You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1298 lines
37KB

  1. @chapter Filtergraph description
  2. @c man begin FILTERGRAPH DESCRIPTION
  3. A filtergraph is a directed graph of connected filters. It can contain
  4. cycles, and there can be multiple links between a pair of
  5. filters. Each link has one input pad on one side connecting it to one
  6. filter from which it takes its input, and one output pad on the other
  7. side connecting it to the one filter accepting its output.
  8. Each filter in a filtergraph is an instance of a filter class
  9. registered in the application, which defines the features and the
  10. number of input and output pads of the filter.
  11. A filter with no input pads is called a "source", a filter with no
  12. output pads is called a "sink".
  13. @section Filtergraph syntax
  14. A filtergraph can be represented using a textual representation, which
  15. is recognized by the @code{-vf} and @code{-af} options of the ff*
  16. tools, and by the @code{av_parse_graph()} function defined in
  17. @file{libavfilter/avfiltergraph}.
  18. A filterchain consists of a sequence of connected filters, each one
  19. connected to the previous one in the sequence. A filterchain is
  20. represented by a list of ","-separated filter descriptions.
  21. A filtergraph consists of a sequence of filterchains. A sequence of
  22. filterchains is represented by a list of ";"-separated filterchain
  23. descriptions.
  24. A filter is represented by a string of the form:
  25. [@var{in_link_1}]...[@var{in_link_N}]@var{filter_name}=@var{arguments}[@var{out_link_1}]...[@var{out_link_M}]
  26. @var{filter_name} is the name of the filter class of which the
  27. described filter is an instance of, and has to be the name of one of
  28. the filter classes registered in the program.
  29. The name of the filter class is optionally followed by a string
  30. "=@var{arguments}".
  31. @var{arguments} is a string which contains the parameters used to
  32. initialize the filter instance, and are described in the filter
  33. descriptions below.
  34. The list of arguments can be quoted using the character "'" as initial
  35. and ending mark, and the character '\' for escaping the characters
  36. within the quoted text; otherwise the argument string is considered
  37. terminated when the next special character (belonging to the set
  38. "[]=;,") is encountered.
  39. The name and arguments of the filter are optionally preceded and
  40. followed by a list of link labels.
  41. A link label allows to name a link and associate it to a filter output
  42. or input pad. The preceding labels @var{in_link_1}
  43. ... @var{in_link_N}, are associated to the filter input pads,
  44. the following labels @var{out_link_1} ... @var{out_link_M}, are
  45. associated to the output pads.
  46. When two link labels with the same name are found in the
  47. filtergraph, a link between the corresponding input and output pad is
  48. created.
  49. If an output pad is not labelled, it is linked by default to the first
  50. unlabelled input pad of the next filter in the filterchain.
  51. For example in the filterchain:
  52. @example
  53. nullsrc, split[L1], [L2]overlay, nullsink
  54. @end example
  55. the split filter instance has two output pads, and the overlay filter
  56. instance two input pads. The first output pad of split is labelled
  57. "L1", the first input pad of overlay is labelled "L2", and the second
  58. output pad of split is linked to the second input pad of overlay,
  59. which are both unlabelled.
  60. In a complete filterchain all the unlabelled filter input and output
  61. pads must be connected. A filtergraph is considered valid if all the
  62. filter input and output pads of all the filterchains are connected.
  63. Follows a BNF description for the filtergraph syntax:
  64. @example
  65. @var{NAME} ::= sequence of alphanumeric characters and '_'
  66. @var{LINKLABEL} ::= "[" @var{NAME} "]"
  67. @var{LINKLABELS} ::= @var{LINKLABEL} [@var{LINKLABELS}]
  68. @var{FILTER_ARGUMENTS} ::= sequence of chars (eventually quoted)
  69. @var{FILTER} ::= [@var{LINKNAMES}] @var{NAME} ["=" @var{ARGUMENTS}] [@var{LINKNAMES}]
  70. @var{FILTERCHAIN} ::= @var{FILTER} [,@var{FILTERCHAIN}]
  71. @var{FILTERGRAPH} ::= @var{FILTERCHAIN} [;@var{FILTERGRAPH}]
  72. @end example
  73. @c man end FILTERGRAPH DESCRIPTION
  74. @chapter Audio Filters
  75. @c man begin AUDIO FILTERS
  76. When you configure your Libav build, you can disable any of the
  77. existing filters using --disable-filters.
  78. The configure output will show the audio filters included in your
  79. build.
  80. Below is a description of the currently available audio filters.
  81. @section anull
  82. Pass the audio source unchanged to the output.
  83. @c man end AUDIO FILTERS
  84. @chapter Audio Sources
  85. @c man begin AUDIO SOURCES
  86. Below is a description of the currently available audio sources.
  87. @section anullsrc
  88. Null audio source, never return audio frames. It is mainly useful as a
  89. template and to be employed in analysis / debugging tools.
  90. It accepts as optional parameter a string of the form
  91. @var{sample_rate}:@var{channel_layout}.
  92. @var{sample_rate} specify the sample rate, and defaults to 44100.
  93. @var{channel_layout} specify the channel layout, and can be either an
  94. integer or a string representing a channel layout. The default value
  95. of @var{channel_layout} is 3, which corresponds to CH_LAYOUT_STEREO.
  96. Check the channel_layout_map definition in
  97. @file{libavcodec/audioconvert.c} for the mapping between strings and
  98. channel layout values.
  99. Follow some examples:
  100. @example
  101. # set the sample rate to 48000 Hz and the channel layout to CH_LAYOUT_MONO.
  102. anullsrc=48000:4
  103. # same as
  104. anullsrc=48000:mono
  105. @end example
  106. @c man end AUDIO SOURCES
  107. @chapter Audio Sinks
  108. @c man begin AUDIO SINKS
  109. Below is a description of the currently available audio sinks.
  110. @section anullsink
  111. Null audio sink, do absolutely nothing with the input audio. It is
  112. mainly useful as a template and to be employed in analysis / debugging
  113. tools.
  114. @c man end AUDIO SINKS
  115. @chapter Video Filters
  116. @c man begin VIDEO FILTERS
  117. When you configure your Libav build, you can disable any of the
  118. existing filters using --disable-filters.
  119. The configure output will show the video filters included in your
  120. build.
  121. Below is a description of the currently available video filters.
  122. @section blackframe
  123. Detect frames that are (almost) completely black. Can be useful to
  124. detect chapter transitions or commercials. Output lines consist of
  125. the frame number of the detected frame, the percentage of blackness,
  126. the position in the file if known or -1 and the timestamp in seconds.
  127. In order to display the output lines, you need to set the loglevel at
  128. least to the AV_LOG_INFO value.
  129. The filter accepts the syntax:
  130. @example
  131. blackframe[=@var{amount}:[@var{threshold}]]
  132. @end example
  133. @var{amount} is the percentage of the pixels that have to be below the
  134. threshold, and defaults to 98.
  135. @var{threshold} is the threshold below which a pixel value is
  136. considered black, and defaults to 32.
  137. @section copy
  138. Copy the input source unchanged to the output. Mainly useful for
  139. testing purposes.
  140. @section crop
  141. Crop the input video to @var{out_w}:@var{out_h}:@var{x}:@var{y}.
  142. The parameters are expressions containing the following constants:
  143. @table @option
  144. @item E, PI, PHI
  145. the corresponding mathematical approximated values for e
  146. (euler number), pi (greek PI), PHI (golden ratio)
  147. @item x, y
  148. the computed values for @var{x} and @var{y}. They are evaluated for
  149. each new frame.
  150. @item in_w, in_h
  151. the input width and heigth
  152. @item iw, ih
  153. same as @var{in_w} and @var{in_h}
  154. @item out_w, out_h
  155. the output (cropped) width and heigth
  156. @item ow, oh
  157. same as @var{out_w} and @var{out_h}
  158. @item n
  159. the number of input frame, starting from 0
  160. @item pos
  161. the position in the file of the input frame, NAN if unknown
  162. @item t
  163. timestamp expressed in seconds, NAN if the input timestamp is unknown
  164. @end table
  165. The @var{out_w} and @var{out_h} parameters specify the expressions for
  166. the width and height of the output (cropped) video. They are
  167. evaluated just at the configuration of the filter.
  168. The default value of @var{out_w} is "in_w", and the default value of
  169. @var{out_h} is "in_h".
  170. The expression for @var{out_w} may depend on the value of @var{out_h},
  171. and the expression for @var{out_h} may depend on @var{out_w}, but they
  172. cannot depend on @var{x} and @var{y}, as @var{x} and @var{y} are
  173. evaluated after @var{out_w} and @var{out_h}.
  174. The @var{x} and @var{y} parameters specify the expressions for the
  175. position of the top-left corner of the output (non-cropped) area. They
  176. are evaluated for each frame. If the evaluated value is not valid, it
  177. is approximated to the nearest valid value.
  178. The default value of @var{x} is "(in_w-out_w)/2", and the default
  179. value for @var{y} is "(in_h-out_h)/2", which set the cropped area at
  180. the center of the input image.
  181. The expression for @var{x} may depend on @var{y}, and the expression
  182. for @var{y} may depend on @var{x}.
  183. Follow some examples:
  184. @example
  185. # crop the central input area with size 100x100
  186. crop=100:100
  187. # crop the central input area with size 2/3 of the input video
  188. "crop=2/3*in_w:2/3*in_h"
  189. # crop the input video central square
  190. crop=in_h
  191. # delimit the rectangle with the top-left corner placed at position
  192. # 100:100 and the right-bottom corner corresponding to the right-bottom
  193. # corner of the input image.
  194. crop=in_w-100:in_h-100:100:100
  195. # crop 10 pixels from the left and right borders, and 20 pixels from
  196. # the top and bottom borders
  197. "crop=in_w-2*10:in_h-2*20"
  198. # keep only the bottom right quarter of the input image
  199. "crop=in_w/2:in_h/2:in_w/2:in_h/2"
  200. # crop height for getting Greek harmony
  201. "crop=in_w:1/PHI*in_w"
  202. # trembling effect
  203. "crop=in_w/2:in_h/2:(in_w-out_w)/2+((in_w-out_w)/2)*sin(n/10):(in_h-out_h)/2 +((in_h-out_h)/2)*sin(n/7)"
  204. # erratic camera effect depending on timestamp
  205. "crop=in_w/2:in_h/2:(in_w-out_w)/2+((in_w-out_w)/2)*sin(t*10):(in_h-out_h)/2 +((in_h-out_h)/2)*sin(t*13)"
  206. # set x depending on the value of y
  207. "crop=in_w/2:in_h/2:y:10+10*sin(n/10)"
  208. @end example
  209. @section cropdetect
  210. Auto-detect crop size.
  211. Calculate necessary cropping parameters and prints the recommended
  212. parameters through the logging system. The detected dimensions
  213. correspond to the non-black area of the input video.
  214. It accepts the syntax:
  215. @example
  216. cropdetect[=@var{limit}[:@var{round}[:@var{reset}]]]
  217. @end example
  218. @table @option
  219. @item limit
  220. Threshold, which can be optionally specified from nothing (0) to
  221. everything (255), defaults to 24.
  222. @item round
  223. Value which the width/height should be divisible by, defaults to
  224. 16. The offset is automatically adjusted to center the video. Use 2 to
  225. get only even dimensions (needed for 4:2:2 video). 16 is best when
  226. encoding to most video codecs.
  227. @item reset
  228. Counter that determines after how many frames cropdetect will reset
  229. the previously detected largest video area and start over to detect
  230. the current optimal crop area. Defaults to 0.
  231. This can be useful when channel logos distort the video area. 0
  232. indicates never reset and return the largest area encountered during
  233. playback.
  234. @end table
  235. @section drawbox
  236. Draw a colored box on the input image.
  237. It accepts the syntax:
  238. @example
  239. drawbox=@var{x}:@var{y}:@var{width}:@var{height}:@var{color}
  240. @end example
  241. @table @option
  242. @item x, y
  243. Specify the top left corner coordinates of the box. Default to 0.
  244. @item width, height
  245. Specify the width and height of the box, if 0 they are interpreted as
  246. the input width and height. Default to 0.
  247. @item color
  248. Specify the color of the box to write, it can be the name of a color
  249. (case insensitive match) or a 0xRRGGBB[AA] sequence.
  250. @end table
  251. Follow some examples:
  252. @example
  253. # draw a black box around the edge of the input image
  254. drawbox
  255. # draw a box with color red and an opacity of 50%
  256. drawbox=10:20:200:60:red@@0.5"
  257. @end example
  258. @section fade
  259. Apply fade-in/out effect to input video.
  260. It accepts the parameters:
  261. @var{type}:@var{start_frame}:@var{nb_frames}
  262. @var{type} specifies if the effect type, can be either "in" for
  263. fade-in, or "out" for a fade-out effect.
  264. @var{start_frame} specifies the number of the start frame for starting
  265. to apply the fade effect.
  266. @var{nb_frames} specifies the number of frames for which the fade
  267. effect has to last. At the end of the fade-in effect the output video
  268. will have the same intensity as the input video, at the end of the
  269. fade-out transition the output video will be completely black.
  270. A few usage examples follow, usable too as test scenarios.
  271. @example
  272. # fade in first 30 frames of video
  273. fade=in:0:30
  274. # fade out last 45 frames of a 200-frame video
  275. fade=out:155:45
  276. # fade in first 25 frames and fade out last 25 frames of a 1000-frame video
  277. fade=in:0:25, fade=out:975:25
  278. # make first 5 frames black, then fade in from frame 5-24
  279. fade=in:5:20
  280. @end example
  281. @section fifo
  282. Buffer input images and send them when they are requested.
  283. This filter is mainly useful when auto-inserted by the libavfilter
  284. framework.
  285. The filter does not take parameters.
  286. @section format
  287. Convert the input video to one of the specified pixel formats.
  288. Libavfilter will try to pick one that is supported for the input to
  289. the next filter.
  290. The filter accepts a list of pixel format names, separated by ":",
  291. for example "yuv420p:monow:rgb24".
  292. Some examples follow:
  293. @example
  294. # convert the input video to the format "yuv420p"
  295. format=yuv420p
  296. # convert the input video to any of the formats in the list
  297. format=yuv420p:yuv444p:yuv410p
  298. @end example
  299. @anchor{frei0r}
  300. @section frei0r
  301. Apply a frei0r effect to the input video.
  302. To enable compilation of this filter you need to install the frei0r
  303. header and configure Libav with --enable-frei0r.
  304. The filter supports the syntax:
  305. @example
  306. @var{filter_name}[@{:|=@}@var{param1}:@var{param2}:...:@var{paramN}]
  307. @end example
  308. @var{filter_name} is the name to the frei0r effect to load. If the
  309. environment variable @env{FREI0R_PATH} is defined, the frei0r effect
  310. is searched in each one of the directories specified by the colon
  311. separated list in @env{FREIOR_PATH}, otherwise in the standard frei0r
  312. paths, which are in this order: @file{HOME/.frei0r-1/lib/},
  313. @file{/usr/local/lib/frei0r-1/}, @file{/usr/lib/frei0r-1/}.
  314. @var{param1}, @var{param2}, ... , @var{paramN} specify the parameters
  315. for the frei0r effect.
  316. A frei0r effect parameter can be a boolean (whose values are specified
  317. with "y" and "n"), a double, a color (specified by the syntax
  318. @var{R}/@var{G}/@var{B}, @var{R}, @var{G}, and @var{B} being float
  319. numbers from 0.0 to 1.0) or by an @code{av_parse_color()} color
  320. description), a position (specified by the syntax @var{X}/@var{Y},
  321. @var{X} and @var{Y} being float numbers) and a string.
  322. The number and kind of parameters depend on the loaded effect. If an
  323. effect parameter is not specified the default value is set.
  324. Some examples follow:
  325. @example
  326. # apply the distort0r effect, set the first two double parameters
  327. frei0r=distort0r:0.5:0.01
  328. # apply the colordistance effect, takes a color as first parameter
  329. frei0r=colordistance:0.2/0.3/0.4
  330. frei0r=colordistance:violet
  331. frei0r=colordistance:0x112233
  332. # apply the perspective effect, specify the top left and top right
  333. # image positions
  334. frei0r=perspective:0.2/0.2:0.8/0.2
  335. @end example
  336. For more information see:
  337. @url{http://piksel.org/frei0r}
  338. @section gradfun
  339. Fix the banding artifacts that are sometimes introduced into nearly flat
  340. regions by truncation to 8bit colordepth.
  341. Interpolate the gradients that should go where the bands are, and
  342. dither them.
  343. This filter is designed for playback only. Do not use it prior to
  344. lossy compression, because compression tends to lose the dither and
  345. bring back the bands.
  346. The filter takes two optional parameters, separated by ':':
  347. @var{strength}:@var{radius}
  348. @var{strength} is the maximum amount by which the filter will change
  349. any one pixel. Also the threshold for detecting nearly flat
  350. regions. Acceptable values range from .51 to 255, default value is
  351. 1.2, out-of-range values will be clipped to the valid range.
  352. @var{radius} is the neighborhood to fit the gradient to. A larger
  353. radius makes for smoother gradients, but also prevents the filter from
  354. modifying the pixels near detailed regions. Acceptable values are
  355. 8-32, default value is 16, out-of-range values will be clipped to the
  356. valid range.
  357. @example
  358. # default parameters
  359. gradfun=1.2:16
  360. # omitting radius
  361. gradfun=1.2
  362. @end example
  363. @section hflip
  364. Flip the input video horizontally.
  365. For example to horizontally flip the video in input with
  366. @file{ffmpeg}:
  367. @example
  368. ffmpeg -i in.avi -vf "hflip" out.avi
  369. @end example
  370. @section hqdn3d
  371. High precision/quality 3d denoise filter. This filter aims to reduce
  372. image noise producing smooth images and making still images really
  373. still. It should enhance compressibility.
  374. It accepts the following optional parameters:
  375. @var{luma_spatial}:@var{chroma_spatial}:@var{luma_tmp}:@var{chroma_tmp}
  376. @table @option
  377. @item luma_spatial
  378. a non-negative float number which specifies spatial luma strength,
  379. defaults to 4.0
  380. @item chroma_spatial
  381. a non-negative float number which specifies spatial chroma strength,
  382. defaults to 3.0*@var{luma_spatial}/4.0
  383. @item luma_tmp
  384. a float number which specifies luma temporal strength, defaults to
  385. 6.0*@var{luma_spatial}/4.0
  386. @item chroma_tmp
  387. a float number which specifies chroma temporal strength, defaults to
  388. @var{luma_tmp}*@var{chroma_spatial}/@var{luma_spatial}
  389. @end table
  390. @section noformat
  391. Force libavfilter not to use any of the specified pixel formats for the
  392. input to the next filter.
  393. The filter accepts a list of pixel format names, separated by ":",
  394. for example "yuv420p:monow:rgb24".
  395. Some examples follow:
  396. @example
  397. # force libavfilter to use a format different from "yuv420p" for the
  398. # input to the vflip filter
  399. noformat=yuv420p,vflip
  400. # convert the input video to any of the formats not contained in the list
  401. noformat=yuv420p:yuv444p:yuv410p
  402. @end example
  403. @section null
  404. Pass the video source unchanged to the output.
  405. @section ocv
  406. Apply video transform using libopencv.
  407. To enable this filter install libopencv library and headers and
  408. configure Libav with --enable-libopencv.
  409. The filter takes the parameters: @var{filter_name}@{:=@}@var{filter_params}.
  410. @var{filter_name} is the name of the libopencv filter to apply.
  411. @var{filter_params} specifies the parameters to pass to the libopencv
  412. filter. If not specified the default values are assumed.
  413. Refer to the official libopencv documentation for more precise
  414. informations:
  415. @url{http://opencv.willowgarage.com/documentation/c/image_filtering.html}
  416. Follows the list of supported libopencv filters.
  417. @anchor{dilate}
  418. @subsection dilate
  419. Dilate an image by using a specific structuring element.
  420. This filter corresponds to the libopencv function @code{cvDilate}.
  421. It accepts the parameters: @var{struct_el}:@var{nb_iterations}.
  422. @var{struct_el} represents a structuring element, and has the syntax:
  423. @var{cols}x@var{rows}+@var{anchor_x}x@var{anchor_y}/@var{shape}
  424. @var{cols} and @var{rows} represent the number of colums and rows of
  425. the structuring element, @var{anchor_x} and @var{anchor_y} the anchor
  426. point, and @var{shape} the shape for the structuring element, and
  427. can be one of the values "rect", "cross", "ellipse", "custom".
  428. If the value for @var{shape} is "custom", it must be followed by a
  429. string of the form "=@var{filename}". The file with name
  430. @var{filename} is assumed to represent a binary image, with each
  431. printable character corresponding to a bright pixel. When a custom
  432. @var{shape} is used, @var{cols} and @var{rows} are ignored, the number
  433. or columns and rows of the read file are assumed instead.
  434. The default value for @var{struct_el} is "3x3+0x0/rect".
  435. @var{nb_iterations} specifies the number of times the transform is
  436. applied to the image, and defaults to 1.
  437. Follow some example:
  438. @example
  439. # use the default values
  440. ocv=dilate
  441. # dilate using a structuring element with a 5x5 cross, iterate two times
  442. ocv=dilate=5x5+2x2/cross:2
  443. # read the shape from the file diamond.shape, iterate two times
  444. # the file diamond.shape may contain a pattern of characters like this:
  445. # *
  446. # ***
  447. # *****
  448. # ***
  449. # *
  450. # the specified cols and rows are ignored (but not the anchor point coordinates)
  451. ocv=0x0+2x2/custom=diamond.shape:2
  452. @end example
  453. @subsection erode
  454. Erode an image by using a specific structuring element.
  455. This filter corresponds to the libopencv function @code{cvErode}.
  456. The filter accepts the parameters: @var{struct_el}:@var{nb_iterations},
  457. with the same meaning and use of those of the dilate filter
  458. (@pxref{dilate}).
  459. @subsection smooth
  460. Smooth the input video.
  461. The filter takes the following parameters:
  462. @var{type}:@var{param1}:@var{param2}:@var{param3}:@var{param4}.
  463. @var{type} is the type of smooth filter to apply, and can be one of
  464. the following values: "blur", "blur_no_scale", "median", "gaussian",
  465. "bilateral". The default value is "gaussian".
  466. @var{param1}, @var{param2}, @var{param3}, and @var{param4} are
  467. parameters whose meanings depend on smooth type. @var{param1} and
  468. @var{param2} accept integer positive values or 0, @var{param3} and
  469. @var{param4} accept float values.
  470. The default value for @var{param1} is 3, the default value for the
  471. other parameters is 0.
  472. These parameters correspond to the parameters assigned to the
  473. libopencv function @code{cvSmooth}.
  474. @section overlay
  475. Overlay one video on top of another.
  476. It takes two inputs and one output, the first input is the "main"
  477. video on which the second input is overlayed.
  478. It accepts the parameters: @var{x}:@var{y}.
  479. @var{x} is the x coordinate of the overlayed video on the main video,
  480. @var{y} is the y coordinate. The parameters are expressions containing
  481. the following parameters:
  482. @table @option
  483. @item main_w, main_h
  484. main input width and height
  485. @item W, H
  486. same as @var{main_w} and @var{main_h}
  487. @item overlay_w, overlay_h
  488. overlay input width and height
  489. @item w, h
  490. same as @var{overlay_w} and @var{overlay_h}
  491. @end table
  492. Be aware that frames are taken from each input video in timestamp
  493. order, hence, if their initial timestamps differ, it is a a good idea
  494. to pass the two inputs through a @var{setpts=PTS-STARTPTS} filter to
  495. have them begin in the same zero timestamp, as it does the example for
  496. the @var{movie} filter.
  497. Follow some examples:
  498. @example
  499. # draw the overlay at 10 pixels from the bottom right
  500. # corner of the main video.
  501. overlay=main_w-overlay_w-10:main_h-overlay_h-10
  502. # insert a transparent PNG logo in the bottom left corner of the input
  503. movie=logo.png [logo];
  504. [in][logo] overlay=10:main_h-overlay_h-10 [out]
  505. # insert 2 different transparent PNG logos (second logo on bottom
  506. # right corner):
  507. movie=logo1.png [logo1];
  508. movie=logo2.png [logo2];
  509. [in][logo1] overlay=10:H-h-10 [in+logo1];
  510. [in+logo1][logo2] overlay=W-w-10:H-h-10 [out]
  511. # add a transparent color layer on top of the main video,
  512. # WxH specifies the size of the main input to the overlay filter
  513. color=red@.3:WxH [over]; [in][over] overlay [out]
  514. @end example
  515. You can chain togheter more overlays but the efficiency of such
  516. approach is yet to be tested.
  517. @section pad
  518. Add paddings to the input image, and places the original input at the
  519. given coordinates @var{x}, @var{y}.
  520. It accepts the following parameters:
  521. @var{width}:@var{height}:@var{x}:@var{y}:@var{color}.
  522. Follows the description of the accepted parameters.
  523. @table @option
  524. @item width, height
  525. Specify the size of the output image with the paddings added. If the
  526. value for @var{width} or @var{height} is 0, the corresponding input size
  527. is used for the output.
  528. The default value of @var{width} and @var{height} is 0.
  529. @item x, y
  530. Specify the offsets where to place the input image in the padded area
  531. with respect to the top/left border of the output image.
  532. The default value of @var{x} and @var{y} is 0.
  533. @item color
  534. Specify the color of the padded area, it can be the name of a color
  535. (case insensitive match) or a 0xRRGGBB[AA] sequence.
  536. The default value of @var{color} is "black".
  537. @end table
  538. For example:
  539. @example
  540. # Add paddings with color "violet" to the input video. Output video
  541. # size is 640x480, the top-left corner of the input video is placed at
  542. # column 0, row 40.
  543. pad=640:480:0:40:violet
  544. @end example
  545. @section pixdesctest
  546. Pixel format descriptor test filter, mainly useful for internal
  547. testing. The output video should be equal to the input video.
  548. For example:
  549. @example
  550. format=monow, pixdesctest
  551. @end example
  552. can be used to test the monowhite pixel format descriptor definition.
  553. @section scale
  554. Scale the input video to @var{width}:@var{height} and/or convert the image format.
  555. For example the command:
  556. @example
  557. ./ffmpeg -i in.avi -vf "scale=200:100" out.avi
  558. @end example
  559. will scale the input video to a size of 200x100.
  560. If the input image format is different from the format requested by
  561. the next filter, the scale filter will convert the input to the
  562. requested format.
  563. If the value for @var{width} or @var{height} is 0, the respective input
  564. size is used for the output.
  565. If the value for @var{width} or @var{height} is -1, the scale filter will
  566. use, for the respective output size, a value that maintains the aspect
  567. ratio of the input image.
  568. The default value of @var{width} and @var{height} is 0.
  569. @anchor{setdar}
  570. @section setdar
  571. Set the Display Aspect Ratio for the filter output video.
  572. This is done by changing the specified Sample (aka Pixel) Aspect
  573. Ratio, according to the following equation:
  574. @math{DAR = HORIZONTAL_RESOLUTION / VERTICAL_RESOLUTION * SAR}
  575. Keep in mind that this filter does not modify the pixel dimensions of
  576. the video frame. Also the display aspect ratio set by this filter may
  577. be changed by later filters in the filterchain, e.g. in case of
  578. scaling or if another "setdar" or a "setsar" filter is applied.
  579. The filter accepts a parameter string which represents the wanted
  580. display aspect ratio.
  581. The parameter can be a floating point number string, or an expression
  582. of the form @var{num}:@var{den}, where @var{num} and @var{den} are the
  583. numerator and denominator of the aspect ratio.
  584. If the parameter is not specified, it is assumed the value "0:1".
  585. For example to change the display aspect ratio to 16:9, specify:
  586. @example
  587. setdar=16:9
  588. # the above is equivalent to
  589. setdar=1.77777
  590. @end example
  591. See also the "setsar" filter documentation (@pxref{setsar}).
  592. @section setpts
  593. Change the PTS (presentation timestamp) of the input video frames.
  594. Accept in input an expression evaluated through the eval API, which
  595. can contain the following constants:
  596. @table @option
  597. @item PTS
  598. the presentation timestamp in input
  599. @item PI
  600. Greek PI
  601. @item PHI
  602. golden ratio
  603. @item E
  604. Euler number
  605. @item N
  606. the count of the input frame, starting from 0.
  607. @item STARTPTS
  608. the PTS of the first video frame
  609. @item INTERLACED
  610. tell if the current frame is interlaced
  611. @item POS
  612. original position in the file of the frame, or undefined if undefined
  613. for the current frame
  614. @item PREV_INPTS
  615. previous input PTS
  616. @item PREV_OUTPTS
  617. previous output PTS
  618. @end table
  619. Some examples follow:
  620. @example
  621. # start counting PTS from zero
  622. setpts=PTS-STARTPTS
  623. # fast motion
  624. setpts=0.5*PTS
  625. # slow motion
  626. setpts=2.0*PTS
  627. # fixed rate 25 fps
  628. setpts=N/(25*TB)
  629. # fixed rate 25 fps with some jitter
  630. setpts='1/(25*TB) * (N + 0.05 * sin(N*2*PI/25))'
  631. @end example
  632. @anchor{setsar}
  633. @section setsar
  634. Set the Sample (aka Pixel) Aspect Ratio for the filter output video.
  635. Note that as a consequence of the application of this filter, the
  636. output display aspect ratio will change according to the following
  637. equation:
  638. @math{DAR = HORIZONTAL_RESOLUTION / VERTICAL_RESOLUTION * SAR}
  639. Keep in mind that the sample aspect ratio set by this filter may be
  640. changed by later filters in the filterchain, e.g. if another "setsar"
  641. or a "setdar" filter is applied.
  642. The filter accepts a parameter string which represents the wanted
  643. sample aspect ratio.
  644. The parameter can be a floating point number string, or an expression
  645. of the form @var{num}:@var{den}, where @var{num} and @var{den} are the
  646. numerator and denominator of the aspect ratio.
  647. If the parameter is not specified, it is assumed the value "0:1".
  648. For example to change the sample aspect ratio to 10:11, specify:
  649. @example
  650. setsar=10:11
  651. @end example
  652. @section settb
  653. Set the timebase to use for the output frames timestamps.
  654. It is mainly useful for testing timebase configuration.
  655. It accepts in input an arithmetic expression representing a rational.
  656. The expression can contain the constants "PI", "E", "PHI", "AVTB" (the
  657. default timebase), and "intb" (the input timebase).
  658. The default value for the input is "intb".
  659. Follow some examples.
  660. @example
  661. # set the timebase to 1/25
  662. settb=1/25
  663. # set the timebase to 1/10
  664. settb=0.1
  665. #set the timebase to 1001/1000
  666. settb=1+0.001
  667. #set the timebase to 2*intb
  668. settb=2*intb
  669. #set the default timebase value
  670. settb=AVTB
  671. @end example
  672. @section slicify
  673. Pass the images of input video on to next video filter as multiple
  674. slices.
  675. @example
  676. ./ffmpeg -i in.avi -vf "slicify=32" out.avi
  677. @end example
  678. The filter accepts the slice height as parameter. If the parameter is
  679. not specified it will use the default value of 16.
  680. Adding this in the beginning of filter chains should make filtering
  681. faster due to better use of the memory cache.
  682. @section transpose
  683. Transpose rows with columns in the input video and optionally flip it.
  684. It accepts a parameter representing an integer, which can assume the
  685. values:
  686. @table @samp
  687. @item 0
  688. Rotate by 90 degrees counterclockwise and vertically flip (default), that is:
  689. @example
  690. L.R L.l
  691. . . -> . .
  692. l.r R.r
  693. @end example
  694. @item 1
  695. Rotate by 90 degrees clockwise, that is:
  696. @example
  697. L.R l.L
  698. . . -> . .
  699. l.r r.R
  700. @end example
  701. @item 2
  702. Rotate by 90 degrees counterclockwise, that is:
  703. @example
  704. L.R R.r
  705. . . -> . .
  706. l.r L.l
  707. @end example
  708. @item 3
  709. Rotate by 90 degrees clockwise and vertically flip, that is:
  710. @example
  711. L.R r.R
  712. . . -> . .
  713. l.r l.L
  714. @end example
  715. @end table
  716. @section unsharp
  717. Sharpen or blur the input video.
  718. It accepts the following parameters:
  719. @var{luma_msize_x}:@var{luma_msize_y}:@var{luma_amount}:@var{chroma_msize_x}:@var{chroma_msize_y}:@var{chroma_amount}
  720. Negative values for the amount will blur the input video, while positive
  721. values will sharpen. All parameters are optional and default to the
  722. equivalent of the string '5:5:1.0:0:0:0.0'.
  723. @table @option
  724. @item luma_msize_x
  725. Set the luma matrix horizontal size. It can be an integer between 3
  726. and 13, default value is 5.
  727. @item luma_msize_y
  728. Set the luma matrix vertical size. It can be an integer between 3
  729. and 13, default value is 5.
  730. @item luma_amount
  731. Set the luma effect strength. It can be a float number between -2.0
  732. and 5.0, default value is 1.0.
  733. @item chroma_msize_x
  734. Set the chroma matrix horizontal size. It can be an integer between 3
  735. and 13, default value is 0.
  736. @item chroma_msize_y
  737. Set the chroma matrix vertical size. It can be an integer between 3
  738. and 13, default value is 0.
  739. @item luma_amount
  740. Set the chroma effect strength. It can be a float number between -2.0
  741. and 5.0, default value is 0.0.
  742. @end table
  743. @example
  744. # Strong luma sharpen effect parameters
  745. unsharp=7:7:2.5
  746. # Strong blur of both luma and chroma parameters
  747. unsharp=7:7:-2:7:7:-2
  748. # Use the default values with @command{ffmpeg}
  749. ./ffmpeg -i in.avi -vf "unsharp" out.mp4
  750. @end example
  751. @section vflip
  752. Flip the input video vertically.
  753. @example
  754. ./ffmpeg -i in.avi -vf "vflip" out.avi
  755. @end example
  756. @section yadif
  757. Deinterlace the input video ("yadif" means "yet another deinterlacing
  758. filter").
  759. It accepts the optional parameters: @var{mode}:@var{parity}.
  760. @var{mode} specifies the interlacing mode to adopt, accepts one of the
  761. following values:
  762. @table @option
  763. @item 0
  764. output 1 frame for each frame
  765. @item 1
  766. output 1 frame for each field
  767. @item 2
  768. like 0 but skips spatial interlacing check
  769. @item 3
  770. like 1 but skips spatial interlacing check
  771. @end table
  772. Default value is 0.
  773. @var{parity} specifies the picture field parity assumed for the input
  774. interlaced video, accepts one of the following values:
  775. @table @option
  776. @item 0
  777. assume bottom field first
  778. @item 1
  779. assume top field first
  780. @item -1
  781. enable automatic detection
  782. @end table
  783. Default value is -1.
  784. If interlacing is unknown or decoder does not export this information,
  785. top field first will be assumed.
  786. @c man end VIDEO FILTERS
  787. @chapter Video Sources
  788. @c man begin VIDEO SOURCES
  789. Below is a description of the currently available video sources.
  790. @section buffer
  791. Buffer video frames, and make them available to the filter chain.
  792. This source is mainly intended for a programmatic use, in particular
  793. through the interface defined in @file{libavfilter/vsrc_buffer.h}.
  794. It accepts the following parameters:
  795. @var{width}:@var{height}:@var{pix_fmt_string}:@var{timebase_num}:@var{timebase_den}
  796. All the parameters need to be explicitely defined.
  797. Follows the list of the accepted parameters.
  798. @table @option
  799. @item width, height
  800. Specify the width and height of the buffered video frames.
  801. @item pix_fmt_string
  802. A string representing the pixel format of the buffered video frames.
  803. It may be a number corresponding to a pixel format, or a pixel format
  804. name.
  805. @item timebase_num, timebase_den
  806. Specify numerator and denomitor of the timebase assumed by the
  807. timestamps of the buffered frames.
  808. @end table
  809. For example:
  810. @example
  811. buffer=320:240:yuv410p:1:24
  812. @end example
  813. will instruct the source to accept video frames with size 320x240 and
  814. with format "yuv410p" and assuming 1/24 as the timestamps timebase.
  815. Since the pixel format with name "yuv410p" corresponds to the number 6
  816. (check the enum PixelFormat definition in @file{libavutil/pixfmt.h}),
  817. this example corresponds to:
  818. @example
  819. buffer=320:240:6:1:24
  820. @end example
  821. @section color
  822. Provide an uniformly colored input.
  823. It accepts the following parameters:
  824. @var{color}:@var{frame_size}:@var{frame_rate}
  825. Follows the description of the accepted parameters.
  826. @table @option
  827. @item color
  828. Specify the color of the source. It can be the name of a color (case
  829. insensitive match) or a 0xRRGGBB[AA] sequence, possibly followed by an
  830. alpha specifier. The default value is "black".
  831. @item frame_size
  832. Specify the size of the sourced video, it may be a string of the form
  833. @var{width}x@var{heigth}, or the name of a size abbreviation. The
  834. default value is "320x240".
  835. @item frame_rate
  836. Specify the frame rate of the sourced video, as the number of frames
  837. generated per second. It has to be a string in the format
  838. @var{frame_rate_num}/@var{frame_rate_den}, an integer number, a float
  839. number or a valid video frame rate abbreviation. The default value is
  840. "25".
  841. @end table
  842. For example the following graph description will generate a red source
  843. with an opacity of 0.2, with size "qcif" and a frame rate of 10
  844. frames per second, which will be overlayed over the source connected
  845. to the pad with identifier "in".
  846. @example
  847. "color=red@@0.2:qcif:10 [color]; [in][color] overlay [out]"
  848. @end example
  849. @section movie
  850. Read a video stream from a movie container.
  851. It accepts the syntax: @var{movie_name}[:@var{options}] where
  852. @var{movie_name} is the name of the resource to read (not necessarily
  853. a file but also a device or a stream accessed through some protocol),
  854. and @var{options} is an optional sequence of @var{key}=@var{value}
  855. pairs, separated by ":".
  856. The description of the accepted options follows.
  857. @table @option
  858. @item format_name, f
  859. Specifies the format assumed for the movie to read, and can be either
  860. the name of a container or an input device. If not specified the
  861. format is guessed from @var{movie_name} or by probing.
  862. @item seek_point, sp
  863. Specifies the seek point in seconds, the frames will be output
  864. starting from this seek point, the parameter is evaluated with
  865. @code{av_strtod} so the numerical value may be suffixed by an IS
  866. postfix. Default value is "0".
  867. @item stream_index, si
  868. Specifies the index of the video stream to read. If the value is -1,
  869. the best suited video stream will be automatically selected. Default
  870. value is "-1".
  871. @end table
  872. This filter allows to overlay a second video on top of main input of
  873. a filtergraph as shown in this graph:
  874. @example
  875. input -----------> deltapts0 --> overlay --> output
  876. ^
  877. |
  878. movie --> scale--> deltapts1 -------+
  879. @end example
  880. Some examples follow:
  881. @example
  882. # skip 3.2 seconds from the start of the avi file in.avi, and overlay it
  883. # on top of the input labelled as "in".
  884. movie=in.avi:seek_point=3.2, scale=180:-1, setpts=PTS-STARTPTS [movie];
  885. [in] setpts=PTS-STARTPTS, [movie] overlay=16:16 [out]
  886. # read from a video4linux2 device, and overlay it on top of the input
  887. # labelled as "in"
  888. movie=/dev/video0:f=video4linux2, scale=180:-1, setpts=PTS-STARTPTS [movie];
  889. [in] setpts=PTS-STARTPTS, [movie] overlay=16:16 [out]
  890. @end example
  891. @section nullsrc
  892. Null video source, never return images. It is mainly useful as a
  893. template and to be employed in analysis / debugging tools.
  894. It accepts as optional parameter a string of the form
  895. @var{width}:@var{height}:@var{timebase}.
  896. @var{width} and @var{height} specify the size of the configured
  897. source. The default values of @var{width} and @var{height} are
  898. respectively 352 and 288 (corresponding to the CIF size format).
  899. @var{timebase} specifies an arithmetic expression representing a
  900. timebase. The expression can contain the constants "PI", "E", "PHI",
  901. "AVTB" (the default timebase), and defaults to the value "AVTB".
  902. @section frei0r_src
  903. Provide a frei0r source.
  904. To enable compilation of this filter you need to install the frei0r
  905. header and configure Libav with --enable-frei0r.
  906. The source supports the syntax:
  907. @example
  908. @var{size}:@var{rate}:@var{src_name}[@{=|:@}@var{param1}:@var{param2}:...:@var{paramN}]
  909. @end example
  910. @var{size} is the size of the video to generate, may be a string of the
  911. form @var{width}x@var{height} or a frame size abbreviation.
  912. @var{rate} is the rate of the video to generate, may be a string of
  913. the form @var{num}/@var{den} or a frame rate abbreviation.
  914. @var{src_name} is the name to the frei0r source to load. For more
  915. information regarding frei0r and how to set the parameters read the
  916. section "frei0r" (@pxref{frei0r}) in the description of the video
  917. filters.
  918. Some examples follow:
  919. @example
  920. # generate a frei0r partik0l source with size 200x200 and framerate 10
  921. # which is overlayed on the overlay filter main input
  922. frei0r_src=200x200:10:partik0l=1234 [overlay]; [in][overlay] overlay
  923. @end example
  924. @c man end VIDEO SOURCES
  925. @chapter Video Sinks
  926. @c man begin VIDEO SINKS
  927. Below is a description of the currently available video sinks.
  928. @section nullsink
  929. Null video sink, do absolutely nothing with the input video. It is
  930. mainly useful as a template and to be employed in analysis / debugging
  931. tools.
  932. @c man end VIDEO SINKS