You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

2658 lines
100KB

  1. /*
  2. * DCA compatible decoder
  3. * Copyright (C) 2004 Gildas Bazin
  4. * Copyright (C) 2004 Benjamin Zores
  5. * Copyright (C) 2006 Benjamin Larsson
  6. * Copyright (C) 2007 Konstantin Shishkov
  7. *
  8. * This file is part of FFmpeg.
  9. *
  10. * FFmpeg is free software; you can redistribute it and/or
  11. * modify it under the terms of the GNU Lesser General Public
  12. * License as published by the Free Software Foundation; either
  13. * version 2.1 of the License, or (at your option) any later version.
  14. *
  15. * FFmpeg is distributed in the hope that it will be useful,
  16. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  17. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  18. * Lesser General Public License for more details.
  19. *
  20. * You should have received a copy of the GNU Lesser General Public
  21. * License along with FFmpeg; if not, write to the Free Software
  22. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  23. */
  24. #include <math.h>
  25. #include <stddef.h>
  26. #include <stdio.h>
  27. #include "libavutil/channel_layout.h"
  28. #include "libavutil/common.h"
  29. #include "libavutil/float_dsp.h"
  30. #include "libavutil/internal.h"
  31. #include "libavutil/intreadwrite.h"
  32. #include "libavutil/mathematics.h"
  33. #include "libavutil/opt.h"
  34. #include "libavutil/samplefmt.h"
  35. #include "avcodec.h"
  36. #include "fft.h"
  37. #include "get_bits.h"
  38. #include "dcadata.h"
  39. #include "dcahuff.h"
  40. #include "dca.h"
  41. #include "mathops.h"
  42. #include "synth_filter.h"
  43. #include "dcadsp.h"
  44. #include "fmtconvert.h"
  45. #include "internal.h"
  46. #if ARCH_ARM
  47. # include "arm/dca.h"
  48. #endif
  49. #if ARCH_X86
  50. # include "x86/dca.h"
  51. #endif
  52. //#define TRACE
  53. #define DCA_PRIM_CHANNELS_MAX (7)
  54. #define DCA_SUBBANDS (64)
  55. #define DCA_ABITS_MAX (32) /* Should be 28 */
  56. #define DCA_SUBSUBFRAMES_MAX (4)
  57. #define DCA_SUBFRAMES_MAX (16)
  58. #define DCA_BLOCKS_MAX (16)
  59. #define DCA_LFE_MAX (3)
  60. #define DCA_CHSETS_MAX (4)
  61. #define DCA_CHSET_CHANS_MAX (8)
  62. enum DCAMode {
  63. DCA_MONO = 0,
  64. DCA_CHANNEL,
  65. DCA_STEREO,
  66. DCA_STEREO_SUMDIFF,
  67. DCA_STEREO_TOTAL,
  68. DCA_3F,
  69. DCA_2F1R,
  70. DCA_3F1R,
  71. DCA_2F2R,
  72. DCA_3F2R,
  73. DCA_4F2R
  74. };
  75. /* these are unconfirmed but should be mostly correct */
  76. enum DCAExSSSpeakerMask {
  77. DCA_EXSS_FRONT_CENTER = 0x0001,
  78. DCA_EXSS_FRONT_LEFT_RIGHT = 0x0002,
  79. DCA_EXSS_SIDE_REAR_LEFT_RIGHT = 0x0004,
  80. DCA_EXSS_LFE = 0x0008,
  81. DCA_EXSS_REAR_CENTER = 0x0010,
  82. DCA_EXSS_FRONT_HIGH_LEFT_RIGHT = 0x0020,
  83. DCA_EXSS_REAR_LEFT_RIGHT = 0x0040,
  84. DCA_EXSS_FRONT_HIGH_CENTER = 0x0080,
  85. DCA_EXSS_OVERHEAD = 0x0100,
  86. DCA_EXSS_CENTER_LEFT_RIGHT = 0x0200,
  87. DCA_EXSS_WIDE_LEFT_RIGHT = 0x0400,
  88. DCA_EXSS_SIDE_LEFT_RIGHT = 0x0800,
  89. DCA_EXSS_LFE2 = 0x1000,
  90. DCA_EXSS_SIDE_HIGH_LEFT_RIGHT = 0x2000,
  91. DCA_EXSS_REAR_HIGH_CENTER = 0x4000,
  92. DCA_EXSS_REAR_HIGH_LEFT_RIGHT = 0x8000,
  93. };
  94. enum DCAXxchSpeakerMask {
  95. DCA_XXCH_FRONT_CENTER = 0x0000001,
  96. DCA_XXCH_FRONT_LEFT = 0x0000002,
  97. DCA_XXCH_FRONT_RIGHT = 0x0000004,
  98. DCA_XXCH_SIDE_REAR_LEFT = 0x0000008,
  99. DCA_XXCH_SIDE_REAR_RIGHT = 0x0000010,
  100. DCA_XXCH_LFE1 = 0x0000020,
  101. DCA_XXCH_REAR_CENTER = 0x0000040,
  102. DCA_XXCH_SURROUND_REAR_LEFT = 0x0000080,
  103. DCA_XXCH_SURROUND_REAR_RIGHT = 0x0000100,
  104. DCA_XXCH_SIDE_SURROUND_LEFT = 0x0000200,
  105. DCA_XXCH_SIDE_SURROUND_RIGHT = 0x0000400,
  106. DCA_XXCH_FRONT_CENTER_LEFT = 0x0000800,
  107. DCA_XXCH_FRONT_CENTER_RIGHT = 0x0001000,
  108. DCA_XXCH_FRONT_HIGH_LEFT = 0x0002000,
  109. DCA_XXCH_FRONT_HIGH_CENTER = 0x0004000,
  110. DCA_XXCH_FRONT_HIGH_RIGHT = 0x0008000,
  111. DCA_XXCH_LFE2 = 0x0010000,
  112. DCA_XXCH_SIDE_FRONT_LEFT = 0x0020000,
  113. DCA_XXCH_SIDE_FRONT_RIGHT = 0x0040000,
  114. DCA_XXCH_OVERHEAD = 0x0080000,
  115. DCA_XXCH_SIDE_HIGH_LEFT = 0x0100000,
  116. DCA_XXCH_SIDE_HIGH_RIGHT = 0x0200000,
  117. DCA_XXCH_REAR_HIGH_CENTER = 0x0400000,
  118. DCA_XXCH_REAR_HIGH_LEFT = 0x0800000,
  119. DCA_XXCH_REAR_HIGH_RIGHT = 0x1000000,
  120. DCA_XXCH_REAR_LOW_CENTER = 0x2000000,
  121. DCA_XXCH_REAR_LOW_LEFT = 0x4000000,
  122. DCA_XXCH_REAR_LOW_RIGHT = 0x8000000,
  123. };
  124. static const uint32_t map_xxch_to_native[28] = {
  125. AV_CH_FRONT_CENTER,
  126. AV_CH_FRONT_LEFT,
  127. AV_CH_FRONT_RIGHT,
  128. AV_CH_SIDE_LEFT,
  129. AV_CH_SIDE_RIGHT,
  130. AV_CH_LOW_FREQUENCY,
  131. AV_CH_BACK_CENTER,
  132. AV_CH_BACK_LEFT,
  133. AV_CH_BACK_RIGHT,
  134. AV_CH_SIDE_LEFT, /* side surround left -- dup sur side L */
  135. AV_CH_SIDE_RIGHT, /* side surround right -- dup sur side R */
  136. AV_CH_FRONT_LEFT_OF_CENTER,
  137. AV_CH_FRONT_RIGHT_OF_CENTER,
  138. AV_CH_TOP_FRONT_LEFT,
  139. AV_CH_TOP_FRONT_CENTER,
  140. AV_CH_TOP_FRONT_RIGHT,
  141. AV_CH_LOW_FREQUENCY, /* lfe2 -- duplicate lfe1 position */
  142. AV_CH_FRONT_LEFT_OF_CENTER, /* side front left -- dup front cntr L */
  143. AV_CH_FRONT_RIGHT_OF_CENTER,/* side front right -- dup front cntr R */
  144. AV_CH_TOP_CENTER, /* overhead */
  145. AV_CH_TOP_FRONT_LEFT, /* side high left -- dup */
  146. AV_CH_TOP_FRONT_RIGHT, /* side high right -- dup */
  147. AV_CH_TOP_BACK_CENTER,
  148. AV_CH_TOP_BACK_LEFT,
  149. AV_CH_TOP_BACK_RIGHT,
  150. AV_CH_BACK_CENTER, /* rear low center -- dup */
  151. AV_CH_BACK_LEFT, /* rear low left -- dup */
  152. AV_CH_BACK_RIGHT /* read low right -- dup */
  153. };
  154. enum DCAExtensionMask {
  155. DCA_EXT_CORE = 0x001, ///< core in core substream
  156. DCA_EXT_XXCH = 0x002, ///< XXCh channels extension in core substream
  157. DCA_EXT_X96 = 0x004, ///< 96/24 extension in core substream
  158. DCA_EXT_XCH = 0x008, ///< XCh channel extension in core substream
  159. DCA_EXT_EXSS_CORE = 0x010, ///< core in ExSS (extension substream)
  160. DCA_EXT_EXSS_XBR = 0x020, ///< extended bitrate extension in ExSS
  161. DCA_EXT_EXSS_XXCH = 0x040, ///< XXCh channels extension in ExSS
  162. DCA_EXT_EXSS_X96 = 0x080, ///< 96/24 extension in ExSS
  163. DCA_EXT_EXSS_LBR = 0x100, ///< low bitrate component in ExSS
  164. DCA_EXT_EXSS_XLL = 0x200, ///< lossless extension in ExSS
  165. };
  166. /* -1 are reserved or unknown */
  167. static const int dca_ext_audio_descr_mask[] = {
  168. DCA_EXT_XCH,
  169. -1,
  170. DCA_EXT_X96,
  171. DCA_EXT_XCH | DCA_EXT_X96,
  172. -1,
  173. -1,
  174. DCA_EXT_XXCH,
  175. -1,
  176. };
  177. /* extensions that reside in core substream */
  178. #define DCA_CORE_EXTS (DCA_EXT_XCH | DCA_EXT_XXCH | DCA_EXT_X96)
  179. /* Tables for mapping dts channel configurations to libavcodec multichannel api.
  180. * Some compromises have been made for special configurations. Most configurations
  181. * are never used so complete accuracy is not needed.
  182. *
  183. * L = left, R = right, C = center, S = surround, F = front, R = rear, T = total, OV = overhead.
  184. * S -> side, when both rear and back are configured move one of them to the side channel
  185. * OV -> center back
  186. * All 2 channel configurations -> AV_CH_LAYOUT_STEREO
  187. */
  188. static const uint64_t dca_core_channel_layout[] = {
  189. AV_CH_FRONT_CENTER, ///< 1, A
  190. AV_CH_LAYOUT_STEREO, ///< 2, A + B (dual mono)
  191. AV_CH_LAYOUT_STEREO, ///< 2, L + R (stereo)
  192. AV_CH_LAYOUT_STEREO, ///< 2, (L + R) + (L - R) (sum-difference)
  193. AV_CH_LAYOUT_STEREO, ///< 2, LT + RT (left and right total)
  194. AV_CH_LAYOUT_STEREO | AV_CH_FRONT_CENTER, ///< 3, C + L + R
  195. AV_CH_LAYOUT_STEREO | AV_CH_BACK_CENTER, ///< 3, L + R + S
  196. AV_CH_LAYOUT_STEREO | AV_CH_FRONT_CENTER | AV_CH_BACK_CENTER, ///< 4, C + L + R + S
  197. AV_CH_LAYOUT_STEREO | AV_CH_SIDE_LEFT | AV_CH_SIDE_RIGHT, ///< 4, L + R + SL + SR
  198. AV_CH_LAYOUT_STEREO | AV_CH_FRONT_CENTER | AV_CH_SIDE_LEFT |
  199. AV_CH_SIDE_RIGHT, ///< 5, C + L + R + SL + SR
  200. AV_CH_LAYOUT_STEREO | AV_CH_SIDE_LEFT | AV_CH_SIDE_RIGHT |
  201. AV_CH_FRONT_LEFT_OF_CENTER | AV_CH_FRONT_RIGHT_OF_CENTER, ///< 6, CL + CR + L + R + SL + SR
  202. AV_CH_LAYOUT_STEREO | AV_CH_BACK_LEFT | AV_CH_BACK_RIGHT |
  203. AV_CH_FRONT_CENTER | AV_CH_BACK_CENTER, ///< 6, C + L + R + LR + RR + OV
  204. AV_CH_FRONT_CENTER | AV_CH_FRONT_RIGHT_OF_CENTER |
  205. AV_CH_FRONT_LEFT_OF_CENTER | AV_CH_BACK_CENTER |
  206. AV_CH_BACK_LEFT | AV_CH_BACK_RIGHT, ///< 6, CF + CR + LF + RF + LR + RR
  207. AV_CH_FRONT_LEFT_OF_CENTER | AV_CH_FRONT_CENTER |
  208. AV_CH_FRONT_RIGHT_OF_CENTER | AV_CH_LAYOUT_STEREO |
  209. AV_CH_SIDE_LEFT | AV_CH_SIDE_RIGHT, ///< 7, CL + C + CR + L + R + SL + SR
  210. AV_CH_FRONT_LEFT_OF_CENTER | AV_CH_FRONT_RIGHT_OF_CENTER |
  211. AV_CH_LAYOUT_STEREO | AV_CH_SIDE_LEFT | AV_CH_SIDE_RIGHT |
  212. AV_CH_BACK_LEFT | AV_CH_BACK_RIGHT, ///< 8, CL + CR + L + R + SL1 + SL2 + SR1 + SR2
  213. AV_CH_FRONT_LEFT_OF_CENTER | AV_CH_FRONT_CENTER |
  214. AV_CH_FRONT_RIGHT_OF_CENTER | AV_CH_LAYOUT_STEREO |
  215. AV_CH_SIDE_LEFT | AV_CH_BACK_CENTER | AV_CH_SIDE_RIGHT, ///< 8, CL + C + CR + L + R + SL + S + SR
  216. };
  217. static const int8_t dca_lfe_index[] = {
  218. 1, 2, 2, 2, 2, 3, 2, 3, 2, 3, 2, 3, 1, 3, 2, 3
  219. };
  220. static const int8_t dca_channel_reorder_lfe[][9] = {
  221. { 0, -1, -1, -1, -1, -1, -1, -1, -1},
  222. { 0, 1, -1, -1, -1, -1, -1, -1, -1},
  223. { 0, 1, -1, -1, -1, -1, -1, -1, -1},
  224. { 0, 1, -1, -1, -1, -1, -1, -1, -1},
  225. { 0, 1, -1, -1, -1, -1, -1, -1, -1},
  226. { 2, 0, 1, -1, -1, -1, -1, -1, -1},
  227. { 0, 1, 3, -1, -1, -1, -1, -1, -1},
  228. { 2, 0, 1, 4, -1, -1, -1, -1, -1},
  229. { 0, 1, 3, 4, -1, -1, -1, -1, -1},
  230. { 2, 0, 1, 4, 5, -1, -1, -1, -1},
  231. { 3, 4, 0, 1, 5, 6, -1, -1, -1},
  232. { 2, 0, 1, 4, 5, 6, -1, -1, -1},
  233. { 0, 6, 4, 5, 2, 3, -1, -1, -1},
  234. { 4, 2, 5, 0, 1, 6, 7, -1, -1},
  235. { 5, 6, 0, 1, 7, 3, 8, 4, -1},
  236. { 4, 2, 5, 0, 1, 6, 8, 7, -1},
  237. };
  238. static const int8_t dca_channel_reorder_lfe_xch[][9] = {
  239. { 0, 2, -1, -1, -1, -1, -1, -1, -1},
  240. { 0, 1, 3, -1, -1, -1, -1, -1, -1},
  241. { 0, 1, 3, -1, -1, -1, -1, -1, -1},
  242. { 0, 1, 3, -1, -1, -1, -1, -1, -1},
  243. { 0, 1, 3, -1, -1, -1, -1, -1, -1},
  244. { 2, 0, 1, 4, -1, -1, -1, -1, -1},
  245. { 0, 1, 3, 4, -1, -1, -1, -1, -1},
  246. { 2, 0, 1, 4, 5, -1, -1, -1, -1},
  247. { 0, 1, 4, 5, 3, -1, -1, -1, -1},
  248. { 2, 0, 1, 5, 6, 4, -1, -1, -1},
  249. { 3, 4, 0, 1, 6, 7, 5, -1, -1},
  250. { 2, 0, 1, 4, 5, 6, 7, -1, -1},
  251. { 0, 6, 4, 5, 2, 3, 7, -1, -1},
  252. { 4, 2, 5, 0, 1, 7, 8, 6, -1},
  253. { 5, 6, 0, 1, 8, 3, 9, 4, 7},
  254. { 4, 2, 5, 0, 1, 6, 9, 8, 7},
  255. };
  256. static const int8_t dca_channel_reorder_nolfe[][9] = {
  257. { 0, -1, -1, -1, -1, -1, -1, -1, -1},
  258. { 0, 1, -1, -1, -1, -1, -1, -1, -1},
  259. { 0, 1, -1, -1, -1, -1, -1, -1, -1},
  260. { 0, 1, -1, -1, -1, -1, -1, -1, -1},
  261. { 0, 1, -1, -1, -1, -1, -1, -1, -1},
  262. { 2, 0, 1, -1, -1, -1, -1, -1, -1},
  263. { 0, 1, 2, -1, -1, -1, -1, -1, -1},
  264. { 2, 0, 1, 3, -1, -1, -1, -1, -1},
  265. { 0, 1, 2, 3, -1, -1, -1, -1, -1},
  266. { 2, 0, 1, 3, 4, -1, -1, -1, -1},
  267. { 2, 3, 0, 1, 4, 5, -1, -1, -1},
  268. { 2, 0, 1, 3, 4, 5, -1, -1, -1},
  269. { 0, 5, 3, 4, 1, 2, -1, -1, -1},
  270. { 3, 2, 4, 0, 1, 5, 6, -1, -1},
  271. { 4, 5, 0, 1, 6, 2, 7, 3, -1},
  272. { 3, 2, 4, 0, 1, 5, 7, 6, -1},
  273. };
  274. static const int8_t dca_channel_reorder_nolfe_xch[][9] = {
  275. { 0, 1, -1, -1, -1, -1, -1, -1, -1},
  276. { 0, 1, 2, -1, -1, -1, -1, -1, -1},
  277. { 0, 1, 2, -1, -1, -1, -1, -1, -1},
  278. { 0, 1, 2, -1, -1, -1, -1, -1, -1},
  279. { 0, 1, 2, -1, -1, -1, -1, -1, -1},
  280. { 2, 0, 1, 3, -1, -1, -1, -1, -1},
  281. { 0, 1, 2, 3, -1, -1, -1, -1, -1},
  282. { 2, 0, 1, 3, 4, -1, -1, -1, -1},
  283. { 0, 1, 3, 4, 2, -1, -1, -1, -1},
  284. { 2, 0, 1, 4, 5, 3, -1, -1, -1},
  285. { 2, 3, 0, 1, 5, 6, 4, -1, -1},
  286. { 2, 0, 1, 3, 4, 5, 6, -1, -1},
  287. { 0, 5, 3, 4, 1, 2, 6, -1, -1},
  288. { 3, 2, 4, 0, 1, 6, 7, 5, -1},
  289. { 4, 5, 0, 1, 7, 2, 8, 3, 6},
  290. { 3, 2, 4, 0, 1, 5, 8, 7, 6},
  291. };
  292. #define DCA_DOLBY 101 /* FIXME */
  293. #define DCA_CHANNEL_BITS 6
  294. #define DCA_CHANNEL_MASK 0x3F
  295. #define DCA_LFE 0x80
  296. #define HEADER_SIZE 14
  297. #define DCA_MAX_FRAME_SIZE 16384
  298. #define DCA_MAX_EXSS_HEADER_SIZE 4096
  299. #define DCA_BUFFER_PADDING_SIZE 1024
  300. #define DCA_NSYNCAUX 0x9A1105A0
  301. /** Bit allocation */
  302. typedef struct {
  303. int offset; ///< code values offset
  304. int maxbits[8]; ///< max bits in VLC
  305. int wrap; ///< wrap for get_vlc2()
  306. VLC vlc[8]; ///< actual codes
  307. } BitAlloc;
  308. static BitAlloc dca_bitalloc_index; ///< indexes for samples VLC select
  309. static BitAlloc dca_tmode; ///< transition mode VLCs
  310. static BitAlloc dca_scalefactor; ///< scalefactor VLCs
  311. static BitAlloc dca_smpl_bitalloc[11]; ///< samples VLCs
  312. static av_always_inline int get_bitalloc(GetBitContext *gb, BitAlloc *ba,
  313. int idx)
  314. {
  315. return get_vlc2(gb, ba->vlc[idx].table, ba->vlc[idx].bits, ba->wrap) +
  316. ba->offset;
  317. }
  318. typedef struct {
  319. const AVClass *class; ///< class for AVOptions
  320. AVCodecContext *avctx;
  321. /* Frame header */
  322. int frame_type; ///< type of the current frame
  323. int samples_deficit; ///< deficit sample count
  324. int crc_present; ///< crc is present in the bitstream
  325. int sample_blocks; ///< number of PCM sample blocks
  326. int frame_size; ///< primary frame byte size
  327. int amode; ///< audio channels arrangement
  328. int sample_rate; ///< audio sampling rate
  329. int bit_rate; ///< transmission bit rate
  330. int bit_rate_index; ///< transmission bit rate index
  331. int dynrange; ///< embedded dynamic range flag
  332. int timestamp; ///< embedded time stamp flag
  333. int aux_data; ///< auxiliary data flag
  334. int hdcd; ///< source material is mastered in HDCD
  335. int ext_descr; ///< extension audio descriptor flag
  336. int ext_coding; ///< extended coding flag
  337. int aspf; ///< audio sync word insertion flag
  338. int lfe; ///< low frequency effects flag
  339. int predictor_history; ///< predictor history flag
  340. int header_crc; ///< header crc check bytes
  341. int multirate_inter; ///< multirate interpolator switch
  342. int version; ///< encoder software revision
  343. int copy_history; ///< copy history
  344. int source_pcm_res; ///< source pcm resolution
  345. int front_sum; ///< front sum/difference flag
  346. int surround_sum; ///< surround sum/difference flag
  347. int dialog_norm; ///< dialog normalisation parameter
  348. /* Primary audio coding header */
  349. int subframes; ///< number of subframes
  350. int total_channels; ///< number of channels including extensions
  351. int prim_channels; ///< number of primary audio channels
  352. int subband_activity[DCA_PRIM_CHANNELS_MAX]; ///< subband activity count
  353. int vq_start_subband[DCA_PRIM_CHANNELS_MAX]; ///< high frequency vq start subband
  354. int joint_intensity[DCA_PRIM_CHANNELS_MAX]; ///< joint intensity coding index
  355. int transient_huffman[DCA_PRIM_CHANNELS_MAX]; ///< transient mode code book
  356. int scalefactor_huffman[DCA_PRIM_CHANNELS_MAX]; ///< scale factor code book
  357. int bitalloc_huffman[DCA_PRIM_CHANNELS_MAX]; ///< bit allocation quantizer select
  358. int quant_index_huffman[DCA_PRIM_CHANNELS_MAX][DCA_ABITS_MAX]; ///< quantization index codebook select
  359. float scalefactor_adj[DCA_PRIM_CHANNELS_MAX][DCA_ABITS_MAX]; ///< scale factor adjustment
  360. /* Primary audio coding side information */
  361. int subsubframes[DCA_SUBFRAMES_MAX]; ///< number of subsubframes
  362. int partial_samples[DCA_SUBFRAMES_MAX]; ///< partial subsubframe samples count
  363. int prediction_mode[DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS]; ///< prediction mode (ADPCM used or not)
  364. int prediction_vq[DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS]; ///< prediction VQ coefs
  365. int bitalloc[DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS]; ///< bit allocation index
  366. int transition_mode[DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS]; ///< transition mode (transients)
  367. int scale_factor[DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS][2]; ///< scale factors (2 if transient)
  368. int joint_huff[DCA_PRIM_CHANNELS_MAX]; ///< joint subband scale factors codebook
  369. int joint_scale_factor[DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS]; ///< joint subband scale factors
  370. float downmix_coef[DCA_PRIM_CHANNELS_MAX + 1][2]; ///< stereo downmix coefficients
  371. int dynrange_coef; ///< dynamic range coefficient
  372. /* Core substream's embedded downmix coefficients (cf. ETSI TS 102 114 V1.4.1)
  373. * Input: primary audio channels (incl. LFE if present)
  374. * Output: downmix audio channels (up to 4, no LFE) */
  375. uint8_t core_downmix; ///< embedded downmix coefficients available
  376. uint8_t core_downmix_amode; ///< audio channel arrangement of embedded downmix
  377. uint16_t core_downmix_codes[DCA_PRIM_CHANNELS_MAX + 1][4]; ///< embedded downmix coefficients (9-bit codes)
  378. int high_freq_vq[DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS]; ///< VQ encoded high frequency subbands
  379. float lfe_data[2 * DCA_LFE_MAX * (DCA_BLOCKS_MAX + 4)]; ///< Low frequency effect data
  380. int lfe_scale_factor;
  381. /* Subband samples history (for ADPCM) */
  382. DECLARE_ALIGNED(16, float, subband_samples_hist)[DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS][4];
  383. DECLARE_ALIGNED(32, float, subband_fir_hist)[DCA_PRIM_CHANNELS_MAX][512];
  384. DECLARE_ALIGNED(32, float, subband_fir_noidea)[DCA_PRIM_CHANNELS_MAX][32];
  385. int hist_index[DCA_PRIM_CHANNELS_MAX];
  386. DECLARE_ALIGNED(32, float, raXin)[32];
  387. int output; ///< type of output
  388. DECLARE_ALIGNED(32, float, subband_samples)[DCA_BLOCKS_MAX][DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS][8];
  389. float *samples_chanptr[DCA_PRIM_CHANNELS_MAX + 1];
  390. float *extra_channels[DCA_PRIM_CHANNELS_MAX + 1];
  391. uint8_t *extra_channels_buffer;
  392. unsigned int extra_channels_buffer_size;
  393. uint8_t dca_buffer[DCA_MAX_FRAME_SIZE + DCA_MAX_EXSS_HEADER_SIZE + DCA_BUFFER_PADDING_SIZE];
  394. int dca_buffer_size; ///< how much data is in the dca_buffer
  395. const int8_t *channel_order_tab; ///< channel reordering table, lfe and non lfe
  396. GetBitContext gb;
  397. /* Current position in DCA frame */
  398. int current_subframe;
  399. int current_subsubframe;
  400. int core_ext_mask; ///< present extensions in the core substream
  401. /* XCh extension information */
  402. int xch_present; ///< XCh extension present and valid
  403. int xch_base_channel; ///< index of first (only) channel containing XCH data
  404. int xch_disable; ///< whether the XCh extension should be decoded or not
  405. /* XXCH extension information */
  406. int xxch_chset;
  407. int xxch_nbits_spk_mask;
  408. uint32_t xxch_core_spkmask;
  409. uint32_t xxch_spk_masks[4]; /* speaker masks, last element is core mask */
  410. int xxch_chset_nch[4];
  411. float xxch_dmix_sf[DCA_CHSETS_MAX];
  412. uint32_t xxch_dmix_embedded; /* lower layer has mix pre-embedded, per chset */
  413. float xxch_dmix_coeff[DCA_PRIM_CHANNELS_MAX][32]; /* worst case sizing */
  414. int8_t xxch_order_tab[32];
  415. int8_t lfe_index;
  416. /* ExSS header parser */
  417. int static_fields; ///< static fields present
  418. int mix_metadata; ///< mixing metadata present
  419. int num_mix_configs; ///< number of mix out configurations
  420. int mix_config_num_ch[4]; ///< number of channels in each mix out configuration
  421. int profile;
  422. int debug_flag; ///< used for suppressing repeated error messages output
  423. AVFloatDSPContext fdsp;
  424. FFTContext imdct;
  425. SynthFilterContext synth;
  426. DCADSPContext dcadsp;
  427. FmtConvertContext fmt_conv;
  428. } DCAContext;
  429. static const uint16_t dca_vlc_offs[] = {
  430. 0, 512, 640, 768, 1282, 1794, 2436, 3080, 3770, 4454, 5364,
  431. 5372, 5380, 5388, 5392, 5396, 5412, 5420, 5428, 5460, 5492, 5508,
  432. 5572, 5604, 5668, 5796, 5860, 5892, 6412, 6668, 6796, 7308, 7564,
  433. 7820, 8076, 8620, 9132, 9388, 9910, 10166, 10680, 11196, 11726, 12240,
  434. 12752, 13298, 13810, 14326, 14840, 15500, 16022, 16540, 17158, 17678, 18264,
  435. 18796, 19352, 19926, 20468, 21472, 22398, 23014, 23622,
  436. };
  437. static av_cold void dca_init_vlcs(void)
  438. {
  439. static int vlcs_initialized = 0;
  440. int i, j, c = 14;
  441. static VLC_TYPE dca_table[23622][2];
  442. if (vlcs_initialized)
  443. return;
  444. dca_bitalloc_index.offset = 1;
  445. dca_bitalloc_index.wrap = 2;
  446. for (i = 0; i < 5; i++) {
  447. dca_bitalloc_index.vlc[i].table = &dca_table[dca_vlc_offs[i]];
  448. dca_bitalloc_index.vlc[i].table_allocated = dca_vlc_offs[i + 1] - dca_vlc_offs[i];
  449. init_vlc(&dca_bitalloc_index.vlc[i], bitalloc_12_vlc_bits[i], 12,
  450. bitalloc_12_bits[i], 1, 1,
  451. bitalloc_12_codes[i], 2, 2, INIT_VLC_USE_NEW_STATIC);
  452. }
  453. dca_scalefactor.offset = -64;
  454. dca_scalefactor.wrap = 2;
  455. for (i = 0; i < 5; i++) {
  456. dca_scalefactor.vlc[i].table = &dca_table[dca_vlc_offs[i + 5]];
  457. dca_scalefactor.vlc[i].table_allocated = dca_vlc_offs[i + 6] - dca_vlc_offs[i + 5];
  458. init_vlc(&dca_scalefactor.vlc[i], SCALES_VLC_BITS, 129,
  459. scales_bits[i], 1, 1,
  460. scales_codes[i], 2, 2, INIT_VLC_USE_NEW_STATIC);
  461. }
  462. dca_tmode.offset = 0;
  463. dca_tmode.wrap = 1;
  464. for (i = 0; i < 4; i++) {
  465. dca_tmode.vlc[i].table = &dca_table[dca_vlc_offs[i + 10]];
  466. dca_tmode.vlc[i].table_allocated = dca_vlc_offs[i + 11] - dca_vlc_offs[i + 10];
  467. init_vlc(&dca_tmode.vlc[i], tmode_vlc_bits[i], 4,
  468. tmode_bits[i], 1, 1,
  469. tmode_codes[i], 2, 2, INIT_VLC_USE_NEW_STATIC);
  470. }
  471. for (i = 0; i < 10; i++)
  472. for (j = 0; j < 7; j++) {
  473. if (!bitalloc_codes[i][j])
  474. break;
  475. dca_smpl_bitalloc[i + 1].offset = bitalloc_offsets[i];
  476. dca_smpl_bitalloc[i + 1].wrap = 1 + (j > 4);
  477. dca_smpl_bitalloc[i + 1].vlc[j].table = &dca_table[dca_vlc_offs[c]];
  478. dca_smpl_bitalloc[i + 1].vlc[j].table_allocated = dca_vlc_offs[c + 1] - dca_vlc_offs[c];
  479. init_vlc(&dca_smpl_bitalloc[i + 1].vlc[j], bitalloc_maxbits[i][j],
  480. bitalloc_sizes[i],
  481. bitalloc_bits[i][j], 1, 1,
  482. bitalloc_codes[i][j], 2, 2, INIT_VLC_USE_NEW_STATIC);
  483. c++;
  484. }
  485. vlcs_initialized = 1;
  486. }
  487. static inline void get_array(GetBitContext *gb, int *dst, int len, int bits)
  488. {
  489. while (len--)
  490. *dst++ = get_bits(gb, bits);
  491. }
  492. static inline int dca_xxch2index(DCAContext *s, int xxch_ch)
  493. {
  494. int i, base, mask;
  495. /* locate channel set containing the channel */
  496. for (i = -1, base = 0, mask = (s->xxch_core_spkmask & ~DCA_XXCH_LFE1);
  497. i <= s->xxch_chset && !(mask & xxch_ch); mask = s->xxch_spk_masks[++i])
  498. base += av_popcount(mask);
  499. return base + av_popcount(mask & (xxch_ch - 1));
  500. }
  501. static int dca_parse_audio_coding_header(DCAContext *s, int base_channel,
  502. int xxch)
  503. {
  504. int i, j;
  505. static const float adj_table[4] = { 1.0, 1.1250, 1.2500, 1.4375 };
  506. static const int bitlen[11] = { 0, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3 };
  507. static const int thr[11] = { 0, 1, 3, 3, 3, 3, 7, 7, 7, 7, 7 };
  508. int hdr_pos = 0, hdr_size = 0;
  509. float sign, mag, scale_factor;
  510. int this_chans, acc_mask;
  511. int embedded_downmix;
  512. int nchans, mask[8];
  513. int coeff, ichan;
  514. /* xxch has arbitrary sized audio coding headers */
  515. if (xxch) {
  516. hdr_pos = get_bits_count(&s->gb);
  517. hdr_size = get_bits(&s->gb, 7) + 1;
  518. }
  519. nchans = get_bits(&s->gb, 3) + 1;
  520. s->total_channels = nchans + base_channel;
  521. s->prim_channels = s->total_channels;
  522. /* obtain speaker layout mask & downmix coefficients for XXCH */
  523. if (xxch) {
  524. acc_mask = s->xxch_core_spkmask;
  525. this_chans = get_bits(&s->gb, s->xxch_nbits_spk_mask - 6) << 6;
  526. s->xxch_spk_masks[s->xxch_chset] = this_chans;
  527. s->xxch_chset_nch[s->xxch_chset] = nchans;
  528. for (i = 0; i <= s->xxch_chset; i++)
  529. acc_mask |= s->xxch_spk_masks[i];
  530. /* check for downmixing information */
  531. if (get_bits1(&s->gb)) {
  532. embedded_downmix = get_bits1(&s->gb);
  533. scale_factor =
  534. 1.0f / dca_dmixtable[(get_bits(&s->gb, 6) - 1) << 2];
  535. s->xxch_dmix_sf[s->xxch_chset] = scale_factor;
  536. for (i = base_channel; i < s->prim_channels; i++) {
  537. mask[i] = get_bits(&s->gb, s->xxch_nbits_spk_mask);
  538. }
  539. for (j = base_channel; j < s->prim_channels; j++) {
  540. memset(s->xxch_dmix_coeff[j], 0, sizeof(s->xxch_dmix_coeff[0]));
  541. s->xxch_dmix_embedded |= (embedded_downmix << j);
  542. for (i = 0; i < s->xxch_nbits_spk_mask; i++) {
  543. if (mask[j] & (1 << i)) {
  544. if ((1 << i) == DCA_XXCH_LFE1) {
  545. av_log(s->avctx, AV_LOG_WARNING,
  546. "DCA-XXCH: dmix to LFE1 not supported.\n");
  547. continue;
  548. }
  549. coeff = get_bits(&s->gb, 7);
  550. sign = (coeff & 64) ? 1.0 : -1.0;
  551. mag = dca_dmixtable[((coeff & 63) - 1) << 2];
  552. ichan = dca_xxch2index(s, 1 << i);
  553. s->xxch_dmix_coeff[j][ichan] = sign * mag;
  554. }
  555. }
  556. }
  557. }
  558. }
  559. if (s->prim_channels > DCA_PRIM_CHANNELS_MAX)
  560. s->prim_channels = DCA_PRIM_CHANNELS_MAX;
  561. for (i = base_channel; i < s->prim_channels; i++) {
  562. s->subband_activity[i] = get_bits(&s->gb, 5) + 2;
  563. if (s->subband_activity[i] > DCA_SUBBANDS)
  564. s->subband_activity[i] = DCA_SUBBANDS;
  565. }
  566. for (i = base_channel; i < s->prim_channels; i++) {
  567. s->vq_start_subband[i] = get_bits(&s->gb, 5) + 1;
  568. if (s->vq_start_subband[i] > DCA_SUBBANDS)
  569. s->vq_start_subband[i] = DCA_SUBBANDS;
  570. }
  571. get_array(&s->gb, s->joint_intensity + base_channel, s->prim_channels - base_channel, 3);
  572. get_array(&s->gb, s->transient_huffman + base_channel, s->prim_channels - base_channel, 2);
  573. get_array(&s->gb, s->scalefactor_huffman + base_channel, s->prim_channels - base_channel, 3);
  574. get_array(&s->gb, s->bitalloc_huffman + base_channel, s->prim_channels - base_channel, 3);
  575. /* Get codebooks quantization indexes */
  576. if (!base_channel)
  577. memset(s->quant_index_huffman, 0, sizeof(s->quant_index_huffman));
  578. for (j = 1; j < 11; j++)
  579. for (i = base_channel; i < s->prim_channels; i++)
  580. s->quant_index_huffman[i][j] = get_bits(&s->gb, bitlen[j]);
  581. /* Get scale factor adjustment */
  582. for (j = 0; j < 11; j++)
  583. for (i = base_channel; i < s->prim_channels; i++)
  584. s->scalefactor_adj[i][j] = 1;
  585. for (j = 1; j < 11; j++)
  586. for (i = base_channel; i < s->prim_channels; i++)
  587. if (s->quant_index_huffman[i][j] < thr[j])
  588. s->scalefactor_adj[i][j] = adj_table[get_bits(&s->gb, 2)];
  589. if (!xxch) {
  590. if (s->crc_present) {
  591. /* Audio header CRC check */
  592. get_bits(&s->gb, 16);
  593. }
  594. } else {
  595. /* Skip to the end of the header, also ignore CRC if present */
  596. i = get_bits_count(&s->gb);
  597. if (hdr_pos + 8 * hdr_size > i)
  598. skip_bits_long(&s->gb, hdr_pos + 8 * hdr_size - i);
  599. }
  600. s->current_subframe = 0;
  601. s->current_subsubframe = 0;
  602. #ifdef TRACE
  603. av_log(s->avctx, AV_LOG_DEBUG, "subframes: %i\n", s->subframes);
  604. av_log(s->avctx, AV_LOG_DEBUG, "prim channels: %i\n", s->prim_channels);
  605. for (i = base_channel; i < s->prim_channels; i++) {
  606. av_log(s->avctx, AV_LOG_DEBUG, "subband activity: %i\n",
  607. s->subband_activity[i]);
  608. av_log(s->avctx, AV_LOG_DEBUG, "vq start subband: %i\n",
  609. s->vq_start_subband[i]);
  610. av_log(s->avctx, AV_LOG_DEBUG, "joint intensity: %i\n",
  611. s->joint_intensity[i]);
  612. av_log(s->avctx, AV_LOG_DEBUG, "transient mode codebook: %i\n",
  613. s->transient_huffman[i]);
  614. av_log(s->avctx, AV_LOG_DEBUG, "scale factor codebook: %i\n",
  615. s->scalefactor_huffman[i]);
  616. av_log(s->avctx, AV_LOG_DEBUG, "bit allocation quantizer: %i\n",
  617. s->bitalloc_huffman[i]);
  618. av_log(s->avctx, AV_LOG_DEBUG, "quant index huff:");
  619. for (j = 0; j < 11; j++)
  620. av_log(s->avctx, AV_LOG_DEBUG, " %i", s->quant_index_huffman[i][j]);
  621. av_log(s->avctx, AV_LOG_DEBUG, "\n");
  622. av_log(s->avctx, AV_LOG_DEBUG, "scalefac adj:");
  623. for (j = 0; j < 11; j++)
  624. av_log(s->avctx, AV_LOG_DEBUG, " %1.3f", s->scalefactor_adj[i][j]);
  625. av_log(s->avctx, AV_LOG_DEBUG, "\n");
  626. }
  627. #endif
  628. return 0;
  629. }
  630. static int dca_parse_frame_header(DCAContext *s)
  631. {
  632. init_get_bits(&s->gb, s->dca_buffer, s->dca_buffer_size * 8);
  633. /* Sync code */
  634. skip_bits_long(&s->gb, 32);
  635. /* Frame header */
  636. s->frame_type = get_bits(&s->gb, 1);
  637. s->samples_deficit = get_bits(&s->gb, 5) + 1;
  638. s->crc_present = get_bits(&s->gb, 1);
  639. s->sample_blocks = get_bits(&s->gb, 7) + 1;
  640. s->frame_size = get_bits(&s->gb, 14) + 1;
  641. if (s->frame_size < 95)
  642. return AVERROR_INVALIDDATA;
  643. s->amode = get_bits(&s->gb, 6);
  644. s->sample_rate = avpriv_dca_sample_rates[get_bits(&s->gb, 4)];
  645. if (!s->sample_rate)
  646. return AVERROR_INVALIDDATA;
  647. s->bit_rate_index = get_bits(&s->gb, 5);
  648. s->bit_rate = dca_bit_rates[s->bit_rate_index];
  649. if (!s->bit_rate)
  650. return AVERROR_INVALIDDATA;
  651. skip_bits1(&s->gb); // always 0 (reserved, cf. ETSI TS 102 114 V1.4.1)
  652. s->dynrange = get_bits(&s->gb, 1);
  653. s->timestamp = get_bits(&s->gb, 1);
  654. s->aux_data = get_bits(&s->gb, 1);
  655. s->hdcd = get_bits(&s->gb, 1);
  656. s->ext_descr = get_bits(&s->gb, 3);
  657. s->ext_coding = get_bits(&s->gb, 1);
  658. s->aspf = get_bits(&s->gb, 1);
  659. s->lfe = get_bits(&s->gb, 2);
  660. s->predictor_history = get_bits(&s->gb, 1);
  661. if (s->lfe > 2) {
  662. s->lfe = 0;
  663. av_log(s->avctx, AV_LOG_ERROR, "Invalid LFE value: %d\n", s->lfe);
  664. return AVERROR_INVALIDDATA;
  665. }
  666. /* TODO: check CRC */
  667. if (s->crc_present)
  668. s->header_crc = get_bits(&s->gb, 16);
  669. s->multirate_inter = get_bits(&s->gb, 1);
  670. s->version = get_bits(&s->gb, 4);
  671. s->copy_history = get_bits(&s->gb, 2);
  672. s->source_pcm_res = get_bits(&s->gb, 3);
  673. s->front_sum = get_bits(&s->gb, 1);
  674. s->surround_sum = get_bits(&s->gb, 1);
  675. s->dialog_norm = get_bits(&s->gb, 4);
  676. /* FIXME: channels mixing levels */
  677. s->output = s->amode;
  678. if (s->lfe)
  679. s->output |= DCA_LFE;
  680. #ifdef TRACE
  681. av_log(s->avctx, AV_LOG_DEBUG, "frame type: %i\n", s->frame_type);
  682. av_log(s->avctx, AV_LOG_DEBUG, "samples deficit: %i\n", s->samples_deficit);
  683. av_log(s->avctx, AV_LOG_DEBUG, "crc present: %i\n", s->crc_present);
  684. av_log(s->avctx, AV_LOG_DEBUG, "sample blocks: %i (%i samples)\n",
  685. s->sample_blocks, s->sample_blocks * 32);
  686. av_log(s->avctx, AV_LOG_DEBUG, "frame size: %i bytes\n", s->frame_size);
  687. av_log(s->avctx, AV_LOG_DEBUG, "amode: %i (%i channels)\n",
  688. s->amode, dca_channels[s->amode]);
  689. av_log(s->avctx, AV_LOG_DEBUG, "sample rate: %i Hz\n",
  690. s->sample_rate);
  691. av_log(s->avctx, AV_LOG_DEBUG, "bit rate: %i bits/s\n",
  692. s->bit_rate);
  693. av_log(s->avctx, AV_LOG_DEBUG, "dynrange: %i\n", s->dynrange);
  694. av_log(s->avctx, AV_LOG_DEBUG, "timestamp: %i\n", s->timestamp);
  695. av_log(s->avctx, AV_LOG_DEBUG, "aux_data: %i\n", s->aux_data);
  696. av_log(s->avctx, AV_LOG_DEBUG, "hdcd: %i\n", s->hdcd);
  697. av_log(s->avctx, AV_LOG_DEBUG, "ext descr: %i\n", s->ext_descr);
  698. av_log(s->avctx, AV_LOG_DEBUG, "ext coding: %i\n", s->ext_coding);
  699. av_log(s->avctx, AV_LOG_DEBUG, "aspf: %i\n", s->aspf);
  700. av_log(s->avctx, AV_LOG_DEBUG, "lfe: %i\n", s->lfe);
  701. av_log(s->avctx, AV_LOG_DEBUG, "predictor history: %i\n",
  702. s->predictor_history);
  703. av_log(s->avctx, AV_LOG_DEBUG, "header crc: %i\n", s->header_crc);
  704. av_log(s->avctx, AV_LOG_DEBUG, "multirate inter: %i\n",
  705. s->multirate_inter);
  706. av_log(s->avctx, AV_LOG_DEBUG, "version number: %i\n", s->version);
  707. av_log(s->avctx, AV_LOG_DEBUG, "copy history: %i\n", s->copy_history);
  708. av_log(s->avctx, AV_LOG_DEBUG,
  709. "source pcm resolution: %i (%i bits/sample)\n",
  710. s->source_pcm_res, dca_bits_per_sample[s->source_pcm_res]);
  711. av_log(s->avctx, AV_LOG_DEBUG, "front sum: %i\n", s->front_sum);
  712. av_log(s->avctx, AV_LOG_DEBUG, "surround sum: %i\n", s->surround_sum);
  713. av_log(s->avctx, AV_LOG_DEBUG, "dialog norm: %i\n", s->dialog_norm);
  714. av_log(s->avctx, AV_LOG_DEBUG, "\n");
  715. #endif
  716. /* Primary audio coding header */
  717. s->subframes = get_bits(&s->gb, 4) + 1;
  718. return dca_parse_audio_coding_header(s, 0, 0);
  719. }
  720. static inline int get_scale(GetBitContext *gb, int level, int value, int log2range)
  721. {
  722. if (level < 5) {
  723. /* huffman encoded */
  724. value += get_bitalloc(gb, &dca_scalefactor, level);
  725. value = av_clip(value, 0, (1 << log2range) - 1);
  726. } else if (level < 8) {
  727. if (level + 1 > log2range) {
  728. skip_bits(gb, level + 1 - log2range);
  729. value = get_bits(gb, log2range);
  730. } else {
  731. value = get_bits(gb, level + 1);
  732. }
  733. }
  734. return value;
  735. }
  736. static int dca_subframe_header(DCAContext *s, int base_channel, int block_index)
  737. {
  738. /* Primary audio coding side information */
  739. int j, k;
  740. if (get_bits_left(&s->gb) < 0)
  741. return AVERROR_INVALIDDATA;
  742. if (!base_channel) {
  743. s->subsubframes[s->current_subframe] = get_bits(&s->gb, 2) + 1;
  744. s->partial_samples[s->current_subframe] = get_bits(&s->gb, 3);
  745. }
  746. for (j = base_channel; j < s->prim_channels; j++) {
  747. for (k = 0; k < s->subband_activity[j]; k++)
  748. s->prediction_mode[j][k] = get_bits(&s->gb, 1);
  749. }
  750. /* Get prediction codebook */
  751. for (j = base_channel; j < s->prim_channels; j++) {
  752. for (k = 0; k < s->subband_activity[j]; k++) {
  753. if (s->prediction_mode[j][k] > 0) {
  754. /* (Prediction coefficient VQ address) */
  755. s->prediction_vq[j][k] = get_bits(&s->gb, 12);
  756. }
  757. }
  758. }
  759. /* Bit allocation index */
  760. for (j = base_channel; j < s->prim_channels; j++) {
  761. for (k = 0; k < s->vq_start_subband[j]; k++) {
  762. if (s->bitalloc_huffman[j] == 6)
  763. s->bitalloc[j][k] = get_bits(&s->gb, 5);
  764. else if (s->bitalloc_huffman[j] == 5)
  765. s->bitalloc[j][k] = get_bits(&s->gb, 4);
  766. else if (s->bitalloc_huffman[j] == 7) {
  767. av_log(s->avctx, AV_LOG_ERROR,
  768. "Invalid bit allocation index\n");
  769. return AVERROR_INVALIDDATA;
  770. } else {
  771. s->bitalloc[j][k] =
  772. get_bitalloc(&s->gb, &dca_bitalloc_index, s->bitalloc_huffman[j]);
  773. }
  774. if (s->bitalloc[j][k] > 26) {
  775. av_dlog(s->avctx, "bitalloc index [%i][%i] too big (%i)\n",
  776. j, k, s->bitalloc[j][k]);
  777. return AVERROR_INVALIDDATA;
  778. }
  779. }
  780. }
  781. /* Transition mode */
  782. for (j = base_channel; j < s->prim_channels; j++) {
  783. for (k = 0; k < s->subband_activity[j]; k++) {
  784. s->transition_mode[j][k] = 0;
  785. if (s->subsubframes[s->current_subframe] > 1 &&
  786. k < s->vq_start_subband[j] && s->bitalloc[j][k] > 0) {
  787. s->transition_mode[j][k] =
  788. get_bitalloc(&s->gb, &dca_tmode, s->transient_huffman[j]);
  789. }
  790. }
  791. }
  792. if (get_bits_left(&s->gb) < 0)
  793. return AVERROR_INVALIDDATA;
  794. for (j = base_channel; j < s->prim_channels; j++) {
  795. const uint32_t *scale_table;
  796. int scale_sum, log_size;
  797. memset(s->scale_factor[j], 0,
  798. s->subband_activity[j] * sizeof(s->scale_factor[0][0][0]) * 2);
  799. if (s->scalefactor_huffman[j] == 6) {
  800. scale_table = scale_factor_quant7;
  801. log_size = 7;
  802. } else {
  803. scale_table = scale_factor_quant6;
  804. log_size = 6;
  805. }
  806. /* When huffman coded, only the difference is encoded */
  807. scale_sum = 0;
  808. for (k = 0; k < s->subband_activity[j]; k++) {
  809. if (k >= s->vq_start_subband[j] || s->bitalloc[j][k] > 0) {
  810. scale_sum = get_scale(&s->gb, s->scalefactor_huffman[j], scale_sum, log_size);
  811. s->scale_factor[j][k][0] = scale_table[scale_sum];
  812. }
  813. if (k < s->vq_start_subband[j] && s->transition_mode[j][k]) {
  814. /* Get second scale factor */
  815. scale_sum = get_scale(&s->gb, s->scalefactor_huffman[j], scale_sum, log_size);
  816. s->scale_factor[j][k][1] = scale_table[scale_sum];
  817. }
  818. }
  819. }
  820. /* Joint subband scale factor codebook select */
  821. for (j = base_channel; j < s->prim_channels; j++) {
  822. /* Transmitted only if joint subband coding enabled */
  823. if (s->joint_intensity[j] > 0)
  824. s->joint_huff[j] = get_bits(&s->gb, 3);
  825. }
  826. if (get_bits_left(&s->gb) < 0)
  827. return AVERROR_INVALIDDATA;
  828. /* Scale factors for joint subband coding */
  829. for (j = base_channel; j < s->prim_channels; j++) {
  830. int source_channel;
  831. /* Transmitted only if joint subband coding enabled */
  832. if (s->joint_intensity[j] > 0) {
  833. int scale = 0;
  834. source_channel = s->joint_intensity[j] - 1;
  835. /* When huffman coded, only the difference is encoded
  836. * (is this valid as well for joint scales ???) */
  837. for (k = s->subband_activity[j]; k < s->subband_activity[source_channel]; k++) {
  838. scale = get_scale(&s->gb, s->joint_huff[j], 64 /* bias */, 7);
  839. s->joint_scale_factor[j][k] = scale; /*joint_scale_table[scale]; */
  840. }
  841. if (!(s->debug_flag & 0x02)) {
  842. av_log(s->avctx, AV_LOG_DEBUG,
  843. "Joint stereo coding not supported\n");
  844. s->debug_flag |= 0x02;
  845. }
  846. }
  847. }
  848. /* Dynamic range coefficient */
  849. if (!base_channel && s->dynrange)
  850. s->dynrange_coef = get_bits(&s->gb, 8);
  851. /* Side information CRC check word */
  852. if (s->crc_present) {
  853. get_bits(&s->gb, 16);
  854. }
  855. /*
  856. * Primary audio data arrays
  857. */
  858. /* VQ encoded high frequency subbands */
  859. for (j = base_channel; j < s->prim_channels; j++)
  860. for (k = s->vq_start_subband[j]; k < s->subband_activity[j]; k++)
  861. /* 1 vector -> 32 samples */
  862. s->high_freq_vq[j][k] = get_bits(&s->gb, 10);
  863. /* Low frequency effect data */
  864. if (!base_channel && s->lfe) {
  865. int quant7;
  866. /* LFE samples */
  867. int lfe_samples = 2 * s->lfe * (4 + block_index);
  868. int lfe_end_sample = 2 * s->lfe * (4 + block_index + s->subsubframes[s->current_subframe]);
  869. float lfe_scale;
  870. for (j = lfe_samples; j < lfe_end_sample; j++) {
  871. /* Signed 8 bits int */
  872. s->lfe_data[j] = get_sbits(&s->gb, 8);
  873. }
  874. /* Scale factor index */
  875. quant7 = get_bits(&s->gb, 8);
  876. if (quant7 > 127) {
  877. avpriv_request_sample(s->avctx, "LFEScaleIndex larger than 127");
  878. return AVERROR_INVALIDDATA;
  879. }
  880. s->lfe_scale_factor = scale_factor_quant7[quant7];
  881. /* Quantization step size * scale factor */
  882. lfe_scale = 0.035 * s->lfe_scale_factor;
  883. for (j = lfe_samples; j < lfe_end_sample; j++)
  884. s->lfe_data[j] *= lfe_scale;
  885. }
  886. #ifdef TRACE
  887. av_log(s->avctx, AV_LOG_DEBUG, "subsubframes: %i\n",
  888. s->subsubframes[s->current_subframe]);
  889. av_log(s->avctx, AV_LOG_DEBUG, "partial samples: %i\n",
  890. s->partial_samples[s->current_subframe]);
  891. for (j = base_channel; j < s->prim_channels; j++) {
  892. av_log(s->avctx, AV_LOG_DEBUG, "prediction mode:");
  893. for (k = 0; k < s->subband_activity[j]; k++)
  894. av_log(s->avctx, AV_LOG_DEBUG, " %i", s->prediction_mode[j][k]);
  895. av_log(s->avctx, AV_LOG_DEBUG, "\n");
  896. }
  897. for (j = base_channel; j < s->prim_channels; j++) {
  898. for (k = 0; k < s->subband_activity[j]; k++)
  899. av_log(s->avctx, AV_LOG_DEBUG,
  900. "prediction coefs: %f, %f, %f, %f\n",
  901. (float) adpcm_vb[s->prediction_vq[j][k]][0] / 8192,
  902. (float) adpcm_vb[s->prediction_vq[j][k]][1] / 8192,
  903. (float) adpcm_vb[s->prediction_vq[j][k]][2] / 8192,
  904. (float) adpcm_vb[s->prediction_vq[j][k]][3] / 8192);
  905. }
  906. for (j = base_channel; j < s->prim_channels; j++) {
  907. av_log(s->avctx, AV_LOG_DEBUG, "bitalloc index: ");
  908. for (k = 0; k < s->vq_start_subband[j]; k++)
  909. av_log(s->avctx, AV_LOG_DEBUG, "%2.2i ", s->bitalloc[j][k]);
  910. av_log(s->avctx, AV_LOG_DEBUG, "\n");
  911. }
  912. for (j = base_channel; j < s->prim_channels; j++) {
  913. av_log(s->avctx, AV_LOG_DEBUG, "Transition mode:");
  914. for (k = 0; k < s->subband_activity[j]; k++)
  915. av_log(s->avctx, AV_LOG_DEBUG, " %i", s->transition_mode[j][k]);
  916. av_log(s->avctx, AV_LOG_DEBUG, "\n");
  917. }
  918. for (j = base_channel; j < s->prim_channels; j++) {
  919. av_log(s->avctx, AV_LOG_DEBUG, "Scale factor:");
  920. for (k = 0; k < s->subband_activity[j]; k++) {
  921. if (k >= s->vq_start_subband[j] || s->bitalloc[j][k] > 0)
  922. av_log(s->avctx, AV_LOG_DEBUG, " %i", s->scale_factor[j][k][0]);
  923. if (k < s->vq_start_subband[j] && s->transition_mode[j][k])
  924. av_log(s->avctx, AV_LOG_DEBUG, " %i(t)", s->scale_factor[j][k][1]);
  925. }
  926. av_log(s->avctx, AV_LOG_DEBUG, "\n");
  927. }
  928. for (j = base_channel; j < s->prim_channels; j++) {
  929. if (s->joint_intensity[j] > 0) {
  930. int source_channel = s->joint_intensity[j] - 1;
  931. av_log(s->avctx, AV_LOG_DEBUG, "Joint scale factor index:\n");
  932. for (k = s->subband_activity[j]; k < s->subband_activity[source_channel]; k++)
  933. av_log(s->avctx, AV_LOG_DEBUG, " %i", s->joint_scale_factor[j][k]);
  934. av_log(s->avctx, AV_LOG_DEBUG, "\n");
  935. }
  936. }
  937. for (j = base_channel; j < s->prim_channels; j++)
  938. for (k = s->vq_start_subband[j]; k < s->subband_activity[j]; k++)
  939. av_log(s->avctx, AV_LOG_DEBUG, "VQ index: %i\n", s->high_freq_vq[j][k]);
  940. if (!base_channel && s->lfe) {
  941. int lfe_samples = 2 * s->lfe * (4 + block_index);
  942. int lfe_end_sample = 2 * s->lfe * (4 + block_index + s->subsubframes[s->current_subframe]);
  943. av_log(s->avctx, AV_LOG_DEBUG, "LFE samples:\n");
  944. for (j = lfe_samples; j < lfe_end_sample; j++)
  945. av_log(s->avctx, AV_LOG_DEBUG, " %f", s->lfe_data[j]);
  946. av_log(s->avctx, AV_LOG_DEBUG, "\n");
  947. }
  948. #endif
  949. return 0;
  950. }
  951. static void qmf_32_subbands(DCAContext *s, int chans,
  952. float samples_in[32][8], float *samples_out,
  953. float scale)
  954. {
  955. const float *prCoeff;
  956. int sb_act = s->subband_activity[chans];
  957. scale *= sqrt(1 / 8.0);
  958. /* Select filter */
  959. if (!s->multirate_inter) /* Non-perfect reconstruction */
  960. prCoeff = fir_32bands_nonperfect;
  961. else /* Perfect reconstruction */
  962. prCoeff = fir_32bands_perfect;
  963. s->dcadsp.qmf_32_subbands(samples_in, sb_act, &s->synth, &s->imdct,
  964. s->subband_fir_hist[chans],
  965. &s->hist_index[chans],
  966. s->subband_fir_noidea[chans], prCoeff,
  967. samples_out, s->raXin, scale);
  968. }
  969. static void lfe_interpolation_fir(DCAContext *s, int decimation_select,
  970. int num_deci_sample, float *samples_in,
  971. float *samples_out, float scale)
  972. {
  973. /* samples_in: An array holding decimated samples.
  974. * Samples in current subframe starts from samples_in[0],
  975. * while samples_in[-1], samples_in[-2], ..., stores samples
  976. * from last subframe as history.
  977. *
  978. * samples_out: An array holding interpolated samples
  979. */
  980. int idx;
  981. const float *prCoeff;
  982. int deciindex;
  983. /* Select decimation filter */
  984. if (decimation_select == 1) {
  985. idx = 1;
  986. prCoeff = lfe_fir_128;
  987. } else {
  988. idx = 0;
  989. prCoeff = lfe_fir_64;
  990. }
  991. /* Interpolation */
  992. for (deciindex = 0; deciindex < num_deci_sample; deciindex++) {
  993. s->dcadsp.lfe_fir[idx](samples_out, samples_in, prCoeff, scale);
  994. samples_in++;
  995. samples_out += 2 * 32 * (1 + idx);
  996. }
  997. }
  998. /* downmixing routines */
  999. #define MIX_REAR1(samples, s1, rs, coef) \
  1000. samples[0][i] += samples[s1][i] * coef[rs][0]; \
  1001. samples[1][i] += samples[s1][i] * coef[rs][1];
  1002. #define MIX_REAR2(samples, s1, s2, rs, coef) \
  1003. samples[0][i] += samples[s1][i] * coef[rs][0] + samples[s2][i] * coef[rs + 1][0]; \
  1004. samples[1][i] += samples[s1][i] * coef[rs][1] + samples[s2][i] * coef[rs + 1][1];
  1005. #define MIX_FRONT3(samples, coef) \
  1006. t = samples[c][i]; \
  1007. u = samples[l][i]; \
  1008. v = samples[r][i]; \
  1009. samples[0][i] = t * coef[0][0] + u * coef[1][0] + v * coef[2][0]; \
  1010. samples[1][i] = t * coef[0][1] + u * coef[1][1] + v * coef[2][1];
  1011. #define DOWNMIX_TO_STEREO(op1, op2) \
  1012. for (i = 0; i < 256; i++) { \
  1013. op1 \
  1014. op2 \
  1015. }
  1016. static void dca_downmix(float **samples, int srcfmt, int lfe_present,
  1017. float coef[DCA_PRIM_CHANNELS_MAX + 1][2],
  1018. const int8_t *channel_mapping)
  1019. {
  1020. int c, l, r, sl, sr, s;
  1021. int i;
  1022. float t, u, v;
  1023. switch (srcfmt) {
  1024. case DCA_MONO:
  1025. case DCA_4F2R:
  1026. av_log(NULL, AV_LOG_ERROR, "Not implemented!\n");
  1027. break;
  1028. case DCA_CHANNEL:
  1029. case DCA_STEREO:
  1030. case DCA_STEREO_TOTAL:
  1031. case DCA_STEREO_SUMDIFF:
  1032. break;
  1033. case DCA_3F:
  1034. c = channel_mapping[0];
  1035. l = channel_mapping[1];
  1036. r = channel_mapping[2];
  1037. DOWNMIX_TO_STEREO(MIX_FRONT3(samples, coef), );
  1038. break;
  1039. case DCA_2F1R:
  1040. s = channel_mapping[2];
  1041. DOWNMIX_TO_STEREO(MIX_REAR1(samples, s, 2, coef), );
  1042. break;
  1043. case DCA_3F1R:
  1044. c = channel_mapping[0];
  1045. l = channel_mapping[1];
  1046. r = channel_mapping[2];
  1047. s = channel_mapping[3];
  1048. DOWNMIX_TO_STEREO(MIX_FRONT3(samples, coef),
  1049. MIX_REAR1(samples, s, 3, coef));
  1050. break;
  1051. case DCA_2F2R:
  1052. sl = channel_mapping[2];
  1053. sr = channel_mapping[3];
  1054. DOWNMIX_TO_STEREO(MIX_REAR2(samples, sl, sr, 2, coef), );
  1055. break;
  1056. case DCA_3F2R:
  1057. c = channel_mapping[0];
  1058. l = channel_mapping[1];
  1059. r = channel_mapping[2];
  1060. sl = channel_mapping[3];
  1061. sr = channel_mapping[4];
  1062. DOWNMIX_TO_STEREO(MIX_FRONT3(samples, coef),
  1063. MIX_REAR2(samples, sl, sr, 3, coef));
  1064. break;
  1065. }
  1066. if (lfe_present) {
  1067. int lf_buf = dca_lfe_index[srcfmt];
  1068. int lf_idx = dca_channels [srcfmt];
  1069. for (i = 0; i < 256; i++) {
  1070. samples[0][i] += samples[lf_buf][i] * coef[lf_idx][0];
  1071. samples[1][i] += samples[lf_buf][i] * coef[lf_idx][1];
  1072. }
  1073. }
  1074. }
  1075. #ifndef decode_blockcodes
  1076. /* Very compact version of the block code decoder that does not use table
  1077. * look-up but is slightly slower */
  1078. static int decode_blockcode(int code, int levels, int32_t *values)
  1079. {
  1080. int i;
  1081. int offset = (levels - 1) >> 1;
  1082. for (i = 0; i < 4; i++) {
  1083. int div = FASTDIV(code, levels);
  1084. values[i] = code - offset - div * levels;
  1085. code = div;
  1086. }
  1087. return code;
  1088. }
  1089. static int decode_blockcodes(int code1, int code2, int levels, int32_t *values)
  1090. {
  1091. return decode_blockcode(code1, levels, values) |
  1092. decode_blockcode(code2, levels, values + 4);
  1093. }
  1094. #endif
  1095. static const uint8_t abits_sizes[7] = { 7, 10, 12, 13, 15, 17, 19 };
  1096. static const uint8_t abits_levels[7] = { 3, 5, 7, 9, 13, 17, 25 };
  1097. #ifndef int8x8_fmul_int32
  1098. static inline void int8x8_fmul_int32(DCADSPContext *dsp, float *dst,
  1099. const int8_t *src, int scale)
  1100. {
  1101. dsp->int8x8_fmul_int32(dst, src, scale);
  1102. }
  1103. #endif
  1104. static int dca_subsubframe(DCAContext *s, int base_channel, int block_index)
  1105. {
  1106. int k, l;
  1107. int subsubframe = s->current_subsubframe;
  1108. const float *quant_step_table;
  1109. /* FIXME */
  1110. float (*subband_samples)[DCA_SUBBANDS][8] = s->subband_samples[block_index];
  1111. LOCAL_ALIGNED_16(int32_t, block, [8 * DCA_SUBBANDS]);
  1112. /*
  1113. * Audio data
  1114. */
  1115. /* Select quantization step size table */
  1116. if (s->bit_rate_index == 0x1f)
  1117. quant_step_table = lossless_quant_d;
  1118. else
  1119. quant_step_table = lossy_quant_d;
  1120. for (k = base_channel; k < s->prim_channels; k++) {
  1121. float rscale[DCA_SUBBANDS];
  1122. if (get_bits_left(&s->gb) < 0)
  1123. return AVERROR_INVALIDDATA;
  1124. for (l = 0; l < s->vq_start_subband[k]; l++) {
  1125. int m;
  1126. /* Select the mid-tread linear quantizer */
  1127. int abits = s->bitalloc[k][l];
  1128. float quant_step_size = quant_step_table[abits];
  1129. /*
  1130. * Determine quantization index code book and its type
  1131. */
  1132. /* Select quantization index code book */
  1133. int sel = s->quant_index_huffman[k][abits];
  1134. /*
  1135. * Extract bits from the bit stream
  1136. */
  1137. if (!abits) {
  1138. rscale[l] = 0;
  1139. memset(block + 8 * l, 0, 8 * sizeof(block[0]));
  1140. } else {
  1141. /* Deal with transients */
  1142. int sfi = s->transition_mode[k][l] && subsubframe >= s->transition_mode[k][l];
  1143. rscale[l] = quant_step_size * s->scale_factor[k][l][sfi] *
  1144. s->scalefactor_adj[k][sel];
  1145. if (abits >= 11 || !dca_smpl_bitalloc[abits].vlc[sel].table) {
  1146. if (abits <= 7) {
  1147. /* Block code */
  1148. int block_code1, block_code2, size, levels, err;
  1149. size = abits_sizes[abits - 1];
  1150. levels = abits_levels[abits - 1];
  1151. block_code1 = get_bits(&s->gb, size);
  1152. block_code2 = get_bits(&s->gb, size);
  1153. err = decode_blockcodes(block_code1, block_code2,
  1154. levels, block + 8 * l);
  1155. if (err) {
  1156. av_log(s->avctx, AV_LOG_ERROR,
  1157. "ERROR: block code look-up failed\n");
  1158. return AVERROR_INVALIDDATA;
  1159. }
  1160. } else {
  1161. /* no coding */
  1162. for (m = 0; m < 8; m++)
  1163. block[8 * l + m] = get_sbits(&s->gb, abits - 3);
  1164. }
  1165. } else {
  1166. /* Huffman coded */
  1167. for (m = 0; m < 8; m++)
  1168. block[8 * l + m] = get_bitalloc(&s->gb,
  1169. &dca_smpl_bitalloc[abits], sel);
  1170. }
  1171. }
  1172. }
  1173. s->fmt_conv.int32_to_float_fmul_array8(&s->fmt_conv, subband_samples[k][0],
  1174. block, rscale, 8 * s->vq_start_subband[k]);
  1175. for (l = 0; l < s->vq_start_subband[k]; l++) {
  1176. int m;
  1177. /*
  1178. * Inverse ADPCM if in prediction mode
  1179. */
  1180. if (s->prediction_mode[k][l]) {
  1181. int n;
  1182. for (m = 0; m < 8; m++) {
  1183. for (n = 1; n <= 4; n++)
  1184. if (m >= n)
  1185. subband_samples[k][l][m] +=
  1186. (adpcm_vb[s->prediction_vq[k][l]][n - 1] *
  1187. subband_samples[k][l][m - n] / 8192);
  1188. else if (s->predictor_history)
  1189. subband_samples[k][l][m] +=
  1190. (adpcm_vb[s->prediction_vq[k][l]][n - 1] *
  1191. s->subband_samples_hist[k][l][m - n + 4] / 8192);
  1192. }
  1193. }
  1194. }
  1195. /*
  1196. * Decode VQ encoded high frequencies
  1197. */
  1198. for (l = s->vq_start_subband[k]; l < s->subband_activity[k]; l++) {
  1199. /* 1 vector -> 32 samples but we only need the 8 samples
  1200. * for this subsubframe. */
  1201. int hfvq = s->high_freq_vq[k][l];
  1202. if (!s->debug_flag & 0x01) {
  1203. av_log(s->avctx, AV_LOG_DEBUG,
  1204. "Stream with high frequencies VQ coding\n");
  1205. s->debug_flag |= 0x01;
  1206. }
  1207. int8x8_fmul_int32(&s->dcadsp, subband_samples[k][l],
  1208. &high_freq_vq[hfvq][subsubframe * 8],
  1209. s->scale_factor[k][l][0]);
  1210. }
  1211. }
  1212. /* Check for DSYNC after subsubframe */
  1213. if (s->aspf || subsubframe == s->subsubframes[s->current_subframe] - 1) {
  1214. if (0xFFFF == get_bits(&s->gb, 16)) { /* 0xFFFF */
  1215. #ifdef TRACE
  1216. av_log(s->avctx, AV_LOG_DEBUG, "Got subframe DSYNC\n");
  1217. #endif
  1218. } else {
  1219. av_log(s->avctx, AV_LOG_ERROR, "Didn't get subframe DSYNC\n");
  1220. return AVERROR_INVALIDDATA;
  1221. }
  1222. }
  1223. /* Backup predictor history for adpcm */
  1224. for (k = base_channel; k < s->prim_channels; k++)
  1225. for (l = 0; l < s->vq_start_subband[k]; l++)
  1226. AV_COPY128(s->subband_samples_hist[k][l], &subband_samples[k][l][4]);
  1227. return 0;
  1228. }
  1229. static int dca_filter_channels(DCAContext *s, int block_index)
  1230. {
  1231. float (*subband_samples)[DCA_SUBBANDS][8] = s->subband_samples[block_index];
  1232. int k;
  1233. /* 32 subbands QMF */
  1234. for (k = 0; k < s->prim_channels; k++) {
  1235. /* static float pcm_to_double[8] = { 32768.0, 32768.0, 524288.0, 524288.0,
  1236. 0, 8388608.0, 8388608.0 };*/
  1237. if (s->channel_order_tab[k] >= 0)
  1238. qmf_32_subbands(s, k, subband_samples[k],
  1239. s->samples_chanptr[s->channel_order_tab[k]],
  1240. M_SQRT1_2 / 32768.0 /* pcm_to_double[s->source_pcm_res] */);
  1241. }
  1242. /* Generate LFE samples for this subsubframe FIXME!!! */
  1243. if (s->lfe) {
  1244. lfe_interpolation_fir(s, s->lfe, 2 * s->lfe,
  1245. s->lfe_data + 2 * s->lfe * (block_index + 4),
  1246. s->samples_chanptr[s->lfe_index],
  1247. 1.0 / (256.0 * 32768.0));
  1248. /* Outputs 20bits pcm samples */
  1249. }
  1250. /* Downmixing to Stereo */
  1251. if (s->prim_channels + !!s->lfe > 2 &&
  1252. s->avctx->request_channel_layout == AV_CH_LAYOUT_STEREO) {
  1253. dca_downmix(s->samples_chanptr, s->amode, !!s->lfe, s->downmix_coef,
  1254. s->channel_order_tab);
  1255. }
  1256. return 0;
  1257. }
  1258. static int dca_subframe_footer(DCAContext *s, int base_channel)
  1259. {
  1260. int in, out, aux_data_count, aux_data_end, reserved;
  1261. uint32_t nsyncaux;
  1262. /*
  1263. * Unpack optional information
  1264. */
  1265. /* presumably optional information only appears in the core? */
  1266. if (!base_channel) {
  1267. if (s->timestamp)
  1268. skip_bits_long(&s->gb, 32);
  1269. if (s->aux_data) {
  1270. aux_data_count = get_bits(&s->gb, 6);
  1271. // align (32-bit)
  1272. skip_bits_long(&s->gb, (-get_bits_count(&s->gb)) & 31);
  1273. aux_data_end = 8 * aux_data_count + get_bits_count(&s->gb);
  1274. if ((nsyncaux = get_bits_long(&s->gb, 32)) != DCA_NSYNCAUX) {
  1275. av_log(s->avctx, AV_LOG_ERROR, "nSYNCAUX mismatch %#"PRIx32"\n",
  1276. nsyncaux);
  1277. return AVERROR_INVALIDDATA;
  1278. }
  1279. if (get_bits1(&s->gb)) { // bAUXTimeStampFlag
  1280. avpriv_request_sample(s->avctx,
  1281. "Auxiliary Decode Time Stamp Flag");
  1282. // align (4-bit)
  1283. skip_bits(&s->gb, (-get_bits_count(&s->gb)) & 4);
  1284. // 44 bits: nMSByte (8), nMarker (4), nLSByte (28), nMarker (4)
  1285. skip_bits_long(&s->gb, 44);
  1286. }
  1287. if ((s->core_downmix = get_bits1(&s->gb))) {
  1288. int am = get_bits(&s->gb, 3);
  1289. switch (am) {
  1290. case 0:
  1291. s->core_downmix_amode = DCA_MONO;
  1292. break;
  1293. case 1:
  1294. s->core_downmix_amode = DCA_STEREO;
  1295. break;
  1296. case 2:
  1297. s->core_downmix_amode = DCA_STEREO_TOTAL;
  1298. break;
  1299. case 3:
  1300. s->core_downmix_amode = DCA_3F;
  1301. break;
  1302. case 4:
  1303. s->core_downmix_amode = DCA_2F1R;
  1304. break;
  1305. case 5:
  1306. s->core_downmix_amode = DCA_2F2R;
  1307. break;
  1308. case 6:
  1309. s->core_downmix_amode = DCA_3F1R;
  1310. break;
  1311. default:
  1312. av_log(s->avctx, AV_LOG_ERROR,
  1313. "Invalid mode %d for embedded downmix coefficients\n",
  1314. am);
  1315. return AVERROR_INVALIDDATA;
  1316. }
  1317. for (out = 0; out < dca_channels[s->core_downmix_amode]; out++) {
  1318. for (in = 0; in < s->prim_channels + !!s->lfe; in++) {
  1319. uint16_t tmp = get_bits(&s->gb, 9);
  1320. if ((tmp & 0xFF) > 241) {
  1321. av_log(s->avctx, AV_LOG_ERROR,
  1322. "Invalid downmix coefficient code %"PRIu16"\n",
  1323. tmp);
  1324. return AVERROR_INVALIDDATA;
  1325. }
  1326. s->core_downmix_codes[in][out] = tmp;
  1327. }
  1328. }
  1329. }
  1330. align_get_bits(&s->gb); // byte align
  1331. skip_bits(&s->gb, 16); // nAUXCRC16
  1332. // additional data (reserved, cf. ETSI TS 102 114 V1.4.1)
  1333. if ((reserved = (aux_data_end - get_bits_count(&s->gb))) < 0) {
  1334. av_log(s->avctx, AV_LOG_ERROR,
  1335. "Overread auxiliary data by %d bits\n", -reserved);
  1336. return AVERROR_INVALIDDATA;
  1337. } else if (reserved) {
  1338. avpriv_request_sample(s->avctx,
  1339. "Core auxiliary data reserved content");
  1340. skip_bits_long(&s->gb, reserved);
  1341. }
  1342. }
  1343. if (s->crc_present && s->dynrange)
  1344. get_bits(&s->gb, 16);
  1345. }
  1346. return 0;
  1347. }
  1348. /**
  1349. * Decode a dca frame block
  1350. *
  1351. * @param s pointer to the DCAContext
  1352. */
  1353. static int dca_decode_block(DCAContext *s, int base_channel, int block_index)
  1354. {
  1355. int ret;
  1356. /* Sanity check */
  1357. if (s->current_subframe >= s->subframes) {
  1358. av_log(s->avctx, AV_LOG_DEBUG, "check failed: %i>%i",
  1359. s->current_subframe, s->subframes);
  1360. return AVERROR_INVALIDDATA;
  1361. }
  1362. if (!s->current_subsubframe) {
  1363. #ifdef TRACE
  1364. av_log(s->avctx, AV_LOG_DEBUG, "DSYNC dca_subframe_header\n");
  1365. #endif
  1366. /* Read subframe header */
  1367. if ((ret = dca_subframe_header(s, base_channel, block_index)))
  1368. return ret;
  1369. }
  1370. /* Read subsubframe */
  1371. #ifdef TRACE
  1372. av_log(s->avctx, AV_LOG_DEBUG, "DSYNC dca_subsubframe\n");
  1373. #endif
  1374. if ((ret = dca_subsubframe(s, base_channel, block_index)))
  1375. return ret;
  1376. /* Update state */
  1377. s->current_subsubframe++;
  1378. if (s->current_subsubframe >= s->subsubframes[s->current_subframe]) {
  1379. s->current_subsubframe = 0;
  1380. s->current_subframe++;
  1381. }
  1382. if (s->current_subframe >= s->subframes) {
  1383. #ifdef TRACE
  1384. av_log(s->avctx, AV_LOG_DEBUG, "DSYNC dca_subframe_footer\n");
  1385. #endif
  1386. /* Read subframe footer */
  1387. if ((ret = dca_subframe_footer(s, base_channel)))
  1388. return ret;
  1389. }
  1390. return 0;
  1391. }
  1392. /**
  1393. * Return the number of channels in an ExSS speaker mask (HD)
  1394. */
  1395. static int dca_exss_mask2count(int mask)
  1396. {
  1397. /* count bits that mean speaker pairs twice */
  1398. return av_popcount(mask) +
  1399. av_popcount(mask & (DCA_EXSS_CENTER_LEFT_RIGHT |
  1400. DCA_EXSS_FRONT_LEFT_RIGHT |
  1401. DCA_EXSS_FRONT_HIGH_LEFT_RIGHT |
  1402. DCA_EXSS_WIDE_LEFT_RIGHT |
  1403. DCA_EXSS_SIDE_LEFT_RIGHT |
  1404. DCA_EXSS_SIDE_HIGH_LEFT_RIGHT |
  1405. DCA_EXSS_SIDE_REAR_LEFT_RIGHT |
  1406. DCA_EXSS_REAR_LEFT_RIGHT |
  1407. DCA_EXSS_REAR_HIGH_LEFT_RIGHT));
  1408. }
  1409. /**
  1410. * Skip mixing coefficients of a single mix out configuration (HD)
  1411. */
  1412. static void dca_exss_skip_mix_coeffs(GetBitContext *gb, int channels, int out_ch)
  1413. {
  1414. int i;
  1415. for (i = 0; i < channels; i++) {
  1416. int mix_map_mask = get_bits(gb, out_ch);
  1417. int num_coeffs = av_popcount(mix_map_mask);
  1418. skip_bits_long(gb, num_coeffs * 6);
  1419. }
  1420. }
  1421. /**
  1422. * Parse extension substream asset header (HD)
  1423. */
  1424. static int dca_exss_parse_asset_header(DCAContext *s)
  1425. {
  1426. int header_pos = get_bits_count(&s->gb);
  1427. int header_size;
  1428. int channels = 0;
  1429. int embedded_stereo = 0;
  1430. int embedded_6ch = 0;
  1431. int drc_code_present;
  1432. int av_uninit(extensions_mask);
  1433. int i, j;
  1434. if (get_bits_left(&s->gb) < 16)
  1435. return -1;
  1436. /* We will parse just enough to get to the extensions bitmask with which
  1437. * we can set the profile value. */
  1438. header_size = get_bits(&s->gb, 9) + 1;
  1439. skip_bits(&s->gb, 3); // asset index
  1440. if (s->static_fields) {
  1441. if (get_bits1(&s->gb))
  1442. skip_bits(&s->gb, 4); // asset type descriptor
  1443. if (get_bits1(&s->gb))
  1444. skip_bits_long(&s->gb, 24); // language descriptor
  1445. if (get_bits1(&s->gb)) {
  1446. /* How can one fit 1024 bytes of text here if the maximum value
  1447. * for the asset header size field above was 512 bytes? */
  1448. int text_length = get_bits(&s->gb, 10) + 1;
  1449. if (get_bits_left(&s->gb) < text_length * 8)
  1450. return -1;
  1451. skip_bits_long(&s->gb, text_length * 8); // info text
  1452. }
  1453. skip_bits(&s->gb, 5); // bit resolution - 1
  1454. skip_bits(&s->gb, 4); // max sample rate code
  1455. channels = get_bits(&s->gb, 8) + 1;
  1456. if (get_bits1(&s->gb)) { // 1-to-1 channels to speakers
  1457. int spkr_remap_sets;
  1458. int spkr_mask_size = 16;
  1459. int num_spkrs[7];
  1460. if (channels > 2)
  1461. embedded_stereo = get_bits1(&s->gb);
  1462. if (channels > 6)
  1463. embedded_6ch = get_bits1(&s->gb);
  1464. if (get_bits1(&s->gb)) {
  1465. spkr_mask_size = (get_bits(&s->gb, 2) + 1) << 2;
  1466. skip_bits(&s->gb, spkr_mask_size); // spkr activity mask
  1467. }
  1468. spkr_remap_sets = get_bits(&s->gb, 3);
  1469. for (i = 0; i < spkr_remap_sets; i++) {
  1470. /* std layout mask for each remap set */
  1471. num_spkrs[i] = dca_exss_mask2count(get_bits(&s->gb, spkr_mask_size));
  1472. }
  1473. for (i = 0; i < spkr_remap_sets; i++) {
  1474. int num_dec_ch_remaps = get_bits(&s->gb, 5) + 1;
  1475. if (get_bits_left(&s->gb) < 0)
  1476. return -1;
  1477. for (j = 0; j < num_spkrs[i]; j++) {
  1478. int remap_dec_ch_mask = get_bits_long(&s->gb, num_dec_ch_remaps);
  1479. int num_dec_ch = av_popcount(remap_dec_ch_mask);
  1480. skip_bits_long(&s->gb, num_dec_ch * 5); // remap codes
  1481. }
  1482. }
  1483. } else {
  1484. skip_bits(&s->gb, 3); // representation type
  1485. }
  1486. }
  1487. drc_code_present = get_bits1(&s->gb);
  1488. if (drc_code_present)
  1489. get_bits(&s->gb, 8); // drc code
  1490. if (get_bits1(&s->gb))
  1491. skip_bits(&s->gb, 5); // dialog normalization code
  1492. if (drc_code_present && embedded_stereo)
  1493. get_bits(&s->gb, 8); // drc stereo code
  1494. if (s->mix_metadata && get_bits1(&s->gb)) {
  1495. skip_bits(&s->gb, 1); // external mix
  1496. skip_bits(&s->gb, 6); // post mix gain code
  1497. if (get_bits(&s->gb, 2) != 3) // mixer drc code
  1498. skip_bits(&s->gb, 3); // drc limit
  1499. else
  1500. skip_bits(&s->gb, 8); // custom drc code
  1501. if (get_bits1(&s->gb)) // channel specific scaling
  1502. for (i = 0; i < s->num_mix_configs; i++)
  1503. skip_bits_long(&s->gb, s->mix_config_num_ch[i] * 6); // scale codes
  1504. else
  1505. skip_bits_long(&s->gb, s->num_mix_configs * 6); // scale codes
  1506. for (i = 0; i < s->num_mix_configs; i++) {
  1507. if (get_bits_left(&s->gb) < 0)
  1508. return -1;
  1509. dca_exss_skip_mix_coeffs(&s->gb, channels, s->mix_config_num_ch[i]);
  1510. if (embedded_6ch)
  1511. dca_exss_skip_mix_coeffs(&s->gb, 6, s->mix_config_num_ch[i]);
  1512. if (embedded_stereo)
  1513. dca_exss_skip_mix_coeffs(&s->gb, 2, s->mix_config_num_ch[i]);
  1514. }
  1515. }
  1516. switch (get_bits(&s->gb, 2)) {
  1517. case 0: extensions_mask = get_bits(&s->gb, 12); break;
  1518. case 1: extensions_mask = DCA_EXT_EXSS_XLL; break;
  1519. case 2: extensions_mask = DCA_EXT_EXSS_LBR; break;
  1520. case 3: extensions_mask = 0; /* aux coding */ break;
  1521. }
  1522. /* not parsed further, we were only interested in the extensions mask */
  1523. if (get_bits_left(&s->gb) < 0)
  1524. return -1;
  1525. if (get_bits_count(&s->gb) - header_pos > header_size * 8) {
  1526. av_log(s->avctx, AV_LOG_WARNING, "Asset header size mismatch.\n");
  1527. return -1;
  1528. }
  1529. skip_bits_long(&s->gb, header_pos + header_size * 8 - get_bits_count(&s->gb));
  1530. if (extensions_mask & DCA_EXT_EXSS_XLL)
  1531. s->profile = FF_PROFILE_DTS_HD_MA;
  1532. else if (extensions_mask & (DCA_EXT_EXSS_XBR | DCA_EXT_EXSS_X96 |
  1533. DCA_EXT_EXSS_XXCH))
  1534. s->profile = FF_PROFILE_DTS_HD_HRA;
  1535. if (!(extensions_mask & DCA_EXT_CORE))
  1536. av_log(s->avctx, AV_LOG_WARNING, "DTS core detection mismatch.\n");
  1537. if ((extensions_mask & DCA_CORE_EXTS) != s->core_ext_mask)
  1538. av_log(s->avctx, AV_LOG_WARNING,
  1539. "DTS extensions detection mismatch (%d, %d)\n",
  1540. extensions_mask & DCA_CORE_EXTS, s->core_ext_mask);
  1541. return 0;
  1542. }
  1543. static int dca_xbr_parse_frame(DCAContext *s)
  1544. {
  1545. int scale_table_high[DCA_CHSET_CHANS_MAX][DCA_SUBBANDS][2];
  1546. int active_bands[DCA_CHSETS_MAX][DCA_CHSET_CHANS_MAX];
  1547. int abits_high[DCA_CHSET_CHANS_MAX][DCA_SUBBANDS];
  1548. int anctemp[DCA_CHSET_CHANS_MAX];
  1549. int chset_fsize[DCA_CHSETS_MAX];
  1550. int n_xbr_ch[DCA_CHSETS_MAX];
  1551. int hdr_size, num_chsets, xbr_tmode, hdr_pos;
  1552. int i, j, k, l, chset, chan_base;
  1553. av_log(s->avctx, AV_LOG_DEBUG, "DTS-XBR: decoding XBR extension\n");
  1554. /* get bit position of sync header */
  1555. hdr_pos = get_bits_count(&s->gb) - 32;
  1556. hdr_size = get_bits(&s->gb, 6) + 1;
  1557. num_chsets = get_bits(&s->gb, 2) + 1;
  1558. for(i = 0; i < num_chsets; i++)
  1559. chset_fsize[i] = get_bits(&s->gb, 14) + 1;
  1560. xbr_tmode = get_bits1(&s->gb);
  1561. for(i = 0; i < num_chsets; i++) {
  1562. n_xbr_ch[i] = get_bits(&s->gb, 3) + 1;
  1563. k = get_bits(&s->gb, 2) + 5;
  1564. for(j = 0; j < n_xbr_ch[i]; j++)
  1565. active_bands[i][j] = get_bits(&s->gb, k) + 1;
  1566. }
  1567. /* skip to the end of the header */
  1568. i = get_bits_count(&s->gb);
  1569. if(hdr_pos + hdr_size * 8 > i)
  1570. skip_bits_long(&s->gb, hdr_pos + hdr_size * 8 - i);
  1571. /* loop over the channel data sets */
  1572. /* only decode as many channels as we've decoded base data for */
  1573. for(chset = 0, chan_base = 0;
  1574. chset < num_chsets && chan_base + n_xbr_ch[chset] <= s->prim_channels;
  1575. chan_base += n_xbr_ch[chset++]) {
  1576. int start_posn = get_bits_count(&s->gb);
  1577. int subsubframe = 0;
  1578. int subframe = 0;
  1579. /* loop over subframes */
  1580. for (k = 0; k < (s->sample_blocks / 8); k++) {
  1581. /* parse header if we're on first subsubframe of a block */
  1582. if(subsubframe == 0) {
  1583. /* Parse subframe header */
  1584. for(i = 0; i < n_xbr_ch[chset]; i++) {
  1585. anctemp[i] = get_bits(&s->gb, 2) + 2;
  1586. }
  1587. for(i = 0; i < n_xbr_ch[chset]; i++) {
  1588. get_array(&s->gb, abits_high[i], active_bands[chset][i], anctemp[i]);
  1589. }
  1590. for(i = 0; i < n_xbr_ch[chset]; i++) {
  1591. anctemp[i] = get_bits(&s->gb, 3);
  1592. if(anctemp[i] < 1) {
  1593. av_log(s->avctx, AV_LOG_ERROR, "DTS-XBR: SYNC ERROR\n");
  1594. return AVERROR_INVALIDDATA;
  1595. }
  1596. }
  1597. /* generate scale factors */
  1598. for(i = 0; i < n_xbr_ch[chset]; i++) {
  1599. const uint32_t *scale_table;
  1600. int nbits;
  1601. if (s->scalefactor_huffman[chan_base+i] == 6) {
  1602. scale_table = scale_factor_quant7;
  1603. } else {
  1604. scale_table = scale_factor_quant6;
  1605. }
  1606. nbits = anctemp[i];
  1607. for(j = 0; j < active_bands[chset][i]; j++) {
  1608. if(abits_high[i][j] > 0) {
  1609. scale_table_high[i][j][0] =
  1610. scale_table[get_bits(&s->gb, nbits)];
  1611. if(xbr_tmode && s->transition_mode[i][j]) {
  1612. scale_table_high[i][j][1] =
  1613. scale_table[get_bits(&s->gb, nbits)];
  1614. }
  1615. }
  1616. }
  1617. }
  1618. }
  1619. /* decode audio array for this block */
  1620. for(i = 0; i < n_xbr_ch[chset]; i++) {
  1621. for(j = 0; j < active_bands[chset][i]; j++) {
  1622. const int xbr_abits = abits_high[i][j];
  1623. const float quant_step_size = lossless_quant_d[xbr_abits];
  1624. const int sfi = xbr_tmode && s->transition_mode[i][j] && subsubframe >= s->transition_mode[i][j];
  1625. const float rscale = quant_step_size * scale_table_high[i][j][sfi];
  1626. float *subband_samples = s->subband_samples[k][chan_base+i][j];
  1627. int block[8];
  1628. if(xbr_abits <= 0)
  1629. continue;
  1630. if(xbr_abits > 7) {
  1631. get_array(&s->gb, block, 8, xbr_abits - 3);
  1632. } else {
  1633. int block_code1, block_code2, size, levels, err;
  1634. size = abits_sizes[xbr_abits - 1];
  1635. levels = abits_levels[xbr_abits - 1];
  1636. block_code1 = get_bits(&s->gb, size);
  1637. block_code2 = get_bits(&s->gb, size);
  1638. err = decode_blockcodes(block_code1, block_code2,
  1639. levels, block);
  1640. if (err) {
  1641. av_log(s->avctx, AV_LOG_ERROR,
  1642. "ERROR: DTS-XBR: block code look-up failed\n");
  1643. return AVERROR_INVALIDDATA;
  1644. }
  1645. }
  1646. /* scale & sum into subband */
  1647. for(l = 0; l < 8; l++)
  1648. subband_samples[l] += (float)block[l] * rscale;
  1649. }
  1650. }
  1651. /* check DSYNC marker */
  1652. if(s->aspf || subsubframe == s->subsubframes[subframe] - 1) {
  1653. if(get_bits(&s->gb, 16) != 0xffff) {
  1654. av_log(s->avctx, AV_LOG_ERROR, "DTS-XBR: Didn't get subframe DSYNC\n");
  1655. return AVERROR_INVALIDDATA;
  1656. }
  1657. }
  1658. /* advance sub-sub-frame index */
  1659. if(++subsubframe >= s->subsubframes[subframe]) {
  1660. subsubframe = 0;
  1661. subframe++;
  1662. }
  1663. }
  1664. /* skip to next channel set */
  1665. i = get_bits_count(&s->gb);
  1666. if(start_posn + chset_fsize[chset] * 8 != i) {
  1667. j = start_posn + chset_fsize[chset] * 8 - i;
  1668. if(j < 0 || j >= 8)
  1669. av_log(s->avctx, AV_LOG_ERROR, "DTS-XBR: end of channel set,"
  1670. " skipping further than expected (%d bits)\n", j);
  1671. skip_bits_long(&s->gb, j);
  1672. }
  1673. }
  1674. return 0;
  1675. }
  1676. /* parse initial header for XXCH and dump details */
  1677. static int dca_xxch_decode_frame(DCAContext *s)
  1678. {
  1679. int hdr_size, spkmsk_bits, num_chsets, core_spk, hdr_pos;
  1680. int i, chset, base_channel, chstart, fsize[8];
  1681. /* assume header word has already been parsed */
  1682. hdr_pos = get_bits_count(&s->gb) - 32;
  1683. hdr_size = get_bits(&s->gb, 6) + 1;
  1684. /*chhdr_crc =*/ skip_bits1(&s->gb);
  1685. spkmsk_bits = get_bits(&s->gb, 5) + 1;
  1686. num_chsets = get_bits(&s->gb, 2) + 1;
  1687. for (i = 0; i < num_chsets; i++)
  1688. fsize[i] = get_bits(&s->gb, 14) + 1;
  1689. core_spk = get_bits(&s->gb, spkmsk_bits);
  1690. s->xxch_core_spkmask = core_spk;
  1691. s->xxch_nbits_spk_mask = spkmsk_bits;
  1692. s->xxch_dmix_embedded = 0;
  1693. /* skip to the end of the header */
  1694. i = get_bits_count(&s->gb);
  1695. if (hdr_pos + hdr_size * 8 > i)
  1696. skip_bits_long(&s->gb, hdr_pos + hdr_size * 8 - i);
  1697. for (chset = 0; chset < num_chsets; chset++) {
  1698. chstart = get_bits_count(&s->gb);
  1699. base_channel = s->prim_channels;
  1700. s->xxch_chset = chset;
  1701. /* XXCH and Core headers differ, see 6.4.2 "XXCH Channel Set Header" vs.
  1702. 5.3.2 "Primary Audio Coding Header", DTS Spec 1.3.1 */
  1703. dca_parse_audio_coding_header(s, base_channel, 1);
  1704. /* decode channel data */
  1705. for (i = 0; i < (s->sample_blocks / 8); i++) {
  1706. if (dca_decode_block(s, base_channel, i)) {
  1707. av_log(s->avctx, AV_LOG_ERROR,
  1708. "Error decoding DTS-XXCH extension\n");
  1709. continue;
  1710. }
  1711. }
  1712. /* skip to end of this section */
  1713. i = get_bits_count(&s->gb);
  1714. if (chstart + fsize[chset] * 8 > i)
  1715. skip_bits_long(&s->gb, chstart + fsize[chset] * 8 - i);
  1716. }
  1717. s->xxch_chset = num_chsets;
  1718. return 0;
  1719. }
  1720. /**
  1721. * Parse extension substream header (HD)
  1722. */
  1723. static void dca_exss_parse_header(DCAContext *s)
  1724. {
  1725. int asset_size[8];
  1726. int ss_index;
  1727. int blownup;
  1728. int num_audiop = 1;
  1729. int num_assets = 1;
  1730. int active_ss_mask[8];
  1731. int i, j;
  1732. int start_posn;
  1733. int hdrsize;
  1734. uint32_t mkr;
  1735. if (get_bits_left(&s->gb) < 52)
  1736. return;
  1737. start_posn = get_bits_count(&s->gb) - 32;
  1738. skip_bits(&s->gb, 8); // user data
  1739. ss_index = get_bits(&s->gb, 2);
  1740. blownup = get_bits1(&s->gb);
  1741. hdrsize = get_bits(&s->gb, 8 + 4 * blownup) + 1; // header_size
  1742. skip_bits(&s->gb, 16 + 4 * blownup); // hd_size
  1743. s->static_fields = get_bits1(&s->gb);
  1744. if (s->static_fields) {
  1745. skip_bits(&s->gb, 2); // reference clock code
  1746. skip_bits(&s->gb, 3); // frame duration code
  1747. if (get_bits1(&s->gb))
  1748. skip_bits_long(&s->gb, 36); // timestamp
  1749. /* a single stream can contain multiple audio assets that can be
  1750. * combined to form multiple audio presentations */
  1751. num_audiop = get_bits(&s->gb, 3) + 1;
  1752. if (num_audiop > 1) {
  1753. avpriv_request_sample(s->avctx,
  1754. "Multiple DTS-HD audio presentations");
  1755. /* ignore such streams for now */
  1756. return;
  1757. }
  1758. num_assets = get_bits(&s->gb, 3) + 1;
  1759. if (num_assets > 1) {
  1760. avpriv_request_sample(s->avctx, "Multiple DTS-HD audio assets");
  1761. /* ignore such streams for now */
  1762. return;
  1763. }
  1764. for (i = 0; i < num_audiop; i++)
  1765. active_ss_mask[i] = get_bits(&s->gb, ss_index + 1);
  1766. for (i = 0; i < num_audiop; i++)
  1767. for (j = 0; j <= ss_index; j++)
  1768. if (active_ss_mask[i] & (1 << j))
  1769. skip_bits(&s->gb, 8); // active asset mask
  1770. s->mix_metadata = get_bits1(&s->gb);
  1771. if (s->mix_metadata) {
  1772. int mix_out_mask_size;
  1773. skip_bits(&s->gb, 2); // adjustment level
  1774. mix_out_mask_size = (get_bits(&s->gb, 2) + 1) << 2;
  1775. s->num_mix_configs = get_bits(&s->gb, 2) + 1;
  1776. for (i = 0; i < s->num_mix_configs; i++) {
  1777. int mix_out_mask = get_bits(&s->gb, mix_out_mask_size);
  1778. s->mix_config_num_ch[i] = dca_exss_mask2count(mix_out_mask);
  1779. }
  1780. }
  1781. }
  1782. for (i = 0; i < num_assets; i++)
  1783. asset_size[i] = get_bits_long(&s->gb, 16 + 4 * blownup);
  1784. for (i = 0; i < num_assets; i++) {
  1785. if (dca_exss_parse_asset_header(s))
  1786. return;
  1787. }
  1788. /* not parsed further, we were only interested in the extensions mask
  1789. * from the asset header */
  1790. if (num_assets > 0) {
  1791. j = get_bits_count(&s->gb);
  1792. if (start_posn + hdrsize * 8 > j)
  1793. skip_bits_long(&s->gb, start_posn + hdrsize * 8 - j);
  1794. for (i = 0; i < num_assets; i++) {
  1795. start_posn = get_bits_count(&s->gb);
  1796. mkr = get_bits_long(&s->gb, 32);
  1797. /* parse extensions that we know about */
  1798. if (mkr == 0x655e315e) {
  1799. dca_xbr_parse_frame(s);
  1800. } else if (mkr == 0x47004a03) {
  1801. dca_xxch_decode_frame(s);
  1802. s->core_ext_mask |= DCA_EXT_XXCH; /* xxx use for chan reordering */
  1803. } else {
  1804. av_log(s->avctx, AV_LOG_DEBUG,
  1805. "DTS-ExSS: unknown marker = 0x%08x\n", mkr);
  1806. }
  1807. /* skip to end of block */
  1808. j = get_bits_count(&s->gb);
  1809. if (start_posn + asset_size[i] * 8 > j)
  1810. skip_bits_long(&s->gb, start_posn + asset_size[i] * 8 - j);
  1811. }
  1812. }
  1813. }
  1814. /**
  1815. * Main frame decoding function
  1816. * FIXME add arguments
  1817. */
  1818. static int dca_decode_frame(AVCodecContext *avctx, void *data,
  1819. int *got_frame_ptr, AVPacket *avpkt)
  1820. {
  1821. AVFrame *frame = data;
  1822. const uint8_t *buf = avpkt->data;
  1823. int buf_size = avpkt->size;
  1824. int channel_mask;
  1825. int channel_layout;
  1826. int lfe_samples;
  1827. int num_core_channels = 0;
  1828. int i, ret;
  1829. float **samples_flt;
  1830. float *src_chan;
  1831. float *dst_chan;
  1832. DCAContext *s = avctx->priv_data;
  1833. int core_ss_end;
  1834. int channels, full_channels;
  1835. float scale;
  1836. int achan;
  1837. int chset;
  1838. int mask;
  1839. int lavc;
  1840. int posn;
  1841. int j, k;
  1842. int endch;
  1843. s->xch_present = 0;
  1844. s->dca_buffer_size = ff_dca_convert_bitstream(buf, buf_size, s->dca_buffer,
  1845. DCA_MAX_FRAME_SIZE + DCA_MAX_EXSS_HEADER_SIZE);
  1846. if (s->dca_buffer_size == AVERROR_INVALIDDATA) {
  1847. av_log(avctx, AV_LOG_ERROR, "Not a valid DCA frame\n");
  1848. return AVERROR_INVALIDDATA;
  1849. }
  1850. init_get_bits(&s->gb, s->dca_buffer, s->dca_buffer_size * 8);
  1851. if ((ret = dca_parse_frame_header(s)) < 0) {
  1852. //seems like the frame is corrupt, try with the next one
  1853. return ret;
  1854. }
  1855. //set AVCodec values with parsed data
  1856. avctx->sample_rate = s->sample_rate;
  1857. avctx->bit_rate = s->bit_rate;
  1858. s->profile = FF_PROFILE_DTS;
  1859. for (i = 0; i < (s->sample_blocks / 8); i++) {
  1860. if ((ret = dca_decode_block(s, 0, i))) {
  1861. av_log(avctx, AV_LOG_ERROR, "error decoding block\n");
  1862. return ret;
  1863. }
  1864. }
  1865. /* record number of core channels incase less than max channels are requested */
  1866. num_core_channels = s->prim_channels;
  1867. if (s->prim_channels + !!s->lfe > 2 &&
  1868. avctx->request_channel_layout == AV_CH_LAYOUT_STEREO) {
  1869. /* Stereo downmix coefficients
  1870. *
  1871. * The decoder can only downmix to 2-channel, so we need to ensure
  1872. * embedded downmix coefficients are actually targeting 2-channel.
  1873. */
  1874. if (s->core_downmix && (s->core_downmix_amode == DCA_STEREO ||
  1875. s->core_downmix_amode == DCA_STEREO_TOTAL)) {
  1876. int sign, code;
  1877. for (i = 0; i < s->prim_channels + !!s->lfe; i++) {
  1878. sign = s->core_downmix_codes[i][0] & 0x100 ? 1 : -1;
  1879. code = s->core_downmix_codes[i][0] & 0x0FF;
  1880. s->downmix_coef[i][0] = (!code ? 0.0f :
  1881. sign * dca_dmixtable[code - 1]);
  1882. sign = s->core_downmix_codes[i][1] & 0x100 ? 1 : -1;
  1883. code = s->core_downmix_codes[i][1] & 0x0FF;
  1884. s->downmix_coef[i][1] = (!code ? 0.0f :
  1885. sign * dca_dmixtable[code - 1]);
  1886. }
  1887. s->output = s->core_downmix_amode;
  1888. } else {
  1889. int am = s->amode & DCA_CHANNEL_MASK;
  1890. if (am >= FF_ARRAY_ELEMS(dca_default_coeffs)) {
  1891. av_log(s->avctx, AV_LOG_ERROR,
  1892. "Invalid channel mode %d\n", am);
  1893. return AVERROR_INVALIDDATA;
  1894. }
  1895. if (s->prim_channels + !!s->lfe >
  1896. FF_ARRAY_ELEMS(dca_default_coeffs[0])) {
  1897. avpriv_request_sample(s->avctx, "Downmixing %d channels",
  1898. s->prim_channels + !!s->lfe);
  1899. return AVERROR_PATCHWELCOME;
  1900. }
  1901. for (i = 0; i < s->prim_channels + !!s->lfe; i++) {
  1902. s->downmix_coef[i][0] = dca_default_coeffs[am][i][0];
  1903. s->downmix_coef[i][1] = dca_default_coeffs[am][i][1];
  1904. }
  1905. }
  1906. av_dlog(s->avctx, "Stereo downmix coeffs:\n");
  1907. for (i = 0; i < s->prim_channels + !!s->lfe; i++) {
  1908. av_dlog(s->avctx, "L, input channel %d = %f\n", i,
  1909. s->downmix_coef[i][0]);
  1910. av_dlog(s->avctx, "R, input channel %d = %f\n", i,
  1911. s->downmix_coef[i][1]);
  1912. }
  1913. av_dlog(s->avctx, "\n");
  1914. }
  1915. if (s->ext_coding)
  1916. s->core_ext_mask = dca_ext_audio_descr_mask[s->ext_descr];
  1917. else
  1918. s->core_ext_mask = 0;
  1919. core_ss_end = FFMIN(s->frame_size, s->dca_buffer_size) * 8;
  1920. /* only scan for extensions if ext_descr was unknown or indicated a
  1921. * supported XCh extension */
  1922. if (s->core_ext_mask < 0 || s->core_ext_mask & (DCA_EXT_XCH | DCA_EXT_XXCH)) {
  1923. /* if ext_descr was unknown, clear s->core_ext_mask so that the
  1924. * extensions scan can fill it up */
  1925. s->core_ext_mask = FFMAX(s->core_ext_mask, 0);
  1926. /* extensions start at 32-bit boundaries into bitstream */
  1927. skip_bits_long(&s->gb, (-get_bits_count(&s->gb)) & 31);
  1928. while (core_ss_end - get_bits_count(&s->gb) >= 32) {
  1929. uint32_t bits = get_bits_long(&s->gb, 32);
  1930. switch (bits) {
  1931. case 0x5a5a5a5a: {
  1932. int ext_amode, xch_fsize;
  1933. s->xch_base_channel = s->prim_channels;
  1934. /* validate sync word using XCHFSIZE field */
  1935. xch_fsize = show_bits(&s->gb, 10);
  1936. if ((s->frame_size != (get_bits_count(&s->gb) >> 3) - 4 + xch_fsize) &&
  1937. (s->frame_size != (get_bits_count(&s->gb) >> 3) - 4 + xch_fsize + 1))
  1938. continue;
  1939. /* skip length-to-end-of-frame field for the moment */
  1940. skip_bits(&s->gb, 10);
  1941. s->core_ext_mask |= DCA_EXT_XCH;
  1942. /* extension amode(number of channels in extension) should be 1 */
  1943. /* AFAIK XCh is not used for more channels */
  1944. if ((ext_amode = get_bits(&s->gb, 4)) != 1) {
  1945. av_log(avctx, AV_LOG_ERROR, "XCh extension amode %d not"
  1946. " supported!\n", ext_amode);
  1947. continue;
  1948. }
  1949. if (s->xch_base_channel < 2) {
  1950. avpriv_request_sample(avctx, "XCh with fewer than 2 base channels");
  1951. continue;
  1952. }
  1953. /* much like core primary audio coding header */
  1954. dca_parse_audio_coding_header(s, s->xch_base_channel, 0);
  1955. for (i = 0; i < (s->sample_blocks / 8); i++)
  1956. if ((ret = dca_decode_block(s, s->xch_base_channel, i))) {
  1957. av_log(avctx, AV_LOG_ERROR, "error decoding XCh extension\n");
  1958. continue;
  1959. }
  1960. s->xch_present = 1;
  1961. break;
  1962. }
  1963. case 0x47004a03:
  1964. /* XXCh: extended channels */
  1965. /* usually found either in core or HD part in DTS-HD HRA streams,
  1966. * but not in DTS-ES which contains XCh extensions instead */
  1967. s->core_ext_mask |= DCA_EXT_XXCH;
  1968. dca_xxch_decode_frame(s);
  1969. break;
  1970. case 0x1d95f262: {
  1971. int fsize96 = show_bits(&s->gb, 12) + 1;
  1972. if (s->frame_size != (get_bits_count(&s->gb) >> 3) - 4 + fsize96)
  1973. continue;
  1974. av_log(avctx, AV_LOG_DEBUG, "X96 extension found at %d bits\n",
  1975. get_bits_count(&s->gb));
  1976. skip_bits(&s->gb, 12);
  1977. av_log(avctx, AV_LOG_DEBUG, "FSIZE96 = %d bytes\n", fsize96);
  1978. av_log(avctx, AV_LOG_DEBUG, "REVNO = %d\n", get_bits(&s->gb, 4));
  1979. s->core_ext_mask |= DCA_EXT_X96;
  1980. break;
  1981. }
  1982. }
  1983. skip_bits_long(&s->gb, (-get_bits_count(&s->gb)) & 31);
  1984. }
  1985. } else {
  1986. /* no supported extensions, skip the rest of the core substream */
  1987. skip_bits_long(&s->gb, core_ss_end - get_bits_count(&s->gb));
  1988. }
  1989. if (s->core_ext_mask & DCA_EXT_X96)
  1990. s->profile = FF_PROFILE_DTS_96_24;
  1991. else if (s->core_ext_mask & (DCA_EXT_XCH | DCA_EXT_XXCH))
  1992. s->profile = FF_PROFILE_DTS_ES;
  1993. /* check for ExSS (HD part) */
  1994. if (s->dca_buffer_size - s->frame_size > 32 &&
  1995. get_bits_long(&s->gb, 32) == DCA_HD_MARKER)
  1996. dca_exss_parse_header(s);
  1997. avctx->profile = s->profile;
  1998. full_channels = channels = s->prim_channels + !!s->lfe;
  1999. /* If we have XXCH then the channel layout is managed differently */
  2000. /* note that XLL will also have another way to do things */
  2001. if (!(s->core_ext_mask & DCA_EXT_XXCH)
  2002. || (s->core_ext_mask & DCA_EXT_XXCH && avctx->request_channels > 0
  2003. && avctx->request_channels
  2004. < num_core_channels + !!s->lfe + s->xxch_chset_nch[0]))
  2005. { /* xxx should also do MA extensions */
  2006. if (s->amode < 16) {
  2007. avctx->channel_layout = dca_core_channel_layout[s->amode];
  2008. #if FF_API_REQUEST_CHANNELS
  2009. FF_DISABLE_DEPRECATION_WARNINGS
  2010. if (s->xch_present && !s->xch_disable &&
  2011. (!avctx->request_channels ||
  2012. avctx->request_channels > num_core_channels + !!s->lfe)) {
  2013. FF_ENABLE_DEPRECATION_WARNINGS
  2014. #else
  2015. if (s->xch_present && !s->xch_disable) {
  2016. #endif
  2017. avctx->channel_layout |= AV_CH_BACK_CENTER;
  2018. if (s->lfe) {
  2019. avctx->channel_layout |= AV_CH_LOW_FREQUENCY;
  2020. s->channel_order_tab = dca_channel_reorder_lfe_xch[s->amode];
  2021. } else {
  2022. s->channel_order_tab = dca_channel_reorder_nolfe_xch[s->amode];
  2023. }
  2024. if (s->channel_order_tab[s->xch_base_channel] < 0)
  2025. return AVERROR_INVALIDDATA;
  2026. } else {
  2027. channels = num_core_channels + !!s->lfe;
  2028. s->xch_present = 0; /* disable further xch processing */
  2029. if (s->lfe) {
  2030. avctx->channel_layout |= AV_CH_LOW_FREQUENCY;
  2031. s->channel_order_tab = dca_channel_reorder_lfe[s->amode];
  2032. } else
  2033. s->channel_order_tab = dca_channel_reorder_nolfe[s->amode];
  2034. }
  2035. if (channels > !!s->lfe &&
  2036. s->channel_order_tab[channels - 1 - !!s->lfe] < 0)
  2037. return AVERROR_INVALIDDATA;
  2038. if (av_get_channel_layout_nb_channels(avctx->channel_layout) != channels) {
  2039. av_log(avctx, AV_LOG_ERROR, "Number of channels %d mismatches layout %d\n", channels, av_get_channel_layout_nb_channels(avctx->channel_layout));
  2040. return AVERROR_INVALIDDATA;
  2041. }
  2042. if (s->prim_channels + !!s->lfe > 2 &&
  2043. avctx->request_channel_layout == AV_CH_LAYOUT_STEREO) {
  2044. channels = 2;
  2045. s->output = s->prim_channels == 2 ? s->amode : DCA_STEREO;
  2046. avctx->channel_layout = AV_CH_LAYOUT_STEREO;
  2047. }
  2048. else if (avctx->request_channel_layout & AV_CH_LAYOUT_NATIVE) {
  2049. static const int8_t dca_channel_order_native[9] = { 0, 1, 2, 3, 4, 5, 6, 7, 8 };
  2050. s->channel_order_tab = dca_channel_order_native;
  2051. }
  2052. s->lfe_index = dca_lfe_index[s->amode];
  2053. } else {
  2054. av_log(avctx, AV_LOG_ERROR,
  2055. "Non standard configuration %d !\n", s->amode);
  2056. return AVERROR_INVALIDDATA;
  2057. }
  2058. s->xxch_dmix_embedded = 0;
  2059. } else {
  2060. /* we only get here if an XXCH channel set can be added to the mix */
  2061. channel_mask = s->xxch_core_spkmask;
  2062. if (avctx->request_channels > 0
  2063. && avctx->request_channels < s->prim_channels) {
  2064. channels = num_core_channels + !!s->lfe;
  2065. for (i = 0; i < s->xxch_chset && channels + s->xxch_chset_nch[i]
  2066. <= avctx->request_channels; i++) {
  2067. channels += s->xxch_chset_nch[i];
  2068. channel_mask |= s->xxch_spk_masks[i];
  2069. }
  2070. } else {
  2071. channels = s->prim_channels + !!s->lfe;
  2072. for (i = 0; i < s->xxch_chset; i++) {
  2073. channel_mask |= s->xxch_spk_masks[i];
  2074. }
  2075. }
  2076. /* Given the DTS spec'ed channel mask, generate an avcodec version */
  2077. channel_layout = 0;
  2078. for (i = 0; i < s->xxch_nbits_spk_mask; ++i) {
  2079. if (channel_mask & (1 << i)) {
  2080. channel_layout |= map_xxch_to_native[i];
  2081. }
  2082. }
  2083. /* make sure that we have managed to get equivelant dts/avcodec channel
  2084. * masks in some sense -- unfortunately some channels could overlap */
  2085. if (av_popcount(channel_mask) != av_popcount(channel_layout)) {
  2086. av_log(avctx, AV_LOG_DEBUG,
  2087. "DTS-XXCH: Inconsistant avcodec/dts channel layouts\n");
  2088. return AVERROR_INVALIDDATA;
  2089. }
  2090. avctx->channel_layout = channel_layout;
  2091. if (!(avctx->request_channel_layout & AV_CH_LAYOUT_NATIVE)) {
  2092. /* Estimate DTS --> avcodec ordering table */
  2093. for (chset = -1, j = 0; chset < s->xxch_chset; ++chset) {
  2094. mask = chset >= 0 ? s->xxch_spk_masks[chset]
  2095. : s->xxch_core_spkmask;
  2096. for (i = 0; i < s->xxch_nbits_spk_mask; i++) {
  2097. if (mask & ~(DCA_XXCH_LFE1 | DCA_XXCH_LFE2) & (1 << i)) {
  2098. lavc = map_xxch_to_native[i];
  2099. posn = av_popcount(channel_layout & (lavc - 1));
  2100. s->xxch_order_tab[j++] = posn;
  2101. }
  2102. }
  2103. }
  2104. s->lfe_index = av_popcount(channel_layout & (AV_CH_LOW_FREQUENCY-1));
  2105. } else { /* native ordering */
  2106. for (i = 0; i < channels; i++)
  2107. s->xxch_order_tab[i] = i;
  2108. s->lfe_index = channels - 1;
  2109. }
  2110. s->channel_order_tab = s->xxch_order_tab;
  2111. }
  2112. if (avctx->channels != channels) {
  2113. if (avctx->channels)
  2114. av_log(avctx, AV_LOG_INFO, "Number of channels changed in DCA decoder (%d -> %d)\n", avctx->channels, channels);
  2115. avctx->channels = channels;
  2116. }
  2117. /* get output buffer */
  2118. frame->nb_samples = 256 * (s->sample_blocks / 8);
  2119. if ((ret = ff_get_buffer(avctx, frame, 0)) < 0)
  2120. return ret;
  2121. samples_flt = (float **)frame->extended_data;
  2122. /* allocate buffer for extra channels if downmixing */
  2123. if (avctx->channels < full_channels) {
  2124. ret = av_samples_get_buffer_size(NULL, full_channels - channels,
  2125. frame->nb_samples,
  2126. avctx->sample_fmt, 0);
  2127. if (ret < 0)
  2128. return ret;
  2129. av_fast_malloc(&s->extra_channels_buffer,
  2130. &s->extra_channels_buffer_size, ret);
  2131. if (!s->extra_channels_buffer)
  2132. return AVERROR(ENOMEM);
  2133. ret = av_samples_fill_arrays((uint8_t **)s->extra_channels, NULL,
  2134. s->extra_channels_buffer,
  2135. full_channels - channels,
  2136. frame->nb_samples, avctx->sample_fmt, 0);
  2137. if (ret < 0)
  2138. return ret;
  2139. }
  2140. /* filter to get final output */
  2141. for (i = 0; i < (s->sample_blocks / 8); i++) {
  2142. int ch;
  2143. for (ch = 0; ch < channels; ch++)
  2144. s->samples_chanptr[ch] = samples_flt[ch] + i * 256;
  2145. for (; ch < full_channels; ch++)
  2146. s->samples_chanptr[ch] = s->extra_channels[ch - channels] + i * 256;
  2147. dca_filter_channels(s, i);
  2148. /* If this was marked as a DTS-ES stream we need to subtract back- */
  2149. /* channel from SL & SR to remove matrixed back-channel signal */
  2150. if ((s->source_pcm_res & 1) && s->xch_present) {
  2151. float *back_chan = s->samples_chanptr[s->channel_order_tab[s->xch_base_channel]];
  2152. float *lt_chan = s->samples_chanptr[s->channel_order_tab[s->xch_base_channel - 2]];
  2153. float *rt_chan = s->samples_chanptr[s->channel_order_tab[s->xch_base_channel - 1]];
  2154. s->fdsp.vector_fmac_scalar(lt_chan, back_chan, -M_SQRT1_2, 256);
  2155. s->fdsp.vector_fmac_scalar(rt_chan, back_chan, -M_SQRT1_2, 256);
  2156. }
  2157. /* If stream contains XXCH, we might need to undo an embedded downmix */
  2158. if (s->xxch_dmix_embedded) {
  2159. /* Loop over channel sets in turn */
  2160. ch = num_core_channels;
  2161. for (chset = 0; chset < s->xxch_chset; chset++) {
  2162. endch = ch + s->xxch_chset_nch[chset];
  2163. mask = s->xxch_dmix_embedded;
  2164. /* undo downmix */
  2165. for (j = ch; j < endch; j++) {
  2166. if (mask & (1 << j)) { /* this channel has been mixed-out */
  2167. src_chan = s->samples_chanptr[s->channel_order_tab[j]];
  2168. for (k = 0; k < endch; k++) {
  2169. achan = s->channel_order_tab[k];
  2170. scale = s->xxch_dmix_coeff[j][k];
  2171. if (scale != 0.0) {
  2172. dst_chan = s->samples_chanptr[achan];
  2173. s->fdsp.vector_fmac_scalar(dst_chan, src_chan,
  2174. -scale, 256);
  2175. }
  2176. }
  2177. }
  2178. }
  2179. /* if a downmix has been embedded then undo the pre-scaling */
  2180. if ((mask & (1 << ch)) && s->xxch_dmix_sf[chset] != 1.0f) {
  2181. scale = s->xxch_dmix_sf[chset];
  2182. for (j = 0; j < ch; j++) {
  2183. src_chan = s->samples_chanptr[s->channel_order_tab[j]];
  2184. for (k = 0; k < 256; k++)
  2185. src_chan[k] *= scale;
  2186. }
  2187. /* LFE channel is always part of core, scale if it exists */
  2188. if (s->lfe) {
  2189. src_chan = s->samples_chanptr[s->lfe_index];
  2190. for (k = 0; k < 256; k++)
  2191. src_chan[k] *= scale;
  2192. }
  2193. }
  2194. ch = endch;
  2195. }
  2196. }
  2197. }
  2198. /* update lfe history */
  2199. lfe_samples = 2 * s->lfe * (s->sample_blocks / 8);
  2200. for (i = 0; i < 2 * s->lfe * 4; i++)
  2201. s->lfe_data[i] = s->lfe_data[i + lfe_samples];
  2202. /* AVMatrixEncoding
  2203. *
  2204. * DCA_STEREO_TOTAL (Lt/Rt) is equivalent to Dolby Surround */
  2205. ret = ff_side_data_update_matrix_encoding(frame,
  2206. (s->output & ~DCA_LFE) == DCA_STEREO_TOTAL ?
  2207. AV_MATRIX_ENCODING_DOLBY : AV_MATRIX_ENCODING_NONE);
  2208. if (ret < 0)
  2209. return ret;
  2210. *got_frame_ptr = 1;
  2211. return buf_size;
  2212. }
  2213. /**
  2214. * DCA initialization
  2215. *
  2216. * @param avctx pointer to the AVCodecContext
  2217. */
  2218. static av_cold int dca_decode_init(AVCodecContext *avctx)
  2219. {
  2220. DCAContext *s = avctx->priv_data;
  2221. s->avctx = avctx;
  2222. dca_init_vlcs();
  2223. avpriv_float_dsp_init(&s->fdsp, avctx->flags & CODEC_FLAG_BITEXACT);
  2224. ff_mdct_init(&s->imdct, 6, 1, 1.0);
  2225. ff_synth_filter_init(&s->synth);
  2226. ff_dcadsp_init(&s->dcadsp);
  2227. ff_fmt_convert_init(&s->fmt_conv, avctx);
  2228. avctx->sample_fmt = AV_SAMPLE_FMT_FLTP;
  2229. /* allow downmixing to stereo */
  2230. #if FF_API_REQUEST_CHANNELS
  2231. FF_DISABLE_DEPRECATION_WARNINGS
  2232. if (avctx->request_channels == 2)
  2233. avctx->request_channel_layout = AV_CH_LAYOUT_STEREO;
  2234. FF_ENABLE_DEPRECATION_WARNINGS
  2235. #endif
  2236. if (avctx->channels > 2 &&
  2237. avctx->request_channel_layout == AV_CH_LAYOUT_STEREO)
  2238. avctx->channels = 2;
  2239. return 0;
  2240. }
  2241. static av_cold int dca_decode_end(AVCodecContext *avctx)
  2242. {
  2243. DCAContext *s = avctx->priv_data;
  2244. ff_mdct_end(&s->imdct);
  2245. av_freep(&s->extra_channels_buffer);
  2246. return 0;
  2247. }
  2248. static const AVProfile profiles[] = {
  2249. { FF_PROFILE_DTS, "DTS" },
  2250. { FF_PROFILE_DTS_ES, "DTS-ES" },
  2251. { FF_PROFILE_DTS_96_24, "DTS 96/24" },
  2252. { FF_PROFILE_DTS_HD_HRA, "DTS-HD HRA" },
  2253. { FF_PROFILE_DTS_HD_MA, "DTS-HD MA" },
  2254. { FF_PROFILE_UNKNOWN },
  2255. };
  2256. static const AVOption options[] = {
  2257. { "disable_xch", "disable decoding of the XCh extension", offsetof(DCAContext, xch_disable), AV_OPT_TYPE_INT, { .i64 = 0 }, 0, 1, AV_OPT_FLAG_DECODING_PARAM|AV_OPT_FLAG_AUDIO_PARAM },
  2258. { NULL },
  2259. };
  2260. static const AVClass dca_decoder_class = {
  2261. .class_name = "DCA decoder",
  2262. .item_name = av_default_item_name,
  2263. .option = options,
  2264. .version = LIBAVUTIL_VERSION_INT,
  2265. .category = AV_CLASS_CATEGORY_DECODER,
  2266. };
  2267. AVCodec ff_dca_decoder = {
  2268. .name = "dca",
  2269. .long_name = NULL_IF_CONFIG_SMALL("DCA (DTS Coherent Acoustics)"),
  2270. .type = AVMEDIA_TYPE_AUDIO,
  2271. .id = AV_CODEC_ID_DTS,
  2272. .priv_data_size = sizeof(DCAContext),
  2273. .init = dca_decode_init,
  2274. .decode = dca_decode_frame,
  2275. .close = dca_decode_end,
  2276. .capabilities = CODEC_CAP_CHANNEL_CONF | CODEC_CAP_DR1,
  2277. .sample_fmts = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_FLTP,
  2278. AV_SAMPLE_FMT_NONE },
  2279. .profiles = NULL_IF_CONFIG_SMALL(profiles),
  2280. .priv_class = &dca_decoder_class,
  2281. };