You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

546 lines
17KB

  1. /*
  2. * Canopus HQX decoder
  3. *
  4. * This file is part of Libav.
  5. *
  6. * Libav is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU Lesser General Public
  8. * License as published by the Free Software Foundation; either
  9. * version 2.1 of the License, or (at your option) any later version.
  10. *
  11. * Libav is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  14. * Lesser General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU Lesser General Public
  17. * License along with Libav; if not, write to the Free Software
  18. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  19. */
  20. #include <inttypes.h>
  21. #include "libavutil/imgutils.h"
  22. #include "libavutil/intreadwrite.h"
  23. #include "avcodec.h"
  24. #include "get_bits.h"
  25. #include "internal.h"
  26. #include "hqx.h"
  27. #include "hqxdsp.h"
  28. /* HQX has four modes - 422, 444, 422alpha and 444alpha - all 12-bit */
  29. enum HQXFormat {
  30. HQX_422 = 0,
  31. HQX_444,
  32. HQX_422A,
  33. HQX_444A,
  34. };
  35. #define HQX_HEADER_SIZE 59
  36. /* macroblock selects a group of 4 possible quants and
  37. * a block can use any of those four quantisers
  38. * one column is powers of 2, the other one is powers of 2 * 3,
  39. * then there is the special one, powers of 2 * 5 */
  40. static const int hqx_quants[16][4] = {
  41. { 0x1, 0x2, 0x4, 0x8 }, { 0x1, 0x3, 0x6, 0xC },
  42. { 0x2, 0x4, 0x8, 0x10 }, { 0x3, 0x6, 0xC, 0x18 },
  43. { 0x4, 0x8, 0x10, 0x20 }, { 0x6, 0xC, 0x18, 0x30 },
  44. { 0x8, 0x10, 0x20, 0x40 },
  45. { 0xA, 0x14, 0x28, 0x50 },
  46. { 0xC, 0x18, 0x30, 0x60 },
  47. { 0x10, 0x20, 0x40, 0x80 }, { 0x18, 0x30, 0x60, 0xC0 },
  48. { 0x20, 0x40, 0x80, 0x100 }, { 0x30, 0x60, 0xC0, 0x180 },
  49. { 0x40, 0x80, 0x100, 0x200 }, { 0x60, 0xC0, 0x180, 0x300 },
  50. { 0x80, 0x100, 0x200, 0x400 }
  51. };
  52. static const uint8_t hqx_quant_luma[64] = {
  53. 16, 16, 16, 19, 19, 19, 42, 44,
  54. 16, 16, 19, 19, 19, 38, 43, 45,
  55. 16, 19, 19, 19, 40, 41, 45, 48,
  56. 19, 19, 19, 40, 41, 42, 46, 49,
  57. 19, 19, 40, 41, 42, 43, 48, 101,
  58. 19, 38, 41, 42, 43, 44, 98, 104,
  59. 42, 43, 45, 46, 48, 98, 109, 116,
  60. 44, 45, 48, 49, 101, 104, 116, 123,
  61. };
  62. static const uint8_t hqx_quant_chroma[64] = {
  63. 16, 16, 19, 25, 26, 26, 42, 44,
  64. 16, 19, 25, 25, 26, 38, 43, 91,
  65. 19, 25, 26, 27, 40, 41, 91, 96,
  66. 25, 25, 27, 40, 41, 84, 93, 197,
  67. 26, 26, 40, 41, 84, 86, 191, 203,
  68. 26, 38, 41, 84, 86, 177, 197, 209,
  69. 42, 43, 91, 93, 191, 197, 219, 232,
  70. 44, 91, 96, 197, 203, 209, 232, 246,
  71. };
  72. static inline void put_blocks(HQXContext *ctx, int plane,
  73. int x, int y, int ilace,
  74. int16_t *block0, int16_t *block1,
  75. const uint8_t *quant)
  76. {
  77. int fields = ilace ? 2 : 1;
  78. int lsize = ctx->pic->linesize[plane];
  79. uint8_t *p = ctx->pic->data[plane] + x * 2;
  80. ctx->hqxdsp.idct_put((uint16_t *)(p + y * lsize),
  81. lsize * fields, block0, quant);
  82. ctx->hqxdsp.idct_put((uint16_t *)(p + (y + (ilace ? 1 : 8)) * lsize),
  83. lsize * fields, block1, quant);
  84. }
  85. static inline void hqx_get_ac(GetBitContext *gb, const HQXAC *ac,
  86. int *run, int *lev)
  87. {
  88. int val;
  89. val = show_bits(gb, ac->lut_bits);
  90. if (ac->lut[val].bits == -1) {
  91. GetBitContext gb2 = *gb;
  92. skip_bits(&gb2, ac->lut_bits);
  93. val = ac->lut[val].lev + show_bits(&gb2, ac->extra_bits);
  94. }
  95. *run = ac->lut[val].run;
  96. *lev = ac->lut[val].lev;
  97. skip_bits(gb, ac->lut[val].bits);
  98. }
  99. static int decode_block(GetBitContext *gb, VLC *vlc,
  100. const int *quants, int dcb,
  101. int16_t block[64], int *last_dc)
  102. {
  103. int q, dc;
  104. int ac_idx;
  105. int run, lev, pos = 1;
  106. memset(block, 0, 64 * sizeof(*block));
  107. dc = get_vlc2(gb, vlc->table, HQX_DC_VLC_BITS, 2);
  108. if (dc < 0)
  109. return AVERROR_INVALIDDATA;
  110. *last_dc += dc;
  111. block[0] = sign_extend(*last_dc << (12 - dcb), 12);
  112. q = quants[get_bits(gb, 2)];
  113. if (q >= 128)
  114. ac_idx = HQX_AC_Q128;
  115. else if (q >= 64)
  116. ac_idx = HQX_AC_Q64;
  117. else if (q >= 32)
  118. ac_idx = HQX_AC_Q32;
  119. else if (q >= 16)
  120. ac_idx = HQX_AC_Q16;
  121. else if (q >= 8)
  122. ac_idx = HQX_AC_Q8;
  123. else
  124. ac_idx = HQX_AC_Q0;
  125. do {
  126. hqx_get_ac(gb, &ff_hqx_ac[ac_idx], &run, &lev);
  127. pos += run;
  128. if (pos >= 64)
  129. break;
  130. block[ff_zigzag_direct[pos++]] = lev * q;
  131. } while (pos < 64);
  132. return 0;
  133. }
  134. static int hqx_decode_422(HQXContext *ctx, int slice_no, int x, int y)
  135. {
  136. HQXSlice *slice = &ctx->slice[slice_no];
  137. GetBitContext *gb = &slice->gb;
  138. const int *quants;
  139. int flag;
  140. int last_dc;
  141. int i, ret;
  142. if (ctx->interlaced)
  143. flag = get_bits1(gb);
  144. else
  145. flag = 0;
  146. quants = hqx_quants[get_bits(gb, 4)];
  147. for (i = 0; i < 8; i++) {
  148. int vlc_index = ctx->dcb - 9;
  149. if (i == 0 || i == 4 || i == 6)
  150. last_dc = 0;
  151. ret = decode_block(gb, &ctx->dc_vlc[vlc_index], quants,
  152. ctx->dcb, slice->block[i], &last_dc);
  153. if (ret < 0)
  154. return ret;
  155. }
  156. put_blocks(ctx, 0, x, y, flag, slice->block[0], slice->block[2], hqx_quant_luma);
  157. put_blocks(ctx, 0, x + 8, y, flag, slice->block[1], slice->block[3], hqx_quant_luma);
  158. put_blocks(ctx, 2, x >> 1, y, flag, slice->block[4], slice->block[5], hqx_quant_chroma);
  159. put_blocks(ctx, 1, x >> 1, y, flag, slice->block[6], slice->block[7], hqx_quant_chroma);
  160. return 0;
  161. }
  162. static int hqx_decode_422a(HQXContext *ctx, int slice_no, int x, int y)
  163. {
  164. HQXSlice *slice = &ctx->slice[slice_no];
  165. GetBitContext *gb = &slice->gb;
  166. const int *quants;
  167. int flag = 0;
  168. int last_dc;
  169. int i, ret;
  170. int cbp;
  171. cbp = get_vlc2(gb, ctx->cbp_vlc.table, ctx->cbp_vlc.bits, 1);
  172. for (i = 0; i < 12; i++)
  173. memset(slice->block[i], 0, sizeof(**slice->block) * 64);
  174. for (i = 0; i < 12; i++)
  175. slice->block[i][0] = -0x800;
  176. if (cbp) {
  177. if (ctx->interlaced)
  178. flag = get_bits1(gb);
  179. quants = hqx_quants[get_bits(gb, 4)];
  180. cbp |= cbp << 4; // alpha CBP
  181. if (cbp & 0x3) // chroma CBP - top
  182. cbp |= 0x500;
  183. if (cbp & 0xC) // chroma CBP - bottom
  184. cbp |= 0xA00;
  185. for (i = 0; i < 12; i++) {
  186. if (i == 0 || i == 4 || i == 8 || i == 10)
  187. last_dc = 0;
  188. if (cbp & (1 << i)) {
  189. int vlc_index = ctx->dcb - 9;
  190. ret = decode_block(gb, &ctx->dc_vlc[vlc_index], quants,
  191. ctx->dcb, slice->block[i], &last_dc);
  192. if (ret < 0)
  193. return ret;
  194. }
  195. }
  196. }
  197. put_blocks(ctx, 3, x, y, flag, slice->block[ 0], slice->block[ 2], hqx_quant_luma);
  198. put_blocks(ctx, 3, x + 8, y, flag, slice->block[ 1], slice->block[ 3], hqx_quant_luma);
  199. put_blocks(ctx, 0, x, y, flag, slice->block[ 4], slice->block[ 6], hqx_quant_luma);
  200. put_blocks(ctx, 0, x + 8, y, flag, slice->block[ 5], slice->block[ 7], hqx_quant_luma);
  201. put_blocks(ctx, 2, x >> 1, y, flag, slice->block[ 8], slice->block[ 9], hqx_quant_chroma);
  202. put_blocks(ctx, 1, x >> 1, y, flag, slice->block[10], slice->block[11], hqx_quant_chroma);
  203. return 0;
  204. }
  205. static int hqx_decode_444(HQXContext *ctx, int slice_no, int x, int y)
  206. {
  207. HQXSlice *slice = &ctx->slice[slice_no];
  208. GetBitContext *gb = &slice->gb;
  209. const int *quants;
  210. int flag;
  211. int last_dc;
  212. int i, ret;
  213. if (ctx->interlaced)
  214. flag = get_bits1(gb);
  215. else
  216. flag = 0;
  217. quants = hqx_quants[get_bits(gb, 4)];
  218. for (i = 0; i < 12; i++) {
  219. int vlc_index = ctx->dcb - 9;
  220. if (i == 0 || i == 4 || i == 8)
  221. last_dc = 0;
  222. ret = decode_block(gb, &ctx->dc_vlc[vlc_index], quants,
  223. ctx->dcb, slice->block[i], &last_dc);
  224. if (ret < 0)
  225. return ret;
  226. }
  227. put_blocks(ctx, 0, x, y, flag, slice->block[0], slice->block[ 2], hqx_quant_luma);
  228. put_blocks(ctx, 0, x + 8, y, flag, slice->block[1], slice->block[ 3], hqx_quant_luma);
  229. put_blocks(ctx, 2, x, y, flag, slice->block[4], slice->block[ 6], hqx_quant_chroma);
  230. put_blocks(ctx, 2, x + 8, y, flag, slice->block[5], slice->block[ 7], hqx_quant_chroma);
  231. put_blocks(ctx, 1, x, y, flag, slice->block[8], slice->block[10], hqx_quant_chroma);
  232. put_blocks(ctx, 1, x + 8, y, flag, slice->block[9], slice->block[11], hqx_quant_chroma);
  233. return 0;
  234. }
  235. static int hqx_decode_444a(HQXContext *ctx, int slice_no, int x, int y)
  236. {
  237. HQXSlice *slice = &ctx->slice[slice_no];
  238. GetBitContext *gb = &slice->gb;
  239. const int *quants;
  240. int flag = 0;
  241. int last_dc;
  242. int i, ret;
  243. int cbp;
  244. cbp = get_vlc2(gb, ctx->cbp_vlc.table, ctx->cbp_vlc.bits, 1);
  245. for (i = 0; i < 16; i++)
  246. memset(slice->block[i], 0, sizeof(**slice->block) * 64);
  247. for (i = 0; i < 16; i++)
  248. slice->block[i][0] = -0x800;
  249. if (cbp) {
  250. if (ctx->interlaced)
  251. flag = get_bits1(gb);
  252. quants = hqx_quants[get_bits(gb, 4)];
  253. cbp |= cbp << 4; // alpha CBP
  254. cbp |= cbp << 8; // chroma CBP
  255. for (i = 0; i < 16; i++) {
  256. if (i == 0 || i == 4 || i == 8 || i == 12)
  257. last_dc = 0;
  258. if (cbp & (1 << i)) {
  259. int vlc_index = ctx->dcb - 9;
  260. ret = decode_block(gb, &ctx->dc_vlc[vlc_index], quants,
  261. ctx->dcb, slice->block[i], &last_dc);
  262. if (ret < 0)
  263. return ret;
  264. }
  265. }
  266. }
  267. put_blocks(ctx, 3, x, y, flag, slice->block[ 0], slice->block[ 2], hqx_quant_luma);
  268. put_blocks(ctx, 3, x + 8, y, flag, slice->block[ 1], slice->block[ 3], hqx_quant_luma);
  269. put_blocks(ctx, 0, x, y, flag, slice->block[ 4], slice->block[ 6], hqx_quant_luma);
  270. put_blocks(ctx, 0, x + 8, y, flag, slice->block[ 5], slice->block[ 7], hqx_quant_luma);
  271. put_blocks(ctx, 2, x, y, flag, slice->block[ 8], slice->block[10], hqx_quant_chroma);
  272. put_blocks(ctx, 2, x + 8, y, flag, slice->block[ 9], slice->block[11], hqx_quant_chroma);
  273. put_blocks(ctx, 1, x, y, flag, slice->block[12], slice->block[14], hqx_quant_chroma);
  274. put_blocks(ctx, 1, x + 8, y, flag, slice->block[13], slice->block[15], hqx_quant_chroma);
  275. return 0;
  276. }
  277. static const int shuffle_16[16] = {
  278. 0, 5, 11, 14, 2, 7, 9, 13, 1, 4, 10, 15, 3, 6, 8, 12
  279. };
  280. static int decode_slice(HQXContext *ctx, int slice_no)
  281. {
  282. int mb_w = (ctx->width + 15) >> 4;
  283. int mb_h = (ctx->height + 15) >> 4;
  284. int grp_w = (mb_w + 4) / 5;
  285. int grp_h = (mb_h + 4) / 5;
  286. int grp_h_edge = grp_w * (mb_w / grp_w);
  287. int grp_v_edge = grp_h * (mb_h / grp_h);
  288. int grp_v_rest = mb_w - grp_h_edge;
  289. int grp_h_rest = mb_h - grp_v_edge;
  290. int num_mbs = mb_w * mb_h;
  291. int num_tiles = (num_mbs + 479) / 480;
  292. int std_tile_blocks = num_mbs / (16 * num_tiles);
  293. int g_tile = slice_no * num_tiles;
  294. int blk_addr, loc_addr, mb_x, mb_y, pos, loc_row, i;
  295. int tile_blocks, tile_limit, tile_no;
  296. for (tile_no = 0; tile_no < num_tiles; tile_no++, g_tile++) {
  297. tile_blocks = std_tile_blocks;
  298. tile_limit = -1;
  299. if (g_tile < num_mbs - std_tile_blocks * 16 * num_tiles) {
  300. tile_limit = num_mbs / (16 * num_tiles);
  301. tile_blocks++;
  302. }
  303. for (i = 0; i < tile_blocks; i++) {
  304. if (i == tile_limit)
  305. blk_addr = g_tile + 16 * num_tiles * i;
  306. else
  307. blk_addr = tile_no + 16 * num_tiles * i +
  308. num_tiles * shuffle_16[(i + slice_no) & 0xF];
  309. loc_row = grp_h * (blk_addr / (grp_h * mb_w));
  310. loc_addr = blk_addr % (grp_h * mb_w);
  311. if (loc_row >= grp_v_edge) {
  312. mb_x = grp_w * (loc_addr / (grp_h_rest * grp_w));
  313. pos = loc_addr % (grp_h_rest * grp_w);
  314. } else {
  315. mb_x = grp_w * (loc_addr / (grp_h * grp_w));
  316. pos = loc_addr % (grp_h * grp_w);
  317. }
  318. if (mb_x >= grp_h_edge) {
  319. mb_x += pos % grp_v_rest;
  320. mb_y = loc_row + (pos / grp_v_rest);
  321. } else {
  322. mb_x += pos % grp_w;
  323. mb_y = loc_row + (pos / grp_w);
  324. }
  325. ctx->decode_func(ctx, slice_no, mb_x * 16, mb_y * 16);
  326. }
  327. }
  328. return 0;
  329. }
  330. static int decode_slice_thread(AVCodecContext *avctx, void *arg,
  331. int slice_no, int threadnr)
  332. {
  333. HQXContext *ctx = avctx->priv_data;
  334. uint32_t *slice_off = ctx->slice_off;
  335. int ret;
  336. if (slice_off[slice_no] < HQX_HEADER_SIZE ||
  337. slice_off[slice_no] >= slice_off[slice_no + 1] ||
  338. slice_off[slice_no + 1] > ctx->data_size) {
  339. av_log(avctx, AV_LOG_ERROR, "Invalid slice size %d.\n", ctx->data_size);
  340. return AVERROR_INVALIDDATA;
  341. }
  342. ret = init_get_bits8(&ctx->slice[slice_no].gb,
  343. ctx->src + slice_off[slice_no],
  344. slice_off[slice_no + 1] - slice_off[slice_no]);
  345. if (ret < 0)
  346. return ret;
  347. return decode_slice(ctx, slice_no);
  348. }
  349. static int hqx_decode_frame(AVCodecContext *avctx, void *data,
  350. int *got_picture_ptr, AVPacket *avpkt)
  351. {
  352. HQXContext *ctx = avctx->priv_data;
  353. uint8_t *src = avpkt->data;
  354. uint32_t info_tag, info_offset;
  355. int data_start;
  356. int i, ret;
  357. if (avpkt->size < 8)
  358. return AVERROR_INVALIDDATA;
  359. /* Skip the INFO header if present */
  360. info_offset = 0;
  361. info_tag = AV_RL32(src);
  362. if (info_tag == MKTAG('I', 'N', 'F', 'O')) {
  363. info_offset = AV_RL32(src + 4);
  364. if (info_offset > UINT32_MAX - 8 || info_offset + 8 > avpkt->size) {
  365. av_log(avctx, AV_LOG_ERROR,
  366. "Invalid INFO header offset: 0x%08"PRIX32" is too large.\n",
  367. info_offset);
  368. return AVERROR_INVALIDDATA;
  369. }
  370. info_offset += 8;
  371. src += info_offset;
  372. av_log(avctx, AV_LOG_DEBUG, "Skipping INFO chunk.\n");
  373. }
  374. data_start = src - avpkt->data;
  375. ctx->data_size = avpkt->size - data_start;
  376. ctx->src = src;
  377. ctx->pic = data;
  378. if (ctx->data_size < HQX_HEADER_SIZE) {
  379. av_log(avctx, AV_LOG_ERROR, "Frame too small.\n");
  380. return AVERROR_INVALIDDATA;
  381. }
  382. if (src[0] != 'H' || src[1] != 'Q') {
  383. av_log(avctx, AV_LOG_ERROR, "Not an HQX frame.\n");
  384. return AVERROR_INVALIDDATA;
  385. }
  386. ctx->interlaced = !(src[2] & 0x80);
  387. ctx->format = src[2] & 7;
  388. ctx->dcb = (src[3] & 3) + 8;
  389. ctx->width = AV_RB16(src + 4);
  390. ctx->height = AV_RB16(src + 6);
  391. for (i = 0; i < 17; i++)
  392. ctx->slice_off[i] = AV_RB24(src + 8 + i * 3);
  393. if (ctx->dcb == 8) {
  394. av_log(avctx, AV_LOG_ERROR, "Invalid DC precision %d.\n", ctx->dcb);
  395. return AVERROR_INVALIDDATA;
  396. }
  397. ret = av_image_check_size(ctx->width, ctx->height, 0, avctx);
  398. if (ret < 0) {
  399. av_log(avctx, AV_LOG_ERROR, "Invalid stored dimenstions %dx%d.\n",
  400. ctx->width, ctx->height);
  401. return AVERROR_INVALIDDATA;
  402. }
  403. avctx->coded_width = FFALIGN(ctx->width, 16);
  404. avctx->coded_height = FFALIGN(ctx->height, 16);
  405. avctx->width = ctx->width;
  406. avctx->height = ctx->height;
  407. avctx->bits_per_raw_sample = 10;
  408. switch (ctx->format) {
  409. case HQX_422:
  410. avctx->pix_fmt = AV_PIX_FMT_YUV422P16;
  411. ctx->decode_func = hqx_decode_422;
  412. break;
  413. case HQX_444:
  414. avctx->pix_fmt = AV_PIX_FMT_YUV444P16;
  415. ctx->decode_func = hqx_decode_444;
  416. break;
  417. case HQX_422A:
  418. avctx->pix_fmt = AV_PIX_FMT_YUVA422P16;
  419. ctx->decode_func = hqx_decode_422a;
  420. break;
  421. case HQX_444A:
  422. avctx->pix_fmt = AV_PIX_FMT_YUVA444P16;
  423. ctx->decode_func = hqx_decode_444a;
  424. break;
  425. default:
  426. av_log(avctx, AV_LOG_ERROR, "Invalid format: %d.\n", ctx->format);
  427. return AVERROR_INVALIDDATA;
  428. }
  429. ret = ff_get_buffer(avctx, ctx->pic, 0);
  430. if (ret < 0) {
  431. av_log(avctx, AV_LOG_ERROR, "Could not allocate buffer.\n");
  432. return ret;
  433. }
  434. avctx->execute2(avctx, decode_slice_thread, NULL, NULL, 16);
  435. ctx->pic->key_frame = 1;
  436. ctx->pic->pict_type = AV_PICTURE_TYPE_I;
  437. *got_picture_ptr = 1;
  438. return avpkt->size;
  439. }
  440. static av_cold int hqx_decode_close(AVCodecContext *avctx)
  441. {
  442. int i;
  443. HQXContext *ctx = avctx->priv_data;
  444. ff_free_vlc(&ctx->cbp_vlc);
  445. for (i = 0; i < 3; i++) {
  446. ff_free_vlc(&ctx->dc_vlc[i]);
  447. }
  448. return 0;
  449. }
  450. static av_cold int hqx_decode_init(AVCodecContext *avctx)
  451. {
  452. HQXContext *ctx = avctx->priv_data;
  453. int ret = ff_hqx_init_vlcs(ctx);
  454. if (ret < 0)
  455. hqx_decode_close(avctx);
  456. ff_hqxdsp_init(&ctx->hqxdsp);
  457. return ret;
  458. }
  459. AVCodec ff_hqx_decoder = {
  460. .name = "hqx",
  461. .long_name = NULL_IF_CONFIG_SMALL("Canopus HQX"),
  462. .type = AVMEDIA_TYPE_VIDEO,
  463. .id = AV_CODEC_ID_HQX,
  464. .priv_data_size = sizeof(HQXContext),
  465. .init = hqx_decode_init,
  466. .decode = hqx_decode_frame,
  467. .close = hqx_decode_close,
  468. .capabilities = CODEC_CAP_DR1 | CODEC_CAP_SLICE_THREADS,
  469. };