0] + s->mb_y * 16 * s->linesize, s->linesize * 16);
  2809. memcpy(s->dest[1], s->last_picture.data[1] + s->mb_y * 8 * s->uvlinesize, s->uvlinesize * 8);
  2810. memcpy(s->dest[2], s->last_picture.data[2] + s->mb_y * 8 * s->uvlinesize, s->uvlinesize * 8);
  2811. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  2812. s->first_slice_line = 0;
  2813. }
  2814. s->pict_type = FF_P_TYPE;
  2815. }
  2816. static void vc1_decode_blocks(VC1Context *v, int mby_start, int mby_end)
  2817. {
  2818. v->s.esc3_level_length = 0;
  2819. if(v->x8_type){
  2820. ff_intrax8_decode_picture(&v->x8, 2*v->pq+v->halfpq, v->pq*(!v->pquantizer) );
  2821. }else{
  2822. switch(v->s.pict_type) {
  2823. case FF_I_TYPE:
  2824. if(v->profile == PROFILE_ADVANCED)
  2825. vc1_decode_i_blocks_adv(v, mby_start, mby_end);
  2826. else
  2827. vc1_decode_i_blocks(v);
  2828. break;
  2829. case FF_P_TYPE:
  2830. if(v->p_frame_skipped)
  2831. vc1_decode_skip_blocks(v);
  2832. else
  2833. vc1_decode_p_blocks(v, mby_start, mby_end);
  2834. break;
  2835. case FF_B_TYPE:
  2836. if(v->bi_type){
  2837. if(v->profile == PROFILE_ADVANCED)
  2838. vc1_decode_i_blocks_adv(v, mby_start, mby_end);
  2839. else
  2840. vc1_decode_i_blocks(v);
  2841. }else
  2842. vc1_decode_b_blocks(v, mby_start, mby_end);
  2843. break;
  2844. }
  2845. }
  2846. }
  2847. static inline float get_float_val(GetBitContext* gb)
  2848. {
  2849. return (float)get_bits_long(gb, 30) / (1<<15) - (1<<14);
  2850. }
  2851. static void vc1_sprite_parse_transform(VC1Context *v, GetBitContext* gb, float c[7])
  2852. {
  2853. c[1] = c[3] = 0.0f;
  2854. switch (get_bits(gb, 2)) {
  2855. case 0:
  2856. c[0] = 1.0f;
  2857. c[2] = get_float_val(gb);
  2858. c[4] = 1.0f;
  2859. break;
  2860. case 1:
  2861. c[0] = c[4] = get_float_val(gb);
  2862. c[2] = get_float_val(gb);
  2863. break;
  2864. case 2:
  2865. c[0] = get_float_val(gb);
  2866. c[2] = get_float_val(gb);
  2867. c[4] = get_float_val(gb);
  2868. break;
  2869. case 3:
  2870. av_log_ask_for_sample(v->s.avctx, NULL);
  2871. c[0] = get_float_val(gb);
  2872. c[1] = get_float_val(gb);
  2873. c[2] = get_float_val(gb);
  2874. c[3] = get_float_val(gb);
  2875. c[4] = get_float_val(gb);
  2876. break;
  2877. }
  2878. c[5] = get_float_val(gb);
  2879. if (get_bits1(gb))
  2880. c[6] = get_float_val(gb);
  2881. else
  2882. c[6] = 1.0f;
  2883. }
  2884. static void vc1_parse_sprites(VC1Context *v, GetBitContext* gb)
  2885. {
  2886. int effect_type, effect_flag, effect_pcount1, effect_pcount2, i;
  2887. float effect_params1[14], effect_params2[10];
  2888. float coefs[2][7];
  2889. vc1_sprite_parse_transform(v, gb, coefs[0]);
  2890. av_log(v->s.avctx, AV_LOG_DEBUG, "S1:");
  2891. for (i = 0; i < 7; i++)
  2892. av_log(v->s.avctx, AV_LOG_DEBUG, " %.3f", coefs[0][i]);
  2893. av_log(v->s.avctx, AV_LOG_DEBUG, "\n");
  2894. if (v->two_sprites) {
  2895. vc1_sprite_parse_transform(v, gb, coefs[1]);
  2896. av_log(v->s.avctx, AV_LOG_DEBUG, "S2:");
  2897. for (i = 0; i < 7; i++)
  2898. av_log(v->s.avctx, AV_LOG_DEBUG, " %.3f", coefs[1][i]);
  2899. av_log(v->s.avctx, AV_LOG_DEBUG, "\n");
  2900. }
  2901. skip_bits(gb, 2);
  2902. if (effect_type = get_bits_long(gb, 30)){
  2903. switch (effect_pcount1 = get_bits(gb, 4)) {
  2904. case 2:
  2905. effect_params1[0] = get_float_val(gb);
  2906. effect_params1[1] = get_float_val(gb);
  2907. break;
  2908. case 7:
  2909. vc1_sprite_parse_transform(v, gb, effect_params1);
  2910. break;
  2911. case 14:
  2912. vc1_sprite_parse_transform(v, gb, effect_params1);
  2913. vc1_sprite_parse_transform(v, gb, &effect_params1[7]);
  2914. break;
  2915. default:
  2916. av_log_ask_for_sample(v->s.avctx, NULL);
  2917. return;
  2918. }
  2919. if (effect_type != 13 || effect_params1[0] != coefs[0][6]) {
  2920. // effect 13 is simple alpha blending and matches the opacity above
  2921. av_log(v->s.avctx, AV_LOG_DEBUG, "Effect: %d; params: ", effect_type);
  2922. for (i = 0; i < effect_pcount1; i++)
  2923. av_log(v->s.avctx, AV_LOG_DEBUG, " %.3f", effect_params1[i]);
  2924. av_log(v->s.avctx, AV_LOG_DEBUG, "\n");
  2925. }
  2926. effect_pcount2 = get_bits(gb, 16);
  2927. if (effect_pcount2 > 10) {
  2928. av_log(v->s.avctx, AV_LOG_ERROR, "Too many effect parameters\n");
  2929. return;
  2930. } else if (effect_pcount2) {
  2931. i = 0;
  2932. av_log(v->s.avctx, AV_LOG_DEBUG, "Effect params 2: ");
  2933. while (i < effect_pcount2){
  2934. effect_params2[i] = get_float_val(gb);
  2935. av_log(v->s.avctx, AV_LOG_DEBUG, " %.3f", effect_params2[i]);
  2936. i++;
  2937. }
  2938. av_log(v->s.avctx, AV_LOG_DEBUG, "\n");
  2939. }
  2940. }
  2941. if (effect_flag = get_bits1(gb))
  2942. av_log(v->s.avctx, AV_LOG_DEBUG, "Effect flag set\n");
  2943. if (get_bits_count(gb) >= gb->size_in_bits +
  2944. (v->s.avctx->codec_id == CODEC_ID_WMV3 ? 64 : 0))
  2945. av_log(v->s.avctx, AV_LOG_ERROR, "Buffer overrun\n");
  2946. if (get_bits_count(gb) < gb->size_in_bits - 8)
  2947. av_log(v->s.avctx, AV_LOG_WARNING, "Buffer not fully read\n");
  2948. }
  2949. /** Initialize a VC1/WMV3 decoder
  2950. * @todo TODO: Handle VC-1 IDUs (Transport level?)
  2951. * @todo TODO: Decypher remaining bits in extra_data
  2952. */
  2953. static av_cold int vc1_decode_init(AVCodecContext *avctx)
  2954. {
  2955. VC1Context *v = avctx->priv_data;
  2956. MpegEncContext *s = &v->s;
  2957. GetBitContext gb;
  2958. int i;
  2959. if (!avctx->extradata_size || !avctx->extradata) return -1;
  2960. if (!(avctx->flags & CODEC_FLAG_GRAY))
  2961. avctx->pix_fmt = avctx->get_format(avctx, avctx->codec->pix_fmts);
  2962. else
  2963. avctx->pix_fmt = PIX_FMT_GRAY8;
  2964. avctx->hwaccel = ff_find_hwaccel(avctx->codec->id, avctx->pix_fmt);
  2965. v->s.avctx = avctx;
  2966. avctx->flags |= CODEC_FLAG_EMU_EDGE;
  2967. v->s.flags |= CODEC_FLAG_EMU_EDGE;
  2968. if(avctx->idct_algo==FF_IDCT_AUTO){
  2969. avctx->idct_algo=FF_IDCT_WMV2;
  2970. }
  2971. if(ff_msmpeg4_decode_init(avctx) < 0)
  2972. return -1;
  2973. if (vc1_init_common(v) < 0) return -1;
  2974. ff_vc1dsp_init(&v->vc1dsp);
  2975. for (i = 0; i < 64; i++) {
  2976. #define transpose(x) ((x>>3) | ((x&7)<<3))
  2977. v->zz_8x8[0][i] = transpose(wmv1_scantable[0][i]);
  2978. v->zz_8x8[1][i] = transpose(wmv1_scantable[1][i]);
  2979. v->zz_8x8[2][i] = transpose(wmv1_scantable[2][i]);
  2980. v->zz_8x8[3][i] = transpose(wmv1_scantable[3][i]);
  2981. }
  2982. avctx->coded_width = avctx->width;
  2983. avctx->coded_height = avctx->height;
  2984. if (avctx->codec_id == CODEC_ID_WMV3)
  2985. {
  2986. int count = 0;
  2987. // looks like WMV3 has a sequence header stored in the extradata
  2988. // advanced sequence header may be before the first frame
  2989. // the last byte of the extradata is a version number, 1 for the
  2990. // samples we can decode
  2991. init_get_bits(&gb, avctx->extradata, avctx->extradata_size*8);
  2992. if (vc1_decode_sequence_header(avctx, v, &gb) < 0)
  2993. return -1;
  2994. count = avctx->extradata_size*8 - get_bits_count(&gb);
  2995. if (count>0)
  2996. {
  2997. av_log(avctx, AV_LOG_INFO, "Extra data: %i bits left, value: %X\n",
  2998. count, get_bits(&gb, count));
  2999. }
  3000. else if (count < 0)
  3001. {
  3002. av_log(avctx, AV_LOG_INFO, "Read %i bits in overflow\n", -count);
  3003. }
  3004. } else { // VC1/WVC1/WVP2
  3005. const uint8_t *start = avctx->extradata;
  3006. uint8_t *end = avctx->extradata + avctx->extradata_size;
  3007. const uint8_t *next;
  3008. int size, buf2_size;
  3009. uint8_t *buf2 = NULL;
  3010. int seq_initialized = 0, ep_initialized = 0;
  3011. if(avctx->extradata_size < 16) {
  3012. av_log(avctx, AV_LOG_ERROR, "Extradata size too small: %i\n", avctx->extradata_size);
  3013. return -1;
  3014. }
  3015. buf2 = av_mallocz(avctx->extradata_size + FF_INPUT_BUFFER_PADDING_SIZE);
  3016. start = find_next_marker(start, end); // in WVC1 extradata first byte is its size, but can be 0 in mkv
  3017. next = start;
  3018. for(; next < end; start = next){
  3019. next = find_next_marker(start + 4, end);
  3020. size = next - start - 4;
  3021. if(size <= 0) continue;
  3022. buf2_size = vc1_unescape_buffer(start + 4, size, buf2);
  3023. init_get_bits(&gb, buf2, buf2_size * 8);
  3024. switch(AV_RB32(start)){
  3025. case VC1_CODE_SEQHDR:
  3026. if(vc1_decode_sequence_header(avctx, v, &gb) < 0){
  3027. av_free(buf2);
  3028. return -1;
  3029. }
  3030. seq_initialized = 1;
  3031. break;
  3032. case VC1_CODE_ENTRYPOINT:
  3033. if(vc1_decode_entry_point(avctx, v, &gb) < 0){
  3034. av_free(buf2);
  3035. return -1;
  3036. }
  3037. ep_initialized = 1;
  3038. break;
  3039. }
  3040. }
  3041. av_free(buf2);
  3042. if(!seq_initialized || !ep_initialized){
  3043. av_log(avctx, AV_LOG_ERROR, "Incomplete extradata\n");
  3044. return -1;
  3045. }
  3046. v->res_sprite = (avctx->codec_tag == MKTAG('W','V','P','2'));
  3047. }
  3048. avctx->profile = v->profile;
  3049. if (v->profile == PROFILE_ADVANCED)
  3050. avctx->level = v->level;
  3051. avctx->has_b_frames= !!(avctx->max_b_frames);
  3052. s->low_delay = !avctx->has_b_frames;
  3053. s->mb_width = (avctx->coded_width+15)>>4;
  3054. s->mb_height = (avctx->coded_height+15)>>4;
  3055. /* Allocate mb bitplanes */
  3056. v->mv_type_mb_plane = av_malloc(s->mb_stride * s->mb_height);
  3057. v->direct_mb_plane = av_malloc(s->mb_stride * s->mb_height);
  3058. v->acpred_plane = av_malloc(s->mb_stride * s->mb_height);
  3059. v->over_flags_plane = av_malloc(s->mb_stride * s->mb_height);
  3060. v->cbp_base = av_malloc(sizeof(v->cbp_base[0]) * 2 * s->mb_stride);
  3061. v->cbp = v->cbp_base + s->mb_stride;
  3062. v->ttblk_base = av_malloc(sizeof(v->ttblk_base[0]) * 2 * s->mb_stride);
  3063. v->ttblk = v->ttblk_base + s->mb_stride;
  3064. v->is_intra_base = av_malloc(sizeof(v->is_intra_base[0]) * 2 * s->mb_stride);
  3065. v->is_intra = v->is_intra_base + s->mb_stride;
  3066. v->luma_mv_base = av_malloc(sizeof(v->luma_mv_base[0]) * 2 * s->mb_stride);
  3067. v->luma_mv = v->luma_mv_base + s->mb_stride;
  3068. /* allocate block type info in that way so it could be used with s->block_index[] */
  3069. v->mb_type_base = av_malloc(s->b8_stride * (s->mb_height * 2 + 1) + s->mb_stride * (s->mb_height + 1) * 2);
  3070. v->mb_type[0] = v->mb_type_base + s->b8_stride + 1;
  3071. v->mb_type[1] = v->mb_type_base + s->b8_stride * (s->mb_height * 2 + 1) + s->mb_stride + 1;
  3072. v->mb_type[2] = v->mb_type[1] + s->mb_stride * (s->mb_height + 1);
  3073. /* Init coded blocks info */
  3074. if (v->profile == PROFILE_ADVANCED)
  3075. {
  3076. // if (alloc_bitplane(&v->over_flags_plane, s->mb_width, s->mb_height) < 0)
  3077. // return -1;
  3078. // if (alloc_bitplane(&v->ac_pred_plane, s->mb_width, s->mb_height) < 0)
  3079. // return -1;
  3080. }
  3081. ff_intrax8_common_init(&v->x8,s);
  3082. return 0;
  3083. }
  3084. /** Decode a VC1/WMV3 frame
  3085. * @todo TODO: Handle VC-1 IDUs (Transport level?)
  3086. */
  3087. static int vc1_decode_frame(AVCodecContext *avctx,
  3088. void *data, int *data_size,
  3089. AVPacket *avpkt)
  3090. {
  3091. const uint8_t *buf = avpkt->data;
  3092. int buf_size = avpkt->size, n_slices = 0, i;
  3093. VC1Context *v = avctx->priv_data;
  3094. MpegEncContext *s = &v->s;
  3095. AVFrame *pict = data;
  3096. uint8_t *buf2 = NULL;
  3097. const uint8_t *buf_start = buf;
  3098. struct {
  3099. uint8_t *buf;
  3100. GetBitContext gb;
  3101. int mby_start;
  3102. } *slices = NULL;
  3103. /* no supplementary picture */
  3104. if (buf_size == 0 || (buf_size == 4 && AV_RB32(buf) == VC1_CODE_ENDOFSEQ)) {
  3105. /* special case for last picture */
  3106. if (s->low_delay==0 && s->next_picture_ptr) {
  3107. *pict= *(AVFrame*)s->next_picture_ptr;
  3108. s->next_picture_ptr= NULL;
  3109. *data_size = sizeof(AVFrame);
  3110. }
  3111. return 0;
  3112. }
  3113. /* We need to set current_picture_ptr before reading the header,
  3114. * otherwise we cannot store anything in there. */
  3115. if(s->current_picture_ptr==NULL || s->current_picture_ptr->data[0]){
  3116. int i= ff_find_unused_picture(s, 0);
  3117. s->current_picture_ptr= &s->picture[i];
  3118. }
  3119. if (s->avctx->codec->capabilities&CODEC_CAP_HWACCEL_VDPAU){
  3120. if (v->profile < PROFILE_ADVANCED)
  3121. avctx->pix_fmt = PIX_FMT_VDPAU_WMV3;
  3122. else
  3123. avctx->pix_fmt = PIX_FMT_VDPAU_VC1;
  3124. }
  3125. //for advanced profile we may need to parse and unescape data
  3126. if (avctx->codec_id == CODEC_ID_VC1) {
  3127. int buf_size2 = 0;
  3128. buf2 = av_mallocz(buf_size + FF_INPUT_BUFFER_PADDING_SIZE);
  3129. if(IS_MARKER(AV_RB32(buf))){ /* frame starts with marker and needs to be parsed */
  3130. const uint8_t *start, *end, *next;
  3131. int size;
  3132. next = buf;
  3133. for(start = buf, end = buf + buf_size; next < end; start = next){
  3134. next = find_next_marker(start + 4, end);
  3135. size = next - start - 4;
  3136. if(size <= 0) continue;
  3137. switch(AV_RB32(start)){
  3138. case VC1_CODE_FRAME:
  3139. if (avctx->hwaccel ||
  3140. s->avctx->codec->capabilities&CODEC_CAP_HWACCEL_VDPAU)
  3141. buf_start = start;
  3142. buf_size2 = vc1_unescape_buffer(start + 4, size, buf2);
  3143. break;
  3144. case VC1_CODE_ENTRYPOINT: /* it should be before frame data */
  3145. buf_size2 = vc1_unescape_buffer(start + 4, size, buf2);
  3146. init_get_bits(&s->gb, buf2, buf_size2*8);
  3147. vc1_decode_entry_point(avctx, v, &s->gb);
  3148. break;
  3149. case VC1_CODE_SLICE: {
  3150. int buf_size3;
  3151. slices = av_realloc(slices, sizeof(*slices) * (n_slices+1));
  3152. if (!slices) goto err;
  3153. slices[n_slices].buf = av_mallocz(buf_size + FF_INPUT_BUFFER_PADDING_SIZE);
  3154. if (!slices[n_slices].buf) goto err;
  3155. buf_size3 = vc1_unescape_buffer(start + 4, size,
  3156. slices[n_slices].buf);
  3157. init_get_bits(&slices[n_slices].gb, slices[n_slices].buf,
  3158. buf_size3 << 3);
  3159. slices[n_slices].mby_start = get_bits(&slices[n_slices].gb, 9);
  3160. n_slices++;
  3161. break;
  3162. }
  3163. }
  3164. }
  3165. }else if(v->interlace && ((buf[0] & 0xC0) == 0xC0)){ /* WVC1 interlaced stores both fields divided by marker */
  3166. const uint8_t *divider;
  3167. divider = find_next_marker(buf, buf + buf_size);
  3168. if((divider == (buf + buf_size)) || AV_RB32(divider) != VC1_CODE_FIELD){
  3169. av_log(avctx, AV_LOG_ERROR, "Error in WVC1 interlaced frame\n");
  3170. goto err;
  3171. }
  3172. buf_size2 = vc1_unescape_buffer(buf, divider - buf, buf2);
  3173. // TODO
  3174. if(!v->warn_interlaced++)
  3175. av_log(v->s.avctx, AV_LOG_ERROR, "Interlaced WVC1 support is not implemented\n");
  3176. goto err;
  3177. }else{
  3178. buf_size2 = vc1_unescape_buffer(buf, buf_size, buf2);
  3179. }
  3180. init_get_bits(&s->gb, buf2, buf_size2*8);
  3181. } else
  3182. init_get_bits(&s->gb, buf, buf_size*8);
  3183. if (v->res_sprite) {
  3184. v->new_sprite = !get_bits1(&s->gb);
  3185. v->two_sprites = get_bits1(&s->gb);
  3186. if (!v->new_sprite)
  3187. goto end;
  3188. }
  3189. // do parse frame header
  3190. if(v->profile < PROFILE_ADVANCED) {
  3191. if(vc1_parse_frame_header(v, &s->gb) == -1) {
  3192. goto err;
  3193. }
  3194. } else {
  3195. if(vc1_parse_frame_header_adv(v, &s->gb) == -1) {
  3196. goto err;
  3197. }
  3198. }
  3199. if (v->res_sprite && s->pict_type!=FF_I_TYPE) {
  3200. av_log(v->s.avctx, AV_LOG_WARNING, "Sprite decoder: expected I-frame\n");
  3201. }
  3202. // for skipping the frame
  3203. s->current_picture.pict_type= s->pict_type;
  3204. s->current_picture.key_frame= s->pict_type == FF_I_TYPE;
  3205. /* skip B-frames if we don't have reference frames */
  3206. if(s->last_picture_ptr==NULL && (s->pict_type==FF_B_TYPE || s->dropable)){
  3207. goto err;
  3208. }
  3209. #if FF_API_HURRY_UP
  3210. /* skip b frames if we are in a hurry */
  3211. if(avctx->hurry_up && s->pict_type==FF_B_TYPE) return -1;//buf_size;
  3212. #endif
  3213. if( (avctx->skip_frame >= AVDISCARD_NONREF && s->pict_type==FF_B_TYPE)
  3214. || (avctx->skip_frame >= AVDISCARD_NONKEY && s->pict_type!=FF_I_TYPE)
  3215. || avctx->skip_frame >= AVDISCARD_ALL) {
  3216. goto end;
  3217. }
  3218. #if FF_API_HURRY_UP
  3219. /* skip everything if we are in a hurry>=5 */
  3220. if(avctx->hurry_up>=5) {
  3221. goto err;
  3222. }
  3223. #endif
  3224. if(s->next_p_frame_damaged){
  3225. if(s->pict_type==FF_B_TYPE)
  3226. goto end;
  3227. else
  3228. s->next_p_frame_damaged=0;
  3229. }
  3230. if(MPV_frame_start(s, avctx) < 0) {
  3231. goto err;
  3232. }
  3233. s->me.qpel_put= s->dsp.put_qpel_pixels_tab;
  3234. s->me.qpel_avg= s->dsp.avg_qpel_pixels_tab;
  3235. if ((CONFIG_VC1_VDPAU_DECODER)
  3236. &&s->avctx->codec->capabilities&CODEC_CAP_HWACCEL_VDPAU)
  3237. ff_vdpau_vc1_decode_picture(s, buf_start, (buf + buf_size) - buf_start);
  3238. else if (avctx->hwaccel) {
  3239. if (avctx->hwaccel->start_frame(avctx, buf, buf_size) < 0)
  3240. goto err;
  3241. if (avctx->hwaccel->decode_slice(avctx, buf_start, (buf + buf_size) - buf_start) < 0)
  3242. goto err;
  3243. if (avctx->hwaccel->end_frame(avctx) < 0)
  3244. goto err;
  3245. } else {
  3246. ff_er_frame_start(s);
  3247. v->bits = buf_size * 8;
  3248. for (i = 0; i <= n_slices; i++) {
  3249. if (i && get_bits1(&s->gb))
  3250. vc1_parse_frame_header_adv(v, &s->gb);
  3251. vc1_decode_blocks(v, i == 0 ? 0 : FFMAX(0, slices[i-1].mby_start),
  3252. i == n_slices ? s->mb_height : FFMIN(s->mb_height, slices[i].mby_start));
  3253. if (i != n_slices) s->gb = slices[i].gb;
  3254. }
  3255. //av_log(s->avctx, AV_LOG_INFO, "Consumed %i/%i bits\n", get_bits_count(&s->gb), s->gb.size_in_bits);
  3256. // if(get_bits_count(&s->gb) > buf_size * 8)
  3257. // return -1;
  3258. ff_er_frame_end(s);
  3259. }
  3260. MPV_frame_end(s);
  3261. assert(s->current_picture.pict_type == s->current_picture_ptr->pict_type);
  3262. assert(s->current_picture.pict_type == s->pict_type);
  3263. if (s->pict_type == FF_B_TYPE || s->low_delay) {
  3264. *pict= *(AVFrame*)s->current_picture_ptr;
  3265. } else if (s->last_picture_ptr != NULL) {
  3266. *pict= *(AVFrame*)s->last_picture_ptr;
  3267. }
  3268. if(s->last_picture_ptr || s->low_delay){
  3269. *data_size = sizeof(AVFrame);
  3270. ff_print_debug_info(s, pict);
  3271. }
  3272. end:
  3273. if (v->res_sprite)
  3274. vc1_parse_sprites(v, &s->gb);
  3275. av_free(buf2);
  3276. for (i = 0; i < n_slices; i++)
  3277. av_free(slices[i].buf);
  3278. av_free(slices);
  3279. return buf_size;
  3280. err:
  3281. av_free(buf2);
  3282. for (i = 0; i < n_slices; i++)
  3283. av_free(slices[i].buf);
  3284. av_free(slices);
  3285. return -1;
  3286. }
  3287. /** Close a VC1/WMV3 decoder
  3288. * @warning Initial try at using MpegEncContext stuff
  3289. */
  3290. static av_cold int vc1_decode_end(AVCodecContext *avctx)
  3291. {
  3292. VC1Context *v = avctx->priv_data;
  3293. av_freep(&v->hrd_rate);
  3294. av_freep(&v->hrd_buffer);
  3295. MPV_common_end(&v->s);
  3296. av_freep(&v->mv_type_mb_plane);
  3297. av_freep(&v->direct_mb_plane);
  3298. av_freep(&v->acpred_plane);
  3299. av_freep(&v->over_flags_plane);
  3300. av_freep(&v->mb_type_base);
  3301. av_freep(&v->cbp_base);
  3302. av_freep(&v->ttblk_base);
  3303. av_freep(&v->is_intra_base); // FIXME use v->mb_type[]
  3304. av_freep(&v->luma_mv_base);
  3305. ff_intrax8_common_end(&v->x8);
  3306. return 0;
  3307. }
  3308. static const AVProfile profiles[] = {
  3309. { FF_PROFILE_VC1_SIMPLE, "Simple" },
  3310. { FF_PROFILE_VC1_MAIN, "Main" },
  3311. { FF_PROFILE_VC1_COMPLEX, "Complex" },
  3312. { FF_PROFILE_VC1_ADVANCED, "Advanced" },
  3313. { FF_PROFILE_UNKNOWN },
  3314. };
  3315. AVCodec ff_vc1_decoder = {
  3316. "vc1",
  3317. AVMEDIA_TYPE_VIDEO,
  3318. CODEC_ID_VC1,
  3319. sizeof(VC1Context),
  3320. vc1_decode_init,
  3321. NULL,
  3322. vc1_decode_end,
  3323. vc1_decode_frame,
  3324. CODEC_CAP_DR1 | CODEC_CAP_DELAY,
  3325. NULL,
  3326. .long_name = NULL_IF_CONFIG_SMALL("SMPTE VC-1"),
  3327. .pix_fmts = ff_hwaccel_pixfmt_list_420,
  3328. .profiles = NULL_IF_CONFIG_SMALL(profiles)
  3329. };
  3330. #if CONFIG_WMV3_DECODER
  3331. AVCodec ff_wmv3_decoder = {
  3332. "wmv3",
  3333. AVMEDIA_TYPE_VIDEO,
  3334. CODEC_ID_WMV3,
  3335. sizeof(VC1Context),
  3336. vc1_decode_init,
  3337. NULL,
  3338. vc1_decode_end,
  3339. vc1_decode_frame,
  3340. CODEC_CAP_DR1 | CODEC_CAP_DELAY,
  3341. NULL,
  3342. .long_name = NULL_IF_CONFIG_SMALL("Windows Media Video 9"),
  3343. .pix_fmts = ff_hwaccel_pixfmt_list_420,
  3344. .profiles = NULL_IF_CONFIG_SMALL(profiles)
  3345. };
  3346. #endif
  3347. #if CONFIG_WMV3_VDPAU_DECODER
  3348. AVCodec ff_wmv3_vdpau_decoder = {
  3349. "wmv3_vdpau",
  3350. AVMEDIA_TYPE_VIDEO,
  3351. CODEC_ID_WMV3,
  3352. sizeof(VC1Context),
  3353. vc1_decode_init,
  3354. NULL,
  3355. vc1_decode_end,
  3356. vc1_decode_frame,
  3357. CODEC_CAP_DR1 | CODEC_CAP_DELAY | CODEC_CAP_HWACCEL_VDPAU,
  3358. NULL,
  3359. .long_name = NULL_IF_CONFIG_SMALL("Windows Media Video 9 VDPAU"),
  3360. .pix_fmts = (const enum PixelFormat[]){PIX_FMT_VDPAU_WMV3, PIX_FMT_NONE},
  3361. .profiles = NULL_IF_CONFIG_SMALL(profiles)
  3362. };
  3363. #endif
  3364. #if CONFIG_VC1_VDPAU_DECODER
  3365. AVCodec ff_vc1_vdpau_decoder = {
  3366. "vc1_vdpau",
  3367. AVMEDIA_TYPE_VIDEO,
  3368. CODEC_ID_VC1,
  3369. sizeof(VC1Context),
  3370. vc1_decode_init,
  3371. NULL,
  3372. vc1_decode_end,
  3373. vc1_decode_frame,
  3374. CODEC_CAP_DR1 | CODEC_CAP_DELAY | CODEC_CAP_HWACCEL_VDPAU,
  3375. NULL,
  3376. .long_name = NULL_IF_CONFIG_SMALL("SMPTE VC-1 VDPAU"),
  3377. .pix_fmts = (const enum PixelFormat[]){PIX_FMT_VDPAU_VC1, PIX_FMT_NONE},
  3378. .profiles = NULL_IF_CONFIG_SMALL(profiles)
  3379. };
  3380. #endif