You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

664 lines
21KB

  1. /*
  2. * Canopus HQX decoder
  3. *
  4. * This file is part of FFmpeg.
  5. *
  6. * FFmpeg is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU Lesser General Public
  8. * License as published by the Free Software Foundation; either
  9. * version 2.1 of the License, or (at your option) any later version.
  10. *
  11. * FFmpeg is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  14. * Lesser General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU Lesser General Public
  17. * License along with FFmpeg; if not, write to the Free Software
  18. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  19. */
  20. #include <inttypes.h>
  21. #include "libavutil/imgutils.h"
  22. #include "libavutil/intreadwrite.h"
  23. #include "avcodec.h"
  24. #include "get_bits.h"
  25. #include "internal.h"
  26. #include "hqx.h"
  27. /* HQX has four modes - 422, 444, 422alpha and 444alpha - all 12-bit */
  28. enum HQXFormat {
  29. HQX_422 = 0,
  30. HQX_444,
  31. HQX_422A,
  32. HQX_444A,
  33. };
  34. #define HQX_HEADER_SIZE 59
  35. typedef int (*mb_decode_func)(HQXContext *ctx, HQXSliceData * slice_data, AVFrame *pic,
  36. GetBitContext *gb, int x, int y);
  37. /* macroblock selects a group of 4 possible quants and
  38. * a block can use any of those four quantisers
  39. * one column is powers of 2, the other one is powers of 2 * 3,
  40. * then there is the special one, powers of 2 * 5 */
  41. static const int hqx_quants[16][4] = {
  42. { 0x1, 0x2, 0x4, 0x8 }, { 0x1, 0x3, 0x6, 0xC },
  43. { 0x2, 0x4, 0x8, 0x10 }, { 0x3, 0x6, 0xC, 0x18 },
  44. { 0x4, 0x8, 0x10, 0x20 }, { 0x6, 0xC, 0x18, 0x30 },
  45. { 0x8, 0x10, 0x20, 0x40 },
  46. { 0xA, 0x14, 0x28, 0x50 },
  47. { 0xC, 0x18, 0x30, 0x60 },
  48. { 0x10, 0x20, 0x40, 0x80 }, { 0x18, 0x30, 0x60, 0xC0 },
  49. { 0x20, 0x40, 0x80, 0x100 }, { 0x30, 0x60, 0xC0, 0x180 },
  50. { 0x40, 0x80, 0x100, 0x200 }, { 0x60, 0xC0, 0x180, 0x300 },
  51. { 0x80, 0x100, 0x200, 0x400 }
  52. };
  53. static const uint8_t hqx_quant_luma[64] = {
  54. 16, 16, 16, 19, 19, 19, 42, 44,
  55. 16, 16, 19, 19, 19, 38, 43, 45,
  56. 16, 19, 19, 19, 40, 41, 45, 48,
  57. 19, 19, 19, 40, 41, 42, 46, 49,
  58. 19, 19, 40, 41, 42, 43, 48, 101,
  59. 19, 38, 41, 42, 43, 44, 98, 104,
  60. 42, 43, 45, 46, 48, 98, 109, 116,
  61. 44, 45, 48, 49, 101, 104, 116, 123,
  62. };
  63. static const uint8_t hqx_quant_chroma[64] = {
  64. 16, 16, 19, 25, 26, 26, 42, 44,
  65. 16, 19, 25, 25, 26, 38, 43, 91,
  66. 19, 25, 26, 27, 40, 41, 91, 96,
  67. 25, 25, 27, 40, 41, 84, 93, 197,
  68. 26, 26, 40, 41, 84, 86, 191, 203,
  69. 26, 38, 41, 84, 86, 177, 197, 209,
  70. 42, 43, 91, 93, 191, 197, 219, 232,
  71. 44, 91, 96, 197, 203, 209, 232, 246,
  72. };
  73. static inline void idct_col(int16_t *blk, const uint8_t *quant)
  74. {
  75. int t0, t1, t2, t3, t4, t5, t6, t7, t8, t9, tA, tB, tC, tD, tE, tF;
  76. int t10, t11, t12, t13;
  77. int s0, s1, s2, s3, s4, s5, s6, s7;
  78. s0 = (int) blk[0 * 8] * quant[0 * 8];
  79. s1 = (int) blk[1 * 8] * quant[1 * 8];
  80. s2 = (int) blk[2 * 8] * quant[2 * 8];
  81. s3 = (int) blk[3 * 8] * quant[3 * 8];
  82. s4 = (int) blk[4 * 8] * quant[4 * 8];
  83. s5 = (int) blk[5 * 8] * quant[5 * 8];
  84. s6 = (int) blk[6 * 8] * quant[6 * 8];
  85. s7 = (int) blk[7 * 8] * quant[7 * 8];
  86. t0 = (s3 * 19266 + s5 * 12873) >> 15;
  87. t1 = (s5 * 19266 - s3 * 12873) >> 15;
  88. t2 = ((s7 * 4520 + s1 * 22725) >> 15) - t0;
  89. t3 = ((s1 * 4520 - s7 * 22725) >> 15) - t1;
  90. t4 = t0 * 2 + t2;
  91. t5 = t1 * 2 + t3;
  92. t6 = t2 - t3;
  93. t7 = t3 * 2 + t6;
  94. t8 = (t6 * 11585) >> 14;
  95. t9 = (t7 * 11585) >> 14;
  96. tA = (s2 * 8867 - s6 * 21407) >> 14;
  97. tB = (s6 * 8867 + s2 * 21407) >> 14;
  98. tC = (s0 >> 1) - (s4 >> 1);
  99. tD = (s4 >> 1) * 2 + tC;
  100. tE = tC - (tA >> 1);
  101. tF = tD - (tB >> 1);
  102. t10 = tF - t5;
  103. t11 = tE - t8;
  104. t12 = tE + (tA >> 1) * 2 - t9;
  105. t13 = tF + (tB >> 1) * 2 - t4;
  106. blk[0 * 8] = t13 + t4 * 2;
  107. blk[1 * 8] = t12 + t9 * 2;
  108. blk[2 * 8] = t11 + t8 * 2;
  109. blk[3 * 8] = t10 + t5 * 2;
  110. blk[4 * 8] = t10;
  111. blk[5 * 8] = t11;
  112. blk[6 * 8] = t12;
  113. blk[7 * 8] = t13;
  114. }
  115. static inline void idct_row(int16_t *blk)
  116. {
  117. int t0, t1, t2, t3, t4, t5, t6, t7, t8, t9, tA, tB, tC, tD, tE, tF;
  118. int t10, t11, t12, t13;
  119. t0 = (blk[3] * 19266 + blk[5] * 12873) >> 14;
  120. t1 = (blk[5] * 19266 - blk[3] * 12873) >> 14;
  121. t2 = ((blk[7] * 4520 + blk[1] * 22725) >> 14) - t0;
  122. t3 = ((blk[1] * 4520 - blk[7] * 22725) >> 14) - t1;
  123. t4 = t0 * 2 + t2;
  124. t5 = t1 * 2 + t3;
  125. t6 = t2 - t3;
  126. t7 = t3 * 2 + t6;
  127. t8 = (t6 * 11585) >> 14;
  128. t9 = (t7 * 11585) >> 14;
  129. tA = (blk[2] * 8867 - blk[6] * 21407) >> 14;
  130. tB = (blk[6] * 8867 + blk[2] * 21407) >> 14;
  131. tC = blk[0] - blk[4];
  132. tD = blk[4] * 2 + tC;
  133. tE = tC - tA;
  134. tF = tD - tB;
  135. t10 = tF - t5;
  136. t11 = tE - t8;
  137. t12 = tE + tA * 2 - t9;
  138. t13 = tF + tB * 2 - t4;
  139. blk[0] = (t13 + t4 * 2 + 4) >> 3;
  140. blk[1] = (t12 + t9 * 2 + 4) >> 3;
  141. blk[2] = (t11 + t8 * 2 + 4) >> 3;
  142. blk[3] = (t10 + t5 * 2 + 4) >> 3;
  143. blk[4] = (t10 + 4) >> 3;
  144. blk[5] = (t11 + 4) >> 3;
  145. blk[6] = (t12 + 4) >> 3;
  146. blk[7] = (t13 + 4) >> 3;
  147. }
  148. static void hqx_idct(int16_t *block, const uint8_t *quant)
  149. {
  150. int i;
  151. for (i = 0; i < 8; i++)
  152. idct_col(block + i, quant + i);
  153. for (i = 0; i < 8; i++)
  154. idct_row(block + i * 8);
  155. }
  156. static void hqx_idct_put(uint16_t *dst, ptrdiff_t stride,
  157. int16_t *block, const uint8_t *quant)
  158. {
  159. int i, j;
  160. hqx_idct(block, quant);
  161. for (i = 0; i < 8; i++) {
  162. for (j = 0; j < 8; j++) {
  163. int v = av_clip_uintp2(block[j + i * 8] + 0x800, 12);
  164. dst[j] = (v << 4) | (v >> 8);
  165. }
  166. dst += stride >> 1;
  167. }
  168. }
  169. static inline void put_blocks(AVFrame *pic, int plane,
  170. int x, int y, int ilace,
  171. int16_t *block0, int16_t *block1,
  172. const uint8_t *quant)
  173. {
  174. int fields = ilace ? 2 : 1;
  175. int lsize = pic->linesize[plane];
  176. uint8_t *p = pic->data[plane] + x * 2;
  177. hqx_idct_put((uint16_t *)(p + y * lsize), lsize * fields, block0, quant);
  178. hqx_idct_put((uint16_t *)(p + (y + (ilace ? 1 : 8)) * lsize),
  179. lsize * fields, block1, quant);
  180. }
  181. static inline void hqx_get_ac(GetBitContext *gb, const HQXAC *ac,
  182. int *run, int *lev)
  183. {
  184. int val;
  185. val = show_bits(gb, ac->lut_bits);
  186. if (ac->lut[val].bits == -1) {
  187. GetBitContext gb2 = *gb;
  188. skip_bits(&gb2, ac->lut_bits);
  189. val = ac->lut[val].lev + show_bits(&gb2, ac->extra_bits);
  190. }
  191. *run = ac->lut[val].run;
  192. *lev = ac->lut[val].lev;
  193. skip_bits(gb, ac->lut[val].bits);
  194. }
  195. static int decode_block(GetBitContext *gb, VLC *vlc,
  196. const int *quants, int dcb,
  197. int16_t block[64], int *last_dc)
  198. {
  199. int q, dc;
  200. int ac_idx;
  201. int run, lev, pos = 1;
  202. memset(block, 0, 64 * sizeof(*block));
  203. dc = get_vlc2(gb, vlc->table, HQX_DC_VLC_BITS, 2);
  204. if (dc < 0)
  205. return AVERROR_INVALIDDATA;
  206. *last_dc += dc;
  207. block[0] = sign_extend(*last_dc << (12 - dcb), 12);
  208. q = quants[get_bits(gb, 2)];
  209. if (q >= 128)
  210. ac_idx = HQX_AC_Q128;
  211. else if (q >= 64)
  212. ac_idx = HQX_AC_Q64;
  213. else if (q >= 32)
  214. ac_idx = HQX_AC_Q32;
  215. else if (q >= 16)
  216. ac_idx = HQX_AC_Q16;
  217. else if (q >= 8)
  218. ac_idx = HQX_AC_Q8;
  219. else
  220. ac_idx = HQX_AC_Q0;
  221. do {
  222. hqx_get_ac(gb, &ff_hqx_ac[ac_idx], &run, &lev);
  223. pos += run;
  224. if (pos >= 64)
  225. break;
  226. block[ff_zigzag_direct[pos++]] = lev * q;
  227. } while (pos < 64);
  228. return 0;
  229. }
  230. static int hqx_decode_422(HQXContext *ctx, HQXSliceData * slice_data, AVFrame *pic,
  231. GetBitContext *gb, int x, int y)
  232. {
  233. const int *quants;
  234. int flag;
  235. int last_dc;
  236. int i, ret;
  237. if (ctx->interlaced)
  238. flag = get_bits1(gb);
  239. else
  240. flag = 0;
  241. quants = hqx_quants[get_bits(gb, 4)];
  242. for (i = 0; i < 8; i++) {
  243. int vlc_index = ctx->dcb - 9;
  244. if (i == 0 || i == 4 || i == 6)
  245. last_dc = 0;
  246. ret = decode_block(gb, &ctx->dc_vlc[vlc_index], quants,
  247. ctx->dcb, slice_data->block[i], &last_dc);
  248. if (ret < 0)
  249. return ret;
  250. }
  251. put_blocks(pic, 0, x , y, flag, slice_data->block[0], slice_data->block[2], hqx_quant_luma);
  252. put_blocks(pic, 0, x + 8 , y, flag, slice_data->block[1], slice_data->block[3], hqx_quant_luma);
  253. put_blocks(pic, 2, x >> 1, y, flag, slice_data->block[4], slice_data->block[5], hqx_quant_chroma);
  254. put_blocks(pic, 1, x >> 1, y, flag, slice_data->block[6], slice_data->block[7], hqx_quant_chroma);
  255. return 0;
  256. }
  257. static int hqx_decode_422a(HQXContext *ctx, HQXSliceData * slice_data, AVFrame *pic,
  258. GetBitContext *gb, int x, int y)
  259. {
  260. const int *quants;
  261. int flag = 0;
  262. int last_dc;
  263. int i, ret;
  264. int cbp;
  265. cbp = get_vlc2(gb, ctx->cbp_vlc.table, ctx->cbp_vlc.bits, 1);
  266. for (i = 0; i < 12; i++)
  267. memset(slice_data->block[i], 0, sizeof(**slice_data->block) * 64);
  268. for (i = 0; i < 12; i++)
  269. slice_data->block[i][0] = -0x800;
  270. if (cbp) {
  271. if (ctx->interlaced)
  272. flag = get_bits1(gb);
  273. quants = hqx_quants[get_bits(gb, 4)];
  274. cbp |= cbp << 4; // alpha CBP
  275. if (cbp & 0x3) // chroma CBP - top
  276. cbp |= 0x500;
  277. if (cbp & 0xC) // chroma CBP - bottom
  278. cbp |= 0xA00;
  279. for (i = 0; i < 12; i++) {
  280. if (i == 0 || i == 4 || i == 8 || i == 10)
  281. last_dc = 0;
  282. if (cbp & (1 << i)) {
  283. int vlc_index = ctx->dcb - 9;
  284. ret = decode_block(gb, &ctx->dc_vlc[vlc_index], quants,
  285. ctx->dcb, slice_data->block[i], &last_dc);
  286. if (ret < 0)
  287. return ret;
  288. }
  289. }
  290. }
  291. put_blocks(pic, 3, x, y, flag, slice_data->block[ 0], slice_data->block[ 2], hqx_quant_luma);
  292. put_blocks(pic, 3, x + 8, y, flag, slice_data->block[ 1], slice_data->block[ 3], hqx_quant_luma);
  293. put_blocks(pic, 0, x, y, flag, slice_data->block[ 4], slice_data->block[ 6], hqx_quant_luma);
  294. put_blocks(pic, 0, x + 8, y, flag, slice_data->block[ 5], slice_data->block[ 7], hqx_quant_luma);
  295. put_blocks(pic, 2, x >> 1, y, flag, slice_data->block[ 8], slice_data->block[ 9], hqx_quant_chroma);
  296. put_blocks(pic, 1, x >> 1, y, flag, slice_data->block[10], slice_data->block[11], hqx_quant_chroma);
  297. return 0;
  298. }
  299. static int hqx_decode_444(HQXContext *ctx, HQXSliceData * slice_data, AVFrame *pic,
  300. GetBitContext *gb, int x, int y)
  301. {
  302. const int *quants;
  303. int flag;
  304. int last_dc;
  305. int i, ret;
  306. if (ctx->interlaced)
  307. flag = get_bits1(gb);
  308. else
  309. flag = 0;
  310. quants = hqx_quants[get_bits(gb, 4)];
  311. for (i = 0; i < 12; i++) {
  312. int vlc_index = ctx->dcb - 9;
  313. if (i == 0 || i == 4 || i == 8)
  314. last_dc = 0;
  315. ret = decode_block(gb, &ctx->dc_vlc[vlc_index], quants,
  316. ctx->dcb, slice_data->block[i], &last_dc);
  317. if (ret < 0)
  318. return ret;
  319. }
  320. put_blocks(pic, 0, x, y, flag, slice_data->block[0], slice_data->block[ 2], hqx_quant_luma);
  321. put_blocks(pic, 0, x + 8, y, flag, slice_data->block[1], slice_data->block[ 3], hqx_quant_luma);
  322. put_blocks(pic, 2, x, y, flag, slice_data->block[4], slice_data->block[ 6], hqx_quant_chroma);
  323. put_blocks(pic, 2, x + 8, y, flag, slice_data->block[5], slice_data->block[ 7], hqx_quant_chroma);
  324. put_blocks(pic, 1, x, y, flag, slice_data->block[8], slice_data->block[10], hqx_quant_chroma);
  325. put_blocks(pic, 1, x + 8, y, flag, slice_data->block[9], slice_data->block[11], hqx_quant_chroma);
  326. return 0;
  327. }
  328. static int hqx_decode_444a(HQXContext *ctx, HQXSliceData * slice_data, AVFrame *pic,
  329. GetBitContext *gb, int x, int y)
  330. {
  331. const int *quants;
  332. int flag = 0;
  333. int last_dc;
  334. int i, ret;
  335. int cbp;
  336. cbp = get_vlc2(gb, ctx->cbp_vlc.table, ctx->cbp_vlc.bits, 1);
  337. for (i = 0; i < 16; i++)
  338. memset(slice_data->block[i], 0, sizeof(**slice_data->block) * 64);
  339. for (i = 0; i < 16; i++)
  340. slice_data->block[i][0] = -0x800;
  341. if (cbp) {
  342. if (ctx->interlaced)
  343. flag = get_bits1(gb);
  344. quants = hqx_quants[get_bits(gb, 4)];
  345. cbp |= cbp << 4; // alpha CBP
  346. cbp |= cbp << 8; // chroma CBP
  347. for (i = 0; i < 16; i++) {
  348. if (i == 0 || i == 4 || i == 8 || i == 12)
  349. last_dc = 0;
  350. if (cbp & (1 << i)) {
  351. int vlc_index = ctx->dcb - 9;
  352. ret = decode_block(gb, &ctx->dc_vlc[vlc_index], quants,
  353. ctx->dcb, slice_data->block[i], &last_dc);
  354. if (ret < 0)
  355. return ret;
  356. }
  357. }
  358. }
  359. put_blocks(pic, 3, x, y, flag, slice_data->block[ 0], slice_data->block[ 2], hqx_quant_luma);
  360. put_blocks(pic, 3, x + 8, y, flag, slice_data->block[ 1], slice_data->block[ 3], hqx_quant_luma);
  361. put_blocks(pic, 0, x, y, flag, slice_data->block[ 4], slice_data->block[ 6], hqx_quant_luma);
  362. put_blocks(pic, 0, x + 8, y, flag, slice_data->block[ 5], slice_data->block[ 7], hqx_quant_luma);
  363. put_blocks(pic, 2, x, y, flag, slice_data->block[ 8], slice_data->block[10], hqx_quant_chroma);
  364. put_blocks(pic, 2, x + 8, y, flag, slice_data->block[ 9], slice_data->block[11], hqx_quant_chroma);
  365. put_blocks(pic, 1, x, y, flag, slice_data->block[12], slice_data->block[14], hqx_quant_chroma);
  366. put_blocks(pic, 1, x + 8, y, flag, slice_data->block[13], slice_data->block[15], hqx_quant_chroma);
  367. return 0;
  368. }
  369. static const int shuffle_16[16] = {
  370. 0, 5, 11, 14, 2, 7, 9, 13, 1, 4, 10, 15, 3, 6, 8, 12
  371. };
  372. static int decode_slice(HQXContext *ctx, AVFrame *pic, GetBitContext *gb,
  373. int slice_no, mb_decode_func decode_func)
  374. {
  375. int mb_w = (ctx->width + 15) >> 4;
  376. int mb_h = (ctx->height + 15) >> 4;
  377. int grp_w = (mb_w + 4) / 5;
  378. int grp_h = (mb_h + 4) / 5;
  379. int grp_h_edge = grp_w * (mb_w / grp_w);
  380. int grp_v_edge = grp_h * (mb_h / grp_h);
  381. int grp_v_rest = mb_w - grp_h_edge;
  382. int grp_h_rest = mb_h - grp_v_edge;
  383. int num_mbs = mb_w * mb_h;
  384. int num_tiles = (num_mbs + 479) / 480;
  385. int std_tile_blocks = num_mbs / (16 * num_tiles);
  386. int g_tile = slice_no * num_tiles;
  387. int blk_addr, loc_addr, mb_x, mb_y, pos, loc_row, i;
  388. int tile_blocks, tile_limit, tile_no;
  389. for (tile_no = 0; tile_no < num_tiles; tile_no++, g_tile++) {
  390. tile_blocks = std_tile_blocks;
  391. tile_limit = -1;
  392. if (g_tile < num_mbs - std_tile_blocks * 16 * num_tiles) {
  393. tile_limit = num_mbs / (16 * num_tiles);
  394. tile_blocks++;
  395. }
  396. for (i = 0; i < tile_blocks; i++) {
  397. if (i == tile_limit)
  398. blk_addr = g_tile + 16 * num_tiles * i;
  399. else
  400. blk_addr = tile_no + 16 * num_tiles * i +
  401. num_tiles * shuffle_16[(i + slice_no) & 0xF];
  402. loc_row = grp_h * (blk_addr / (grp_h * mb_w));
  403. loc_addr = blk_addr % (grp_h * mb_w);
  404. if (loc_row >= grp_v_edge) {
  405. mb_x = grp_w * (loc_addr / (grp_h_rest * grp_w));
  406. pos = loc_addr % (grp_h_rest * grp_w);
  407. } else {
  408. mb_x = grp_w * (loc_addr / (grp_h * grp_w));
  409. pos = loc_addr % (grp_h * grp_w);
  410. }
  411. if (mb_x >= grp_h_edge) {
  412. mb_x += pos % grp_v_rest;
  413. mb_y = loc_row + (pos / grp_v_rest);
  414. } else {
  415. mb_x += pos % grp_w;
  416. mb_y = loc_row + (pos / grp_w);
  417. }
  418. decode_func(ctx, &ctx->slice[slice_no], pic, gb, mb_x * 16, mb_y * 16);
  419. }
  420. }
  421. return 0;
  422. }
  423. typedef struct {
  424. AVFrame *pic;
  425. uint8_t *src;
  426. GetBitContext gb[17];
  427. unsigned data_size;
  428. mb_decode_func decode_func;
  429. uint32_t slice_off[17];
  430. } Data;
  431. static int decode_slice_thread(AVCodecContext *avctx, void *arg, int slice, int threadnr)
  432. {
  433. Data * data = (Data*) arg;
  434. uint32_t * slice_off = data->slice_off;
  435. unsigned data_size = data->data_size;
  436. HQXContext *ctx = avctx->priv_data;
  437. int ret;
  438. if (slice_off[slice] < HQX_HEADER_SIZE ||
  439. slice_off[slice] >= slice_off[slice + 1] ||
  440. slice_off[slice + 1] > data_size) {
  441. av_log(avctx, AV_LOG_ERROR, "Invalid slice size.\n");
  442. return AVERROR_INVALIDDATA;
  443. }
  444. ret = init_get_bits8(&data->gb[slice], data->src + slice_off[slice], slice_off[slice + 1] - slice_off[slice]);
  445. if (ret < 0)
  446. return ret;
  447. ret = decode_slice(ctx, data->pic, &data->gb[slice], slice, data->decode_func);
  448. if (ret < 0) {
  449. av_log(avctx, AV_LOG_ERROR, "Error decoding slice %d.\n", slice);
  450. }
  451. return ret;
  452. }
  453. static int hqx_decode_frame(AVCodecContext *avctx, void *data,
  454. int *got_picture_ptr, AVPacket *avpkt)
  455. {
  456. HQXContext *ctx = avctx->priv_data;
  457. AVFrame *pic = data;
  458. uint8_t *src = avpkt->data;
  459. uint32_t info_tag, info_offset;
  460. int data_start;
  461. int i, ret;
  462. Data arg_data;
  463. arg_data.decode_func = 0;
  464. if (avpkt->size < 8)
  465. return AVERROR_INVALIDDATA;
  466. /* Skip the INFO header if present */
  467. info_offset = 0;
  468. info_tag = AV_RL32(src);
  469. if (info_tag == MKTAG('I', 'N', 'F', 'O')) {
  470. info_offset = AV_RL32(src + 4);
  471. if (info_offset > UINT32_MAX - 8 || info_offset + 8 > avpkt->size) {
  472. av_log(avctx, AV_LOG_ERROR,
  473. "Invalid INFO header offset: 0x%08"PRIX32" is too large.\n",
  474. info_offset);
  475. return AVERROR_INVALIDDATA;
  476. }
  477. info_offset += 8;
  478. src += info_offset;
  479. av_log(avctx, AV_LOG_DEBUG, "Skipping INFO chunk.\n");
  480. }
  481. data_start = src - avpkt->data;
  482. arg_data.src = src;
  483. arg_data.pic = data;
  484. arg_data.data_size = avpkt->size - data_start;
  485. if (arg_data.data_size < HQX_HEADER_SIZE) {
  486. av_log(avctx, AV_LOG_ERROR, "Frame too small.\n");
  487. return AVERROR_INVALIDDATA;
  488. }
  489. if (src[0] != 'H' || src[1] != 'Q') {
  490. av_log(avctx, AV_LOG_ERROR, "Not an HQX frame.\n");
  491. return AVERROR_INVALIDDATA;
  492. }
  493. ctx->interlaced = !(src[2] & 0x80);
  494. ctx->format = src[2] & 7;
  495. ctx->dcb = (src[3] & 3) + 8;
  496. ctx->width = AV_RB16(src + 4);
  497. ctx->height = AV_RB16(src + 6);
  498. for (i = 0; i < 17; i++)
  499. arg_data.slice_off[i] = AV_RB24(src + 8 + i * 3);
  500. if (ctx->dcb == 8) {
  501. av_log(avctx, AV_LOG_ERROR, "Invalid DC precision %d.\n", ctx->dcb);
  502. return AVERROR_INVALIDDATA;
  503. }
  504. ret = av_image_check_size(ctx->width, ctx->height, 0, avctx);
  505. if (ret < 0) {
  506. av_log(avctx, AV_LOG_ERROR, "Invalid stored dimensions %dx%d.\n",
  507. ctx->width, ctx->height);
  508. return AVERROR_INVALIDDATA;
  509. }
  510. avctx->coded_width = FFALIGN(ctx->width, 16);
  511. avctx->coded_height = FFALIGN(ctx->height, 16);
  512. avctx->width = ctx->width;
  513. avctx->height = ctx->height;
  514. avctx->bits_per_raw_sample = 10;
  515. switch (ctx->format) {
  516. case HQX_422:
  517. avctx->pix_fmt = AV_PIX_FMT_YUV422P16;
  518. arg_data.decode_func = hqx_decode_422;
  519. break;
  520. case HQX_444:
  521. avctx->pix_fmt = AV_PIX_FMT_YUV444P16;
  522. arg_data.decode_func = hqx_decode_444;
  523. break;
  524. case HQX_422A:
  525. avctx->pix_fmt = AV_PIX_FMT_YUVA422P16;
  526. arg_data.decode_func = hqx_decode_422a;
  527. break;
  528. case HQX_444A:
  529. avctx->pix_fmt = AV_PIX_FMT_YUVA444P16;
  530. arg_data.decode_func = hqx_decode_444a;
  531. break;
  532. }
  533. if (!arg_data.decode_func) {
  534. av_log(avctx, AV_LOG_ERROR, "Invalid format: %d.\n", ctx->format);
  535. return AVERROR_INVALIDDATA;
  536. }
  537. ret = ff_get_buffer(avctx, pic, 0);
  538. if (ret < 0)
  539. return ret;
  540. avctx->execute2(avctx, decode_slice_thread, &arg_data, NULL, 16);
  541. pic->key_frame = 1;
  542. pic->pict_type = AV_PICTURE_TYPE_I;
  543. *got_picture_ptr = 1;
  544. return avpkt->size;
  545. }
  546. static av_cold int hqx_decode_close(AVCodecContext *avctx)
  547. {
  548. int i;
  549. HQXContext *ctx = avctx->priv_data;
  550. ff_free_vlc(&ctx->cbp_vlc);
  551. for (i = 0; i < 3; i++) {
  552. ff_free_vlc(&ctx->dc_vlc[i]);
  553. }
  554. return 0;
  555. }
  556. static av_cold int hqx_decode_init(AVCodecContext *avctx)
  557. {
  558. HQXContext *ctx = avctx->priv_data;
  559. int ret = ff_hqx_init_vlcs(ctx);
  560. if (ret < 0)
  561. hqx_decode_close(avctx);
  562. return ret;
  563. }
  564. AVCodec ff_hqx_decoder = {
  565. .name = "hqx",
  566. .long_name = NULL_IF_CONFIG_SMALL("Canopus HQX"),
  567. .type = AVMEDIA_TYPE_VIDEO,
  568. .id = AV_CODEC_ID_HQX,
  569. .priv_data_size = sizeof(HQXContext),
  570. .init = hqx_decode_init,
  571. .decode = hqx_decode_frame,
  572. .close = hqx_decode_close,
  573. .capabilities = CODEC_CAP_DR1 | CODEC_CAP_SLICE_THREADS,
  574. };