You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

3410 lines
132KB

  1. /*
  2. * HEVC video Decoder
  3. *
  4. * Copyright (C) 2012 - 2013 Guillaume Martres
  5. * Copyright (C) 2012 - 2013 Mickael Raulet
  6. * Copyright (C) 2012 - 2013 Gildas Cocherel
  7. * Copyright (C) 2012 - 2013 Wassim Hamidouche
  8. *
  9. * This file is part of FFmpeg.
  10. *
  11. * FFmpeg is free software; you can redistribute it and/or
  12. * modify it under the terms of the GNU Lesser General Public
  13. * License as published by the Free Software Foundation; either
  14. * version 2.1 of the License, or (at your option) any later version.
  15. *
  16. * FFmpeg is distributed in the hope that it will be useful,
  17. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  18. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  19. * Lesser General Public License for more details.
  20. *
  21. * You should have received a copy of the GNU Lesser General Public
  22. * License along with FFmpeg; if not, write to the Free Software
  23. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  24. */
  25. #include "libavutil/atomic.h"
  26. #include "libavutil/attributes.h"
  27. #include "libavutil/common.h"
  28. #include "libavutil/display.h"
  29. #include "libavutil/internal.h"
  30. #include "libavutil/mastering_display_metadata.h"
  31. #include "libavutil/md5.h"
  32. #include "libavutil/opt.h"
  33. #include "libavutil/pixdesc.h"
  34. #include "libavutil/stereo3d.h"
  35. #include "bswapdsp.h"
  36. #include "bytestream.h"
  37. #include "cabac_functions.h"
  38. #include "golomb.h"
  39. #include "hevc.h"
  40. #include "profiles.h"
  41. const uint8_t ff_hevc_pel_weight[65] = { [2] = 0, [4] = 1, [6] = 2, [8] = 3, [12] = 4, [16] = 5, [24] = 6, [32] = 7, [48] = 8, [64] = 9 };
  42. /**
  43. * NOTE: Each function hls_foo correspond to the function foo in the
  44. * specification (HLS stands for High Level Syntax).
  45. */
  46. /**
  47. * Section 5.7
  48. */
  49. /* free everything allocated by pic_arrays_init() */
  50. static void pic_arrays_free(HEVCContext *s)
  51. {
  52. av_freep(&s->sao);
  53. av_freep(&s->deblock);
  54. av_freep(&s->skip_flag);
  55. av_freep(&s->tab_ct_depth);
  56. av_freep(&s->tab_ipm);
  57. av_freep(&s->cbf_luma);
  58. av_freep(&s->is_pcm);
  59. av_freep(&s->qp_y_tab);
  60. av_freep(&s->tab_slice_address);
  61. av_freep(&s->filter_slice_edges);
  62. av_freep(&s->horizontal_bs);
  63. av_freep(&s->vertical_bs);
  64. av_freep(&s->sh.entry_point_offset);
  65. av_freep(&s->sh.size);
  66. av_freep(&s->sh.offset);
  67. av_buffer_pool_uninit(&s->tab_mvf_pool);
  68. av_buffer_pool_uninit(&s->rpl_tab_pool);
  69. }
  70. /* allocate arrays that depend on frame dimensions */
  71. static int pic_arrays_init(HEVCContext *s, const HEVCSPS *sps)
  72. {
  73. int log2_min_cb_size = sps->log2_min_cb_size;
  74. int width = sps->width;
  75. int height = sps->height;
  76. int pic_size_in_ctb = ((width >> log2_min_cb_size) + 1) *
  77. ((height >> log2_min_cb_size) + 1);
  78. int ctb_count = sps->ctb_width * sps->ctb_height;
  79. int min_pu_size = sps->min_pu_width * sps->min_pu_height;
  80. s->bs_width = (width >> 2) + 1;
  81. s->bs_height = (height >> 2) + 1;
  82. s->sao = av_mallocz_array(ctb_count, sizeof(*s->sao));
  83. s->deblock = av_mallocz_array(ctb_count, sizeof(*s->deblock));
  84. if (!s->sao || !s->deblock)
  85. goto fail;
  86. s->skip_flag = av_malloc_array(sps->min_cb_height, sps->min_cb_width);
  87. s->tab_ct_depth = av_malloc_array(sps->min_cb_height, sps->min_cb_width);
  88. if (!s->skip_flag || !s->tab_ct_depth)
  89. goto fail;
  90. s->cbf_luma = av_malloc_array(sps->min_tb_width, sps->min_tb_height);
  91. s->tab_ipm = av_mallocz(min_pu_size);
  92. s->is_pcm = av_malloc_array(sps->min_pu_width + 1, sps->min_pu_height + 1);
  93. if (!s->tab_ipm || !s->cbf_luma || !s->is_pcm)
  94. goto fail;
  95. s->filter_slice_edges = av_mallocz(ctb_count);
  96. s->tab_slice_address = av_malloc_array(pic_size_in_ctb,
  97. sizeof(*s->tab_slice_address));
  98. s->qp_y_tab = av_malloc_array(pic_size_in_ctb,
  99. sizeof(*s->qp_y_tab));
  100. if (!s->qp_y_tab || !s->filter_slice_edges || !s->tab_slice_address)
  101. goto fail;
  102. s->horizontal_bs = av_mallocz_array(s->bs_width, s->bs_height);
  103. s->vertical_bs = av_mallocz_array(s->bs_width, s->bs_height);
  104. if (!s->horizontal_bs || !s->vertical_bs)
  105. goto fail;
  106. s->tab_mvf_pool = av_buffer_pool_init(min_pu_size * sizeof(MvField),
  107. av_buffer_allocz);
  108. s->rpl_tab_pool = av_buffer_pool_init(ctb_count * sizeof(RefPicListTab),
  109. av_buffer_allocz);
  110. if (!s->tab_mvf_pool || !s->rpl_tab_pool)
  111. goto fail;
  112. return 0;
  113. fail:
  114. pic_arrays_free(s);
  115. return AVERROR(ENOMEM);
  116. }
  117. static void pred_weight_table(HEVCContext *s, GetBitContext *gb)
  118. {
  119. int i = 0;
  120. int j = 0;
  121. uint8_t luma_weight_l0_flag[16];
  122. uint8_t chroma_weight_l0_flag[16];
  123. uint8_t luma_weight_l1_flag[16];
  124. uint8_t chroma_weight_l1_flag[16];
  125. int luma_log2_weight_denom;
  126. luma_log2_weight_denom = get_ue_golomb_long(gb);
  127. if (luma_log2_weight_denom < 0 || luma_log2_weight_denom > 7)
  128. av_log(s->avctx, AV_LOG_ERROR, "luma_log2_weight_denom %d is invalid\n", luma_log2_weight_denom);
  129. s->sh.luma_log2_weight_denom = av_clip_uintp2(luma_log2_weight_denom, 3);
  130. if (s->ps.sps->chroma_format_idc != 0) {
  131. int delta = get_se_golomb(gb);
  132. s->sh.chroma_log2_weight_denom = av_clip_uintp2(s->sh.luma_log2_weight_denom + delta, 3);
  133. }
  134. for (i = 0; i < s->sh.nb_refs[L0]; i++) {
  135. luma_weight_l0_flag[i] = get_bits1(gb);
  136. if (!luma_weight_l0_flag[i]) {
  137. s->sh.luma_weight_l0[i] = 1 << s->sh.luma_log2_weight_denom;
  138. s->sh.luma_offset_l0[i] = 0;
  139. }
  140. }
  141. if (s->ps.sps->chroma_format_idc != 0) {
  142. for (i = 0; i < s->sh.nb_refs[L0]; i++)
  143. chroma_weight_l0_flag[i] = get_bits1(gb);
  144. } else {
  145. for (i = 0; i < s->sh.nb_refs[L0]; i++)
  146. chroma_weight_l0_flag[i] = 0;
  147. }
  148. for (i = 0; i < s->sh.nb_refs[L0]; i++) {
  149. if (luma_weight_l0_flag[i]) {
  150. int delta_luma_weight_l0 = get_se_golomb(gb);
  151. s->sh.luma_weight_l0[i] = (1 << s->sh.luma_log2_weight_denom) + delta_luma_weight_l0;
  152. s->sh.luma_offset_l0[i] = get_se_golomb(gb);
  153. }
  154. if (chroma_weight_l0_flag[i]) {
  155. for (j = 0; j < 2; j++) {
  156. int delta_chroma_weight_l0 = get_se_golomb(gb);
  157. int delta_chroma_offset_l0 = get_se_golomb(gb);
  158. s->sh.chroma_weight_l0[i][j] = (1 << s->sh.chroma_log2_weight_denom) + delta_chroma_weight_l0;
  159. s->sh.chroma_offset_l0[i][j] = av_clip((delta_chroma_offset_l0 - ((128 * s->sh.chroma_weight_l0[i][j])
  160. >> s->sh.chroma_log2_weight_denom) + 128), -128, 127);
  161. }
  162. } else {
  163. s->sh.chroma_weight_l0[i][0] = 1 << s->sh.chroma_log2_weight_denom;
  164. s->sh.chroma_offset_l0[i][0] = 0;
  165. s->sh.chroma_weight_l0[i][1] = 1 << s->sh.chroma_log2_weight_denom;
  166. s->sh.chroma_offset_l0[i][1] = 0;
  167. }
  168. }
  169. if (s->sh.slice_type == B_SLICE) {
  170. for (i = 0; i < s->sh.nb_refs[L1]; i++) {
  171. luma_weight_l1_flag[i] = get_bits1(gb);
  172. if (!luma_weight_l1_flag[i]) {
  173. s->sh.luma_weight_l1[i] = 1 << s->sh.luma_log2_weight_denom;
  174. s->sh.luma_offset_l1[i] = 0;
  175. }
  176. }
  177. if (s->ps.sps->chroma_format_idc != 0) {
  178. for (i = 0; i < s->sh.nb_refs[L1]; i++)
  179. chroma_weight_l1_flag[i] = get_bits1(gb);
  180. } else {
  181. for (i = 0; i < s->sh.nb_refs[L1]; i++)
  182. chroma_weight_l1_flag[i] = 0;
  183. }
  184. for (i = 0; i < s->sh.nb_refs[L1]; i++) {
  185. if (luma_weight_l1_flag[i]) {
  186. int delta_luma_weight_l1 = get_se_golomb(gb);
  187. s->sh.luma_weight_l1[i] = (1 << s->sh.luma_log2_weight_denom) + delta_luma_weight_l1;
  188. s->sh.luma_offset_l1[i] = get_se_golomb(gb);
  189. }
  190. if (chroma_weight_l1_flag[i]) {
  191. for (j = 0; j < 2; j++) {
  192. int delta_chroma_weight_l1 = get_se_golomb(gb);
  193. int delta_chroma_offset_l1 = get_se_golomb(gb);
  194. s->sh.chroma_weight_l1[i][j] = (1 << s->sh.chroma_log2_weight_denom) + delta_chroma_weight_l1;
  195. s->sh.chroma_offset_l1[i][j] = av_clip((delta_chroma_offset_l1 - ((128 * s->sh.chroma_weight_l1[i][j])
  196. >> s->sh.chroma_log2_weight_denom) + 128), -128, 127);
  197. }
  198. } else {
  199. s->sh.chroma_weight_l1[i][0] = 1 << s->sh.chroma_log2_weight_denom;
  200. s->sh.chroma_offset_l1[i][0] = 0;
  201. s->sh.chroma_weight_l1[i][1] = 1 << s->sh.chroma_log2_weight_denom;
  202. s->sh.chroma_offset_l1[i][1] = 0;
  203. }
  204. }
  205. }
  206. }
  207. static int decode_lt_rps(HEVCContext *s, LongTermRPS *rps, GetBitContext *gb)
  208. {
  209. const HEVCSPS *sps = s->ps.sps;
  210. int max_poc_lsb = 1 << sps->log2_max_poc_lsb;
  211. int prev_delta_msb = 0;
  212. unsigned int nb_sps = 0, nb_sh;
  213. int i;
  214. rps->nb_refs = 0;
  215. if (!sps->long_term_ref_pics_present_flag)
  216. return 0;
  217. if (sps->num_long_term_ref_pics_sps > 0)
  218. nb_sps = get_ue_golomb_long(gb);
  219. nb_sh = get_ue_golomb_long(gb);
  220. if (nb_sps > sps->num_long_term_ref_pics_sps)
  221. return AVERROR_INVALIDDATA;
  222. if (nb_sh + (uint64_t)nb_sps > FF_ARRAY_ELEMS(rps->poc))
  223. return AVERROR_INVALIDDATA;
  224. rps->nb_refs = nb_sh + nb_sps;
  225. for (i = 0; i < rps->nb_refs; i++) {
  226. uint8_t delta_poc_msb_present;
  227. if (i < nb_sps) {
  228. uint8_t lt_idx_sps = 0;
  229. if (sps->num_long_term_ref_pics_sps > 1)
  230. lt_idx_sps = get_bits(gb, av_ceil_log2(sps->num_long_term_ref_pics_sps));
  231. rps->poc[i] = sps->lt_ref_pic_poc_lsb_sps[lt_idx_sps];
  232. rps->used[i] = sps->used_by_curr_pic_lt_sps_flag[lt_idx_sps];
  233. } else {
  234. rps->poc[i] = get_bits(gb, sps->log2_max_poc_lsb);
  235. rps->used[i] = get_bits1(gb);
  236. }
  237. delta_poc_msb_present = get_bits1(gb);
  238. if (delta_poc_msb_present) {
  239. int64_t delta = get_ue_golomb_long(gb);
  240. int64_t poc;
  241. if (i && i != nb_sps)
  242. delta += prev_delta_msb;
  243. poc = rps->poc[i] + s->poc - delta * max_poc_lsb - s->sh.pic_order_cnt_lsb;
  244. if (poc != (int32_t)poc)
  245. return AVERROR_INVALIDDATA;
  246. rps->poc[i] = poc;
  247. prev_delta_msb = delta;
  248. }
  249. }
  250. return 0;
  251. }
  252. static void export_stream_params(AVCodecContext *avctx, const HEVCParamSets *ps,
  253. const HEVCSPS *sps)
  254. {
  255. const HEVCVPS *vps = (const HEVCVPS*)ps->vps_list[sps->vps_id]->data;
  256. unsigned int num = 0, den = 0;
  257. avctx->pix_fmt = sps->pix_fmt;
  258. avctx->coded_width = sps->width;
  259. avctx->coded_height = sps->height;
  260. avctx->width = sps->output_width;
  261. avctx->height = sps->output_height;
  262. avctx->has_b_frames = sps->temporal_layer[sps->max_sub_layers - 1].num_reorder_pics;
  263. avctx->profile = sps->ptl.general_ptl.profile_idc;
  264. avctx->level = sps->ptl.general_ptl.level_idc;
  265. ff_set_sar(avctx, sps->vui.sar);
  266. if (sps->vui.video_signal_type_present_flag)
  267. avctx->color_range = sps->vui.video_full_range_flag ? AVCOL_RANGE_JPEG
  268. : AVCOL_RANGE_MPEG;
  269. else
  270. avctx->color_range = AVCOL_RANGE_MPEG;
  271. if (sps->vui.colour_description_present_flag) {
  272. avctx->color_primaries = sps->vui.colour_primaries;
  273. avctx->color_trc = sps->vui.transfer_characteristic;
  274. avctx->colorspace = sps->vui.matrix_coeffs;
  275. } else {
  276. avctx->color_primaries = AVCOL_PRI_UNSPECIFIED;
  277. avctx->color_trc = AVCOL_TRC_UNSPECIFIED;
  278. avctx->colorspace = AVCOL_SPC_UNSPECIFIED;
  279. }
  280. if (vps->vps_timing_info_present_flag) {
  281. num = vps->vps_num_units_in_tick;
  282. den = vps->vps_time_scale;
  283. } else if (sps->vui.vui_timing_info_present_flag) {
  284. num = sps->vui.vui_num_units_in_tick;
  285. den = sps->vui.vui_time_scale;
  286. }
  287. if (num != 0 && den != 0)
  288. av_reduce(&avctx->framerate.den, &avctx->framerate.num,
  289. num, den, 1 << 30);
  290. }
  291. static int set_sps(HEVCContext *s, const HEVCSPS *sps, enum AVPixelFormat pix_fmt)
  292. {
  293. #define HWACCEL_MAX (CONFIG_HEVC_DXVA2_HWACCEL + CONFIG_HEVC_D3D11VA_HWACCEL + CONFIG_HEVC_VAAPI_HWACCEL + CONFIG_HEVC_VDPAU_HWACCEL)
  294. enum AVPixelFormat pix_fmts[HWACCEL_MAX + 2], *fmt = pix_fmts;
  295. int ret, i;
  296. pic_arrays_free(s);
  297. s->ps.sps = NULL;
  298. s->ps.vps = NULL;
  299. if (!sps)
  300. return 0;
  301. ret = pic_arrays_init(s, sps);
  302. if (ret < 0)
  303. goto fail;
  304. export_stream_params(s->avctx, &s->ps, sps);
  305. if (sps->pix_fmt == AV_PIX_FMT_YUV420P || sps->pix_fmt == AV_PIX_FMT_YUVJ420P) {
  306. #if CONFIG_HEVC_DXVA2_HWACCEL
  307. *fmt++ = AV_PIX_FMT_DXVA2_VLD;
  308. #endif
  309. #if CONFIG_HEVC_D3D11VA_HWACCEL
  310. *fmt++ = AV_PIX_FMT_D3D11VA_VLD;
  311. #endif
  312. #if CONFIG_HEVC_VAAPI_HWACCEL
  313. *fmt++ = AV_PIX_FMT_VAAPI;
  314. #endif
  315. #if CONFIG_HEVC_VDPAU_HWACCEL
  316. *fmt++ = AV_PIX_FMT_VDPAU;
  317. #endif
  318. }
  319. if (pix_fmt == AV_PIX_FMT_NONE) {
  320. *fmt++ = sps->pix_fmt;
  321. *fmt = AV_PIX_FMT_NONE;
  322. ret = ff_thread_get_format(s->avctx, pix_fmts);
  323. if (ret < 0)
  324. goto fail;
  325. s->avctx->pix_fmt = ret;
  326. }
  327. else {
  328. s->avctx->pix_fmt = pix_fmt;
  329. }
  330. ff_hevc_pred_init(&s->hpc, sps->bit_depth);
  331. ff_hevc_dsp_init (&s->hevcdsp, sps->bit_depth);
  332. ff_videodsp_init (&s->vdsp, sps->bit_depth);
  333. for (i = 0; i < 3; i++) {
  334. av_freep(&s->sao_pixel_buffer_h[i]);
  335. av_freep(&s->sao_pixel_buffer_v[i]);
  336. }
  337. if (sps->sao_enabled && !s->avctx->hwaccel) {
  338. int c_count = (sps->chroma_format_idc != 0) ? 3 : 1;
  339. int c_idx;
  340. for(c_idx = 0; c_idx < c_count; c_idx++) {
  341. int w = sps->width >> sps->hshift[c_idx];
  342. int h = sps->height >> sps->vshift[c_idx];
  343. s->sao_pixel_buffer_h[c_idx] =
  344. av_malloc((w * 2 * sps->ctb_height) <<
  345. sps->pixel_shift);
  346. s->sao_pixel_buffer_v[c_idx] =
  347. av_malloc((h * 2 * sps->ctb_width) <<
  348. sps->pixel_shift);
  349. }
  350. }
  351. s->ps.sps = sps;
  352. s->ps.vps = (HEVCVPS*) s->ps.vps_list[s->ps.sps->vps_id]->data;
  353. return 0;
  354. fail:
  355. pic_arrays_free(s);
  356. s->ps.sps = NULL;
  357. return ret;
  358. }
  359. static int hls_slice_header(HEVCContext *s)
  360. {
  361. GetBitContext *gb = &s->HEVClc->gb;
  362. SliceHeader *sh = &s->sh;
  363. int i, ret;
  364. // Coded parameters
  365. sh->first_slice_in_pic_flag = get_bits1(gb);
  366. if ((IS_IDR(s) || IS_BLA(s)) && sh->first_slice_in_pic_flag) {
  367. s->seq_decode = (s->seq_decode + 1) & 0xff;
  368. s->max_ra = INT_MAX;
  369. if (IS_IDR(s))
  370. ff_hevc_clear_refs(s);
  371. }
  372. sh->no_output_of_prior_pics_flag = 0;
  373. if (IS_IRAP(s))
  374. sh->no_output_of_prior_pics_flag = get_bits1(gb);
  375. sh->pps_id = get_ue_golomb_long(gb);
  376. if (sh->pps_id >= MAX_PPS_COUNT || !s->ps.pps_list[sh->pps_id]) {
  377. av_log(s->avctx, AV_LOG_ERROR, "PPS id out of range: %d\n", sh->pps_id);
  378. return AVERROR_INVALIDDATA;
  379. }
  380. if (!sh->first_slice_in_pic_flag &&
  381. s->ps.pps != (HEVCPPS*)s->ps.pps_list[sh->pps_id]->data) {
  382. av_log(s->avctx, AV_LOG_ERROR, "PPS changed between slices.\n");
  383. return AVERROR_INVALIDDATA;
  384. }
  385. s->ps.pps = (HEVCPPS*)s->ps.pps_list[sh->pps_id]->data;
  386. if (s->nal_unit_type == NAL_CRA_NUT && s->last_eos == 1)
  387. sh->no_output_of_prior_pics_flag = 1;
  388. if (s->ps.sps != (HEVCSPS*)s->ps.sps_list[s->ps.pps->sps_id]->data) {
  389. const HEVCSPS* last_sps = s->ps.sps;
  390. s->ps.sps = (HEVCSPS*)s->ps.sps_list[s->ps.pps->sps_id]->data;
  391. if (last_sps && IS_IRAP(s) && s->nal_unit_type != NAL_CRA_NUT) {
  392. if (s->ps.sps->width != last_sps->width || s->ps.sps->height != last_sps->height ||
  393. s->ps.sps->temporal_layer[s->ps.sps->max_sub_layers - 1].max_dec_pic_buffering !=
  394. last_sps->temporal_layer[last_sps->max_sub_layers - 1].max_dec_pic_buffering)
  395. sh->no_output_of_prior_pics_flag = 0;
  396. }
  397. ff_hevc_clear_refs(s);
  398. ret = set_sps(s, s->ps.sps, AV_PIX_FMT_NONE);
  399. if (ret < 0)
  400. return ret;
  401. s->seq_decode = (s->seq_decode + 1) & 0xff;
  402. s->max_ra = INT_MAX;
  403. }
  404. sh->dependent_slice_segment_flag = 0;
  405. if (!sh->first_slice_in_pic_flag) {
  406. int slice_address_length;
  407. if (s->ps.pps->dependent_slice_segments_enabled_flag)
  408. sh->dependent_slice_segment_flag = get_bits1(gb);
  409. slice_address_length = av_ceil_log2(s->ps.sps->ctb_width *
  410. s->ps.sps->ctb_height);
  411. sh->slice_segment_addr = get_bitsz(gb, slice_address_length);
  412. if (sh->slice_segment_addr >= s->ps.sps->ctb_width * s->ps.sps->ctb_height) {
  413. av_log(s->avctx, AV_LOG_ERROR,
  414. "Invalid slice segment address: %u.\n",
  415. sh->slice_segment_addr);
  416. return AVERROR_INVALIDDATA;
  417. }
  418. if (!sh->dependent_slice_segment_flag) {
  419. sh->slice_addr = sh->slice_segment_addr;
  420. s->slice_idx++;
  421. }
  422. } else {
  423. sh->slice_segment_addr = sh->slice_addr = 0;
  424. s->slice_idx = 0;
  425. s->slice_initialized = 0;
  426. }
  427. if (!sh->dependent_slice_segment_flag) {
  428. s->slice_initialized = 0;
  429. for (i = 0; i < s->ps.pps->num_extra_slice_header_bits; i++)
  430. skip_bits(gb, 1); // slice_reserved_undetermined_flag[]
  431. sh->slice_type = get_ue_golomb_long(gb);
  432. if (!(sh->slice_type == I_SLICE ||
  433. sh->slice_type == P_SLICE ||
  434. sh->slice_type == B_SLICE)) {
  435. av_log(s->avctx, AV_LOG_ERROR, "Unknown slice type: %d.\n",
  436. sh->slice_type);
  437. return AVERROR_INVALIDDATA;
  438. }
  439. if (IS_IRAP(s) && sh->slice_type != I_SLICE) {
  440. av_log(s->avctx, AV_LOG_ERROR, "Inter slices in an IRAP frame.\n");
  441. return AVERROR_INVALIDDATA;
  442. }
  443. // when flag is not present, picture is inferred to be output
  444. sh->pic_output_flag = 1;
  445. if (s->ps.pps->output_flag_present_flag)
  446. sh->pic_output_flag = get_bits1(gb);
  447. if (s->ps.sps->separate_colour_plane_flag)
  448. sh->colour_plane_id = get_bits(gb, 2);
  449. if (!IS_IDR(s)) {
  450. int poc, pos;
  451. sh->pic_order_cnt_lsb = get_bits(gb, s->ps.sps->log2_max_poc_lsb);
  452. poc = ff_hevc_compute_poc(s, sh->pic_order_cnt_lsb);
  453. if (!sh->first_slice_in_pic_flag && poc != s->poc) {
  454. av_log(s->avctx, AV_LOG_WARNING,
  455. "Ignoring POC change between slices: %d -> %d\n", s->poc, poc);
  456. if (s->avctx->err_recognition & AV_EF_EXPLODE)
  457. return AVERROR_INVALIDDATA;
  458. poc = s->poc;
  459. }
  460. s->poc = poc;
  461. sh->short_term_ref_pic_set_sps_flag = get_bits1(gb);
  462. pos = get_bits_left(gb);
  463. if (!sh->short_term_ref_pic_set_sps_flag) {
  464. ret = ff_hevc_decode_short_term_rps(gb, s->avctx, &sh->slice_rps, s->ps.sps, 1);
  465. if (ret < 0)
  466. return ret;
  467. sh->short_term_rps = &sh->slice_rps;
  468. } else {
  469. int numbits, rps_idx;
  470. if (!s->ps.sps->nb_st_rps) {
  471. av_log(s->avctx, AV_LOG_ERROR, "No ref lists in the SPS.\n");
  472. return AVERROR_INVALIDDATA;
  473. }
  474. numbits = av_ceil_log2(s->ps.sps->nb_st_rps);
  475. rps_idx = numbits > 0 ? get_bits(gb, numbits) : 0;
  476. sh->short_term_rps = &s->ps.sps->st_rps[rps_idx];
  477. }
  478. sh->short_term_ref_pic_set_size = pos - get_bits_left(gb);
  479. pos = get_bits_left(gb);
  480. ret = decode_lt_rps(s, &sh->long_term_rps, gb);
  481. if (ret < 0) {
  482. av_log(s->avctx, AV_LOG_WARNING, "Invalid long term RPS.\n");
  483. if (s->avctx->err_recognition & AV_EF_EXPLODE)
  484. return AVERROR_INVALIDDATA;
  485. }
  486. sh->long_term_ref_pic_set_size = pos - get_bits_left(gb);
  487. if (s->ps.sps->sps_temporal_mvp_enabled_flag)
  488. sh->slice_temporal_mvp_enabled_flag = get_bits1(gb);
  489. else
  490. sh->slice_temporal_mvp_enabled_flag = 0;
  491. } else {
  492. s->sh.short_term_rps = NULL;
  493. s->poc = 0;
  494. }
  495. /* 8.3.1 */
  496. if (s->temporal_id == 0 &&
  497. s->nal_unit_type != NAL_TRAIL_N &&
  498. s->nal_unit_type != NAL_TSA_N &&
  499. s->nal_unit_type != NAL_STSA_N &&
  500. s->nal_unit_type != NAL_RADL_N &&
  501. s->nal_unit_type != NAL_RADL_R &&
  502. s->nal_unit_type != NAL_RASL_N &&
  503. s->nal_unit_type != NAL_RASL_R)
  504. s->pocTid0 = s->poc;
  505. if (s->ps.sps->sao_enabled) {
  506. sh->slice_sample_adaptive_offset_flag[0] = get_bits1(gb);
  507. if (s->ps.sps->chroma_format_idc) {
  508. sh->slice_sample_adaptive_offset_flag[1] =
  509. sh->slice_sample_adaptive_offset_flag[2] = get_bits1(gb);
  510. }
  511. } else {
  512. sh->slice_sample_adaptive_offset_flag[0] = 0;
  513. sh->slice_sample_adaptive_offset_flag[1] = 0;
  514. sh->slice_sample_adaptive_offset_flag[2] = 0;
  515. }
  516. sh->nb_refs[L0] = sh->nb_refs[L1] = 0;
  517. if (sh->slice_type == P_SLICE || sh->slice_type == B_SLICE) {
  518. int nb_refs;
  519. sh->nb_refs[L0] = s->ps.pps->num_ref_idx_l0_default_active;
  520. if (sh->slice_type == B_SLICE)
  521. sh->nb_refs[L1] = s->ps.pps->num_ref_idx_l1_default_active;
  522. if (get_bits1(gb)) { // num_ref_idx_active_override_flag
  523. sh->nb_refs[L0] = get_ue_golomb_long(gb) + 1;
  524. if (sh->slice_type == B_SLICE)
  525. sh->nb_refs[L1] = get_ue_golomb_long(gb) + 1;
  526. }
  527. if (sh->nb_refs[L0] > MAX_REFS || sh->nb_refs[L1] > MAX_REFS) {
  528. av_log(s->avctx, AV_LOG_ERROR, "Too many refs: %d/%d.\n",
  529. sh->nb_refs[L0], sh->nb_refs[L1]);
  530. return AVERROR_INVALIDDATA;
  531. }
  532. sh->rpl_modification_flag[0] = 0;
  533. sh->rpl_modification_flag[1] = 0;
  534. nb_refs = ff_hevc_frame_nb_refs(s);
  535. if (!nb_refs) {
  536. av_log(s->avctx, AV_LOG_ERROR, "Zero refs for a frame with P or B slices.\n");
  537. return AVERROR_INVALIDDATA;
  538. }
  539. if (s->ps.pps->lists_modification_present_flag && nb_refs > 1) {
  540. sh->rpl_modification_flag[0] = get_bits1(gb);
  541. if (sh->rpl_modification_flag[0]) {
  542. for (i = 0; i < sh->nb_refs[L0]; i++)
  543. sh->list_entry_lx[0][i] = get_bits(gb, av_ceil_log2(nb_refs));
  544. }
  545. if (sh->slice_type == B_SLICE) {
  546. sh->rpl_modification_flag[1] = get_bits1(gb);
  547. if (sh->rpl_modification_flag[1] == 1)
  548. for (i = 0; i < sh->nb_refs[L1]; i++)
  549. sh->list_entry_lx[1][i] = get_bits(gb, av_ceil_log2(nb_refs));
  550. }
  551. }
  552. if (sh->slice_type == B_SLICE)
  553. sh->mvd_l1_zero_flag = get_bits1(gb);
  554. if (s->ps.pps->cabac_init_present_flag)
  555. sh->cabac_init_flag = get_bits1(gb);
  556. else
  557. sh->cabac_init_flag = 0;
  558. sh->collocated_ref_idx = 0;
  559. if (sh->slice_temporal_mvp_enabled_flag) {
  560. sh->collocated_list = L0;
  561. if (sh->slice_type == B_SLICE)
  562. sh->collocated_list = !get_bits1(gb);
  563. if (sh->nb_refs[sh->collocated_list] > 1) {
  564. sh->collocated_ref_idx = get_ue_golomb_long(gb);
  565. if (sh->collocated_ref_idx >= sh->nb_refs[sh->collocated_list]) {
  566. av_log(s->avctx, AV_LOG_ERROR,
  567. "Invalid collocated_ref_idx: %d.\n",
  568. sh->collocated_ref_idx);
  569. return AVERROR_INVALIDDATA;
  570. }
  571. }
  572. }
  573. if ((s->ps.pps->weighted_pred_flag && sh->slice_type == P_SLICE) ||
  574. (s->ps.pps->weighted_bipred_flag && sh->slice_type == B_SLICE)) {
  575. pred_weight_table(s, gb);
  576. }
  577. sh->max_num_merge_cand = 5 - get_ue_golomb_long(gb);
  578. if (sh->max_num_merge_cand < 1 || sh->max_num_merge_cand > 5) {
  579. av_log(s->avctx, AV_LOG_ERROR,
  580. "Invalid number of merging MVP candidates: %d.\n",
  581. sh->max_num_merge_cand);
  582. return AVERROR_INVALIDDATA;
  583. }
  584. }
  585. sh->slice_qp_delta = get_se_golomb(gb);
  586. if (s->ps.pps->pic_slice_level_chroma_qp_offsets_present_flag) {
  587. sh->slice_cb_qp_offset = get_se_golomb(gb);
  588. sh->slice_cr_qp_offset = get_se_golomb(gb);
  589. } else {
  590. sh->slice_cb_qp_offset = 0;
  591. sh->slice_cr_qp_offset = 0;
  592. }
  593. if (s->ps.pps->chroma_qp_offset_list_enabled_flag)
  594. sh->cu_chroma_qp_offset_enabled_flag = get_bits1(gb);
  595. else
  596. sh->cu_chroma_qp_offset_enabled_flag = 0;
  597. if (s->ps.pps->deblocking_filter_control_present_flag) {
  598. int deblocking_filter_override_flag = 0;
  599. if (s->ps.pps->deblocking_filter_override_enabled_flag)
  600. deblocking_filter_override_flag = get_bits1(gb);
  601. if (deblocking_filter_override_flag) {
  602. sh->disable_deblocking_filter_flag = get_bits1(gb);
  603. if (!sh->disable_deblocking_filter_flag) {
  604. sh->beta_offset = get_se_golomb(gb) * 2;
  605. sh->tc_offset = get_se_golomb(gb) * 2;
  606. }
  607. } else {
  608. sh->disable_deblocking_filter_flag = s->ps.pps->disable_dbf;
  609. sh->beta_offset = s->ps.pps->beta_offset;
  610. sh->tc_offset = s->ps.pps->tc_offset;
  611. }
  612. } else {
  613. sh->disable_deblocking_filter_flag = 0;
  614. sh->beta_offset = 0;
  615. sh->tc_offset = 0;
  616. }
  617. if (s->ps.pps->seq_loop_filter_across_slices_enabled_flag &&
  618. (sh->slice_sample_adaptive_offset_flag[0] ||
  619. sh->slice_sample_adaptive_offset_flag[1] ||
  620. !sh->disable_deblocking_filter_flag)) {
  621. sh->slice_loop_filter_across_slices_enabled_flag = get_bits1(gb);
  622. } else {
  623. sh->slice_loop_filter_across_slices_enabled_flag = s->ps.pps->seq_loop_filter_across_slices_enabled_flag;
  624. }
  625. } else if (!s->slice_initialized) {
  626. av_log(s->avctx, AV_LOG_ERROR, "Independent slice segment missing.\n");
  627. return AVERROR_INVALIDDATA;
  628. }
  629. sh->num_entry_point_offsets = 0;
  630. if (s->ps.pps->tiles_enabled_flag || s->ps.pps->entropy_coding_sync_enabled_flag) {
  631. unsigned num_entry_point_offsets = get_ue_golomb_long(gb);
  632. // It would be possible to bound this tighter but this here is simpler
  633. if (num_entry_point_offsets > get_bits_left(gb)) {
  634. av_log(s->avctx, AV_LOG_ERROR, "num_entry_point_offsets %d is invalid\n", num_entry_point_offsets);
  635. return AVERROR_INVALIDDATA;
  636. }
  637. sh->num_entry_point_offsets = num_entry_point_offsets;
  638. if (sh->num_entry_point_offsets > 0) {
  639. int offset_len = get_ue_golomb_long(gb) + 1;
  640. if (offset_len < 1 || offset_len > 32) {
  641. sh->num_entry_point_offsets = 0;
  642. av_log(s->avctx, AV_LOG_ERROR, "offset_len %d is invalid\n", offset_len);
  643. return AVERROR_INVALIDDATA;
  644. }
  645. av_freep(&sh->entry_point_offset);
  646. av_freep(&sh->offset);
  647. av_freep(&sh->size);
  648. sh->entry_point_offset = av_malloc_array(sh->num_entry_point_offsets, sizeof(unsigned));
  649. sh->offset = av_malloc_array(sh->num_entry_point_offsets, sizeof(int));
  650. sh->size = av_malloc_array(sh->num_entry_point_offsets, sizeof(int));
  651. if (!sh->entry_point_offset || !sh->offset || !sh->size) {
  652. sh->num_entry_point_offsets = 0;
  653. av_log(s->avctx, AV_LOG_ERROR, "Failed to allocate memory\n");
  654. return AVERROR(ENOMEM);
  655. }
  656. for (i = 0; i < sh->num_entry_point_offsets; i++) {
  657. unsigned val = get_bits_long(gb, offset_len);
  658. sh->entry_point_offset[i] = val + 1; // +1; // +1 to get the size
  659. }
  660. if (s->threads_number > 1 && (s->ps.pps->num_tile_rows > 1 || s->ps.pps->num_tile_columns > 1)) {
  661. s->enable_parallel_tiles = 0; // TODO: you can enable tiles in parallel here
  662. s->threads_number = 1;
  663. } else
  664. s->enable_parallel_tiles = 0;
  665. } else
  666. s->enable_parallel_tiles = 0;
  667. }
  668. if (s->ps.pps->slice_header_extension_present_flag) {
  669. unsigned int length = get_ue_golomb_long(gb);
  670. if (length*8LL > get_bits_left(gb)) {
  671. av_log(s->avctx, AV_LOG_ERROR, "too many slice_header_extension_data_bytes\n");
  672. return AVERROR_INVALIDDATA;
  673. }
  674. for (i = 0; i < length; i++)
  675. skip_bits(gb, 8); // slice_header_extension_data_byte
  676. }
  677. // Inferred parameters
  678. sh->slice_qp = 26U + s->ps.pps->pic_init_qp_minus26 + sh->slice_qp_delta;
  679. if (sh->slice_qp > 51 ||
  680. sh->slice_qp < -s->ps.sps->qp_bd_offset) {
  681. av_log(s->avctx, AV_LOG_ERROR,
  682. "The slice_qp %d is outside the valid range "
  683. "[%d, 51].\n",
  684. sh->slice_qp,
  685. -s->ps.sps->qp_bd_offset);
  686. return AVERROR_INVALIDDATA;
  687. }
  688. sh->slice_ctb_addr_rs = sh->slice_segment_addr;
  689. if (!s->sh.slice_ctb_addr_rs && s->sh.dependent_slice_segment_flag) {
  690. av_log(s->avctx, AV_LOG_ERROR, "Impossible slice segment.\n");
  691. return AVERROR_INVALIDDATA;
  692. }
  693. if (get_bits_left(gb) < 0) {
  694. av_log(s->avctx, AV_LOG_ERROR,
  695. "Overread slice header by %d bits\n", -get_bits_left(gb));
  696. return AVERROR_INVALIDDATA;
  697. }
  698. s->HEVClc->first_qp_group = !s->sh.dependent_slice_segment_flag;
  699. if (!s->ps.pps->cu_qp_delta_enabled_flag)
  700. s->HEVClc->qp_y = s->sh.slice_qp;
  701. s->slice_initialized = 1;
  702. s->HEVClc->tu.cu_qp_offset_cb = 0;
  703. s->HEVClc->tu.cu_qp_offset_cr = 0;
  704. s->no_rasl_output_flag = IS_IDR(s) || IS_BLA(s) || (s->nal_unit_type == NAL_CRA_NUT && s->last_eos);
  705. return 0;
  706. }
  707. #define CTB(tab, x, y) ((tab)[(y) * s->ps.sps->ctb_width + (x)])
  708. #define SET_SAO(elem, value) \
  709. do { \
  710. if (!sao_merge_up_flag && !sao_merge_left_flag) \
  711. sao->elem = value; \
  712. else if (sao_merge_left_flag) \
  713. sao->elem = CTB(s->sao, rx-1, ry).elem; \
  714. else if (sao_merge_up_flag) \
  715. sao->elem = CTB(s->sao, rx, ry-1).elem; \
  716. else \
  717. sao->elem = 0; \
  718. } while (0)
  719. static void hls_sao_param(HEVCContext *s, int rx, int ry)
  720. {
  721. HEVCLocalContext *lc = s->HEVClc;
  722. int sao_merge_left_flag = 0;
  723. int sao_merge_up_flag = 0;
  724. SAOParams *sao = &CTB(s->sao, rx, ry);
  725. int c_idx, i;
  726. if (s->sh.slice_sample_adaptive_offset_flag[0] ||
  727. s->sh.slice_sample_adaptive_offset_flag[1]) {
  728. if (rx > 0) {
  729. if (lc->ctb_left_flag)
  730. sao_merge_left_flag = ff_hevc_sao_merge_flag_decode(s);
  731. }
  732. if (ry > 0 && !sao_merge_left_flag) {
  733. if (lc->ctb_up_flag)
  734. sao_merge_up_flag = ff_hevc_sao_merge_flag_decode(s);
  735. }
  736. }
  737. for (c_idx = 0; c_idx < (s->ps.sps->chroma_format_idc ? 3 : 1); c_idx++) {
  738. int log2_sao_offset_scale = c_idx == 0 ? s->ps.pps->log2_sao_offset_scale_luma :
  739. s->ps.pps->log2_sao_offset_scale_chroma;
  740. if (!s->sh.slice_sample_adaptive_offset_flag[c_idx]) {
  741. sao->type_idx[c_idx] = SAO_NOT_APPLIED;
  742. continue;
  743. }
  744. if (c_idx == 2) {
  745. sao->type_idx[2] = sao->type_idx[1];
  746. sao->eo_class[2] = sao->eo_class[1];
  747. } else {
  748. SET_SAO(type_idx[c_idx], ff_hevc_sao_type_idx_decode(s));
  749. }
  750. if (sao->type_idx[c_idx] == SAO_NOT_APPLIED)
  751. continue;
  752. for (i = 0; i < 4; i++)
  753. SET_SAO(offset_abs[c_idx][i], ff_hevc_sao_offset_abs_decode(s));
  754. if (sao->type_idx[c_idx] == SAO_BAND) {
  755. for (i = 0; i < 4; i++) {
  756. if (sao->offset_abs[c_idx][i]) {
  757. SET_SAO(offset_sign[c_idx][i],
  758. ff_hevc_sao_offset_sign_decode(s));
  759. } else {
  760. sao->offset_sign[c_idx][i] = 0;
  761. }
  762. }
  763. SET_SAO(band_position[c_idx], ff_hevc_sao_band_position_decode(s));
  764. } else if (c_idx != 2) {
  765. SET_SAO(eo_class[c_idx], ff_hevc_sao_eo_class_decode(s));
  766. }
  767. // Inferred parameters
  768. sao->offset_val[c_idx][0] = 0;
  769. for (i = 0; i < 4; i++) {
  770. sao->offset_val[c_idx][i + 1] = sao->offset_abs[c_idx][i];
  771. if (sao->type_idx[c_idx] == SAO_EDGE) {
  772. if (i > 1)
  773. sao->offset_val[c_idx][i + 1] = -sao->offset_val[c_idx][i + 1];
  774. } else if (sao->offset_sign[c_idx][i]) {
  775. sao->offset_val[c_idx][i + 1] = -sao->offset_val[c_idx][i + 1];
  776. }
  777. sao->offset_val[c_idx][i + 1] *= 1 << log2_sao_offset_scale;
  778. }
  779. }
  780. }
  781. #undef SET_SAO
  782. #undef CTB
  783. static int hls_cross_component_pred(HEVCContext *s, int idx) {
  784. HEVCLocalContext *lc = s->HEVClc;
  785. int log2_res_scale_abs_plus1 = ff_hevc_log2_res_scale_abs(s, idx);
  786. if (log2_res_scale_abs_plus1 != 0) {
  787. int res_scale_sign_flag = ff_hevc_res_scale_sign_flag(s, idx);
  788. lc->tu.res_scale_val = (1 << (log2_res_scale_abs_plus1 - 1)) *
  789. (1 - 2 * res_scale_sign_flag);
  790. } else {
  791. lc->tu.res_scale_val = 0;
  792. }
  793. return 0;
  794. }
  795. static int hls_transform_unit(HEVCContext *s, int x0, int y0,
  796. int xBase, int yBase, int cb_xBase, int cb_yBase,
  797. int log2_cb_size, int log2_trafo_size,
  798. int blk_idx, int cbf_luma, int *cbf_cb, int *cbf_cr)
  799. {
  800. HEVCLocalContext *lc = s->HEVClc;
  801. const int log2_trafo_size_c = log2_trafo_size - s->ps.sps->hshift[1];
  802. int i;
  803. if (lc->cu.pred_mode == MODE_INTRA) {
  804. int trafo_size = 1 << log2_trafo_size;
  805. ff_hevc_set_neighbour_available(s, x0, y0, trafo_size, trafo_size);
  806. s->hpc.intra_pred[log2_trafo_size - 2](s, x0, y0, 0);
  807. }
  808. if (cbf_luma || cbf_cb[0] || cbf_cr[0] ||
  809. (s->ps.sps->chroma_format_idc == 2 && (cbf_cb[1] || cbf_cr[1]))) {
  810. int scan_idx = SCAN_DIAG;
  811. int scan_idx_c = SCAN_DIAG;
  812. int cbf_chroma = cbf_cb[0] || cbf_cr[0] ||
  813. (s->ps.sps->chroma_format_idc == 2 &&
  814. (cbf_cb[1] || cbf_cr[1]));
  815. if (s->ps.pps->cu_qp_delta_enabled_flag && !lc->tu.is_cu_qp_delta_coded) {
  816. lc->tu.cu_qp_delta = ff_hevc_cu_qp_delta_abs(s);
  817. if (lc->tu.cu_qp_delta != 0)
  818. if (ff_hevc_cu_qp_delta_sign_flag(s) == 1)
  819. lc->tu.cu_qp_delta = -lc->tu.cu_qp_delta;
  820. lc->tu.is_cu_qp_delta_coded = 1;
  821. if (lc->tu.cu_qp_delta < -(26 + s->ps.sps->qp_bd_offset / 2) ||
  822. lc->tu.cu_qp_delta > (25 + s->ps.sps->qp_bd_offset / 2)) {
  823. av_log(s->avctx, AV_LOG_ERROR,
  824. "The cu_qp_delta %d is outside the valid range "
  825. "[%d, %d].\n",
  826. lc->tu.cu_qp_delta,
  827. -(26 + s->ps.sps->qp_bd_offset / 2),
  828. (25 + s->ps.sps->qp_bd_offset / 2));
  829. return AVERROR_INVALIDDATA;
  830. }
  831. ff_hevc_set_qPy(s, cb_xBase, cb_yBase, log2_cb_size);
  832. }
  833. if (s->sh.cu_chroma_qp_offset_enabled_flag && cbf_chroma &&
  834. !lc->cu.cu_transquant_bypass_flag && !lc->tu.is_cu_chroma_qp_offset_coded) {
  835. int cu_chroma_qp_offset_flag = ff_hevc_cu_chroma_qp_offset_flag(s);
  836. if (cu_chroma_qp_offset_flag) {
  837. int cu_chroma_qp_offset_idx = 0;
  838. if (s->ps.pps->chroma_qp_offset_list_len_minus1 > 0) {
  839. cu_chroma_qp_offset_idx = ff_hevc_cu_chroma_qp_offset_idx(s);
  840. av_log(s->avctx, AV_LOG_ERROR,
  841. "cu_chroma_qp_offset_idx not yet tested.\n");
  842. }
  843. lc->tu.cu_qp_offset_cb = s->ps.pps->cb_qp_offset_list[cu_chroma_qp_offset_idx];
  844. lc->tu.cu_qp_offset_cr = s->ps.pps->cr_qp_offset_list[cu_chroma_qp_offset_idx];
  845. } else {
  846. lc->tu.cu_qp_offset_cb = 0;
  847. lc->tu.cu_qp_offset_cr = 0;
  848. }
  849. lc->tu.is_cu_chroma_qp_offset_coded = 1;
  850. }
  851. if (lc->cu.pred_mode == MODE_INTRA && log2_trafo_size < 4) {
  852. if (lc->tu.intra_pred_mode >= 6 &&
  853. lc->tu.intra_pred_mode <= 14) {
  854. scan_idx = SCAN_VERT;
  855. } else if (lc->tu.intra_pred_mode >= 22 &&
  856. lc->tu.intra_pred_mode <= 30) {
  857. scan_idx = SCAN_HORIZ;
  858. }
  859. if (lc->tu.intra_pred_mode_c >= 6 &&
  860. lc->tu.intra_pred_mode_c <= 14) {
  861. scan_idx_c = SCAN_VERT;
  862. } else if (lc->tu.intra_pred_mode_c >= 22 &&
  863. lc->tu.intra_pred_mode_c <= 30) {
  864. scan_idx_c = SCAN_HORIZ;
  865. }
  866. }
  867. lc->tu.cross_pf = 0;
  868. if (cbf_luma)
  869. ff_hevc_hls_residual_coding(s, x0, y0, log2_trafo_size, scan_idx, 0);
  870. if (s->ps.sps->chroma_format_idc && (log2_trafo_size > 2 || s->ps.sps->chroma_format_idc == 3)) {
  871. int trafo_size_h = 1 << (log2_trafo_size_c + s->ps.sps->hshift[1]);
  872. int trafo_size_v = 1 << (log2_trafo_size_c + s->ps.sps->vshift[1]);
  873. lc->tu.cross_pf = (s->ps.pps->cross_component_prediction_enabled_flag && cbf_luma &&
  874. (lc->cu.pred_mode == MODE_INTER ||
  875. (lc->tu.chroma_mode_c == 4)));
  876. if (lc->tu.cross_pf) {
  877. hls_cross_component_pred(s, 0);
  878. }
  879. for (i = 0; i < (s->ps.sps->chroma_format_idc == 2 ? 2 : 1); i++) {
  880. if (lc->cu.pred_mode == MODE_INTRA) {
  881. ff_hevc_set_neighbour_available(s, x0, y0 + (i << log2_trafo_size_c), trafo_size_h, trafo_size_v);
  882. s->hpc.intra_pred[log2_trafo_size_c - 2](s, x0, y0 + (i << log2_trafo_size_c), 1);
  883. }
  884. if (cbf_cb[i])
  885. ff_hevc_hls_residual_coding(s, x0, y0 + (i << log2_trafo_size_c),
  886. log2_trafo_size_c, scan_idx_c, 1);
  887. else
  888. if (lc->tu.cross_pf) {
  889. ptrdiff_t stride = s->frame->linesize[1];
  890. int hshift = s->ps.sps->hshift[1];
  891. int vshift = s->ps.sps->vshift[1];
  892. int16_t *coeffs_y = (int16_t*)lc->edge_emu_buffer;
  893. int16_t *coeffs = (int16_t*)lc->edge_emu_buffer2;
  894. int size = 1 << log2_trafo_size_c;
  895. uint8_t *dst = &s->frame->data[1][(y0 >> vshift) * stride +
  896. ((x0 >> hshift) << s->ps.sps->pixel_shift)];
  897. for (i = 0; i < (size * size); i++) {
  898. coeffs[i] = ((lc->tu.res_scale_val * coeffs_y[i]) >> 3);
  899. }
  900. s->hevcdsp.transform_add[log2_trafo_size_c-2](dst, coeffs, stride);
  901. }
  902. }
  903. if (lc->tu.cross_pf) {
  904. hls_cross_component_pred(s, 1);
  905. }
  906. for (i = 0; i < (s->ps.sps->chroma_format_idc == 2 ? 2 : 1); i++) {
  907. if (lc->cu.pred_mode == MODE_INTRA) {
  908. ff_hevc_set_neighbour_available(s, x0, y0 + (i << log2_trafo_size_c), trafo_size_h, trafo_size_v);
  909. s->hpc.intra_pred[log2_trafo_size_c - 2](s, x0, y0 + (i << log2_trafo_size_c), 2);
  910. }
  911. if (cbf_cr[i])
  912. ff_hevc_hls_residual_coding(s, x0, y0 + (i << log2_trafo_size_c),
  913. log2_trafo_size_c, scan_idx_c, 2);
  914. else
  915. if (lc->tu.cross_pf) {
  916. ptrdiff_t stride = s->frame->linesize[2];
  917. int hshift = s->ps.sps->hshift[2];
  918. int vshift = s->ps.sps->vshift[2];
  919. int16_t *coeffs_y = (int16_t*)lc->edge_emu_buffer;
  920. int16_t *coeffs = (int16_t*)lc->edge_emu_buffer2;
  921. int size = 1 << log2_trafo_size_c;
  922. uint8_t *dst = &s->frame->data[2][(y0 >> vshift) * stride +
  923. ((x0 >> hshift) << s->ps.sps->pixel_shift)];
  924. for (i = 0; i < (size * size); i++) {
  925. coeffs[i] = ((lc->tu.res_scale_val * coeffs_y[i]) >> 3);
  926. }
  927. s->hevcdsp.transform_add[log2_trafo_size_c-2](dst, coeffs, stride);
  928. }
  929. }
  930. } else if (s->ps.sps->chroma_format_idc && blk_idx == 3) {
  931. int trafo_size_h = 1 << (log2_trafo_size + 1);
  932. int trafo_size_v = 1 << (log2_trafo_size + s->ps.sps->vshift[1]);
  933. for (i = 0; i < (s->ps.sps->chroma_format_idc == 2 ? 2 : 1); i++) {
  934. if (lc->cu.pred_mode == MODE_INTRA) {
  935. ff_hevc_set_neighbour_available(s, xBase, yBase + (i << log2_trafo_size),
  936. trafo_size_h, trafo_size_v);
  937. s->hpc.intra_pred[log2_trafo_size - 2](s, xBase, yBase + (i << log2_trafo_size), 1);
  938. }
  939. if (cbf_cb[i])
  940. ff_hevc_hls_residual_coding(s, xBase, yBase + (i << log2_trafo_size),
  941. log2_trafo_size, scan_idx_c, 1);
  942. }
  943. for (i = 0; i < (s->ps.sps->chroma_format_idc == 2 ? 2 : 1); i++) {
  944. if (lc->cu.pred_mode == MODE_INTRA) {
  945. ff_hevc_set_neighbour_available(s, xBase, yBase + (i << log2_trafo_size),
  946. trafo_size_h, trafo_size_v);
  947. s->hpc.intra_pred[log2_trafo_size - 2](s, xBase, yBase + (i << log2_trafo_size), 2);
  948. }
  949. if (cbf_cr[i])
  950. ff_hevc_hls_residual_coding(s, xBase, yBase + (i << log2_trafo_size),
  951. log2_trafo_size, scan_idx_c, 2);
  952. }
  953. }
  954. } else if (s->ps.sps->chroma_format_idc && lc->cu.pred_mode == MODE_INTRA) {
  955. if (log2_trafo_size > 2 || s->ps.sps->chroma_format_idc == 3) {
  956. int trafo_size_h = 1 << (log2_trafo_size_c + s->ps.sps->hshift[1]);
  957. int trafo_size_v = 1 << (log2_trafo_size_c + s->ps.sps->vshift[1]);
  958. ff_hevc_set_neighbour_available(s, x0, y0, trafo_size_h, trafo_size_v);
  959. s->hpc.intra_pred[log2_trafo_size_c - 2](s, x0, y0, 1);
  960. s->hpc.intra_pred[log2_trafo_size_c - 2](s, x0, y0, 2);
  961. if (s->ps.sps->chroma_format_idc == 2) {
  962. ff_hevc_set_neighbour_available(s, x0, y0 + (1 << log2_trafo_size_c),
  963. trafo_size_h, trafo_size_v);
  964. s->hpc.intra_pred[log2_trafo_size_c - 2](s, x0, y0 + (1 << log2_trafo_size_c), 1);
  965. s->hpc.intra_pred[log2_trafo_size_c - 2](s, x0, y0 + (1 << log2_trafo_size_c), 2);
  966. }
  967. } else if (blk_idx == 3) {
  968. int trafo_size_h = 1 << (log2_trafo_size + 1);
  969. int trafo_size_v = 1 << (log2_trafo_size + s->ps.sps->vshift[1]);
  970. ff_hevc_set_neighbour_available(s, xBase, yBase,
  971. trafo_size_h, trafo_size_v);
  972. s->hpc.intra_pred[log2_trafo_size - 2](s, xBase, yBase, 1);
  973. s->hpc.intra_pred[log2_trafo_size - 2](s, xBase, yBase, 2);
  974. if (s->ps.sps->chroma_format_idc == 2) {
  975. ff_hevc_set_neighbour_available(s, xBase, yBase + (1 << (log2_trafo_size)),
  976. trafo_size_h, trafo_size_v);
  977. s->hpc.intra_pred[log2_trafo_size - 2](s, xBase, yBase + (1 << (log2_trafo_size)), 1);
  978. s->hpc.intra_pred[log2_trafo_size - 2](s, xBase, yBase + (1 << (log2_trafo_size)), 2);
  979. }
  980. }
  981. }
  982. return 0;
  983. }
  984. static void set_deblocking_bypass(HEVCContext *s, int x0, int y0, int log2_cb_size)
  985. {
  986. int cb_size = 1 << log2_cb_size;
  987. int log2_min_pu_size = s->ps.sps->log2_min_pu_size;
  988. int min_pu_width = s->ps.sps->min_pu_width;
  989. int x_end = FFMIN(x0 + cb_size, s->ps.sps->width);
  990. int y_end = FFMIN(y0 + cb_size, s->ps.sps->height);
  991. int i, j;
  992. for (j = (y0 >> log2_min_pu_size); j < (y_end >> log2_min_pu_size); j++)
  993. for (i = (x0 >> log2_min_pu_size); i < (x_end >> log2_min_pu_size); i++)
  994. s->is_pcm[i + j * min_pu_width] = 2;
  995. }
  996. static int hls_transform_tree(HEVCContext *s, int x0, int y0,
  997. int xBase, int yBase, int cb_xBase, int cb_yBase,
  998. int log2_cb_size, int log2_trafo_size,
  999. int trafo_depth, int blk_idx,
  1000. const int *base_cbf_cb, const int *base_cbf_cr)
  1001. {
  1002. HEVCLocalContext *lc = s->HEVClc;
  1003. uint8_t split_transform_flag;
  1004. int cbf_cb[2];
  1005. int cbf_cr[2];
  1006. int ret;
  1007. cbf_cb[0] = base_cbf_cb[0];
  1008. cbf_cb[1] = base_cbf_cb[1];
  1009. cbf_cr[0] = base_cbf_cr[0];
  1010. cbf_cr[1] = base_cbf_cr[1];
  1011. if (lc->cu.intra_split_flag) {
  1012. if (trafo_depth == 1) {
  1013. lc->tu.intra_pred_mode = lc->pu.intra_pred_mode[blk_idx];
  1014. if (s->ps.sps->chroma_format_idc == 3) {
  1015. lc->tu.intra_pred_mode_c = lc->pu.intra_pred_mode_c[blk_idx];
  1016. lc->tu.chroma_mode_c = lc->pu.chroma_mode_c[blk_idx];
  1017. } else {
  1018. lc->tu.intra_pred_mode_c = lc->pu.intra_pred_mode_c[0];
  1019. lc->tu.chroma_mode_c = lc->pu.chroma_mode_c[0];
  1020. }
  1021. }
  1022. } else {
  1023. lc->tu.intra_pred_mode = lc->pu.intra_pred_mode[0];
  1024. lc->tu.intra_pred_mode_c = lc->pu.intra_pred_mode_c[0];
  1025. lc->tu.chroma_mode_c = lc->pu.chroma_mode_c[0];
  1026. }
  1027. if (log2_trafo_size <= s->ps.sps->log2_max_trafo_size &&
  1028. log2_trafo_size > s->ps.sps->log2_min_tb_size &&
  1029. trafo_depth < lc->cu.max_trafo_depth &&
  1030. !(lc->cu.intra_split_flag && trafo_depth == 0)) {
  1031. split_transform_flag = ff_hevc_split_transform_flag_decode(s, log2_trafo_size);
  1032. } else {
  1033. int inter_split = s->ps.sps->max_transform_hierarchy_depth_inter == 0 &&
  1034. lc->cu.pred_mode == MODE_INTER &&
  1035. lc->cu.part_mode != PART_2Nx2N &&
  1036. trafo_depth == 0;
  1037. split_transform_flag = log2_trafo_size > s->ps.sps->log2_max_trafo_size ||
  1038. (lc->cu.intra_split_flag && trafo_depth == 0) ||
  1039. inter_split;
  1040. }
  1041. if (s->ps.sps->chroma_format_idc && (log2_trafo_size > 2 || s->ps.sps->chroma_format_idc == 3)) {
  1042. if (trafo_depth == 0 || cbf_cb[0]) {
  1043. cbf_cb[0] = ff_hevc_cbf_cb_cr_decode(s, trafo_depth);
  1044. if (s->ps.sps->chroma_format_idc == 2 && (!split_transform_flag || log2_trafo_size == 3)) {
  1045. cbf_cb[1] = ff_hevc_cbf_cb_cr_decode(s, trafo_depth);
  1046. }
  1047. }
  1048. if (trafo_depth == 0 || cbf_cr[0]) {
  1049. cbf_cr[0] = ff_hevc_cbf_cb_cr_decode(s, trafo_depth);
  1050. if (s->ps.sps->chroma_format_idc == 2 && (!split_transform_flag || log2_trafo_size == 3)) {
  1051. cbf_cr[1] = ff_hevc_cbf_cb_cr_decode(s, trafo_depth);
  1052. }
  1053. }
  1054. }
  1055. if (split_transform_flag) {
  1056. const int trafo_size_split = 1 << (log2_trafo_size - 1);
  1057. const int x1 = x0 + trafo_size_split;
  1058. const int y1 = y0 + trafo_size_split;
  1059. #define SUBDIVIDE(x, y, idx) \
  1060. do { \
  1061. ret = hls_transform_tree(s, x, y, x0, y0, cb_xBase, cb_yBase, log2_cb_size, \
  1062. log2_trafo_size - 1, trafo_depth + 1, idx, \
  1063. cbf_cb, cbf_cr); \
  1064. if (ret < 0) \
  1065. return ret; \
  1066. } while (0)
  1067. SUBDIVIDE(x0, y0, 0);
  1068. SUBDIVIDE(x1, y0, 1);
  1069. SUBDIVIDE(x0, y1, 2);
  1070. SUBDIVIDE(x1, y1, 3);
  1071. #undef SUBDIVIDE
  1072. } else {
  1073. int min_tu_size = 1 << s->ps.sps->log2_min_tb_size;
  1074. int log2_min_tu_size = s->ps.sps->log2_min_tb_size;
  1075. int min_tu_width = s->ps.sps->min_tb_width;
  1076. int cbf_luma = 1;
  1077. if (lc->cu.pred_mode == MODE_INTRA || trafo_depth != 0 ||
  1078. cbf_cb[0] || cbf_cr[0] ||
  1079. (s->ps.sps->chroma_format_idc == 2 && (cbf_cb[1] || cbf_cr[1]))) {
  1080. cbf_luma = ff_hevc_cbf_luma_decode(s, trafo_depth);
  1081. }
  1082. ret = hls_transform_unit(s, x0, y0, xBase, yBase, cb_xBase, cb_yBase,
  1083. log2_cb_size, log2_trafo_size,
  1084. blk_idx, cbf_luma, cbf_cb, cbf_cr);
  1085. if (ret < 0)
  1086. return ret;
  1087. // TODO: store cbf_luma somewhere else
  1088. if (cbf_luma) {
  1089. int i, j;
  1090. for (i = 0; i < (1 << log2_trafo_size); i += min_tu_size)
  1091. for (j = 0; j < (1 << log2_trafo_size); j += min_tu_size) {
  1092. int x_tu = (x0 + j) >> log2_min_tu_size;
  1093. int y_tu = (y0 + i) >> log2_min_tu_size;
  1094. s->cbf_luma[y_tu * min_tu_width + x_tu] = 1;
  1095. }
  1096. }
  1097. if (!s->sh.disable_deblocking_filter_flag) {
  1098. ff_hevc_deblocking_boundary_strengths(s, x0, y0, log2_trafo_size);
  1099. if (s->ps.pps->transquant_bypass_enable_flag &&
  1100. lc->cu.cu_transquant_bypass_flag)
  1101. set_deblocking_bypass(s, x0, y0, log2_trafo_size);
  1102. }
  1103. }
  1104. return 0;
  1105. }
  1106. static int hls_pcm_sample(HEVCContext *s, int x0, int y0, int log2_cb_size)
  1107. {
  1108. HEVCLocalContext *lc = s->HEVClc;
  1109. GetBitContext gb;
  1110. int cb_size = 1 << log2_cb_size;
  1111. int stride0 = s->frame->linesize[0];
  1112. uint8_t *dst0 = &s->frame->data[0][y0 * stride0 + (x0 << s->ps.sps->pixel_shift)];
  1113. int stride1 = s->frame->linesize[1];
  1114. uint8_t *dst1 = &s->frame->data[1][(y0 >> s->ps.sps->vshift[1]) * stride1 + ((x0 >> s->ps.sps->hshift[1]) << s->ps.sps->pixel_shift)];
  1115. int stride2 = s->frame->linesize[2];
  1116. uint8_t *dst2 = &s->frame->data[2][(y0 >> s->ps.sps->vshift[2]) * stride2 + ((x0 >> s->ps.sps->hshift[2]) << s->ps.sps->pixel_shift)];
  1117. int length = cb_size * cb_size * s->ps.sps->pcm.bit_depth +
  1118. (((cb_size >> s->ps.sps->hshift[1]) * (cb_size >> s->ps.sps->vshift[1])) +
  1119. ((cb_size >> s->ps.sps->hshift[2]) * (cb_size >> s->ps.sps->vshift[2]))) *
  1120. s->ps.sps->pcm.bit_depth_chroma;
  1121. const uint8_t *pcm = skip_bytes(&lc->cc, (length + 7) >> 3);
  1122. int ret;
  1123. if (!s->sh.disable_deblocking_filter_flag)
  1124. ff_hevc_deblocking_boundary_strengths(s, x0, y0, log2_cb_size);
  1125. ret = init_get_bits(&gb, pcm, length);
  1126. if (ret < 0)
  1127. return ret;
  1128. s->hevcdsp.put_pcm(dst0, stride0, cb_size, cb_size, &gb, s->ps.sps->pcm.bit_depth);
  1129. if (s->ps.sps->chroma_format_idc) {
  1130. s->hevcdsp.put_pcm(dst1, stride1,
  1131. cb_size >> s->ps.sps->hshift[1],
  1132. cb_size >> s->ps.sps->vshift[1],
  1133. &gb, s->ps.sps->pcm.bit_depth_chroma);
  1134. s->hevcdsp.put_pcm(dst2, stride2,
  1135. cb_size >> s->ps.sps->hshift[2],
  1136. cb_size >> s->ps.sps->vshift[2],
  1137. &gb, s->ps.sps->pcm.bit_depth_chroma);
  1138. }
  1139. return 0;
  1140. }
  1141. /**
  1142. * 8.5.3.2.2.1 Luma sample unidirectional interpolation process
  1143. *
  1144. * @param s HEVC decoding context
  1145. * @param dst target buffer for block data at block position
  1146. * @param dststride stride of the dst buffer
  1147. * @param ref reference picture buffer at origin (0, 0)
  1148. * @param mv motion vector (relative to block position) to get pixel data from
  1149. * @param x_off horizontal position of block from origin (0, 0)
  1150. * @param y_off vertical position of block from origin (0, 0)
  1151. * @param block_w width of block
  1152. * @param block_h height of block
  1153. * @param luma_weight weighting factor applied to the luma prediction
  1154. * @param luma_offset additive offset applied to the luma prediction value
  1155. */
  1156. static void luma_mc_uni(HEVCContext *s, uint8_t *dst, ptrdiff_t dststride,
  1157. AVFrame *ref, const Mv *mv, int x_off, int y_off,
  1158. int block_w, int block_h, int luma_weight, int luma_offset)
  1159. {
  1160. HEVCLocalContext *lc = s->HEVClc;
  1161. uint8_t *src = ref->data[0];
  1162. ptrdiff_t srcstride = ref->linesize[0];
  1163. int pic_width = s->ps.sps->width;
  1164. int pic_height = s->ps.sps->height;
  1165. int mx = mv->x & 3;
  1166. int my = mv->y & 3;
  1167. int weight_flag = (s->sh.slice_type == P_SLICE && s->ps.pps->weighted_pred_flag) ||
  1168. (s->sh.slice_type == B_SLICE && s->ps.pps->weighted_bipred_flag);
  1169. int idx = ff_hevc_pel_weight[block_w];
  1170. x_off += mv->x >> 2;
  1171. y_off += mv->y >> 2;
  1172. src += y_off * srcstride + (x_off * (1 << s->ps.sps->pixel_shift));
  1173. if (x_off < QPEL_EXTRA_BEFORE || y_off < QPEL_EXTRA_AFTER ||
  1174. x_off >= pic_width - block_w - QPEL_EXTRA_AFTER ||
  1175. y_off >= pic_height - block_h - QPEL_EXTRA_AFTER) {
  1176. const int edge_emu_stride = EDGE_EMU_BUFFER_STRIDE << s->ps.sps->pixel_shift;
  1177. int offset = QPEL_EXTRA_BEFORE * srcstride + (QPEL_EXTRA_BEFORE << s->ps.sps->pixel_shift);
  1178. int buf_offset = QPEL_EXTRA_BEFORE * edge_emu_stride + (QPEL_EXTRA_BEFORE << s->ps.sps->pixel_shift);
  1179. s->vdsp.emulated_edge_mc(lc->edge_emu_buffer, src - offset,
  1180. edge_emu_stride, srcstride,
  1181. block_w + QPEL_EXTRA,
  1182. block_h + QPEL_EXTRA,
  1183. x_off - QPEL_EXTRA_BEFORE, y_off - QPEL_EXTRA_BEFORE,
  1184. pic_width, pic_height);
  1185. src = lc->edge_emu_buffer + buf_offset;
  1186. srcstride = edge_emu_stride;
  1187. }
  1188. if (!weight_flag)
  1189. s->hevcdsp.put_hevc_qpel_uni[idx][!!my][!!mx](dst, dststride, src, srcstride,
  1190. block_h, mx, my, block_w);
  1191. else
  1192. s->hevcdsp.put_hevc_qpel_uni_w[idx][!!my][!!mx](dst, dststride, src, srcstride,
  1193. block_h, s->sh.luma_log2_weight_denom,
  1194. luma_weight, luma_offset, mx, my, block_w);
  1195. }
  1196. /**
  1197. * 8.5.3.2.2.1 Luma sample bidirectional interpolation process
  1198. *
  1199. * @param s HEVC decoding context
  1200. * @param dst target buffer for block data at block position
  1201. * @param dststride stride of the dst buffer
  1202. * @param ref0 reference picture0 buffer at origin (0, 0)
  1203. * @param mv0 motion vector0 (relative to block position) to get pixel data from
  1204. * @param x_off horizontal position of block from origin (0, 0)
  1205. * @param y_off vertical position of block from origin (0, 0)
  1206. * @param block_w width of block
  1207. * @param block_h height of block
  1208. * @param ref1 reference picture1 buffer at origin (0, 0)
  1209. * @param mv1 motion vector1 (relative to block position) to get pixel data from
  1210. * @param current_mv current motion vector structure
  1211. */
  1212. static void luma_mc_bi(HEVCContext *s, uint8_t *dst, ptrdiff_t dststride,
  1213. AVFrame *ref0, const Mv *mv0, int x_off, int y_off,
  1214. int block_w, int block_h, AVFrame *ref1, const Mv *mv1, struct MvField *current_mv)
  1215. {
  1216. HEVCLocalContext *lc = s->HEVClc;
  1217. ptrdiff_t src0stride = ref0->linesize[0];
  1218. ptrdiff_t src1stride = ref1->linesize[0];
  1219. int pic_width = s->ps.sps->width;
  1220. int pic_height = s->ps.sps->height;
  1221. int mx0 = mv0->x & 3;
  1222. int my0 = mv0->y & 3;
  1223. int mx1 = mv1->x & 3;
  1224. int my1 = mv1->y & 3;
  1225. int weight_flag = (s->sh.slice_type == P_SLICE && s->ps.pps->weighted_pred_flag) ||
  1226. (s->sh.slice_type == B_SLICE && s->ps.pps->weighted_bipred_flag);
  1227. int x_off0 = x_off + (mv0->x >> 2);
  1228. int y_off0 = y_off + (mv0->y >> 2);
  1229. int x_off1 = x_off + (mv1->x >> 2);
  1230. int y_off1 = y_off + (mv1->y >> 2);
  1231. int idx = ff_hevc_pel_weight[block_w];
  1232. uint8_t *src0 = ref0->data[0] + y_off0 * src0stride + (int)((unsigned)x_off0 << s->ps.sps->pixel_shift);
  1233. uint8_t *src1 = ref1->data[0] + y_off1 * src1stride + (int)((unsigned)x_off1 << s->ps.sps->pixel_shift);
  1234. if (x_off0 < QPEL_EXTRA_BEFORE || y_off0 < QPEL_EXTRA_AFTER ||
  1235. x_off0 >= pic_width - block_w - QPEL_EXTRA_AFTER ||
  1236. y_off0 >= pic_height - block_h - QPEL_EXTRA_AFTER) {
  1237. const int edge_emu_stride = EDGE_EMU_BUFFER_STRIDE << s->ps.sps->pixel_shift;
  1238. int offset = QPEL_EXTRA_BEFORE * src0stride + (QPEL_EXTRA_BEFORE << s->ps.sps->pixel_shift);
  1239. int buf_offset = QPEL_EXTRA_BEFORE * edge_emu_stride + (QPEL_EXTRA_BEFORE << s->ps.sps->pixel_shift);
  1240. s->vdsp.emulated_edge_mc(lc->edge_emu_buffer, src0 - offset,
  1241. edge_emu_stride, src0stride,
  1242. block_w + QPEL_EXTRA,
  1243. block_h + QPEL_EXTRA,
  1244. x_off0 - QPEL_EXTRA_BEFORE, y_off0 - QPEL_EXTRA_BEFORE,
  1245. pic_width, pic_height);
  1246. src0 = lc->edge_emu_buffer + buf_offset;
  1247. src0stride = edge_emu_stride;
  1248. }
  1249. if (x_off1 < QPEL_EXTRA_BEFORE || y_off1 < QPEL_EXTRA_AFTER ||
  1250. x_off1 >= pic_width - block_w - QPEL_EXTRA_AFTER ||
  1251. y_off1 >= pic_height - block_h - QPEL_EXTRA_AFTER) {
  1252. const int edge_emu_stride = EDGE_EMU_BUFFER_STRIDE << s->ps.sps->pixel_shift;
  1253. int offset = QPEL_EXTRA_BEFORE * src1stride + (QPEL_EXTRA_BEFORE << s->ps.sps->pixel_shift);
  1254. int buf_offset = QPEL_EXTRA_BEFORE * edge_emu_stride + (QPEL_EXTRA_BEFORE << s->ps.sps->pixel_shift);
  1255. s->vdsp.emulated_edge_mc(lc->edge_emu_buffer2, src1 - offset,
  1256. edge_emu_stride, src1stride,
  1257. block_w + QPEL_EXTRA,
  1258. block_h + QPEL_EXTRA,
  1259. x_off1 - QPEL_EXTRA_BEFORE, y_off1 - QPEL_EXTRA_BEFORE,
  1260. pic_width, pic_height);
  1261. src1 = lc->edge_emu_buffer2 + buf_offset;
  1262. src1stride = edge_emu_stride;
  1263. }
  1264. s->hevcdsp.put_hevc_qpel[idx][!!my0][!!mx0](lc->tmp, src0, src0stride,
  1265. block_h, mx0, my0, block_w);
  1266. if (!weight_flag)
  1267. s->hevcdsp.put_hevc_qpel_bi[idx][!!my1][!!mx1](dst, dststride, src1, src1stride, lc->tmp,
  1268. block_h, mx1, my1, block_w);
  1269. else
  1270. s->hevcdsp.put_hevc_qpel_bi_w[idx][!!my1][!!mx1](dst, dststride, src1, src1stride, lc->tmp,
  1271. block_h, s->sh.luma_log2_weight_denom,
  1272. s->sh.luma_weight_l0[current_mv->ref_idx[0]],
  1273. s->sh.luma_weight_l1[current_mv->ref_idx[1]],
  1274. s->sh.luma_offset_l0[current_mv->ref_idx[0]],
  1275. s->sh.luma_offset_l1[current_mv->ref_idx[1]],
  1276. mx1, my1, block_w);
  1277. }
  1278. /**
  1279. * 8.5.3.2.2.2 Chroma sample uniprediction interpolation process
  1280. *
  1281. * @param s HEVC decoding context
  1282. * @param dst1 target buffer for block data at block position (U plane)
  1283. * @param dst2 target buffer for block data at block position (V plane)
  1284. * @param dststride stride of the dst1 and dst2 buffers
  1285. * @param ref reference picture buffer at origin (0, 0)
  1286. * @param mv motion vector (relative to block position) to get pixel data from
  1287. * @param x_off horizontal position of block from origin (0, 0)
  1288. * @param y_off vertical position of block from origin (0, 0)
  1289. * @param block_w width of block
  1290. * @param block_h height of block
  1291. * @param chroma_weight weighting factor applied to the chroma prediction
  1292. * @param chroma_offset additive offset applied to the chroma prediction value
  1293. */
  1294. static void chroma_mc_uni(HEVCContext *s, uint8_t *dst0,
  1295. ptrdiff_t dststride, uint8_t *src0, ptrdiff_t srcstride, int reflist,
  1296. int x_off, int y_off, int block_w, int block_h, struct MvField *current_mv, int chroma_weight, int chroma_offset)
  1297. {
  1298. HEVCLocalContext *lc = s->HEVClc;
  1299. int pic_width = s->ps.sps->width >> s->ps.sps->hshift[1];
  1300. int pic_height = s->ps.sps->height >> s->ps.sps->vshift[1];
  1301. const Mv *mv = &current_mv->mv[reflist];
  1302. int weight_flag = (s->sh.slice_type == P_SLICE && s->ps.pps->weighted_pred_flag) ||
  1303. (s->sh.slice_type == B_SLICE && s->ps.pps->weighted_bipred_flag);
  1304. int idx = ff_hevc_pel_weight[block_w];
  1305. int hshift = s->ps.sps->hshift[1];
  1306. int vshift = s->ps.sps->vshift[1];
  1307. intptr_t mx = av_mod_uintp2(mv->x, 2 + hshift);
  1308. intptr_t my = av_mod_uintp2(mv->y, 2 + vshift);
  1309. intptr_t _mx = mx << (1 - hshift);
  1310. intptr_t _my = my << (1 - vshift);
  1311. x_off += mv->x >> (2 + hshift);
  1312. y_off += mv->y >> (2 + vshift);
  1313. src0 += y_off * srcstride + (x_off * (1 << s->ps.sps->pixel_shift));
  1314. if (x_off < EPEL_EXTRA_BEFORE || y_off < EPEL_EXTRA_AFTER ||
  1315. x_off >= pic_width - block_w - EPEL_EXTRA_AFTER ||
  1316. y_off >= pic_height - block_h - EPEL_EXTRA_AFTER) {
  1317. const int edge_emu_stride = EDGE_EMU_BUFFER_STRIDE << s->ps.sps->pixel_shift;
  1318. int offset0 = EPEL_EXTRA_BEFORE * (srcstride + (1 << s->ps.sps->pixel_shift));
  1319. int buf_offset0 = EPEL_EXTRA_BEFORE *
  1320. (edge_emu_stride + (1 << s->ps.sps->pixel_shift));
  1321. s->vdsp.emulated_edge_mc(lc->edge_emu_buffer, src0 - offset0,
  1322. edge_emu_stride, srcstride,
  1323. block_w + EPEL_EXTRA, block_h + EPEL_EXTRA,
  1324. x_off - EPEL_EXTRA_BEFORE,
  1325. y_off - EPEL_EXTRA_BEFORE,
  1326. pic_width, pic_height);
  1327. src0 = lc->edge_emu_buffer + buf_offset0;
  1328. srcstride = edge_emu_stride;
  1329. }
  1330. if (!weight_flag)
  1331. s->hevcdsp.put_hevc_epel_uni[idx][!!my][!!mx](dst0, dststride, src0, srcstride,
  1332. block_h, _mx, _my, block_w);
  1333. else
  1334. s->hevcdsp.put_hevc_epel_uni_w[idx][!!my][!!mx](dst0, dststride, src0, srcstride,
  1335. block_h, s->sh.chroma_log2_weight_denom,
  1336. chroma_weight, chroma_offset, _mx, _my, block_w);
  1337. }
  1338. /**
  1339. * 8.5.3.2.2.2 Chroma sample bidirectional interpolation process
  1340. *
  1341. * @param s HEVC decoding context
  1342. * @param dst target buffer for block data at block position
  1343. * @param dststride stride of the dst buffer
  1344. * @param ref0 reference picture0 buffer at origin (0, 0)
  1345. * @param mv0 motion vector0 (relative to block position) to get pixel data from
  1346. * @param x_off horizontal position of block from origin (0, 0)
  1347. * @param y_off vertical position of block from origin (0, 0)
  1348. * @param block_w width of block
  1349. * @param block_h height of block
  1350. * @param ref1 reference picture1 buffer at origin (0, 0)
  1351. * @param mv1 motion vector1 (relative to block position) to get pixel data from
  1352. * @param current_mv current motion vector structure
  1353. * @param cidx chroma component(cb, cr)
  1354. */
  1355. static void chroma_mc_bi(HEVCContext *s, uint8_t *dst0, ptrdiff_t dststride, AVFrame *ref0, AVFrame *ref1,
  1356. int x_off, int y_off, int block_w, int block_h, struct MvField *current_mv, int cidx)
  1357. {
  1358. HEVCLocalContext *lc = s->HEVClc;
  1359. uint8_t *src1 = ref0->data[cidx+1];
  1360. uint8_t *src2 = ref1->data[cidx+1];
  1361. ptrdiff_t src1stride = ref0->linesize[cidx+1];
  1362. ptrdiff_t src2stride = ref1->linesize[cidx+1];
  1363. int weight_flag = (s->sh.slice_type == P_SLICE && s->ps.pps->weighted_pred_flag) ||
  1364. (s->sh.slice_type == B_SLICE && s->ps.pps->weighted_bipred_flag);
  1365. int pic_width = s->ps.sps->width >> s->ps.sps->hshift[1];
  1366. int pic_height = s->ps.sps->height >> s->ps.sps->vshift[1];
  1367. Mv *mv0 = &current_mv->mv[0];
  1368. Mv *mv1 = &current_mv->mv[1];
  1369. int hshift = s->ps.sps->hshift[1];
  1370. int vshift = s->ps.sps->vshift[1];
  1371. intptr_t mx0 = av_mod_uintp2(mv0->x, 2 + hshift);
  1372. intptr_t my0 = av_mod_uintp2(mv0->y, 2 + vshift);
  1373. intptr_t mx1 = av_mod_uintp2(mv1->x, 2 + hshift);
  1374. intptr_t my1 = av_mod_uintp2(mv1->y, 2 + vshift);
  1375. intptr_t _mx0 = mx0 << (1 - hshift);
  1376. intptr_t _my0 = my0 << (1 - vshift);
  1377. intptr_t _mx1 = mx1 << (1 - hshift);
  1378. intptr_t _my1 = my1 << (1 - vshift);
  1379. int x_off0 = x_off + (mv0->x >> (2 + hshift));
  1380. int y_off0 = y_off + (mv0->y >> (2 + vshift));
  1381. int x_off1 = x_off + (mv1->x >> (2 + hshift));
  1382. int y_off1 = y_off + (mv1->y >> (2 + vshift));
  1383. int idx = ff_hevc_pel_weight[block_w];
  1384. src1 += y_off0 * src1stride + (int)((unsigned)x_off0 << s->ps.sps->pixel_shift);
  1385. src2 += y_off1 * src2stride + (int)((unsigned)x_off1 << s->ps.sps->pixel_shift);
  1386. if (x_off0 < EPEL_EXTRA_BEFORE || y_off0 < EPEL_EXTRA_AFTER ||
  1387. x_off0 >= pic_width - block_w - EPEL_EXTRA_AFTER ||
  1388. y_off0 >= pic_height - block_h - EPEL_EXTRA_AFTER) {
  1389. const int edge_emu_stride = EDGE_EMU_BUFFER_STRIDE << s->ps.sps->pixel_shift;
  1390. int offset1 = EPEL_EXTRA_BEFORE * (src1stride + (1 << s->ps.sps->pixel_shift));
  1391. int buf_offset1 = EPEL_EXTRA_BEFORE *
  1392. (edge_emu_stride + (1 << s->ps.sps->pixel_shift));
  1393. s->vdsp.emulated_edge_mc(lc->edge_emu_buffer, src1 - offset1,
  1394. edge_emu_stride, src1stride,
  1395. block_w + EPEL_EXTRA, block_h + EPEL_EXTRA,
  1396. x_off0 - EPEL_EXTRA_BEFORE,
  1397. y_off0 - EPEL_EXTRA_BEFORE,
  1398. pic_width, pic_height);
  1399. src1 = lc->edge_emu_buffer + buf_offset1;
  1400. src1stride = edge_emu_stride;
  1401. }
  1402. if (x_off1 < EPEL_EXTRA_BEFORE || y_off1 < EPEL_EXTRA_AFTER ||
  1403. x_off1 >= pic_width - block_w - EPEL_EXTRA_AFTER ||
  1404. y_off1 >= pic_height - block_h - EPEL_EXTRA_AFTER) {
  1405. const int edge_emu_stride = EDGE_EMU_BUFFER_STRIDE << s->ps.sps->pixel_shift;
  1406. int offset1 = EPEL_EXTRA_BEFORE * (src2stride + (1 << s->ps.sps->pixel_shift));
  1407. int buf_offset1 = EPEL_EXTRA_BEFORE *
  1408. (edge_emu_stride + (1 << s->ps.sps->pixel_shift));
  1409. s->vdsp.emulated_edge_mc(lc->edge_emu_buffer2, src2 - offset1,
  1410. edge_emu_stride, src2stride,
  1411. block_w + EPEL_EXTRA, block_h + EPEL_EXTRA,
  1412. x_off1 - EPEL_EXTRA_BEFORE,
  1413. y_off1 - EPEL_EXTRA_BEFORE,
  1414. pic_width, pic_height);
  1415. src2 = lc->edge_emu_buffer2 + buf_offset1;
  1416. src2stride = edge_emu_stride;
  1417. }
  1418. s->hevcdsp.put_hevc_epel[idx][!!my0][!!mx0](lc->tmp, src1, src1stride,
  1419. block_h, _mx0, _my0, block_w);
  1420. if (!weight_flag)
  1421. s->hevcdsp.put_hevc_epel_bi[idx][!!my1][!!mx1](dst0, s->frame->linesize[cidx+1],
  1422. src2, src2stride, lc->tmp,
  1423. block_h, _mx1, _my1, block_w);
  1424. else
  1425. s->hevcdsp.put_hevc_epel_bi_w[idx][!!my1][!!mx1](dst0, s->frame->linesize[cidx+1],
  1426. src2, src2stride, lc->tmp,
  1427. block_h,
  1428. s->sh.chroma_log2_weight_denom,
  1429. s->sh.chroma_weight_l0[current_mv->ref_idx[0]][cidx],
  1430. s->sh.chroma_weight_l1[current_mv->ref_idx[1]][cidx],
  1431. s->sh.chroma_offset_l0[current_mv->ref_idx[0]][cidx],
  1432. s->sh.chroma_offset_l1[current_mv->ref_idx[1]][cidx],
  1433. _mx1, _my1, block_w);
  1434. }
  1435. static void hevc_await_progress(HEVCContext *s, HEVCFrame *ref,
  1436. const Mv *mv, int y0, int height)
  1437. {
  1438. int y = FFMAX(0, (mv->y >> 2) + y0 + height + 9);
  1439. if (s->threads_type == FF_THREAD_FRAME )
  1440. ff_thread_await_progress(&ref->tf, y, 0);
  1441. }
  1442. static void hevc_luma_mv_mvp_mode(HEVCContext *s, int x0, int y0, int nPbW,
  1443. int nPbH, int log2_cb_size, int part_idx,
  1444. int merge_idx, MvField *mv)
  1445. {
  1446. HEVCLocalContext *lc = s->HEVClc;
  1447. enum InterPredIdc inter_pred_idc = PRED_L0;
  1448. int mvp_flag;
  1449. ff_hevc_set_neighbour_available(s, x0, y0, nPbW, nPbH);
  1450. mv->pred_flag = 0;
  1451. if (s->sh.slice_type == B_SLICE)
  1452. inter_pred_idc = ff_hevc_inter_pred_idc_decode(s, nPbW, nPbH);
  1453. if (inter_pred_idc != PRED_L1) {
  1454. if (s->sh.nb_refs[L0])
  1455. mv->ref_idx[0]= ff_hevc_ref_idx_lx_decode(s, s->sh.nb_refs[L0]);
  1456. mv->pred_flag = PF_L0;
  1457. ff_hevc_hls_mvd_coding(s, x0, y0, 0);
  1458. mvp_flag = ff_hevc_mvp_lx_flag_decode(s);
  1459. ff_hevc_luma_mv_mvp_mode(s, x0, y0, nPbW, nPbH, log2_cb_size,
  1460. part_idx, merge_idx, mv, mvp_flag, 0);
  1461. mv->mv[0].x += lc->pu.mvd.x;
  1462. mv->mv[0].y += lc->pu.mvd.y;
  1463. }
  1464. if (inter_pred_idc != PRED_L0) {
  1465. if (s->sh.nb_refs[L1])
  1466. mv->ref_idx[1]= ff_hevc_ref_idx_lx_decode(s, s->sh.nb_refs[L1]);
  1467. if (s->sh.mvd_l1_zero_flag == 1 && inter_pred_idc == PRED_BI) {
  1468. AV_ZERO32(&lc->pu.mvd);
  1469. } else {
  1470. ff_hevc_hls_mvd_coding(s, x0, y0, 1);
  1471. }
  1472. mv->pred_flag += PF_L1;
  1473. mvp_flag = ff_hevc_mvp_lx_flag_decode(s);
  1474. ff_hevc_luma_mv_mvp_mode(s, x0, y0, nPbW, nPbH, log2_cb_size,
  1475. part_idx, merge_idx, mv, mvp_flag, 1);
  1476. mv->mv[1].x += lc->pu.mvd.x;
  1477. mv->mv[1].y += lc->pu.mvd.y;
  1478. }
  1479. }
  1480. static void hls_prediction_unit(HEVCContext *s, int x0, int y0,
  1481. int nPbW, int nPbH,
  1482. int log2_cb_size, int partIdx, int idx)
  1483. {
  1484. #define POS(c_idx, x, y) \
  1485. &s->frame->data[c_idx][((y) >> s->ps.sps->vshift[c_idx]) * s->frame->linesize[c_idx] + \
  1486. (((x) >> s->ps.sps->hshift[c_idx]) << s->ps.sps->pixel_shift)]
  1487. HEVCLocalContext *lc = s->HEVClc;
  1488. int merge_idx = 0;
  1489. struct MvField current_mv = {{{ 0 }}};
  1490. int min_pu_width = s->ps.sps->min_pu_width;
  1491. MvField *tab_mvf = s->ref->tab_mvf;
  1492. RefPicList *refPicList = s->ref->refPicList;
  1493. HEVCFrame *ref0 = NULL, *ref1 = NULL;
  1494. uint8_t *dst0 = POS(0, x0, y0);
  1495. uint8_t *dst1 = POS(1, x0, y0);
  1496. uint8_t *dst2 = POS(2, x0, y0);
  1497. int log2_min_cb_size = s->ps.sps->log2_min_cb_size;
  1498. int min_cb_width = s->ps.sps->min_cb_width;
  1499. int x_cb = x0 >> log2_min_cb_size;
  1500. int y_cb = y0 >> log2_min_cb_size;
  1501. int x_pu, y_pu;
  1502. int i, j;
  1503. int skip_flag = SAMPLE_CTB(s->skip_flag, x_cb, y_cb);
  1504. if (!skip_flag)
  1505. lc->pu.merge_flag = ff_hevc_merge_flag_decode(s);
  1506. if (skip_flag || lc->pu.merge_flag) {
  1507. if (s->sh.max_num_merge_cand > 1)
  1508. merge_idx = ff_hevc_merge_idx_decode(s);
  1509. else
  1510. merge_idx = 0;
  1511. ff_hevc_luma_mv_merge_mode(s, x0, y0, nPbW, nPbH, log2_cb_size,
  1512. partIdx, merge_idx, &current_mv);
  1513. } else {
  1514. hevc_luma_mv_mvp_mode(s, x0, y0, nPbW, nPbH, log2_cb_size,
  1515. partIdx, merge_idx, &current_mv);
  1516. }
  1517. x_pu = x0 >> s->ps.sps->log2_min_pu_size;
  1518. y_pu = y0 >> s->ps.sps->log2_min_pu_size;
  1519. for (j = 0; j < nPbH >> s->ps.sps->log2_min_pu_size; j++)
  1520. for (i = 0; i < nPbW >> s->ps.sps->log2_min_pu_size; i++)
  1521. tab_mvf[(y_pu + j) * min_pu_width + x_pu + i] = current_mv;
  1522. if (current_mv.pred_flag & PF_L0) {
  1523. ref0 = refPicList[0].ref[current_mv.ref_idx[0]];
  1524. if (!ref0)
  1525. return;
  1526. hevc_await_progress(s, ref0, &current_mv.mv[0], y0, nPbH);
  1527. }
  1528. if (current_mv.pred_flag & PF_L1) {
  1529. ref1 = refPicList[1].ref[current_mv.ref_idx[1]];
  1530. if (!ref1)
  1531. return;
  1532. hevc_await_progress(s, ref1, &current_mv.mv[1], y0, nPbH);
  1533. }
  1534. if (current_mv.pred_flag == PF_L0) {
  1535. int x0_c = x0 >> s->ps.sps->hshift[1];
  1536. int y0_c = y0 >> s->ps.sps->vshift[1];
  1537. int nPbW_c = nPbW >> s->ps.sps->hshift[1];
  1538. int nPbH_c = nPbH >> s->ps.sps->vshift[1];
  1539. luma_mc_uni(s, dst0, s->frame->linesize[0], ref0->frame,
  1540. &current_mv.mv[0], x0, y0, nPbW, nPbH,
  1541. s->sh.luma_weight_l0[current_mv.ref_idx[0]],
  1542. s->sh.luma_offset_l0[current_mv.ref_idx[0]]);
  1543. if (s->ps.sps->chroma_format_idc) {
  1544. chroma_mc_uni(s, dst1, s->frame->linesize[1], ref0->frame->data[1], ref0->frame->linesize[1],
  1545. 0, x0_c, y0_c, nPbW_c, nPbH_c, &current_mv,
  1546. s->sh.chroma_weight_l0[current_mv.ref_idx[0]][0], s->sh.chroma_offset_l0[current_mv.ref_idx[0]][0]);
  1547. chroma_mc_uni(s, dst2, s->frame->linesize[2], ref0->frame->data[2], ref0->frame->linesize[2],
  1548. 0, x0_c, y0_c, nPbW_c, nPbH_c, &current_mv,
  1549. s->sh.chroma_weight_l0[current_mv.ref_idx[0]][1], s->sh.chroma_offset_l0[current_mv.ref_idx[0]][1]);
  1550. }
  1551. } else if (current_mv.pred_flag == PF_L1) {
  1552. int x0_c = x0 >> s->ps.sps->hshift[1];
  1553. int y0_c = y0 >> s->ps.sps->vshift[1];
  1554. int nPbW_c = nPbW >> s->ps.sps->hshift[1];
  1555. int nPbH_c = nPbH >> s->ps.sps->vshift[1];
  1556. luma_mc_uni(s, dst0, s->frame->linesize[0], ref1->frame,
  1557. &current_mv.mv[1], x0, y0, nPbW, nPbH,
  1558. s->sh.luma_weight_l1[current_mv.ref_idx[1]],
  1559. s->sh.luma_offset_l1[current_mv.ref_idx[1]]);
  1560. if (s->ps.sps->chroma_format_idc) {
  1561. chroma_mc_uni(s, dst1, s->frame->linesize[1], ref1->frame->data[1], ref1->frame->linesize[1],
  1562. 1, x0_c, y0_c, nPbW_c, nPbH_c, &current_mv,
  1563. s->sh.chroma_weight_l1[current_mv.ref_idx[1]][0], s->sh.chroma_offset_l1[current_mv.ref_idx[1]][0]);
  1564. chroma_mc_uni(s, dst2, s->frame->linesize[2], ref1->frame->data[2], ref1->frame->linesize[2],
  1565. 1, x0_c, y0_c, nPbW_c, nPbH_c, &current_mv,
  1566. s->sh.chroma_weight_l1[current_mv.ref_idx[1]][1], s->sh.chroma_offset_l1[current_mv.ref_idx[1]][1]);
  1567. }
  1568. } else if (current_mv.pred_flag == PF_BI) {
  1569. int x0_c = x0 >> s->ps.sps->hshift[1];
  1570. int y0_c = y0 >> s->ps.sps->vshift[1];
  1571. int nPbW_c = nPbW >> s->ps.sps->hshift[1];
  1572. int nPbH_c = nPbH >> s->ps.sps->vshift[1];
  1573. luma_mc_bi(s, dst0, s->frame->linesize[0], ref0->frame,
  1574. &current_mv.mv[0], x0, y0, nPbW, nPbH,
  1575. ref1->frame, &current_mv.mv[1], &current_mv);
  1576. if (s->ps.sps->chroma_format_idc) {
  1577. chroma_mc_bi(s, dst1, s->frame->linesize[1], ref0->frame, ref1->frame,
  1578. x0_c, y0_c, nPbW_c, nPbH_c, &current_mv, 0);
  1579. chroma_mc_bi(s, dst2, s->frame->linesize[2], ref0->frame, ref1->frame,
  1580. x0_c, y0_c, nPbW_c, nPbH_c, &current_mv, 1);
  1581. }
  1582. }
  1583. }
  1584. /**
  1585. * 8.4.1
  1586. */
  1587. static int luma_intra_pred_mode(HEVCContext *s, int x0, int y0, int pu_size,
  1588. int prev_intra_luma_pred_flag)
  1589. {
  1590. HEVCLocalContext *lc = s->HEVClc;
  1591. int x_pu = x0 >> s->ps.sps->log2_min_pu_size;
  1592. int y_pu = y0 >> s->ps.sps->log2_min_pu_size;
  1593. int min_pu_width = s->ps.sps->min_pu_width;
  1594. int size_in_pus = pu_size >> s->ps.sps->log2_min_pu_size;
  1595. int x0b = av_mod_uintp2(x0, s->ps.sps->log2_ctb_size);
  1596. int y0b = av_mod_uintp2(y0, s->ps.sps->log2_ctb_size);
  1597. int cand_up = (lc->ctb_up_flag || y0b) ?
  1598. s->tab_ipm[(y_pu - 1) * min_pu_width + x_pu] : INTRA_DC;
  1599. int cand_left = (lc->ctb_left_flag || x0b) ?
  1600. s->tab_ipm[y_pu * min_pu_width + x_pu - 1] : INTRA_DC;
  1601. int y_ctb = (y0 >> (s->ps.sps->log2_ctb_size)) << (s->ps.sps->log2_ctb_size);
  1602. MvField *tab_mvf = s->ref->tab_mvf;
  1603. int intra_pred_mode;
  1604. int candidate[3];
  1605. int i, j;
  1606. // intra_pred_mode prediction does not cross vertical CTB boundaries
  1607. if ((y0 - 1) < y_ctb)
  1608. cand_up = INTRA_DC;
  1609. if (cand_left == cand_up) {
  1610. if (cand_left < 2) {
  1611. candidate[0] = INTRA_PLANAR;
  1612. candidate[1] = INTRA_DC;
  1613. candidate[2] = INTRA_ANGULAR_26;
  1614. } else {
  1615. candidate[0] = cand_left;
  1616. candidate[1] = 2 + ((cand_left - 2 - 1 + 32) & 31);
  1617. candidate[2] = 2 + ((cand_left - 2 + 1) & 31);
  1618. }
  1619. } else {
  1620. candidate[0] = cand_left;
  1621. candidate[1] = cand_up;
  1622. if (candidate[0] != INTRA_PLANAR && candidate[1] != INTRA_PLANAR) {
  1623. candidate[2] = INTRA_PLANAR;
  1624. } else if (candidate[0] != INTRA_DC && candidate[1] != INTRA_DC) {
  1625. candidate[2] = INTRA_DC;
  1626. } else {
  1627. candidate[2] = INTRA_ANGULAR_26;
  1628. }
  1629. }
  1630. if (prev_intra_luma_pred_flag) {
  1631. intra_pred_mode = candidate[lc->pu.mpm_idx];
  1632. } else {
  1633. if (candidate[0] > candidate[1])
  1634. FFSWAP(uint8_t, candidate[0], candidate[1]);
  1635. if (candidate[0] > candidate[2])
  1636. FFSWAP(uint8_t, candidate[0], candidate[2]);
  1637. if (candidate[1] > candidate[2])
  1638. FFSWAP(uint8_t, candidate[1], candidate[2]);
  1639. intra_pred_mode = lc->pu.rem_intra_luma_pred_mode;
  1640. for (i = 0; i < 3; i++)
  1641. if (intra_pred_mode >= candidate[i])
  1642. intra_pred_mode++;
  1643. }
  1644. /* write the intra prediction units into the mv array */
  1645. if (!size_in_pus)
  1646. size_in_pus = 1;
  1647. for (i = 0; i < size_in_pus; i++) {
  1648. memset(&s->tab_ipm[(y_pu + i) * min_pu_width + x_pu],
  1649. intra_pred_mode, size_in_pus);
  1650. for (j = 0; j < size_in_pus; j++) {
  1651. tab_mvf[(y_pu + j) * min_pu_width + x_pu + i].pred_flag = PF_INTRA;
  1652. }
  1653. }
  1654. return intra_pred_mode;
  1655. }
  1656. static av_always_inline void set_ct_depth(HEVCContext *s, int x0, int y0,
  1657. int log2_cb_size, int ct_depth)
  1658. {
  1659. int length = (1 << log2_cb_size) >> s->ps.sps->log2_min_cb_size;
  1660. int x_cb = x0 >> s->ps.sps->log2_min_cb_size;
  1661. int y_cb = y0 >> s->ps.sps->log2_min_cb_size;
  1662. int y;
  1663. for (y = 0; y < length; y++)
  1664. memset(&s->tab_ct_depth[(y_cb + y) * s->ps.sps->min_cb_width + x_cb],
  1665. ct_depth, length);
  1666. }
  1667. static const uint8_t tab_mode_idx[] = {
  1668. 0, 1, 2, 2, 2, 2, 3, 5, 7, 8, 10, 12, 13, 15, 17, 18, 19, 20,
  1669. 21, 22, 23, 23, 24, 24, 25, 25, 26, 27, 27, 28, 28, 29, 29, 30, 31};
  1670. static void intra_prediction_unit(HEVCContext *s, int x0, int y0,
  1671. int log2_cb_size)
  1672. {
  1673. HEVCLocalContext *lc = s->HEVClc;
  1674. static const uint8_t intra_chroma_table[4] = { 0, 26, 10, 1 };
  1675. uint8_t prev_intra_luma_pred_flag[4];
  1676. int split = lc->cu.part_mode == PART_NxN;
  1677. int pb_size = (1 << log2_cb_size) >> split;
  1678. int side = split + 1;
  1679. int chroma_mode;
  1680. int i, j;
  1681. for (i = 0; i < side; i++)
  1682. for (j = 0; j < side; j++)
  1683. prev_intra_luma_pred_flag[2 * i + j] = ff_hevc_prev_intra_luma_pred_flag_decode(s);
  1684. for (i = 0; i < side; i++) {
  1685. for (j = 0; j < side; j++) {
  1686. if (prev_intra_luma_pred_flag[2 * i + j])
  1687. lc->pu.mpm_idx = ff_hevc_mpm_idx_decode(s);
  1688. else
  1689. lc->pu.rem_intra_luma_pred_mode = ff_hevc_rem_intra_luma_pred_mode_decode(s);
  1690. lc->pu.intra_pred_mode[2 * i + j] =
  1691. luma_intra_pred_mode(s, x0 + pb_size * j, y0 + pb_size * i, pb_size,
  1692. prev_intra_luma_pred_flag[2 * i + j]);
  1693. }
  1694. }
  1695. if (s->ps.sps->chroma_format_idc == 3) {
  1696. for (i = 0; i < side; i++) {
  1697. for (j = 0; j < side; j++) {
  1698. lc->pu.chroma_mode_c[2 * i + j] = chroma_mode = ff_hevc_intra_chroma_pred_mode_decode(s);
  1699. if (chroma_mode != 4) {
  1700. if (lc->pu.intra_pred_mode[2 * i + j] == intra_chroma_table[chroma_mode])
  1701. lc->pu.intra_pred_mode_c[2 * i + j] = 34;
  1702. else
  1703. lc->pu.intra_pred_mode_c[2 * i + j] = intra_chroma_table[chroma_mode];
  1704. } else {
  1705. lc->pu.intra_pred_mode_c[2 * i + j] = lc->pu.intra_pred_mode[2 * i + j];
  1706. }
  1707. }
  1708. }
  1709. } else if (s->ps.sps->chroma_format_idc == 2) {
  1710. int mode_idx;
  1711. lc->pu.chroma_mode_c[0] = chroma_mode = ff_hevc_intra_chroma_pred_mode_decode(s);
  1712. if (chroma_mode != 4) {
  1713. if (lc->pu.intra_pred_mode[0] == intra_chroma_table[chroma_mode])
  1714. mode_idx = 34;
  1715. else
  1716. mode_idx = intra_chroma_table[chroma_mode];
  1717. } else {
  1718. mode_idx = lc->pu.intra_pred_mode[0];
  1719. }
  1720. lc->pu.intra_pred_mode_c[0] = tab_mode_idx[mode_idx];
  1721. } else if (s->ps.sps->chroma_format_idc != 0) {
  1722. chroma_mode = ff_hevc_intra_chroma_pred_mode_decode(s);
  1723. if (chroma_mode != 4) {
  1724. if (lc->pu.intra_pred_mode[0] == intra_chroma_table[chroma_mode])
  1725. lc->pu.intra_pred_mode_c[0] = 34;
  1726. else
  1727. lc->pu.intra_pred_mode_c[0] = intra_chroma_table[chroma_mode];
  1728. } else {
  1729. lc->pu.intra_pred_mode_c[0] = lc->pu.intra_pred_mode[0];
  1730. }
  1731. }
  1732. }
  1733. static void intra_prediction_unit_default_value(HEVCContext *s,
  1734. int x0, int y0,
  1735. int log2_cb_size)
  1736. {
  1737. HEVCLocalContext *lc = s->HEVClc;
  1738. int pb_size = 1 << log2_cb_size;
  1739. int size_in_pus = pb_size >> s->ps.sps->log2_min_pu_size;
  1740. int min_pu_width = s->ps.sps->min_pu_width;
  1741. MvField *tab_mvf = s->ref->tab_mvf;
  1742. int x_pu = x0 >> s->ps.sps->log2_min_pu_size;
  1743. int y_pu = y0 >> s->ps.sps->log2_min_pu_size;
  1744. int j, k;
  1745. if (size_in_pus == 0)
  1746. size_in_pus = 1;
  1747. for (j = 0; j < size_in_pus; j++)
  1748. memset(&s->tab_ipm[(y_pu + j) * min_pu_width + x_pu], INTRA_DC, size_in_pus);
  1749. if (lc->cu.pred_mode == MODE_INTRA)
  1750. for (j = 0; j < size_in_pus; j++)
  1751. for (k = 0; k < size_in_pus; k++)
  1752. tab_mvf[(y_pu + j) * min_pu_width + x_pu + k].pred_flag = PF_INTRA;
  1753. }
  1754. static int hls_coding_unit(HEVCContext *s, int x0, int y0, int log2_cb_size)
  1755. {
  1756. int cb_size = 1 << log2_cb_size;
  1757. HEVCLocalContext *lc = s->HEVClc;
  1758. int log2_min_cb_size = s->ps.sps->log2_min_cb_size;
  1759. int length = cb_size >> log2_min_cb_size;
  1760. int min_cb_width = s->ps.sps->min_cb_width;
  1761. int x_cb = x0 >> log2_min_cb_size;
  1762. int y_cb = y0 >> log2_min_cb_size;
  1763. int idx = log2_cb_size - 2;
  1764. int qp_block_mask = (1<<(s->ps.sps->log2_ctb_size - s->ps.pps->diff_cu_qp_delta_depth)) - 1;
  1765. int x, y, ret;
  1766. lc->cu.x = x0;
  1767. lc->cu.y = y0;
  1768. lc->cu.pred_mode = MODE_INTRA;
  1769. lc->cu.part_mode = PART_2Nx2N;
  1770. lc->cu.intra_split_flag = 0;
  1771. SAMPLE_CTB(s->skip_flag, x_cb, y_cb) = 0;
  1772. for (x = 0; x < 4; x++)
  1773. lc->pu.intra_pred_mode[x] = 1;
  1774. if (s->ps.pps->transquant_bypass_enable_flag) {
  1775. lc->cu.cu_transquant_bypass_flag = ff_hevc_cu_transquant_bypass_flag_decode(s);
  1776. if (lc->cu.cu_transquant_bypass_flag)
  1777. set_deblocking_bypass(s, x0, y0, log2_cb_size);
  1778. } else
  1779. lc->cu.cu_transquant_bypass_flag = 0;
  1780. if (s->sh.slice_type != I_SLICE) {
  1781. uint8_t skip_flag = ff_hevc_skip_flag_decode(s, x0, y0, x_cb, y_cb);
  1782. x = y_cb * min_cb_width + x_cb;
  1783. for (y = 0; y < length; y++) {
  1784. memset(&s->skip_flag[x], skip_flag, length);
  1785. x += min_cb_width;
  1786. }
  1787. lc->cu.pred_mode = skip_flag ? MODE_SKIP : MODE_INTER;
  1788. } else {
  1789. x = y_cb * min_cb_width + x_cb;
  1790. for (y = 0; y < length; y++) {
  1791. memset(&s->skip_flag[x], 0, length);
  1792. x += min_cb_width;
  1793. }
  1794. }
  1795. if (SAMPLE_CTB(s->skip_flag, x_cb, y_cb)) {
  1796. hls_prediction_unit(s, x0, y0, cb_size, cb_size, log2_cb_size, 0, idx);
  1797. intra_prediction_unit_default_value(s, x0, y0, log2_cb_size);
  1798. if (!s->sh.disable_deblocking_filter_flag)
  1799. ff_hevc_deblocking_boundary_strengths(s, x0, y0, log2_cb_size);
  1800. } else {
  1801. int pcm_flag = 0;
  1802. if (s->sh.slice_type != I_SLICE)
  1803. lc->cu.pred_mode = ff_hevc_pred_mode_decode(s);
  1804. if (lc->cu.pred_mode != MODE_INTRA ||
  1805. log2_cb_size == s->ps.sps->log2_min_cb_size) {
  1806. lc->cu.part_mode = ff_hevc_part_mode_decode(s, log2_cb_size);
  1807. lc->cu.intra_split_flag = lc->cu.part_mode == PART_NxN &&
  1808. lc->cu.pred_mode == MODE_INTRA;
  1809. }
  1810. if (lc->cu.pred_mode == MODE_INTRA) {
  1811. if (lc->cu.part_mode == PART_2Nx2N && s->ps.sps->pcm_enabled_flag &&
  1812. log2_cb_size >= s->ps.sps->pcm.log2_min_pcm_cb_size &&
  1813. log2_cb_size <= s->ps.sps->pcm.log2_max_pcm_cb_size) {
  1814. pcm_flag = ff_hevc_pcm_flag_decode(s);
  1815. }
  1816. if (pcm_flag) {
  1817. intra_prediction_unit_default_value(s, x0, y0, log2_cb_size);
  1818. ret = hls_pcm_sample(s, x0, y0, log2_cb_size);
  1819. if (s->ps.sps->pcm.loop_filter_disable_flag)
  1820. set_deblocking_bypass(s, x0, y0, log2_cb_size);
  1821. if (ret < 0)
  1822. return ret;
  1823. } else {
  1824. intra_prediction_unit(s, x0, y0, log2_cb_size);
  1825. }
  1826. } else {
  1827. intra_prediction_unit_default_value(s, x0, y0, log2_cb_size);
  1828. switch (lc->cu.part_mode) {
  1829. case PART_2Nx2N:
  1830. hls_prediction_unit(s, x0, y0, cb_size, cb_size, log2_cb_size, 0, idx);
  1831. break;
  1832. case PART_2NxN:
  1833. hls_prediction_unit(s, x0, y0, cb_size, cb_size / 2, log2_cb_size, 0, idx);
  1834. hls_prediction_unit(s, x0, y0 + cb_size / 2, cb_size, cb_size / 2, log2_cb_size, 1, idx);
  1835. break;
  1836. case PART_Nx2N:
  1837. hls_prediction_unit(s, x0, y0, cb_size / 2, cb_size, log2_cb_size, 0, idx - 1);
  1838. hls_prediction_unit(s, x0 + cb_size / 2, y0, cb_size / 2, cb_size, log2_cb_size, 1, idx - 1);
  1839. break;
  1840. case PART_2NxnU:
  1841. hls_prediction_unit(s, x0, y0, cb_size, cb_size / 4, log2_cb_size, 0, idx);
  1842. hls_prediction_unit(s, x0, y0 + cb_size / 4, cb_size, cb_size * 3 / 4, log2_cb_size, 1, idx);
  1843. break;
  1844. case PART_2NxnD:
  1845. hls_prediction_unit(s, x0, y0, cb_size, cb_size * 3 / 4, log2_cb_size, 0, idx);
  1846. hls_prediction_unit(s, x0, y0 + cb_size * 3 / 4, cb_size, cb_size / 4, log2_cb_size, 1, idx);
  1847. break;
  1848. case PART_nLx2N:
  1849. hls_prediction_unit(s, x0, y0, cb_size / 4, cb_size, log2_cb_size, 0, idx - 2);
  1850. hls_prediction_unit(s, x0 + cb_size / 4, y0, cb_size * 3 / 4, cb_size, log2_cb_size, 1, idx - 2);
  1851. break;
  1852. case PART_nRx2N:
  1853. hls_prediction_unit(s, x0, y0, cb_size * 3 / 4, cb_size, log2_cb_size, 0, idx - 2);
  1854. hls_prediction_unit(s, x0 + cb_size * 3 / 4, y0, cb_size / 4, cb_size, log2_cb_size, 1, idx - 2);
  1855. break;
  1856. case PART_NxN:
  1857. hls_prediction_unit(s, x0, y0, cb_size / 2, cb_size / 2, log2_cb_size, 0, idx - 1);
  1858. hls_prediction_unit(s, x0 + cb_size / 2, y0, cb_size / 2, cb_size / 2, log2_cb_size, 1, idx - 1);
  1859. hls_prediction_unit(s, x0, y0 + cb_size / 2, cb_size / 2, cb_size / 2, log2_cb_size, 2, idx - 1);
  1860. hls_prediction_unit(s, x0 + cb_size / 2, y0 + cb_size / 2, cb_size / 2, cb_size / 2, log2_cb_size, 3, idx - 1);
  1861. break;
  1862. }
  1863. }
  1864. if (!pcm_flag) {
  1865. int rqt_root_cbf = 1;
  1866. if (lc->cu.pred_mode != MODE_INTRA &&
  1867. !(lc->cu.part_mode == PART_2Nx2N && lc->pu.merge_flag)) {
  1868. rqt_root_cbf = ff_hevc_no_residual_syntax_flag_decode(s);
  1869. }
  1870. if (rqt_root_cbf) {
  1871. const static int cbf[2] = { 0 };
  1872. lc->cu.max_trafo_depth = lc->cu.pred_mode == MODE_INTRA ?
  1873. s->ps.sps->max_transform_hierarchy_depth_intra + lc->cu.intra_split_flag :
  1874. s->ps.sps->max_transform_hierarchy_depth_inter;
  1875. ret = hls_transform_tree(s, x0, y0, x0, y0, x0, y0,
  1876. log2_cb_size,
  1877. log2_cb_size, 0, 0, cbf, cbf);
  1878. if (ret < 0)
  1879. return ret;
  1880. } else {
  1881. if (!s->sh.disable_deblocking_filter_flag)
  1882. ff_hevc_deblocking_boundary_strengths(s, x0, y0, log2_cb_size);
  1883. }
  1884. }
  1885. }
  1886. if (s->ps.pps->cu_qp_delta_enabled_flag && lc->tu.is_cu_qp_delta_coded == 0)
  1887. ff_hevc_set_qPy(s, x0, y0, log2_cb_size);
  1888. x = y_cb * min_cb_width + x_cb;
  1889. for (y = 0; y < length; y++) {
  1890. memset(&s->qp_y_tab[x], lc->qp_y, length);
  1891. x += min_cb_width;
  1892. }
  1893. if(((x0 + (1<<log2_cb_size)) & qp_block_mask) == 0 &&
  1894. ((y0 + (1<<log2_cb_size)) & qp_block_mask) == 0) {
  1895. lc->qPy_pred = lc->qp_y;
  1896. }
  1897. set_ct_depth(s, x0, y0, log2_cb_size, lc->ct_depth);
  1898. return 0;
  1899. }
  1900. static int hls_coding_quadtree(HEVCContext *s, int x0, int y0,
  1901. int log2_cb_size, int cb_depth)
  1902. {
  1903. HEVCLocalContext *lc = s->HEVClc;
  1904. const int cb_size = 1 << log2_cb_size;
  1905. int ret;
  1906. int split_cu;
  1907. lc->ct_depth = cb_depth;
  1908. if (x0 + cb_size <= s->ps.sps->width &&
  1909. y0 + cb_size <= s->ps.sps->height &&
  1910. log2_cb_size > s->ps.sps->log2_min_cb_size) {
  1911. split_cu = ff_hevc_split_coding_unit_flag_decode(s, cb_depth, x0, y0);
  1912. } else {
  1913. split_cu = (log2_cb_size > s->ps.sps->log2_min_cb_size);
  1914. }
  1915. if (s->ps.pps->cu_qp_delta_enabled_flag &&
  1916. log2_cb_size >= s->ps.sps->log2_ctb_size - s->ps.pps->diff_cu_qp_delta_depth) {
  1917. lc->tu.is_cu_qp_delta_coded = 0;
  1918. lc->tu.cu_qp_delta = 0;
  1919. }
  1920. if (s->sh.cu_chroma_qp_offset_enabled_flag &&
  1921. log2_cb_size >= s->ps.sps->log2_ctb_size - s->ps.pps->diff_cu_chroma_qp_offset_depth) {
  1922. lc->tu.is_cu_chroma_qp_offset_coded = 0;
  1923. }
  1924. if (split_cu) {
  1925. int qp_block_mask = (1<<(s->ps.sps->log2_ctb_size - s->ps.pps->diff_cu_qp_delta_depth)) - 1;
  1926. const int cb_size_split = cb_size >> 1;
  1927. const int x1 = x0 + cb_size_split;
  1928. const int y1 = y0 + cb_size_split;
  1929. int more_data = 0;
  1930. more_data = hls_coding_quadtree(s, x0, y0, log2_cb_size - 1, cb_depth + 1);
  1931. if (more_data < 0)
  1932. return more_data;
  1933. if (more_data && x1 < s->ps.sps->width) {
  1934. more_data = hls_coding_quadtree(s, x1, y0, log2_cb_size - 1, cb_depth + 1);
  1935. if (more_data < 0)
  1936. return more_data;
  1937. }
  1938. if (more_data && y1 < s->ps.sps->height) {
  1939. more_data = hls_coding_quadtree(s, x0, y1, log2_cb_size - 1, cb_depth + 1);
  1940. if (more_data < 0)
  1941. return more_data;
  1942. }
  1943. if (more_data && x1 < s->ps.sps->width &&
  1944. y1 < s->ps.sps->height) {
  1945. more_data = hls_coding_quadtree(s, x1, y1, log2_cb_size - 1, cb_depth + 1);
  1946. if (more_data < 0)
  1947. return more_data;
  1948. }
  1949. if(((x0 + (1<<log2_cb_size)) & qp_block_mask) == 0 &&
  1950. ((y0 + (1<<log2_cb_size)) & qp_block_mask) == 0)
  1951. lc->qPy_pred = lc->qp_y;
  1952. if (more_data)
  1953. return ((x1 + cb_size_split) < s->ps.sps->width ||
  1954. (y1 + cb_size_split) < s->ps.sps->height);
  1955. else
  1956. return 0;
  1957. } else {
  1958. ret = hls_coding_unit(s, x0, y0, log2_cb_size);
  1959. if (ret < 0)
  1960. return ret;
  1961. if ((!((x0 + cb_size) %
  1962. (1 << (s->ps.sps->log2_ctb_size))) ||
  1963. (x0 + cb_size >= s->ps.sps->width)) &&
  1964. (!((y0 + cb_size) %
  1965. (1 << (s->ps.sps->log2_ctb_size))) ||
  1966. (y0 + cb_size >= s->ps.sps->height))) {
  1967. int end_of_slice_flag = ff_hevc_end_of_slice_flag_decode(s);
  1968. return !end_of_slice_flag;
  1969. } else {
  1970. return 1;
  1971. }
  1972. }
  1973. return 0;
  1974. }
  1975. static void hls_decode_neighbour(HEVCContext *s, int x_ctb, int y_ctb,
  1976. int ctb_addr_ts)
  1977. {
  1978. HEVCLocalContext *lc = s->HEVClc;
  1979. int ctb_size = 1 << s->ps.sps->log2_ctb_size;
  1980. int ctb_addr_rs = s->ps.pps->ctb_addr_ts_to_rs[ctb_addr_ts];
  1981. int ctb_addr_in_slice = ctb_addr_rs - s->sh.slice_addr;
  1982. s->tab_slice_address[ctb_addr_rs] = s->sh.slice_addr;
  1983. if (s->ps.pps->entropy_coding_sync_enabled_flag) {
  1984. if (x_ctb == 0 && (y_ctb & (ctb_size - 1)) == 0)
  1985. lc->first_qp_group = 1;
  1986. lc->end_of_tiles_x = s->ps.sps->width;
  1987. } else if (s->ps.pps->tiles_enabled_flag) {
  1988. if (ctb_addr_ts && s->ps.pps->tile_id[ctb_addr_ts] != s->ps.pps->tile_id[ctb_addr_ts - 1]) {
  1989. int idxX = s->ps.pps->col_idxX[x_ctb >> s->ps.sps->log2_ctb_size];
  1990. lc->end_of_tiles_x = x_ctb + (s->ps.pps->column_width[idxX] << s->ps.sps->log2_ctb_size);
  1991. lc->first_qp_group = 1;
  1992. }
  1993. } else {
  1994. lc->end_of_tiles_x = s->ps.sps->width;
  1995. }
  1996. lc->end_of_tiles_y = FFMIN(y_ctb + ctb_size, s->ps.sps->height);
  1997. lc->boundary_flags = 0;
  1998. if (s->ps.pps->tiles_enabled_flag) {
  1999. if (x_ctb > 0 && s->ps.pps->tile_id[ctb_addr_ts] != s->ps.pps->tile_id[s->ps.pps->ctb_addr_rs_to_ts[ctb_addr_rs - 1]])
  2000. lc->boundary_flags |= BOUNDARY_LEFT_TILE;
  2001. if (x_ctb > 0 && s->tab_slice_address[ctb_addr_rs] != s->tab_slice_address[ctb_addr_rs - 1])
  2002. lc->boundary_flags |= BOUNDARY_LEFT_SLICE;
  2003. if (y_ctb > 0 && s->ps.pps->tile_id[ctb_addr_ts] != s->ps.pps->tile_id[s->ps.pps->ctb_addr_rs_to_ts[ctb_addr_rs - s->ps.sps->ctb_width]])
  2004. lc->boundary_flags |= BOUNDARY_UPPER_TILE;
  2005. if (y_ctb > 0 && s->tab_slice_address[ctb_addr_rs] != s->tab_slice_address[ctb_addr_rs - s->ps.sps->ctb_width])
  2006. lc->boundary_flags |= BOUNDARY_UPPER_SLICE;
  2007. } else {
  2008. if (ctb_addr_in_slice <= 0)
  2009. lc->boundary_flags |= BOUNDARY_LEFT_SLICE;
  2010. if (ctb_addr_in_slice < s->ps.sps->ctb_width)
  2011. lc->boundary_flags |= BOUNDARY_UPPER_SLICE;
  2012. }
  2013. lc->ctb_left_flag = ((x_ctb > 0) && (ctb_addr_in_slice > 0) && !(lc->boundary_flags & BOUNDARY_LEFT_TILE));
  2014. lc->ctb_up_flag = ((y_ctb > 0) && (ctb_addr_in_slice >= s->ps.sps->ctb_width) && !(lc->boundary_flags & BOUNDARY_UPPER_TILE));
  2015. lc->ctb_up_right_flag = ((y_ctb > 0) && (ctb_addr_in_slice+1 >= s->ps.sps->ctb_width) && (s->ps.pps->tile_id[ctb_addr_ts] == s->ps.pps->tile_id[s->ps.pps->ctb_addr_rs_to_ts[ctb_addr_rs+1 - s->ps.sps->ctb_width]]));
  2016. lc->ctb_up_left_flag = ((x_ctb > 0) && (y_ctb > 0) && (ctb_addr_in_slice-1 >= s->ps.sps->ctb_width) && (s->ps.pps->tile_id[ctb_addr_ts] == s->ps.pps->tile_id[s->ps.pps->ctb_addr_rs_to_ts[ctb_addr_rs-1 - s->ps.sps->ctb_width]]));
  2017. }
  2018. static int hls_decode_entry(AVCodecContext *avctxt, void *isFilterThread)
  2019. {
  2020. HEVCContext *s = avctxt->priv_data;
  2021. int ctb_size = 1 << s->ps.sps->log2_ctb_size;
  2022. int more_data = 1;
  2023. int x_ctb = 0;
  2024. int y_ctb = 0;
  2025. int ctb_addr_ts = s->ps.pps->ctb_addr_rs_to_ts[s->sh.slice_ctb_addr_rs];
  2026. if (!ctb_addr_ts && s->sh.dependent_slice_segment_flag) {
  2027. av_log(s->avctx, AV_LOG_ERROR, "Impossible initial tile.\n");
  2028. return AVERROR_INVALIDDATA;
  2029. }
  2030. if (s->sh.dependent_slice_segment_flag) {
  2031. int prev_rs = s->ps.pps->ctb_addr_ts_to_rs[ctb_addr_ts - 1];
  2032. if (s->tab_slice_address[prev_rs] != s->sh.slice_addr) {
  2033. av_log(s->avctx, AV_LOG_ERROR, "Previous slice segment missing\n");
  2034. return AVERROR_INVALIDDATA;
  2035. }
  2036. }
  2037. while (more_data && ctb_addr_ts < s->ps.sps->ctb_size) {
  2038. int ctb_addr_rs = s->ps.pps->ctb_addr_ts_to_rs[ctb_addr_ts];
  2039. x_ctb = (ctb_addr_rs % ((s->ps.sps->width + ctb_size - 1) >> s->ps.sps->log2_ctb_size)) << s->ps.sps->log2_ctb_size;
  2040. y_ctb = (ctb_addr_rs / ((s->ps.sps->width + ctb_size - 1) >> s->ps.sps->log2_ctb_size)) << s->ps.sps->log2_ctb_size;
  2041. hls_decode_neighbour(s, x_ctb, y_ctb, ctb_addr_ts);
  2042. ff_hevc_cabac_init(s, ctb_addr_ts);
  2043. hls_sao_param(s, x_ctb >> s->ps.sps->log2_ctb_size, y_ctb >> s->ps.sps->log2_ctb_size);
  2044. s->deblock[ctb_addr_rs].beta_offset = s->sh.beta_offset;
  2045. s->deblock[ctb_addr_rs].tc_offset = s->sh.tc_offset;
  2046. s->filter_slice_edges[ctb_addr_rs] = s->sh.slice_loop_filter_across_slices_enabled_flag;
  2047. more_data = hls_coding_quadtree(s, x_ctb, y_ctb, s->ps.sps->log2_ctb_size, 0);
  2048. if (more_data < 0) {
  2049. s->tab_slice_address[ctb_addr_rs] = -1;
  2050. return more_data;
  2051. }
  2052. ctb_addr_ts++;
  2053. ff_hevc_save_states(s, ctb_addr_ts);
  2054. ff_hevc_hls_filters(s, x_ctb, y_ctb, ctb_size);
  2055. }
  2056. if (x_ctb + ctb_size >= s->ps.sps->width &&
  2057. y_ctb + ctb_size >= s->ps.sps->height)
  2058. ff_hevc_hls_filter(s, x_ctb, y_ctb, ctb_size);
  2059. return ctb_addr_ts;
  2060. }
  2061. static int hls_slice_data(HEVCContext *s)
  2062. {
  2063. int arg[2];
  2064. int ret[2];
  2065. arg[0] = 0;
  2066. arg[1] = 1;
  2067. s->avctx->execute(s->avctx, hls_decode_entry, arg, ret , 1, sizeof(int));
  2068. return ret[0];
  2069. }
  2070. static int hls_decode_entry_wpp(AVCodecContext *avctxt, void *input_ctb_row, int job, int self_id)
  2071. {
  2072. HEVCContext *s1 = avctxt->priv_data, *s;
  2073. HEVCLocalContext *lc;
  2074. int ctb_size = 1<< s1->ps.sps->log2_ctb_size;
  2075. int more_data = 1;
  2076. int *ctb_row_p = input_ctb_row;
  2077. int ctb_row = ctb_row_p[job];
  2078. int ctb_addr_rs = s1->sh.slice_ctb_addr_rs + ctb_row * ((s1->ps.sps->width + ctb_size - 1) >> s1->ps.sps->log2_ctb_size);
  2079. int ctb_addr_ts = s1->ps.pps->ctb_addr_rs_to_ts[ctb_addr_rs];
  2080. int thread = ctb_row % s1->threads_number;
  2081. int ret;
  2082. s = s1->sList[self_id];
  2083. lc = s->HEVClc;
  2084. if(ctb_row) {
  2085. ret = init_get_bits8(&lc->gb, s->data + s->sh.offset[ctb_row - 1], s->sh.size[ctb_row - 1]);
  2086. if (ret < 0)
  2087. return ret;
  2088. ff_init_cabac_decoder(&lc->cc, s->data + s->sh.offset[(ctb_row)-1], s->sh.size[ctb_row - 1]);
  2089. }
  2090. while(more_data && ctb_addr_ts < s->ps.sps->ctb_size) {
  2091. int x_ctb = (ctb_addr_rs % s->ps.sps->ctb_width) << s->ps.sps->log2_ctb_size;
  2092. int y_ctb = (ctb_addr_rs / s->ps.sps->ctb_width) << s->ps.sps->log2_ctb_size;
  2093. hls_decode_neighbour(s, x_ctb, y_ctb, ctb_addr_ts);
  2094. ff_thread_await_progress2(s->avctx, ctb_row, thread, SHIFT_CTB_WPP);
  2095. if (avpriv_atomic_int_get(&s1->wpp_err)){
  2096. ff_thread_report_progress2(s->avctx, ctb_row , thread, SHIFT_CTB_WPP);
  2097. return 0;
  2098. }
  2099. ff_hevc_cabac_init(s, ctb_addr_ts);
  2100. hls_sao_param(s, x_ctb >> s->ps.sps->log2_ctb_size, y_ctb >> s->ps.sps->log2_ctb_size);
  2101. more_data = hls_coding_quadtree(s, x_ctb, y_ctb, s->ps.sps->log2_ctb_size, 0);
  2102. if (more_data < 0) {
  2103. s->tab_slice_address[ctb_addr_rs] = -1;
  2104. avpriv_atomic_int_set(&s1->wpp_err, 1);
  2105. ff_thread_report_progress2(s->avctx, ctb_row ,thread, SHIFT_CTB_WPP);
  2106. return more_data;
  2107. }
  2108. ctb_addr_ts++;
  2109. ff_hevc_save_states(s, ctb_addr_ts);
  2110. ff_thread_report_progress2(s->avctx, ctb_row, thread, 1);
  2111. ff_hevc_hls_filters(s, x_ctb, y_ctb, ctb_size);
  2112. if (!more_data && (x_ctb+ctb_size) < s->ps.sps->width && ctb_row != s->sh.num_entry_point_offsets) {
  2113. avpriv_atomic_int_set(&s1->wpp_err, 1);
  2114. ff_thread_report_progress2(s->avctx, ctb_row ,thread, SHIFT_CTB_WPP);
  2115. return 0;
  2116. }
  2117. if ((x_ctb+ctb_size) >= s->ps.sps->width && (y_ctb+ctb_size) >= s->ps.sps->height ) {
  2118. ff_hevc_hls_filter(s, x_ctb, y_ctb, ctb_size);
  2119. ff_thread_report_progress2(s->avctx, ctb_row , thread, SHIFT_CTB_WPP);
  2120. return ctb_addr_ts;
  2121. }
  2122. ctb_addr_rs = s->ps.pps->ctb_addr_ts_to_rs[ctb_addr_ts];
  2123. x_ctb+=ctb_size;
  2124. if(x_ctb >= s->ps.sps->width) {
  2125. break;
  2126. }
  2127. }
  2128. ff_thread_report_progress2(s->avctx, ctb_row ,thread, SHIFT_CTB_WPP);
  2129. return 0;
  2130. }
  2131. static int hls_slice_data_wpp(HEVCContext *s, const HEVCNAL *nal)
  2132. {
  2133. const uint8_t *data = nal->data;
  2134. int length = nal->size;
  2135. HEVCLocalContext *lc = s->HEVClc;
  2136. int *ret = av_malloc_array(s->sh.num_entry_point_offsets + 1, sizeof(int));
  2137. int *arg = av_malloc_array(s->sh.num_entry_point_offsets + 1, sizeof(int));
  2138. int64_t offset;
  2139. int64_t startheader, cmpt = 0;
  2140. int i, j, res = 0;
  2141. if (!ret || !arg) {
  2142. av_free(ret);
  2143. av_free(arg);
  2144. return AVERROR(ENOMEM);
  2145. }
  2146. if (s->sh.slice_ctb_addr_rs + s->sh.num_entry_point_offsets * s->ps.sps->ctb_width >= s->ps.sps->ctb_width * s->ps.sps->ctb_height) {
  2147. av_log(s->avctx, AV_LOG_ERROR, "WPP ctb addresses are wrong (%d %d %d %d)\n",
  2148. s->sh.slice_ctb_addr_rs, s->sh.num_entry_point_offsets,
  2149. s->ps.sps->ctb_width, s->ps.sps->ctb_height
  2150. );
  2151. res = AVERROR_INVALIDDATA;
  2152. goto error;
  2153. }
  2154. ff_alloc_entries(s->avctx, s->sh.num_entry_point_offsets + 1);
  2155. if (!s->sList[1]) {
  2156. for (i = 1; i < s->threads_number; i++) {
  2157. s->sList[i] = av_malloc(sizeof(HEVCContext));
  2158. memcpy(s->sList[i], s, sizeof(HEVCContext));
  2159. s->HEVClcList[i] = av_mallocz(sizeof(HEVCLocalContext));
  2160. s->sList[i]->HEVClc = s->HEVClcList[i];
  2161. }
  2162. }
  2163. offset = (lc->gb.index >> 3);
  2164. for (j = 0, cmpt = 0, startheader = offset + s->sh.entry_point_offset[0]; j < nal->skipped_bytes; j++) {
  2165. if (nal->skipped_bytes_pos[j] >= offset && nal->skipped_bytes_pos[j] < startheader) {
  2166. startheader--;
  2167. cmpt++;
  2168. }
  2169. }
  2170. for (i = 1; i < s->sh.num_entry_point_offsets; i++) {
  2171. offset += (s->sh.entry_point_offset[i - 1] - cmpt);
  2172. for (j = 0, cmpt = 0, startheader = offset
  2173. + s->sh.entry_point_offset[i]; j < nal->skipped_bytes; j++) {
  2174. if (nal->skipped_bytes_pos[j] >= offset && nal->skipped_bytes_pos[j] < startheader) {
  2175. startheader--;
  2176. cmpt++;
  2177. }
  2178. }
  2179. s->sh.size[i - 1] = s->sh.entry_point_offset[i] - cmpt;
  2180. s->sh.offset[i - 1] = offset;
  2181. }
  2182. if (s->sh.num_entry_point_offsets != 0) {
  2183. offset += s->sh.entry_point_offset[s->sh.num_entry_point_offsets - 1] - cmpt;
  2184. if (length < offset) {
  2185. av_log(s->avctx, AV_LOG_ERROR, "entry_point_offset table is corrupted\n");
  2186. res = AVERROR_INVALIDDATA;
  2187. goto error;
  2188. }
  2189. s->sh.size[s->sh.num_entry_point_offsets - 1] = length - offset;
  2190. s->sh.offset[s->sh.num_entry_point_offsets - 1] = offset;
  2191. }
  2192. s->data = data;
  2193. for (i = 1; i < s->threads_number; i++) {
  2194. s->sList[i]->HEVClc->first_qp_group = 1;
  2195. s->sList[i]->HEVClc->qp_y = s->sList[0]->HEVClc->qp_y;
  2196. memcpy(s->sList[i], s, sizeof(HEVCContext));
  2197. s->sList[i]->HEVClc = s->HEVClcList[i];
  2198. }
  2199. avpriv_atomic_int_set(&s->wpp_err, 0);
  2200. ff_reset_entries(s->avctx);
  2201. for (i = 0; i <= s->sh.num_entry_point_offsets; i++) {
  2202. arg[i] = i;
  2203. ret[i] = 0;
  2204. }
  2205. if (s->ps.pps->entropy_coding_sync_enabled_flag)
  2206. s->avctx->execute2(s->avctx, hls_decode_entry_wpp, arg, ret, s->sh.num_entry_point_offsets + 1);
  2207. for (i = 0; i <= s->sh.num_entry_point_offsets; i++)
  2208. res += ret[i];
  2209. error:
  2210. av_free(ret);
  2211. av_free(arg);
  2212. return res;
  2213. }
  2214. static int set_side_data(HEVCContext *s)
  2215. {
  2216. AVFrame *out = s->ref->frame;
  2217. if (s->sei_frame_packing_present &&
  2218. s->frame_packing_arrangement_type >= 3 &&
  2219. s->frame_packing_arrangement_type <= 5 &&
  2220. s->content_interpretation_type > 0 &&
  2221. s->content_interpretation_type < 3) {
  2222. AVStereo3D *stereo = av_stereo3d_create_side_data(out);
  2223. if (!stereo)
  2224. return AVERROR(ENOMEM);
  2225. switch (s->frame_packing_arrangement_type) {
  2226. case 3:
  2227. if (s->quincunx_subsampling)
  2228. stereo->type = AV_STEREO3D_SIDEBYSIDE_QUINCUNX;
  2229. else
  2230. stereo->type = AV_STEREO3D_SIDEBYSIDE;
  2231. break;
  2232. case 4:
  2233. stereo->type = AV_STEREO3D_TOPBOTTOM;
  2234. break;
  2235. case 5:
  2236. stereo->type = AV_STEREO3D_FRAMESEQUENCE;
  2237. break;
  2238. }
  2239. if (s->content_interpretation_type == 2)
  2240. stereo->flags = AV_STEREO3D_FLAG_INVERT;
  2241. }
  2242. if (s->sei_display_orientation_present &&
  2243. (s->sei_anticlockwise_rotation || s->sei_hflip || s->sei_vflip)) {
  2244. double angle = s->sei_anticlockwise_rotation * 360 / (double) (1 << 16);
  2245. AVFrameSideData *rotation = av_frame_new_side_data(out,
  2246. AV_FRAME_DATA_DISPLAYMATRIX,
  2247. sizeof(int32_t) * 9);
  2248. if (!rotation)
  2249. return AVERROR(ENOMEM);
  2250. av_display_rotation_set((int32_t *)rotation->data, angle);
  2251. av_display_matrix_flip((int32_t *)rotation->data,
  2252. s->sei_hflip, s->sei_vflip);
  2253. }
  2254. // Decrement the mastering display flag when IRAP frame has no_rasl_output_flag=1
  2255. // so the side data persists for the entire coded video sequence.
  2256. if (s->sei_mastering_display_info_present > 0 &&
  2257. IS_IRAP(s) && s->no_rasl_output_flag) {
  2258. s->sei_mastering_display_info_present--;
  2259. }
  2260. if (s->sei_mastering_display_info_present) {
  2261. // HEVC uses a g,b,r ordering, which we convert to a more natural r,g,b
  2262. const int mapping[3] = {2, 0, 1};
  2263. const int chroma_den = 50000;
  2264. const int luma_den = 10000;
  2265. int i;
  2266. AVMasteringDisplayMetadata *metadata =
  2267. av_mastering_display_metadata_create_side_data(out);
  2268. if (!metadata)
  2269. return AVERROR(ENOMEM);
  2270. for (i = 0; i < 3; i++) {
  2271. const int j = mapping[i];
  2272. metadata->display_primaries[i][0].num = s->display_primaries[j][0];
  2273. metadata->display_primaries[i][0].den = chroma_den;
  2274. metadata->display_primaries[i][1].num = s->display_primaries[j][1];
  2275. metadata->display_primaries[i][1].den = chroma_den;
  2276. }
  2277. metadata->white_point[0].num = s->white_point[0];
  2278. metadata->white_point[0].den = chroma_den;
  2279. metadata->white_point[1].num = s->white_point[1];
  2280. metadata->white_point[1].den = chroma_den;
  2281. metadata->max_luminance.num = s->max_mastering_luminance;
  2282. metadata->max_luminance.den = luma_den;
  2283. metadata->min_luminance.num = s->min_mastering_luminance;
  2284. metadata->min_luminance.den = luma_den;
  2285. metadata->has_luminance = 1;
  2286. metadata->has_primaries = 1;
  2287. av_log(s->avctx, AV_LOG_DEBUG, "Mastering Display Metadata:\n");
  2288. av_log(s->avctx, AV_LOG_DEBUG,
  2289. "r(%5.4f,%5.4f) g(%5.4f,%5.4f) b(%5.4f %5.4f) wp(%5.4f, %5.4f)\n",
  2290. av_q2d(metadata->display_primaries[0][0]),
  2291. av_q2d(metadata->display_primaries[0][1]),
  2292. av_q2d(metadata->display_primaries[1][0]),
  2293. av_q2d(metadata->display_primaries[1][1]),
  2294. av_q2d(metadata->display_primaries[2][0]),
  2295. av_q2d(metadata->display_primaries[2][1]),
  2296. av_q2d(metadata->white_point[0]), av_q2d(metadata->white_point[1]));
  2297. av_log(s->avctx, AV_LOG_DEBUG,
  2298. "min_luminance=%f, max_luminance=%f\n",
  2299. av_q2d(metadata->min_luminance), av_q2d(metadata->max_luminance));
  2300. }
  2301. if (s->a53_caption) {
  2302. AVFrameSideData* sd = av_frame_new_side_data(out,
  2303. AV_FRAME_DATA_A53_CC,
  2304. s->a53_caption_size);
  2305. if (sd)
  2306. memcpy(sd->data, s->a53_caption, s->a53_caption_size);
  2307. av_freep(&s->a53_caption);
  2308. s->a53_caption_size = 0;
  2309. s->avctx->properties |= FF_CODEC_PROPERTY_CLOSED_CAPTIONS;
  2310. }
  2311. return 0;
  2312. }
  2313. static int hevc_frame_start(HEVCContext *s)
  2314. {
  2315. HEVCLocalContext *lc = s->HEVClc;
  2316. int pic_size_in_ctb = ((s->ps.sps->width >> s->ps.sps->log2_min_cb_size) + 1) *
  2317. ((s->ps.sps->height >> s->ps.sps->log2_min_cb_size) + 1);
  2318. int ret;
  2319. memset(s->horizontal_bs, 0, s->bs_width * s->bs_height);
  2320. memset(s->vertical_bs, 0, s->bs_width * s->bs_height);
  2321. memset(s->cbf_luma, 0, s->ps.sps->min_tb_width * s->ps.sps->min_tb_height);
  2322. memset(s->is_pcm, 0, (s->ps.sps->min_pu_width + 1) * (s->ps.sps->min_pu_height + 1));
  2323. memset(s->tab_slice_address, -1, pic_size_in_ctb * sizeof(*s->tab_slice_address));
  2324. s->is_decoded = 0;
  2325. s->first_nal_type = s->nal_unit_type;
  2326. if (s->ps.pps->tiles_enabled_flag)
  2327. lc->end_of_tiles_x = s->ps.pps->column_width[0] << s->ps.sps->log2_ctb_size;
  2328. ret = ff_hevc_set_new_ref(s, &s->frame, s->poc);
  2329. if (ret < 0)
  2330. goto fail;
  2331. ret = ff_hevc_frame_rps(s);
  2332. if (ret < 0) {
  2333. av_log(s->avctx, AV_LOG_ERROR, "Error constructing the frame RPS.\n");
  2334. goto fail;
  2335. }
  2336. s->ref->frame->key_frame = IS_IRAP(s);
  2337. ret = set_side_data(s);
  2338. if (ret < 0)
  2339. goto fail;
  2340. s->frame->pict_type = 3 - s->sh.slice_type;
  2341. if (!IS_IRAP(s))
  2342. ff_hevc_bump_frame(s);
  2343. av_frame_unref(s->output_frame);
  2344. ret = ff_hevc_output_frame(s, s->output_frame, 0);
  2345. if (ret < 0)
  2346. goto fail;
  2347. if (!s->avctx->hwaccel)
  2348. ff_thread_finish_setup(s->avctx);
  2349. return 0;
  2350. fail:
  2351. if (s->ref)
  2352. ff_hevc_unref_frame(s, s->ref, ~0);
  2353. s->ref = NULL;
  2354. return ret;
  2355. }
  2356. static int decode_nal_unit(HEVCContext *s, const HEVCNAL *nal)
  2357. {
  2358. HEVCLocalContext *lc = s->HEVClc;
  2359. GetBitContext *gb = &lc->gb;
  2360. int ctb_addr_ts, ret;
  2361. *gb = nal->gb;
  2362. s->nal_unit_type = nal->type;
  2363. s->temporal_id = nal->temporal_id;
  2364. switch (s->nal_unit_type) {
  2365. case NAL_VPS:
  2366. ret = ff_hevc_decode_nal_vps(gb, s->avctx, &s->ps);
  2367. if (ret < 0)
  2368. goto fail;
  2369. break;
  2370. case NAL_SPS:
  2371. ret = ff_hevc_decode_nal_sps(gb, s->avctx, &s->ps,
  2372. s->apply_defdispwin);
  2373. if (ret < 0)
  2374. goto fail;
  2375. break;
  2376. case NAL_PPS:
  2377. ret = ff_hevc_decode_nal_pps(gb, s->avctx, &s->ps);
  2378. if (ret < 0)
  2379. goto fail;
  2380. break;
  2381. case NAL_SEI_PREFIX:
  2382. case NAL_SEI_SUFFIX:
  2383. ret = ff_hevc_decode_nal_sei(s);
  2384. if (ret < 0)
  2385. goto fail;
  2386. break;
  2387. case NAL_TRAIL_R:
  2388. case NAL_TRAIL_N:
  2389. case NAL_TSA_N:
  2390. case NAL_TSA_R:
  2391. case NAL_STSA_N:
  2392. case NAL_STSA_R:
  2393. case NAL_BLA_W_LP:
  2394. case NAL_BLA_W_RADL:
  2395. case NAL_BLA_N_LP:
  2396. case NAL_IDR_W_RADL:
  2397. case NAL_IDR_N_LP:
  2398. case NAL_CRA_NUT:
  2399. case NAL_RADL_N:
  2400. case NAL_RADL_R:
  2401. case NAL_RASL_N:
  2402. case NAL_RASL_R:
  2403. ret = hls_slice_header(s);
  2404. if (ret < 0)
  2405. return ret;
  2406. if (s->max_ra == INT_MAX) {
  2407. if (s->nal_unit_type == NAL_CRA_NUT || IS_BLA(s)) {
  2408. s->max_ra = s->poc;
  2409. } else {
  2410. if (IS_IDR(s))
  2411. s->max_ra = INT_MIN;
  2412. }
  2413. }
  2414. if ((s->nal_unit_type == NAL_RASL_R || s->nal_unit_type == NAL_RASL_N) &&
  2415. s->poc <= s->max_ra) {
  2416. s->is_decoded = 0;
  2417. break;
  2418. } else {
  2419. if (s->nal_unit_type == NAL_RASL_R && s->poc > s->max_ra)
  2420. s->max_ra = INT_MIN;
  2421. }
  2422. if (s->sh.first_slice_in_pic_flag) {
  2423. ret = hevc_frame_start(s);
  2424. if (ret < 0)
  2425. return ret;
  2426. } else if (!s->ref) {
  2427. av_log(s->avctx, AV_LOG_ERROR, "First slice in a frame missing.\n");
  2428. goto fail;
  2429. }
  2430. if (s->nal_unit_type != s->first_nal_type) {
  2431. av_log(s->avctx, AV_LOG_ERROR,
  2432. "Non-matching NAL types of the VCL NALUs: %d %d\n",
  2433. s->first_nal_type, s->nal_unit_type);
  2434. return AVERROR_INVALIDDATA;
  2435. }
  2436. if (!s->sh.dependent_slice_segment_flag &&
  2437. s->sh.slice_type != I_SLICE) {
  2438. ret = ff_hevc_slice_rpl(s);
  2439. if (ret < 0) {
  2440. av_log(s->avctx, AV_LOG_WARNING,
  2441. "Error constructing the reference lists for the current slice.\n");
  2442. goto fail;
  2443. }
  2444. }
  2445. if (s->sh.first_slice_in_pic_flag && s->avctx->hwaccel) {
  2446. ret = s->avctx->hwaccel->start_frame(s->avctx, NULL, 0);
  2447. if (ret < 0)
  2448. goto fail;
  2449. }
  2450. if (s->avctx->hwaccel) {
  2451. ret = s->avctx->hwaccel->decode_slice(s->avctx, nal->raw_data, nal->raw_size);
  2452. if (ret < 0)
  2453. goto fail;
  2454. } else {
  2455. if (s->threads_number > 1 && s->sh.num_entry_point_offsets > 0)
  2456. ctb_addr_ts = hls_slice_data_wpp(s, nal);
  2457. else
  2458. ctb_addr_ts = hls_slice_data(s);
  2459. if (ctb_addr_ts >= (s->ps.sps->ctb_width * s->ps.sps->ctb_height)) {
  2460. s->is_decoded = 1;
  2461. }
  2462. if (ctb_addr_ts < 0) {
  2463. ret = ctb_addr_ts;
  2464. goto fail;
  2465. }
  2466. }
  2467. break;
  2468. case NAL_EOS_NUT:
  2469. case NAL_EOB_NUT:
  2470. s->seq_decode = (s->seq_decode + 1) & 0xff;
  2471. s->max_ra = INT_MAX;
  2472. break;
  2473. case NAL_AUD:
  2474. case NAL_FD_NUT:
  2475. break;
  2476. default:
  2477. av_log(s->avctx, AV_LOG_INFO,
  2478. "Skipping NAL unit %d\n", s->nal_unit_type);
  2479. }
  2480. return 0;
  2481. fail:
  2482. if (s->avctx->err_recognition & AV_EF_EXPLODE)
  2483. return ret;
  2484. return 0;
  2485. }
  2486. static int decode_nal_units(HEVCContext *s, const uint8_t *buf, int length)
  2487. {
  2488. int i, ret = 0;
  2489. s->ref = NULL;
  2490. s->last_eos = s->eos;
  2491. s->eos = 0;
  2492. /* split the input packet into NAL units, so we know the upper bound on the
  2493. * number of slices in the frame */
  2494. ret = ff_hevc_split_packet(s, &s->pkt, buf, length, s->avctx, s->is_nalff,
  2495. s->nal_length_size);
  2496. if (ret < 0) {
  2497. av_log(s->avctx, AV_LOG_ERROR,
  2498. "Error splitting the input into NAL units.\n");
  2499. return ret;
  2500. }
  2501. for (i = 0; i < s->pkt.nb_nals; i++) {
  2502. if (s->pkt.nals[i].type == NAL_EOB_NUT ||
  2503. s->pkt.nals[i].type == NAL_EOS_NUT)
  2504. s->eos = 1;
  2505. }
  2506. /* decode the NAL units */
  2507. for (i = 0; i < s->pkt.nb_nals; i++) {
  2508. ret = decode_nal_unit(s, &s->pkt.nals[i]);
  2509. if (ret < 0) {
  2510. av_log(s->avctx, AV_LOG_WARNING,
  2511. "Error parsing NAL unit #%d.\n", i);
  2512. goto fail;
  2513. }
  2514. }
  2515. fail:
  2516. if (s->ref && s->threads_type == FF_THREAD_FRAME)
  2517. ff_thread_report_progress(&s->ref->tf, INT_MAX, 0);
  2518. return ret;
  2519. }
  2520. static void print_md5(void *log_ctx, int level, uint8_t md5[16])
  2521. {
  2522. int i;
  2523. for (i = 0; i < 16; i++)
  2524. av_log(log_ctx, level, "%02"PRIx8, md5[i]);
  2525. }
  2526. static int verify_md5(HEVCContext *s, AVFrame *frame)
  2527. {
  2528. const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(frame->format);
  2529. int pixel_shift;
  2530. int i, j;
  2531. if (!desc)
  2532. return AVERROR(EINVAL);
  2533. pixel_shift = desc->comp[0].depth > 8;
  2534. av_log(s->avctx, AV_LOG_DEBUG, "Verifying checksum for frame with POC %d: ",
  2535. s->poc);
  2536. /* the checksums are LE, so we have to byteswap for >8bpp formats
  2537. * on BE arches */
  2538. #if HAVE_BIGENDIAN
  2539. if (pixel_shift && !s->checksum_buf) {
  2540. av_fast_malloc(&s->checksum_buf, &s->checksum_buf_size,
  2541. FFMAX3(frame->linesize[0], frame->linesize[1],
  2542. frame->linesize[2]));
  2543. if (!s->checksum_buf)
  2544. return AVERROR(ENOMEM);
  2545. }
  2546. #endif
  2547. for (i = 0; frame->data[i]; i++) {
  2548. int width = s->avctx->coded_width;
  2549. int height = s->avctx->coded_height;
  2550. int w = (i == 1 || i == 2) ? (width >> desc->log2_chroma_w) : width;
  2551. int h = (i == 1 || i == 2) ? (height >> desc->log2_chroma_h) : height;
  2552. uint8_t md5[16];
  2553. av_md5_init(s->md5_ctx);
  2554. for (j = 0; j < h; j++) {
  2555. const uint8_t *src = frame->data[i] + j * frame->linesize[i];
  2556. #if HAVE_BIGENDIAN
  2557. if (pixel_shift) {
  2558. s->bdsp.bswap16_buf((uint16_t *) s->checksum_buf,
  2559. (const uint16_t *) src, w);
  2560. src = s->checksum_buf;
  2561. }
  2562. #endif
  2563. av_md5_update(s->md5_ctx, src, w << pixel_shift);
  2564. }
  2565. av_md5_final(s->md5_ctx, md5);
  2566. if (!memcmp(md5, s->md5[i], 16)) {
  2567. av_log (s->avctx, AV_LOG_DEBUG, "plane %d - correct ", i);
  2568. print_md5(s->avctx, AV_LOG_DEBUG, md5);
  2569. av_log (s->avctx, AV_LOG_DEBUG, "; ");
  2570. } else {
  2571. av_log (s->avctx, AV_LOG_ERROR, "mismatching checksum of plane %d - ", i);
  2572. print_md5(s->avctx, AV_LOG_ERROR, md5);
  2573. av_log (s->avctx, AV_LOG_ERROR, " != ");
  2574. print_md5(s->avctx, AV_LOG_ERROR, s->md5[i]);
  2575. av_log (s->avctx, AV_LOG_ERROR, "\n");
  2576. return AVERROR_INVALIDDATA;
  2577. }
  2578. }
  2579. av_log(s->avctx, AV_LOG_DEBUG, "\n");
  2580. return 0;
  2581. }
  2582. static int hevc_decode_frame(AVCodecContext *avctx, void *data, int *got_output,
  2583. AVPacket *avpkt)
  2584. {
  2585. int ret;
  2586. HEVCContext *s = avctx->priv_data;
  2587. if (!avpkt->size) {
  2588. ret = ff_hevc_output_frame(s, data, 1);
  2589. if (ret < 0)
  2590. return ret;
  2591. *got_output = ret;
  2592. return 0;
  2593. }
  2594. s->ref = NULL;
  2595. ret = decode_nal_units(s, avpkt->data, avpkt->size);
  2596. if (ret < 0)
  2597. return ret;
  2598. if (avctx->hwaccel) {
  2599. if (s->ref && (ret = avctx->hwaccel->end_frame(avctx)) < 0) {
  2600. av_log(avctx, AV_LOG_ERROR,
  2601. "hardware accelerator failed to decode picture\n");
  2602. ff_hevc_unref_frame(s, s->ref, ~0);
  2603. return ret;
  2604. }
  2605. } else {
  2606. /* verify the SEI checksum */
  2607. if (avctx->err_recognition & AV_EF_CRCCHECK && s->is_decoded &&
  2608. s->is_md5) {
  2609. ret = verify_md5(s, s->ref->frame);
  2610. if (ret < 0 && avctx->err_recognition & AV_EF_EXPLODE) {
  2611. ff_hevc_unref_frame(s, s->ref, ~0);
  2612. return ret;
  2613. }
  2614. }
  2615. }
  2616. s->is_md5 = 0;
  2617. if (s->is_decoded) {
  2618. av_log(avctx, AV_LOG_DEBUG, "Decoded frame with POC %d.\n", s->poc);
  2619. s->is_decoded = 0;
  2620. }
  2621. if (s->output_frame->buf[0]) {
  2622. av_frame_move_ref(data, s->output_frame);
  2623. *got_output = 1;
  2624. }
  2625. return avpkt->size;
  2626. }
  2627. static int hevc_ref_frame(HEVCContext *s, HEVCFrame *dst, HEVCFrame *src)
  2628. {
  2629. int ret;
  2630. ret = ff_thread_ref_frame(&dst->tf, &src->tf);
  2631. if (ret < 0)
  2632. return ret;
  2633. dst->tab_mvf_buf = av_buffer_ref(src->tab_mvf_buf);
  2634. if (!dst->tab_mvf_buf)
  2635. goto fail;
  2636. dst->tab_mvf = src->tab_mvf;
  2637. dst->rpl_tab_buf = av_buffer_ref(src->rpl_tab_buf);
  2638. if (!dst->rpl_tab_buf)
  2639. goto fail;
  2640. dst->rpl_tab = src->rpl_tab;
  2641. dst->rpl_buf = av_buffer_ref(src->rpl_buf);
  2642. if (!dst->rpl_buf)
  2643. goto fail;
  2644. dst->poc = src->poc;
  2645. dst->ctb_count = src->ctb_count;
  2646. dst->window = src->window;
  2647. dst->flags = src->flags;
  2648. dst->sequence = src->sequence;
  2649. if (src->hwaccel_picture_private) {
  2650. dst->hwaccel_priv_buf = av_buffer_ref(src->hwaccel_priv_buf);
  2651. if (!dst->hwaccel_priv_buf)
  2652. goto fail;
  2653. dst->hwaccel_picture_private = dst->hwaccel_priv_buf->data;
  2654. }
  2655. return 0;
  2656. fail:
  2657. ff_hevc_unref_frame(s, dst, ~0);
  2658. return AVERROR(ENOMEM);
  2659. }
  2660. static av_cold int hevc_decode_free(AVCodecContext *avctx)
  2661. {
  2662. HEVCContext *s = avctx->priv_data;
  2663. int i;
  2664. pic_arrays_free(s);
  2665. av_freep(&s->md5_ctx);
  2666. av_freep(&s->cabac_state);
  2667. for (i = 0; i < 3; i++) {
  2668. av_freep(&s->sao_pixel_buffer_h[i]);
  2669. av_freep(&s->sao_pixel_buffer_v[i]);
  2670. }
  2671. av_frame_free(&s->output_frame);
  2672. for (i = 0; i < FF_ARRAY_ELEMS(s->DPB); i++) {
  2673. ff_hevc_unref_frame(s, &s->DPB[i], ~0);
  2674. av_frame_free(&s->DPB[i].frame);
  2675. }
  2676. for (i = 0; i < FF_ARRAY_ELEMS(s->ps.vps_list); i++)
  2677. av_buffer_unref(&s->ps.vps_list[i]);
  2678. for (i = 0; i < FF_ARRAY_ELEMS(s->ps.sps_list); i++)
  2679. av_buffer_unref(&s->ps.sps_list[i]);
  2680. for (i = 0; i < FF_ARRAY_ELEMS(s->ps.pps_list); i++)
  2681. av_buffer_unref(&s->ps.pps_list[i]);
  2682. s->ps.sps = NULL;
  2683. s->ps.pps = NULL;
  2684. s->ps.vps = NULL;
  2685. av_freep(&s->sh.entry_point_offset);
  2686. av_freep(&s->sh.offset);
  2687. av_freep(&s->sh.size);
  2688. for (i = 1; i < s->threads_number; i++) {
  2689. HEVCLocalContext *lc = s->HEVClcList[i];
  2690. if (lc) {
  2691. av_freep(&s->HEVClcList[i]);
  2692. av_freep(&s->sList[i]);
  2693. }
  2694. }
  2695. if (s->HEVClc == s->HEVClcList[0])
  2696. s->HEVClc = NULL;
  2697. av_freep(&s->HEVClcList[0]);
  2698. for (i = 0; i < s->pkt.nals_allocated; i++) {
  2699. av_freep(&s->pkt.nals[i].rbsp_buffer);
  2700. av_freep(&s->pkt.nals[i].skipped_bytes_pos);
  2701. }
  2702. av_freep(&s->pkt.nals);
  2703. s->pkt.nals_allocated = 0;
  2704. return 0;
  2705. }
  2706. static av_cold int hevc_init_context(AVCodecContext *avctx)
  2707. {
  2708. HEVCContext *s = avctx->priv_data;
  2709. int i;
  2710. s->avctx = avctx;
  2711. s->HEVClc = av_mallocz(sizeof(HEVCLocalContext));
  2712. if (!s->HEVClc)
  2713. goto fail;
  2714. s->HEVClcList[0] = s->HEVClc;
  2715. s->sList[0] = s;
  2716. s->cabac_state = av_malloc(HEVC_CONTEXTS);
  2717. if (!s->cabac_state)
  2718. goto fail;
  2719. s->output_frame = av_frame_alloc();
  2720. if (!s->output_frame)
  2721. goto fail;
  2722. for (i = 0; i < FF_ARRAY_ELEMS(s->DPB); i++) {
  2723. s->DPB[i].frame = av_frame_alloc();
  2724. if (!s->DPB[i].frame)
  2725. goto fail;
  2726. s->DPB[i].tf.f = s->DPB[i].frame;
  2727. }
  2728. s->max_ra = INT_MAX;
  2729. s->md5_ctx = av_md5_alloc();
  2730. if (!s->md5_ctx)
  2731. goto fail;
  2732. ff_bswapdsp_init(&s->bdsp);
  2733. s->context_initialized = 1;
  2734. s->eos = 0;
  2735. ff_hevc_reset_sei(s);
  2736. return 0;
  2737. fail:
  2738. hevc_decode_free(avctx);
  2739. return AVERROR(ENOMEM);
  2740. }
  2741. static int hevc_update_thread_context(AVCodecContext *dst,
  2742. const AVCodecContext *src)
  2743. {
  2744. HEVCContext *s = dst->priv_data;
  2745. HEVCContext *s0 = src->priv_data;
  2746. int i, ret;
  2747. if (!s->context_initialized) {
  2748. ret = hevc_init_context(dst);
  2749. if (ret < 0)
  2750. return ret;
  2751. }
  2752. for (i = 0; i < FF_ARRAY_ELEMS(s->DPB); i++) {
  2753. ff_hevc_unref_frame(s, &s->DPB[i], ~0);
  2754. if (s0->DPB[i].frame->buf[0]) {
  2755. ret = hevc_ref_frame(s, &s->DPB[i], &s0->DPB[i]);
  2756. if (ret < 0)
  2757. return ret;
  2758. }
  2759. }
  2760. if (s->ps.sps != s0->ps.sps)
  2761. s->ps.sps = NULL;
  2762. for (i = 0; i < FF_ARRAY_ELEMS(s->ps.vps_list); i++) {
  2763. av_buffer_unref(&s->ps.vps_list[i]);
  2764. if (s0->ps.vps_list[i]) {
  2765. s->ps.vps_list[i] = av_buffer_ref(s0->ps.vps_list[i]);
  2766. if (!s->ps.vps_list[i])
  2767. return AVERROR(ENOMEM);
  2768. }
  2769. }
  2770. for (i = 0; i < FF_ARRAY_ELEMS(s->ps.sps_list); i++) {
  2771. av_buffer_unref(&s->ps.sps_list[i]);
  2772. if (s0->ps.sps_list[i]) {
  2773. s->ps.sps_list[i] = av_buffer_ref(s0->ps.sps_list[i]);
  2774. if (!s->ps.sps_list[i])
  2775. return AVERROR(ENOMEM);
  2776. }
  2777. }
  2778. for (i = 0; i < FF_ARRAY_ELEMS(s->ps.pps_list); i++) {
  2779. av_buffer_unref(&s->ps.pps_list[i]);
  2780. if (s0->ps.pps_list[i]) {
  2781. s->ps.pps_list[i] = av_buffer_ref(s0->ps.pps_list[i]);
  2782. if (!s->ps.pps_list[i])
  2783. return AVERROR(ENOMEM);
  2784. }
  2785. }
  2786. if (s->ps.sps != s0->ps.sps)
  2787. if ((ret = set_sps(s, s0->ps.sps, src->pix_fmt)) < 0)
  2788. return ret;
  2789. s->seq_decode = s0->seq_decode;
  2790. s->seq_output = s0->seq_output;
  2791. s->pocTid0 = s0->pocTid0;
  2792. s->max_ra = s0->max_ra;
  2793. s->eos = s0->eos;
  2794. s->no_rasl_output_flag = s0->no_rasl_output_flag;
  2795. s->is_nalff = s0->is_nalff;
  2796. s->nal_length_size = s0->nal_length_size;
  2797. s->threads_number = s0->threads_number;
  2798. s->threads_type = s0->threads_type;
  2799. if (s0->eos) {
  2800. s->seq_decode = (s->seq_decode + 1) & 0xff;
  2801. s->max_ra = INT_MAX;
  2802. }
  2803. return 0;
  2804. }
  2805. static int hevc_decode_extradata(HEVCContext *s)
  2806. {
  2807. AVCodecContext *avctx = s->avctx;
  2808. GetByteContext gb;
  2809. int ret, i;
  2810. bytestream2_init(&gb, avctx->extradata, avctx->extradata_size);
  2811. if (avctx->extradata_size > 3 &&
  2812. (avctx->extradata[0] || avctx->extradata[1] ||
  2813. avctx->extradata[2] > 1)) {
  2814. /* It seems the extradata is encoded as hvcC format.
  2815. * Temporarily, we support configurationVersion==0 until 14496-15 3rd
  2816. * is finalized. When finalized, configurationVersion will be 1 and we
  2817. * can recognize hvcC by checking if avctx->extradata[0]==1 or not. */
  2818. int i, j, num_arrays, nal_len_size;
  2819. s->is_nalff = 1;
  2820. bytestream2_skip(&gb, 21);
  2821. nal_len_size = (bytestream2_get_byte(&gb) & 3) + 1;
  2822. num_arrays = bytestream2_get_byte(&gb);
  2823. /* nal units in the hvcC always have length coded with 2 bytes,
  2824. * so put a fake nal_length_size = 2 while parsing them */
  2825. s->nal_length_size = 2;
  2826. /* Decode nal units from hvcC. */
  2827. for (i = 0; i < num_arrays; i++) {
  2828. int type = bytestream2_get_byte(&gb) & 0x3f;
  2829. int cnt = bytestream2_get_be16(&gb);
  2830. for (j = 0; j < cnt; j++) {
  2831. // +2 for the nal size field
  2832. int nalsize = bytestream2_peek_be16(&gb) + 2;
  2833. if (bytestream2_get_bytes_left(&gb) < nalsize) {
  2834. av_log(s->avctx, AV_LOG_ERROR,
  2835. "Invalid NAL unit size in extradata.\n");
  2836. return AVERROR_INVALIDDATA;
  2837. }
  2838. ret = decode_nal_units(s, gb.buffer, nalsize);
  2839. if (ret < 0) {
  2840. av_log(avctx, AV_LOG_ERROR,
  2841. "Decoding nal unit %d %d from hvcC failed\n",
  2842. type, i);
  2843. return ret;
  2844. }
  2845. bytestream2_skip(&gb, nalsize);
  2846. }
  2847. }
  2848. /* Now store right nal length size, that will be used to parse
  2849. * all other nals */
  2850. s->nal_length_size = nal_len_size;
  2851. } else {
  2852. s->is_nalff = 0;
  2853. ret = decode_nal_units(s, avctx->extradata, avctx->extradata_size);
  2854. if (ret < 0)
  2855. return ret;
  2856. }
  2857. /* export stream parameters from the first SPS */
  2858. for (i = 0; i < FF_ARRAY_ELEMS(s->ps.sps_list); i++) {
  2859. if (s->ps.sps_list[i]) {
  2860. const HEVCSPS *sps = (const HEVCSPS*)s->ps.sps_list[i]->data;
  2861. export_stream_params(s->avctx, &s->ps, sps);
  2862. break;
  2863. }
  2864. }
  2865. return 0;
  2866. }
  2867. static av_cold int hevc_decode_init(AVCodecContext *avctx)
  2868. {
  2869. HEVCContext *s = avctx->priv_data;
  2870. int ret;
  2871. avctx->internal->allocate_progress = 1;
  2872. ret = hevc_init_context(avctx);
  2873. if (ret < 0)
  2874. return ret;
  2875. s->enable_parallel_tiles = 0;
  2876. s->picture_struct = 0;
  2877. s->eos = 1;
  2878. if(avctx->active_thread_type & FF_THREAD_SLICE)
  2879. s->threads_number = avctx->thread_count;
  2880. else
  2881. s->threads_number = 1;
  2882. if (avctx->extradata_size > 0 && avctx->extradata) {
  2883. ret = hevc_decode_extradata(s);
  2884. if (ret < 0) {
  2885. hevc_decode_free(avctx);
  2886. return ret;
  2887. }
  2888. }
  2889. if((avctx->active_thread_type & FF_THREAD_FRAME) && avctx->thread_count > 1)
  2890. s->threads_type = FF_THREAD_FRAME;
  2891. else
  2892. s->threads_type = FF_THREAD_SLICE;
  2893. return 0;
  2894. }
  2895. static av_cold int hevc_init_thread_copy(AVCodecContext *avctx)
  2896. {
  2897. HEVCContext *s = avctx->priv_data;
  2898. int ret;
  2899. memset(s, 0, sizeof(*s));
  2900. ret = hevc_init_context(avctx);
  2901. if (ret < 0)
  2902. return ret;
  2903. return 0;
  2904. }
  2905. static void hevc_decode_flush(AVCodecContext *avctx)
  2906. {
  2907. HEVCContext *s = avctx->priv_data;
  2908. ff_hevc_flush_dpb(s);
  2909. s->max_ra = INT_MAX;
  2910. s->eos = 1;
  2911. }
  2912. #define OFFSET(x) offsetof(HEVCContext, x)
  2913. #define PAR (AV_OPT_FLAG_DECODING_PARAM | AV_OPT_FLAG_VIDEO_PARAM)
  2914. static const AVOption options[] = {
  2915. { "apply_defdispwin", "Apply default display window from VUI", OFFSET(apply_defdispwin),
  2916. AV_OPT_TYPE_BOOL, {.i64 = 0}, 0, 1, PAR },
  2917. { "strict-displaywin", "stricly apply default display window size", OFFSET(apply_defdispwin),
  2918. AV_OPT_TYPE_BOOL, {.i64 = 0}, 0, 1, PAR },
  2919. { NULL },
  2920. };
  2921. static const AVClass hevc_decoder_class = {
  2922. .class_name = "HEVC decoder",
  2923. .item_name = av_default_item_name,
  2924. .option = options,
  2925. .version = LIBAVUTIL_VERSION_INT,
  2926. };
  2927. AVCodec ff_hevc_decoder = {
  2928. .name = "hevc",
  2929. .long_name = NULL_IF_CONFIG_SMALL("HEVC (High Efficiency Video Coding)"),
  2930. .type = AVMEDIA_TYPE_VIDEO,
  2931. .id = AV_CODEC_ID_HEVC,
  2932. .priv_data_size = sizeof(HEVCContext),
  2933. .priv_class = &hevc_decoder_class,
  2934. .init = hevc_decode_init,
  2935. .close = hevc_decode_free,
  2936. .decode = hevc_decode_frame,
  2937. .flush = hevc_decode_flush,
  2938. .update_thread_context = hevc_update_thread_context,
  2939. .init_thread_copy = hevc_init_thread_copy,
  2940. .capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_DELAY |
  2941. AV_CODEC_CAP_SLICE_THREADS | AV_CODEC_CAP_FRAME_THREADS,
  2942. .profiles = NULL_IF_CONFIG_SMALL(ff_hevc_profiles),
  2943. };