You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

482 lines
15KB

  1. /*
  2. * NellyMoser audio decoder
  3. * Copyright (c) 2007 a840bda5870ba11f19698ff6eb9581dfb0f95fa5,
  4. * 539459aeb7d425140b62a3ec7dbf6dc8e408a306, and
  5. * 520e17cd55896441042b14df2566a6eb610ed444
  6. * Copyright (c) 2007 Loic Minier <lool at dooz.org>
  7. * Benjamin Larsson
  8. *
  9. * Permission is hereby granted, free of charge, to any person obtaining a
  10. * copy of this software and associated documentation files (the "Software"),
  11. * to deal in the Software without restriction, including without limitation
  12. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  13. * and/or sell copies of the Software, and to permit persons to whom the
  14. * Software is furnished to do so, subject to the following conditions:
  15. *
  16. * The above copyright notice and this permission notice shall be included in
  17. * all copies or substantial portions of the Software.
  18. *
  19. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  20. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  21. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  22. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  23. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  24. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
  25. * DEALINGS IN THE SOFTWARE.
  26. */
  27. /**
  28. * @file nellymoserdec.c
  29. * The 3 alphanumeric copyright notices are md5summed they are from the original
  30. * implementors. The original code is available from http://code.google.com/p/nelly2pcm/
  31. */
  32. #include "avcodec.h"
  33. #include "random.h"
  34. #include "dsputil.h"
  35. #define ALT_BITSTREAM_READER_LE
  36. #include "bitstream.h"
  37. #define NELLY_BANDS 23
  38. #define NELLY_BLOCK_LEN 64
  39. #define NELLY_HEADER_BITS 116
  40. #define NELLY_DETAIL_BITS 198
  41. #define NELLY_BUF_LEN 128
  42. #define NELLY_FILL_LEN 124
  43. #define NELLY_BIT_CAP 6
  44. #define NELLY_BASE_OFF 4228
  45. #define NELLY_BASE_SHIFT 19
  46. #define NELLY_SAMPLES 256
  47. static const float dequantization_table[127] = {
  48. 0.0000000000,-0.8472560048, 0.7224709988, -1.5247479677, -0.4531480074, 0.3753609955, 1.4717899561,
  49. -1.9822579622, -1.1929379702, -0.5829370022, -0.0693780035, 0.3909569979,0.9069200158, 1.4862740040,
  50. 2.2215409279, -2.3887870312, -1.8067539930, -1.4105420113, -1.0773609877, -0.7995010018,-0.5558109879,
  51. -0.3334020078, -0.1324490011, 0.0568020009, 0.2548770010, 0.4773550034, 0.7386850119, 1.0443060398,
  52. 1.3954459429, 1.8098750114, 2.3918759823,-2.3893830776, -1.9884680510, -1.7514040470, -1.5643119812,
  53. -1.3922129869,-1.2164649963, -1.0469499826, -0.8905100226, -0.7645580173, -0.6454579830, -0.5259280205,
  54. -0.4059549868, -0.3029719889, -0.2096900046, -0.1239869967, -0.0479229987, 0.0257730000, 0.1001340002,
  55. 0.1737180054, 0.2585540116, 0.3522900045, 0.4569880068, 0.5767750144, 0.7003160119, 0.8425520062,
  56. 1.0093879700, 1.1821349859, 1.3534560204, 1.5320819616, 1.7332619429, 1.9722349644, 2.3978140354,
  57. -2.5756309032, -2.0573320389, -1.8984919786, -1.7727810144, -1.6662600040, -1.5742180347, -1.4993319511,
  58. -1.4316639900, -1.3652280569, -1.3000990152, -1.2280930281, -1.1588579416, -1.0921250582, -1.0135740042,
  59. -0.9202849865, -0.8287050128, -0.7374889851, -0.6447759867, -0.5590940118, -0.4857139885, -0.4110319912,
  60. -0.3459700048, -0.2851159871, -0.2341620028, -0.1870580018, -0.1442500055, -0.1107169986, -0.0739680007,
  61. -0.0365610011, -0.0073290002, 0.0203610007, 0.0479039997, 0.0751969963, 0.0980999991, 0.1220389977,
  62. 0.1458999962, 0.1694349945, 0.1970459968, 0.2252430022, 0.2556869984, 0.2870100141, 0.3197099864,
  63. 0.3525829911, 0.3889069855, 0.4334920049, 0.4769459963, 0.5204820037, 0.5644530058, 0.6122040153,
  64. 0.6685929894, 0.7341650128, 0.8032159805, 0.8784040213, 0.9566209912, 1.0397069454, 1.1293770075,
  65. 1.2211159468, 1.3080279827, 1.4024800062, 1.5056819916, 1.6227730513, 1.7724959850, 1.9430880547,
  66. 2.2903931141
  67. };
  68. static const uint8_t nelly_band_sizes_table[NELLY_BANDS] = {
  69. 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 4, 4, 5, 6, 6, 7, 8, 9, 10, 12, 14, 15
  70. };
  71. static const uint16_t nelly_init_table[64] = {
  72. 3134, 5342, 6870, 7792, 8569, 9185, 9744, 10191, 10631, 11061, 11434, 11770,
  73. 12116, 12513, 12925, 13300, 13674, 14027, 14352, 14716, 15117, 15477, 15824,
  74. 16157, 16513, 16804, 17090, 17401, 17679, 17948, 18238, 18520, 18764, 19078,
  75. 19381, 19640, 19921, 20205, 20500, 20813, 21162, 21465, 21794, 22137, 22453,
  76. 22756, 23067, 23350, 23636, 23926, 24227, 24521, 24819, 25107, 25414, 25730,
  77. 26120, 26497, 26895, 27344, 27877, 28463, 29426, 31355
  78. };
  79. static const int16_t nelly_delta_table[32] = {
  80. -11725, -9420, -7910, -6801, -5948, -5233, -4599, -4039, -3507, -3030, -2596,
  81. -2170, -1774, -1383, -1016, -660, -329, -1, 337, 696, 1085, 1512, 1962, 2433,
  82. 2968, 3569, 4314, 5279, 6622, 8154, 10076, 12975
  83. };
  84. typedef struct NellyMoserDecodeContext {
  85. AVCodecContext* avctx;
  86. float float_buf[NELLY_SAMPLES];
  87. float state[64];
  88. AVRandomState random_state;
  89. GetBitContext gb;
  90. int add_bias;
  91. int scale_bias;
  92. DSPContext dsp;
  93. FFTContext fftc;
  94. } NellyMoserDecodeContext;
  95. DECLARE_ALIGNED_16(float,sine_window[128]);
  96. DECLARE_ALIGNED_16(float,tcos[64]);
  97. DECLARE_ALIGNED_16(float,tsin[64]);
  98. DECLARE_ALIGNED_16(float,cos_tab[64]);
  99. static inline int signed_shift(int i, int shift) {
  100. if (shift > 0)
  101. return i << shift;
  102. return i >> -shift;
  103. }
  104. static void antialias(float *buf, float *audio)
  105. {
  106. int i, end, mid_hi, mid_lo;
  107. end = NELLY_BUF_LEN-1;
  108. mid_hi = NELLY_BUF_LEN/2;
  109. mid_lo = mid_hi-1;
  110. for (i = 0; i < NELLY_BUF_LEN/4; i++) {
  111. audio[2*i] = buf[2*i ]*tcos[i ] - buf[end-2*i]*tsin[i];
  112. audio[2*i+1] = -(buf[end-2*i ]*tcos[i ] + buf[2*i ]*tsin[i]);
  113. audio[end-2*i-1]= buf[end-2*i-1]*tcos[mid_lo-i] - buf[2*i+1 ]*tsin[mid_lo-i];
  114. audio[end-2*i ]= -(buf[2*i+1 ]*tcos[mid_lo-i] + buf[end-2*i]*tsin[mid_lo-i]);
  115. }
  116. }
  117. static void complex2signal(float *audio)
  118. {
  119. int i, end, mid_hi, mid_lo;
  120. float *aptr, *sigptr, a, b, c, d, e, f, g;
  121. end = NELLY_BUF_LEN-1;
  122. mid_hi = NELLY_BUF_LEN/2;
  123. mid_lo = mid_hi-1;
  124. a = -audio[end];
  125. b = audio[end-1];
  126. c = -audio[1];
  127. d = cos_tab[0];
  128. e = audio[0];
  129. f = cos_tab[mid_lo];
  130. g = cos_tab[1];
  131. audio[0] = d*e;
  132. audio[1] = b*g-a*f;
  133. audio[end-1] = a*g+b*f;
  134. audio[end] = c*(-d);
  135. aptr = audio+end-2;
  136. sigptr = cos_tab+mid_hi-1;
  137. for (i = 3; i < NELLY_BUF_LEN/2; i += 2) {
  138. a = audio[i-1];
  139. b = -audio[i];
  140. c = cos_tab[i/2];
  141. d = *sigptr;
  142. e = *(aptr-1);
  143. f = -(*aptr);
  144. audio[i-1] = a*c+b*d;
  145. *aptr = a*d-b*c;
  146. a = cos_tab[(i/2)+1];
  147. b = *(sigptr-1);
  148. *(aptr-1) = b*e+a*f;
  149. audio[i] = a*e-b*f;
  150. sigptr--;
  151. aptr -= 2;
  152. }
  153. }
  154. static void overlap_and_window(NellyMoserDecodeContext *s, float *state, float *audio)
  155. {
  156. int bot, mid_up, mid_down, top;
  157. float s_bot, s_top;
  158. bot = 0;
  159. top = NELLY_BUF_LEN-1;
  160. mid_up = NELLY_BUF_LEN/2;
  161. mid_down = (NELLY_BUF_LEN/2)-1;
  162. while (bot < NELLY_BUF_LEN/4) {
  163. s_bot = audio[bot];
  164. s_top = audio[top];
  165. audio[bot] = (audio[mid_up]*sine_window[bot]-state[bot ]*sine_window[top])/s->scale_bias + s->add_bias;
  166. audio[top] = (-state[bot ]*sine_window[bot]-audio[mid_up]*sine_window[top])/s->scale_bias + s->add_bias;
  167. state[bot] = audio[mid_down];
  168. audio[mid_down] = (s_top *sine_window[mid_down]-state[mid_down]*sine_window[mid_up])/s->scale_bias + s->add_bias;
  169. audio[mid_up ] = (-state[mid_down]*sine_window[mid_down]-s_top *sine_window[mid_up])/s->scale_bias + s->add_bias;
  170. state[mid_down] = s_bot;
  171. bot++;
  172. mid_up++;
  173. mid_down--;
  174. top--;
  175. }
  176. }
  177. static int sum_bits(short *buf, short shift, short off)
  178. {
  179. int b, i = 0, ret = 0;
  180. for (i = 0; i < NELLY_FILL_LEN; i++) {
  181. b = buf[i]-off;
  182. b = ((b>>(shift-1))+1)>>1;
  183. ret += av_clip(b, 0, NELLY_BIT_CAP);
  184. }
  185. return ret;
  186. }
  187. static int headroom(int *la)
  188. {
  189. int l;
  190. if (*la == 0) {
  191. return 31;
  192. }
  193. l = 30 - av_log2(FFABS(*la));
  194. *la <<= l;
  195. return l;
  196. }
  197. static void get_sample_bits(float *buf, int *bits)
  198. {
  199. int i, j;
  200. short sbuf[128];
  201. int bitsum = 0, last_bitsum, small_bitsum, big_bitsum;
  202. short shift, shift_saved;
  203. int max, sum, last_off, tmp;
  204. int big_off, small_off;
  205. int off;
  206. max = 0;
  207. for (i = 0; i < NELLY_FILL_LEN; i++) {
  208. max = FFMAX(max, buf[i]);
  209. }
  210. shift = -16;
  211. shift += headroom(&max);
  212. sum = 0;
  213. for (i = 0; i < NELLY_FILL_LEN; i++) {
  214. sbuf[i] = signed_shift(buf[i], shift);
  215. sbuf[i] = (3*sbuf[i])>>2;
  216. sum += sbuf[i];
  217. }
  218. shift += 11;
  219. shift_saved = shift;
  220. sum -= NELLY_DETAIL_BITS << shift;
  221. shift += headroom(&sum);
  222. small_off = (NELLY_BASE_OFF * (sum>>16)) >> 15;
  223. shift = shift_saved - (NELLY_BASE_SHIFT+shift-31);
  224. small_off = signed_shift(small_off, shift);
  225. bitsum = sum_bits(sbuf, shift_saved, small_off);
  226. if (bitsum != NELLY_DETAIL_BITS) {
  227. shift = 0;
  228. off = bitsum - NELLY_DETAIL_BITS;
  229. for(shift=0; FFABS(off) <= 16383; shift++)
  230. off *= 2;
  231. off = (off * NELLY_BASE_OFF) >> 15;
  232. shift = shift_saved-(NELLY_BASE_SHIFT+shift-15);
  233. off = signed_shift(off, shift);
  234. for (j = 1; j < 20; j++) {
  235. last_off = small_off;
  236. small_off += off;
  237. last_bitsum = bitsum;
  238. bitsum = sum_bits(sbuf, shift_saved, small_off);
  239. if ((bitsum-NELLY_DETAIL_BITS) * (last_bitsum-NELLY_DETAIL_BITS) <= 0)
  240. break;
  241. }
  242. if (bitsum > NELLY_DETAIL_BITS) {
  243. big_off = small_off;
  244. small_off = last_off;
  245. big_bitsum=bitsum;
  246. small_bitsum=last_bitsum;
  247. } else {
  248. big_off = last_off;
  249. big_bitsum=last_bitsum;
  250. small_bitsum=bitsum;
  251. }
  252. while (bitsum != NELLY_DETAIL_BITS && j <= 19) {
  253. off = (big_off+small_off)>>1;
  254. bitsum = sum_bits(sbuf, shift_saved, off);
  255. if (bitsum > NELLY_DETAIL_BITS) {
  256. big_off=off;
  257. big_bitsum=bitsum;
  258. } else {
  259. small_off = off;
  260. small_bitsum=bitsum;
  261. }
  262. j++;
  263. }
  264. if (abs(big_bitsum-NELLY_DETAIL_BITS) >=
  265. abs(small_bitsum-NELLY_DETAIL_BITS)) {
  266. bitsum = small_bitsum;
  267. } else {
  268. small_off = big_off;
  269. bitsum = big_bitsum;
  270. }
  271. }
  272. for (i = 0; i < NELLY_FILL_LEN; i++) {
  273. tmp = sbuf[i]-small_off;
  274. tmp = ((tmp>>(shift_saved-1))+1)>>1;
  275. bits[i] = av_clip(tmp, 0, NELLY_BIT_CAP);
  276. }
  277. if (bitsum > NELLY_DETAIL_BITS) {
  278. tmp = i = 0;
  279. while (tmp < NELLY_DETAIL_BITS) {
  280. tmp += bits[i];
  281. i++;
  282. }
  283. bits[i-1] -= tmp - NELLY_DETAIL_BITS;
  284. for(; i < NELLY_FILL_LEN; i++)
  285. bits[i] = 0;
  286. }
  287. }
  288. void nelly_decode_block(NellyMoserDecodeContext *s, unsigned char block[NELLY_BLOCK_LEN], float audio[NELLY_SAMPLES])
  289. {
  290. int i,j;
  291. float buf[NELLY_BUF_LEN], pows[NELLY_BUF_LEN];
  292. float *aptr, *bptr, *pptr, val, pval;
  293. int bits[NELLY_BUF_LEN];
  294. unsigned char v;
  295. init_get_bits(&s->gb, block, NELLY_BLOCK_LEN * 8);
  296. bptr = buf;
  297. pptr = pows;
  298. val = nelly_init_table[get_bits(&s->gb, 6)];
  299. for (i=0 ; i<NELLY_BANDS ; i++) {
  300. if (i > 0)
  301. val += nelly_delta_table[get_bits(&s->gb, 5)];
  302. pval = pow(2, val/2048);
  303. for (j = 0; j < nelly_band_sizes_table[i]; j++) {
  304. *bptr++ = val;
  305. *pptr++ = pval;
  306. }
  307. }
  308. memset(&buf[NELLY_FILL_LEN],0,4*sizeof(float));
  309. memset(&pows[NELLY_FILL_LEN],0,4*sizeof(float));
  310. get_sample_bits(buf, bits);
  311. for (i = 0; i < 2; i++) {
  312. aptr = audio+i*128;
  313. init_get_bits(&s->gb, block, NELLY_BLOCK_LEN * 8);
  314. skip_bits(&s->gb, NELLY_HEADER_BITS + i*NELLY_DETAIL_BITS);
  315. for (j = 0; j < NELLY_FILL_LEN; j++) {
  316. if (bits[j] <= 0) {
  317. buf[j] = M_SQRT1_2*pows[j];
  318. if (av_random(&s->random_state) & 1)
  319. buf[j] *= -1.0;
  320. } else {
  321. v = get_bits(&s->gb, bits[j]);
  322. buf[j] = dequantization_table[(1<<bits[j])-1+v]*pows[j];
  323. }
  324. }
  325. antialias(buf, aptr);
  326. ff_fft_permute(&s->fftc, (FFTComplex*)aptr);
  327. ff_fft_calc(&s->fftc, (FFTComplex*)aptr);
  328. complex2signal(aptr);
  329. overlap_and_window(s, s->state, aptr);
  330. }
  331. }
  332. static int decode_init(AVCodecContext * avctx) {
  333. NellyMoserDecodeContext *s = avctx->priv_data;
  334. int i;
  335. float alpha;
  336. s->avctx = avctx;
  337. av_init_random(0, &s->random_state);
  338. ff_fft_init(&s->fftc, 6, 1);
  339. dsputil_init(&s->dsp, avctx);
  340. if(s->dsp.float_to_int16 == ff_float_to_int16_c) {
  341. s->add_bias = 385;
  342. s->scale_bias = 32768;
  343. } else {
  344. s->add_bias = 0;
  345. s->scale_bias = 1;
  346. }
  347. /* Generate overlap window */
  348. if (!sine_window[0])
  349. for (i=0 ; i<128; i++) {
  350. sine_window[i] = sin((i + 0.5) / 256.0 * M_PI);
  351. }
  352. /* Generate tables */
  353. if (!tcos[0])
  354. for(i=0;i<64;i++) {
  355. alpha = 2*M_PI * (i + 1.0 / 4.0) / 256;
  356. tcos[i] = cos(alpha);
  357. tsin[i] = -sin(alpha);
  358. cos_tab[i] = cos(i/128.0*M_PI)/8.0;
  359. }
  360. return 0;
  361. }
  362. static int decode_tag(AVCodecContext * avctx,
  363. void *data, int *data_size,
  364. uint8_t * buf, int buf_size) {
  365. NellyMoserDecodeContext *s = avctx->priv_data;
  366. int blocks, i;
  367. int16_t* samples;
  368. *data_size = 0;
  369. samples = (int16_t*)data;
  370. if (buf_size < avctx->block_align)
  371. return buf_size;
  372. switch (buf_size) {
  373. case 64: // 8000Hz
  374. blocks = 1; break;
  375. case 128: // 11025Hz
  376. blocks = 2; break;
  377. case 256: // 22050Hz
  378. blocks = 4; break;
  379. default:
  380. av_log(avctx, AV_LOG_DEBUG, "Tag size %d unknown, report sample!\n", buf_size);
  381. return buf_size;
  382. }
  383. for (i=0 ; i<blocks ; i++) {
  384. nelly_decode_block(s, &buf[i*NELLY_BLOCK_LEN], s->float_buf);
  385. s->dsp.float_to_int16(&samples[i*NELLY_SAMPLES], s->float_buf, NELLY_SAMPLES);
  386. *data_size += NELLY_SAMPLES*sizeof(int16_t);
  387. }
  388. return blocks*NELLY_SAMPLES*sizeof(int16_t);
  389. }
  390. static int decode_end(AVCodecContext * avctx) {
  391. NellyMoserDecodeContext *s = avctx->priv_data;
  392. ff_fft_end(&s->fftc);
  393. return 0;
  394. }
  395. AVCodec nellymoser_decoder = {
  396. "nellymoser",
  397. CODEC_TYPE_AUDIO,
  398. CODEC_ID_NELLYMOSER,
  399. sizeof(NellyMoserDecodeContext),
  400. decode_init,
  401. NULL,
  402. decode_end,
  403. decode_tag,
  404. };