You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

4530 lines
154KB

  1. /*
  2. * VC-1 and WMV3 decoder
  3. * Copyright (c) 2006-2007 Konstantin Shishkov
  4. * Partly based on vc9.c (c) 2005 Anonymous, Alex Beregszaszi, Michael Niedermayer
  5. *
  6. * This file is part of FFmpeg.
  7. *
  8. * FFmpeg is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU Lesser General Public
  10. * License as published by the Free Software Foundation; either
  11. * version 2.1 of the License, or (at your option) any later version.
  12. *
  13. * FFmpeg is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * Lesser General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU Lesser General Public
  19. * License along with FFmpeg; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  21. *
  22. */
  23. /**
  24. * @file vc1.c
  25. * VC-1 and WMV3 decoder
  26. *
  27. */
  28. #include "common.h"
  29. #include "dsputil.h"
  30. #include "avcodec.h"
  31. #include "mpegvideo.h"
  32. #include "vc1data.h"
  33. #include "vc1acdata.h"
  34. #include "vc1.h"
  35. #undef NDEBUG
  36. #include <assert.h>
  37. extern const uint32_t ff_table0_dc_lum[120][2], ff_table1_dc_lum[120][2];
  38. extern const uint32_t ff_table0_dc_chroma[120][2], ff_table1_dc_chroma[120][2];
  39. extern VLC ff_msmp4_dc_luma_vlc[2], ff_msmp4_dc_chroma_vlc[2];
  40. #define MB_INTRA_VLC_BITS 9
  41. extern VLC ff_msmp4_mb_i_vlc;
  42. extern const uint16_t ff_msmp4_mb_i_table[64][2];
  43. #define DC_VLC_BITS 9
  44. #define AC_VLC_BITS 9
  45. static const uint16_t table_mb_intra[64][2];
  46. /** Available Profiles */
  47. //@{
  48. enum Profile {
  49. PROFILE_SIMPLE,
  50. PROFILE_MAIN,
  51. PROFILE_COMPLEX, ///< TODO: WMV9 specific
  52. PROFILE_ADVANCED
  53. };
  54. //@}
  55. /** Sequence quantizer mode */
  56. //@{
  57. enum QuantMode {
  58. QUANT_FRAME_IMPLICIT, ///< Implicitly specified at frame level
  59. QUANT_FRAME_EXPLICIT, ///< Explicitly specified at frame level
  60. QUANT_NON_UNIFORM, ///< Non-uniform quant used for all frames
  61. QUANT_UNIFORM ///< Uniform quant used for all frames
  62. };
  63. //@}
  64. /** Where quant can be changed */
  65. //@{
  66. enum DQProfile {
  67. DQPROFILE_FOUR_EDGES,
  68. DQPROFILE_DOUBLE_EDGES,
  69. DQPROFILE_SINGLE_EDGE,
  70. DQPROFILE_ALL_MBS
  71. };
  72. //@}
  73. /** @name Where quant can be changed
  74. */
  75. //@{
  76. enum DQSingleEdge {
  77. DQSINGLE_BEDGE_LEFT,
  78. DQSINGLE_BEDGE_TOP,
  79. DQSINGLE_BEDGE_RIGHT,
  80. DQSINGLE_BEDGE_BOTTOM
  81. };
  82. //@}
  83. /** Which pair of edges is quantized with ALTPQUANT */
  84. //@{
  85. enum DQDoubleEdge {
  86. DQDOUBLE_BEDGE_TOPLEFT,
  87. DQDOUBLE_BEDGE_TOPRIGHT,
  88. DQDOUBLE_BEDGE_BOTTOMRIGHT,
  89. DQDOUBLE_BEDGE_BOTTOMLEFT
  90. };
  91. //@}
  92. /** MV modes for P frames */
  93. //@{
  94. enum MVModes {
  95. MV_PMODE_1MV_HPEL_BILIN,
  96. MV_PMODE_1MV,
  97. MV_PMODE_1MV_HPEL,
  98. MV_PMODE_MIXED_MV,
  99. MV_PMODE_INTENSITY_COMP
  100. };
  101. //@}
  102. /** @name MV types for B frames */
  103. //@{
  104. enum BMVTypes {
  105. BMV_TYPE_BACKWARD,
  106. BMV_TYPE_FORWARD,
  107. BMV_TYPE_INTERPOLATED
  108. };
  109. //@}
  110. /** @name Block types for P/B frames */
  111. //@{
  112. enum TransformTypes {
  113. TT_8X8,
  114. TT_8X4_BOTTOM,
  115. TT_8X4_TOP,
  116. TT_8X4, //Both halves
  117. TT_4X8_RIGHT,
  118. TT_4X8_LEFT,
  119. TT_4X8, //Both halves
  120. TT_4X4
  121. };
  122. //@}
  123. /** Table for conversion between TTBLK and TTMB */
  124. static const int ttblk_to_tt[3][8] = {
  125. { TT_8X4, TT_4X8, TT_8X8, TT_4X4, TT_8X4_TOP, TT_8X4_BOTTOM, TT_4X8_RIGHT, TT_4X8_LEFT },
  126. { TT_8X8, TT_4X8_RIGHT, TT_4X8_LEFT, TT_4X4, TT_8X4, TT_4X8, TT_8X4_BOTTOM, TT_8X4_TOP },
  127. { TT_8X8, TT_4X8, TT_4X4, TT_8X4_BOTTOM, TT_4X8_RIGHT, TT_4X8_LEFT, TT_8X4, TT_8X4_TOP }
  128. };
  129. static const int ttfrm_to_tt[4] = { TT_8X8, TT_8X4, TT_4X8, TT_4X4 };
  130. /** MV P mode - the 5th element is only used for mode 1 */
  131. static const uint8_t mv_pmode_table[2][5] = {
  132. { MV_PMODE_1MV_HPEL_BILIN, MV_PMODE_1MV, MV_PMODE_1MV_HPEL, MV_PMODE_INTENSITY_COMP, MV_PMODE_MIXED_MV },
  133. { MV_PMODE_1MV, MV_PMODE_MIXED_MV, MV_PMODE_1MV_HPEL, MV_PMODE_INTENSITY_COMP, MV_PMODE_1MV_HPEL_BILIN }
  134. };
  135. static const uint8_t mv_pmode_table2[2][4] = {
  136. { MV_PMODE_1MV_HPEL_BILIN, MV_PMODE_1MV, MV_PMODE_1MV_HPEL, MV_PMODE_MIXED_MV },
  137. { MV_PMODE_1MV, MV_PMODE_MIXED_MV, MV_PMODE_1MV_HPEL, MV_PMODE_1MV_HPEL_BILIN }
  138. };
  139. /** One more frame type */
  140. #define BI_TYPE 7
  141. static const int fps_nr[5] = { 24, 25, 30, 50, 60 },
  142. fps_dr[2] = { 1000, 1001 };
  143. static const uint8_t pquant_table[3][32] = {
  144. { /* Implicit quantizer */
  145. 0, 1, 2, 3, 4, 5, 6, 7, 8, 6, 7, 8, 9, 10, 11, 12,
  146. 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 29, 31
  147. },
  148. { /* Explicit quantizer, pquantizer uniform */
  149. 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
  150. 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31
  151. },
  152. { /* Explicit quantizer, pquantizer non-uniform */
  153. 0, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
  154. 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 29, 31
  155. }
  156. };
  157. /** @name VC-1 VLC tables and defines
  158. * @todo TODO move this into the context
  159. */
  160. //@{
  161. #define VC1_BFRACTION_VLC_BITS 7
  162. static VLC vc1_bfraction_vlc;
  163. #define VC1_IMODE_VLC_BITS 4
  164. static VLC vc1_imode_vlc;
  165. #define VC1_NORM2_VLC_BITS 3
  166. static VLC vc1_norm2_vlc;
  167. #define VC1_NORM6_VLC_BITS 9
  168. static VLC vc1_norm6_vlc;
  169. /* Could be optimized, one table only needs 8 bits */
  170. #define VC1_TTMB_VLC_BITS 9 //12
  171. static VLC vc1_ttmb_vlc[3];
  172. #define VC1_MV_DIFF_VLC_BITS 9 //15
  173. static VLC vc1_mv_diff_vlc[4];
  174. #define VC1_CBPCY_P_VLC_BITS 9 //14
  175. static VLC vc1_cbpcy_p_vlc[4];
  176. #define VC1_4MV_BLOCK_PATTERN_VLC_BITS 6
  177. static VLC vc1_4mv_block_pattern_vlc[4];
  178. #define VC1_TTBLK_VLC_BITS 5
  179. static VLC vc1_ttblk_vlc[3];
  180. #define VC1_SUBBLKPAT_VLC_BITS 6
  181. static VLC vc1_subblkpat_vlc[3];
  182. static VLC vc1_ac_coeff_table[8];
  183. //@}
  184. enum CodingSet {
  185. CS_HIGH_MOT_INTRA = 0,
  186. CS_HIGH_MOT_INTER,
  187. CS_LOW_MOT_INTRA,
  188. CS_LOW_MOT_INTER,
  189. CS_MID_RATE_INTRA,
  190. CS_MID_RATE_INTER,
  191. CS_HIGH_RATE_INTRA,
  192. CS_HIGH_RATE_INTER
  193. };
  194. /** @name Overlap conditions for Advanced Profile */
  195. //@{
  196. enum COTypes {
  197. CONDOVER_NONE = 0,
  198. CONDOVER_ALL,
  199. CONDOVER_SELECT
  200. };
  201. //@}
  202. /** The VC1 Context
  203. * @fixme Change size wherever another size is more efficient
  204. * Many members are only used for Advanced Profile
  205. */
  206. typedef struct VC1Context{
  207. MpegEncContext s;
  208. int bits;
  209. /** Simple/Main Profile sequence header */
  210. //@{
  211. int res_sm; ///< reserved, 2b
  212. int res_x8; ///< reserved
  213. int multires; ///< frame-level RESPIC syntax element present
  214. int res_fasttx; ///< reserved, always 1
  215. int res_transtab; ///< reserved, always 0
  216. int rangered; ///< RANGEREDFRM (range reduction) syntax element present
  217. ///< at frame level
  218. int res_rtm_flag; ///< reserved, set to 1
  219. int reserved; ///< reserved
  220. //@}
  221. /** Advanced Profile */
  222. //@{
  223. int level; ///< 3bits, for Advanced/Simple Profile, provided by TS layer
  224. int chromaformat; ///< 2bits, 2=4:2:0, only defined
  225. int postprocflag; ///< Per-frame processing suggestion flag present
  226. int broadcast; ///< TFF/RFF present
  227. int interlace; ///< Progressive/interlaced (RPTFTM syntax element)
  228. int tfcntrflag; ///< TFCNTR present
  229. int panscanflag; ///< NUMPANSCANWIN, TOPLEFT{X,Y}, BOTRIGHT{X,Y} present
  230. int extended_dmv; ///< Additional extended dmv range at P/B frame-level
  231. int color_prim; ///< 8bits, chroma coordinates of the color primaries
  232. int transfer_char; ///< 8bits, Opto-electronic transfer characteristics
  233. int matrix_coef; ///< 8bits, Color primaries->YCbCr transform matrix
  234. int hrd_param_flag; ///< Presence of Hypothetical Reference
  235. ///< Decoder parameters
  236. int psf; ///< Progressive Segmented Frame
  237. //@}
  238. /** Sequence header data for all Profiles
  239. * TODO: choose between ints, uint8_ts and monobit flags
  240. */
  241. //@{
  242. int profile; ///< 2bits, Profile
  243. int frmrtq_postproc; ///< 3bits,
  244. int bitrtq_postproc; ///< 5bits, quantized framerate-based postprocessing strength
  245. int fastuvmc; ///< Rounding of qpel vector to hpel ? (not in Simple)
  246. int extended_mv; ///< Ext MV in P/B (not in Simple)
  247. int dquant; ///< How qscale varies with MBs, 2bits (not in Simple)
  248. int vstransform; ///< variable-size [48]x[48] transform type + info
  249. int overlap; ///< overlapped transforms in use
  250. int quantizer_mode; ///< 2bits, quantizer mode used for sequence, see QUANT_*
  251. int finterpflag; ///< INTERPFRM present
  252. //@}
  253. /** Frame decoding info for all profiles */
  254. //@{
  255. uint8_t mv_mode; ///< MV coding monde
  256. uint8_t mv_mode2; ///< Secondary MV coding mode (B frames)
  257. int k_x; ///< Number of bits for MVs (depends on MV range)
  258. int k_y; ///< Number of bits for MVs (depends on MV range)
  259. int range_x, range_y; ///< MV range
  260. uint8_t pq, altpq; ///< Current/alternate frame quantizer scale
  261. /** pquant parameters */
  262. //@{
  263. uint8_t dquantfrm;
  264. uint8_t dqprofile;
  265. uint8_t dqsbedge;
  266. uint8_t dqbilevel;
  267. //@}
  268. /** AC coding set indexes
  269. * @see 8.1.1.10, p(1)10
  270. */
  271. //@{
  272. int c_ac_table_index; ///< Chroma index from ACFRM element
  273. int y_ac_table_index; ///< Luma index from AC2FRM element
  274. //@}
  275. int ttfrm; ///< Transform type info present at frame level
  276. uint8_t ttmbf; ///< Transform type flag
  277. uint8_t ttblk4x4; ///< Value of ttblk which indicates a 4x4 transform
  278. int codingset; ///< index of current table set from 11.8 to use for luma block decoding
  279. int codingset2; ///< index of current table set from 11.8 to use for chroma block decoding
  280. int pqindex; ///< raw pqindex used in coding set selection
  281. int a_avail, c_avail;
  282. uint8_t *mb_type_base, *mb_type[3];
  283. /** Luma compensation parameters */
  284. //@{
  285. uint8_t lumscale;
  286. uint8_t lumshift;
  287. //@}
  288. int16_t bfraction; ///< Relative position % anchors=> how to scale MVs
  289. uint8_t halfpq; ///< Uniform quant over image and qp+.5
  290. uint8_t respic; ///< Frame-level flag for resized images
  291. int buffer_fullness; ///< HRD info
  292. /** Ranges:
  293. * -# 0 -> [-64n 63.f] x [-32, 31.f]
  294. * -# 1 -> [-128, 127.f] x [-64, 63.f]
  295. * -# 2 -> [-512, 511.f] x [-128, 127.f]
  296. * -# 3 -> [-1024, 1023.f] x [-256, 255.f]
  297. */
  298. uint8_t mvrange;
  299. uint8_t pquantizer; ///< Uniform (over sequence) quantizer in use
  300. VLC *cbpcy_vlc; ///< CBPCY VLC table
  301. int tt_index; ///< Index for Transform Type tables
  302. uint8_t* mv_type_mb_plane; ///< bitplane for mv_type == (4MV)
  303. uint8_t* direct_mb_plane; ///< bitplane for "direct" MBs
  304. int mv_type_is_raw; ///< mv type mb plane is not coded
  305. int dmb_is_raw; ///< direct mb plane is raw
  306. int skip_is_raw; ///< skip mb plane is not coded
  307. uint8_t luty[256], lutuv[256]; // lookup tables used for intensity compensation
  308. int use_ic; ///< use intensity compensation in B-frames
  309. int rnd; ///< rounding control
  310. /** Frame decoding info for S/M profiles only */
  311. //@{
  312. uint8_t rangeredfrm; ///< out_sample = CLIP((in_sample-128)*2+128)
  313. uint8_t interpfrm;
  314. //@}
  315. /** Frame decoding info for Advanced profile */
  316. //@{
  317. uint8_t fcm; ///< 0->Progressive, 2->Frame-Interlace, 3->Field-Interlace
  318. uint8_t numpanscanwin;
  319. uint8_t tfcntr;
  320. uint8_t rptfrm, tff, rff;
  321. uint16_t topleftx;
  322. uint16_t toplefty;
  323. uint16_t bottomrightx;
  324. uint16_t bottomrighty;
  325. uint8_t uvsamp;
  326. uint8_t postproc;
  327. int hrd_num_leaky_buckets;
  328. uint8_t bit_rate_exponent;
  329. uint8_t buffer_size_exponent;
  330. uint8_t* acpred_plane; ///< AC prediction flags bitplane
  331. int acpred_is_raw;
  332. uint8_t* over_flags_plane; ///< Overflags bitplane
  333. int overflg_is_raw;
  334. uint8_t condover;
  335. uint16_t *hrd_rate, *hrd_buffer;
  336. uint8_t *hrd_fullness;
  337. uint8_t range_mapy_flag;
  338. uint8_t range_mapuv_flag;
  339. uint8_t range_mapy;
  340. uint8_t range_mapuv;
  341. //@}
  342. int p_frame_skipped;
  343. int bi_type;
  344. } VC1Context;
  345. /**
  346. * Get unary code of limited length
  347. * @fixme FIXME Slow and ugly
  348. * @param gb GetBitContext
  349. * @param[in] stop The bitstop value (unary code of 1's or 0's)
  350. * @param[in] len Maximum length
  351. * @return Unary length/index
  352. */
  353. static int get_prefix(GetBitContext *gb, int stop, int len)
  354. {
  355. #if 1
  356. int i;
  357. for(i = 0; i < len && get_bits1(gb) != stop; i++);
  358. return i;
  359. /* int i = 0, tmp = !stop;
  360. while (i != len && tmp != stop)
  361. {
  362. tmp = get_bits(gb, 1);
  363. i++;
  364. }
  365. if (i == len && tmp != stop) return len+1;
  366. return i;*/
  367. #else
  368. unsigned int buf;
  369. int log;
  370. OPEN_READER(re, gb);
  371. UPDATE_CACHE(re, gb);
  372. buf=GET_CACHE(re, gb); //Still not sure
  373. if (stop) buf = ~buf;
  374. log= av_log2(-buf); //FIXME: -?
  375. if (log < limit){
  376. LAST_SKIP_BITS(re, gb, log+1);
  377. CLOSE_READER(re, gb);
  378. return log;
  379. }
  380. LAST_SKIP_BITS(re, gb, limit);
  381. CLOSE_READER(re, gb);
  382. return limit;
  383. #endif
  384. }
  385. static inline int decode210(GetBitContext *gb){
  386. int n;
  387. n = get_bits1(gb);
  388. if (n == 1)
  389. return 0;
  390. else
  391. return 2 - get_bits1(gb);
  392. }
  393. /**
  394. * Init VC-1 specific tables and VC1Context members
  395. * @param v The VC1Context to initialize
  396. * @return Status
  397. */
  398. static int vc1_init_common(VC1Context *v)
  399. {
  400. static int done = 0;
  401. int i = 0;
  402. v->hrd_rate = v->hrd_buffer = NULL;
  403. /* VLC tables */
  404. if(!done)
  405. {
  406. done = 1;
  407. init_vlc(&vc1_bfraction_vlc, VC1_BFRACTION_VLC_BITS, 23,
  408. vc1_bfraction_bits, 1, 1,
  409. vc1_bfraction_codes, 1, 1, 1);
  410. init_vlc(&vc1_norm2_vlc, VC1_NORM2_VLC_BITS, 4,
  411. vc1_norm2_bits, 1, 1,
  412. vc1_norm2_codes, 1, 1, 1);
  413. init_vlc(&vc1_norm6_vlc, VC1_NORM6_VLC_BITS, 64,
  414. vc1_norm6_bits, 1, 1,
  415. vc1_norm6_codes, 2, 2, 1);
  416. init_vlc(&vc1_imode_vlc, VC1_IMODE_VLC_BITS, 7,
  417. vc1_imode_bits, 1, 1,
  418. vc1_imode_codes, 1, 1, 1);
  419. for (i=0; i<3; i++)
  420. {
  421. init_vlc(&vc1_ttmb_vlc[i], VC1_TTMB_VLC_BITS, 16,
  422. vc1_ttmb_bits[i], 1, 1,
  423. vc1_ttmb_codes[i], 2, 2, 1);
  424. init_vlc(&vc1_ttblk_vlc[i], VC1_TTBLK_VLC_BITS, 8,
  425. vc1_ttblk_bits[i], 1, 1,
  426. vc1_ttblk_codes[i], 1, 1, 1);
  427. init_vlc(&vc1_subblkpat_vlc[i], VC1_SUBBLKPAT_VLC_BITS, 15,
  428. vc1_subblkpat_bits[i], 1, 1,
  429. vc1_subblkpat_codes[i], 1, 1, 1);
  430. }
  431. for(i=0; i<4; i++)
  432. {
  433. init_vlc(&vc1_4mv_block_pattern_vlc[i], VC1_4MV_BLOCK_PATTERN_VLC_BITS, 16,
  434. vc1_4mv_block_pattern_bits[i], 1, 1,
  435. vc1_4mv_block_pattern_codes[i], 1, 1, 1);
  436. init_vlc(&vc1_cbpcy_p_vlc[i], VC1_CBPCY_P_VLC_BITS, 64,
  437. vc1_cbpcy_p_bits[i], 1, 1,
  438. vc1_cbpcy_p_codes[i], 2, 2, 1);
  439. init_vlc(&vc1_mv_diff_vlc[i], VC1_MV_DIFF_VLC_BITS, 73,
  440. vc1_mv_diff_bits[i], 1, 1,
  441. vc1_mv_diff_codes[i], 2, 2, 1);
  442. }
  443. for(i=0; i<8; i++)
  444. init_vlc(&vc1_ac_coeff_table[i], AC_VLC_BITS, vc1_ac_sizes[i],
  445. &vc1_ac_tables[i][0][1], 8, 4,
  446. &vc1_ac_tables[i][0][0], 8, 4, 1);
  447. init_vlc(&ff_msmp4_mb_i_vlc, MB_INTRA_VLC_BITS, 64,
  448. &ff_msmp4_mb_i_table[0][1], 4, 2,
  449. &ff_msmp4_mb_i_table[0][0], 4, 2, 1);
  450. }
  451. /* Other defaults */
  452. v->pq = -1;
  453. v->mvrange = 0; /* 7.1.1.18, p80 */
  454. return 0;
  455. }
  456. /***********************************************************************/
  457. /**
  458. * @defgroup bitplane VC9 Bitplane decoding
  459. * @see 8.7, p56
  460. * @{
  461. */
  462. /** @addtogroup bitplane
  463. * Imode types
  464. * @{
  465. */
  466. enum Imode {
  467. IMODE_RAW,
  468. IMODE_NORM2,
  469. IMODE_DIFF2,
  470. IMODE_NORM6,
  471. IMODE_DIFF6,
  472. IMODE_ROWSKIP,
  473. IMODE_COLSKIP
  474. };
  475. /** @} */ //imode defines
  476. /** Decode rows by checking if they are skipped
  477. * @param plane Buffer to store decoded bits
  478. * @param[in] width Width of this buffer
  479. * @param[in] height Height of this buffer
  480. * @param[in] stride of this buffer
  481. */
  482. static void decode_rowskip(uint8_t* plane, int width, int height, int stride, GetBitContext *gb){
  483. int x, y;
  484. for (y=0; y<height; y++){
  485. if (!get_bits(gb, 1)) //rowskip
  486. memset(plane, 0, width);
  487. else
  488. for (x=0; x<width; x++)
  489. plane[x] = get_bits(gb, 1);
  490. plane += stride;
  491. }
  492. }
  493. /** Decode columns by checking if they are skipped
  494. * @param plane Buffer to store decoded bits
  495. * @param[in] width Width of this buffer
  496. * @param[in] height Height of this buffer
  497. * @param[in] stride of this buffer
  498. * @fixme FIXME: Optimize
  499. */
  500. static void decode_colskip(uint8_t* plane, int width, int height, int stride, GetBitContext *gb){
  501. int x, y;
  502. for (x=0; x<width; x++){
  503. if (!get_bits(gb, 1)) //colskip
  504. for (y=0; y<height; y++)
  505. plane[y*stride] = 0;
  506. else
  507. for (y=0; y<height; y++)
  508. plane[y*stride] = get_bits(gb, 1);
  509. plane ++;
  510. }
  511. }
  512. /** Decode a bitplane's bits
  513. * @param bp Bitplane where to store the decode bits
  514. * @param v VC-1 context for bit reading and logging
  515. * @return Status
  516. * @fixme FIXME: Optimize
  517. */
  518. static int bitplane_decoding(uint8_t* data, int *raw_flag, VC1Context *v)
  519. {
  520. GetBitContext *gb = &v->s.gb;
  521. int imode, x, y, code, offset;
  522. uint8_t invert, *planep = data;
  523. int width, height, stride;
  524. width = v->s.mb_width;
  525. height = v->s.mb_height;
  526. stride = v->s.mb_stride;
  527. invert = get_bits(gb, 1);
  528. imode = get_vlc2(gb, vc1_imode_vlc.table, VC1_IMODE_VLC_BITS, 1);
  529. *raw_flag = 0;
  530. switch (imode)
  531. {
  532. case IMODE_RAW:
  533. //Data is actually read in the MB layer (same for all tests == "raw")
  534. *raw_flag = 1; //invert ignored
  535. return invert;
  536. case IMODE_DIFF2:
  537. case IMODE_NORM2:
  538. if ((height * width) & 1)
  539. {
  540. *planep++ = get_bits(gb, 1);
  541. offset = 1;
  542. }
  543. else offset = 0;
  544. // decode bitplane as one long line
  545. for (y = offset; y < height * width; y += 2) {
  546. code = get_vlc2(gb, vc1_norm2_vlc.table, VC1_NORM2_VLC_BITS, 1);
  547. *planep++ = code & 1;
  548. offset++;
  549. if(offset == width) {
  550. offset = 0;
  551. planep += stride - width;
  552. }
  553. *planep++ = code >> 1;
  554. offset++;
  555. if(offset == width) {
  556. offset = 0;
  557. planep += stride - width;
  558. }
  559. }
  560. break;
  561. case IMODE_DIFF6:
  562. case IMODE_NORM6:
  563. if(!(height % 3) && (width % 3)) { // use 2x3 decoding
  564. for(y = 0; y < height; y+= 3) {
  565. for(x = width & 1; x < width; x += 2) {
  566. code = get_vlc2(gb, vc1_norm6_vlc.table, VC1_NORM6_VLC_BITS, 2);
  567. if(code < 0){
  568. av_log(v->s.avctx, AV_LOG_DEBUG, "invalid NORM-6 VLC\n");
  569. return -1;
  570. }
  571. planep[x + 0] = (code >> 0) & 1;
  572. planep[x + 1] = (code >> 1) & 1;
  573. planep[x + 0 + stride] = (code >> 2) & 1;
  574. planep[x + 1 + stride] = (code >> 3) & 1;
  575. planep[x + 0 + stride * 2] = (code >> 4) & 1;
  576. planep[x + 1 + stride * 2] = (code >> 5) & 1;
  577. }
  578. planep += stride * 3;
  579. }
  580. if(width & 1) decode_colskip(data, 1, height, stride, &v->s.gb);
  581. } else { // 3x2
  582. planep += (height & 1) * stride;
  583. for(y = height & 1; y < height; y += 2) {
  584. for(x = width % 3; x < width; x += 3) {
  585. code = get_vlc2(gb, vc1_norm6_vlc.table, VC1_NORM6_VLC_BITS, 2);
  586. if(code < 0){
  587. av_log(v->s.avctx, AV_LOG_DEBUG, "invalid NORM-6 VLC\n");
  588. return -1;
  589. }
  590. planep[x + 0] = (code >> 0) & 1;
  591. planep[x + 1] = (code >> 1) & 1;
  592. planep[x + 2] = (code >> 2) & 1;
  593. planep[x + 0 + stride] = (code >> 3) & 1;
  594. planep[x + 1 + stride] = (code >> 4) & 1;
  595. planep[x + 2 + stride] = (code >> 5) & 1;
  596. }
  597. planep += stride * 2;
  598. }
  599. x = width % 3;
  600. if(x) decode_colskip(data , x, height , stride, &v->s.gb);
  601. if(height & 1) decode_rowskip(data+x, width - x, 1, stride, &v->s.gb);
  602. }
  603. break;
  604. case IMODE_ROWSKIP:
  605. decode_rowskip(data, width, height, stride, &v->s.gb);
  606. break;
  607. case IMODE_COLSKIP:
  608. decode_colskip(data, width, height, stride, &v->s.gb);
  609. break;
  610. default: break;
  611. }
  612. /* Applying diff operator */
  613. if (imode == IMODE_DIFF2 || imode == IMODE_DIFF6)
  614. {
  615. planep = data;
  616. planep[0] ^= invert;
  617. for (x=1; x<width; x++)
  618. planep[x] ^= planep[x-1];
  619. for (y=1; y<height; y++)
  620. {
  621. planep += stride;
  622. planep[0] ^= planep[-stride];
  623. for (x=1; x<width; x++)
  624. {
  625. if (planep[x-1] != planep[x-stride]) planep[x] ^= invert;
  626. else planep[x] ^= planep[x-1];
  627. }
  628. }
  629. }
  630. else if (invert)
  631. {
  632. planep = data;
  633. for (x=0; x<stride*height; x++) planep[x] = !planep[x]; //FIXME stride
  634. }
  635. return (imode<<1) + invert;
  636. }
  637. /** @} */ //Bitplane group
  638. /***********************************************************************/
  639. /** VOP Dquant decoding
  640. * @param v VC-1 Context
  641. */
  642. static int vop_dquant_decoding(VC1Context *v)
  643. {
  644. GetBitContext *gb = &v->s.gb;
  645. int pqdiff;
  646. //variable size
  647. if (v->dquant == 2)
  648. {
  649. pqdiff = get_bits(gb, 3);
  650. if (pqdiff == 7) v->altpq = get_bits(gb, 5);
  651. else v->altpq = v->pq + pqdiff + 1;
  652. }
  653. else
  654. {
  655. v->dquantfrm = get_bits(gb, 1);
  656. if ( v->dquantfrm )
  657. {
  658. v->dqprofile = get_bits(gb, 2);
  659. switch (v->dqprofile)
  660. {
  661. case DQPROFILE_SINGLE_EDGE:
  662. case DQPROFILE_DOUBLE_EDGES:
  663. v->dqsbedge = get_bits(gb, 2);
  664. break;
  665. case DQPROFILE_ALL_MBS:
  666. v->dqbilevel = get_bits(gb, 1);
  667. default: break; //Forbidden ?
  668. }
  669. if (v->dqbilevel || v->dqprofile != DQPROFILE_ALL_MBS)
  670. {
  671. pqdiff = get_bits(gb, 3);
  672. if (pqdiff == 7) v->altpq = get_bits(gb, 5);
  673. else v->altpq = v->pq + pqdiff + 1;
  674. }
  675. }
  676. }
  677. return 0;
  678. }
  679. /** Put block onto picture
  680. */
  681. static void vc1_put_block(VC1Context *v, DCTELEM block[6][64])
  682. {
  683. uint8_t *Y;
  684. int ys, us, vs;
  685. DSPContext *dsp = &v->s.dsp;
  686. if(v->rangeredfrm) {
  687. int i, j, k;
  688. for(k = 0; k < 6; k++)
  689. for(j = 0; j < 8; j++)
  690. for(i = 0; i < 8; i++)
  691. block[k][i + j*8] = ((block[k][i + j*8] - 128) << 1) + 128;
  692. }
  693. ys = v->s.current_picture.linesize[0];
  694. us = v->s.current_picture.linesize[1];
  695. vs = v->s.current_picture.linesize[2];
  696. Y = v->s.dest[0];
  697. dsp->put_pixels_clamped(block[0], Y, ys);
  698. dsp->put_pixels_clamped(block[1], Y + 8, ys);
  699. Y += ys * 8;
  700. dsp->put_pixels_clamped(block[2], Y, ys);
  701. dsp->put_pixels_clamped(block[3], Y + 8, ys);
  702. if(!(v->s.flags & CODEC_FLAG_GRAY)) {
  703. dsp->put_pixels_clamped(block[4], v->s.dest[1], us);
  704. dsp->put_pixels_clamped(block[5], v->s.dest[2], vs);
  705. }
  706. }
  707. /** Do motion compensation over 1 macroblock
  708. * Mostly adapted hpel_motion and qpel_motion from mpegvideo.c
  709. */
  710. static void vc1_mc_1mv(VC1Context *v, int dir)
  711. {
  712. MpegEncContext *s = &v->s;
  713. DSPContext *dsp = &v->s.dsp;
  714. uint8_t *srcY, *srcU, *srcV;
  715. int dxy, uvdxy, mx, my, uvmx, uvmy, src_x, src_y, uvsrc_x, uvsrc_y;
  716. if(!v->s.last_picture.data[0])return;
  717. mx = s->mv[dir][0][0];
  718. my = s->mv[dir][0][1];
  719. // store motion vectors for further use in B frames
  720. if(s->pict_type == P_TYPE) {
  721. s->current_picture.motion_val[1][s->block_index[0]][0] = mx;
  722. s->current_picture.motion_val[1][s->block_index[0]][1] = my;
  723. }
  724. uvmx = (mx + ((mx & 3) == 3)) >> 1;
  725. uvmy = (my + ((my & 3) == 3)) >> 1;
  726. if(v->fastuvmc) {
  727. uvmx = uvmx + ((uvmx<0)?(uvmx&1):-(uvmx&1));
  728. uvmy = uvmy + ((uvmy<0)?(uvmy&1):-(uvmy&1));
  729. }
  730. if(!dir) {
  731. srcY = s->last_picture.data[0];
  732. srcU = s->last_picture.data[1];
  733. srcV = s->last_picture.data[2];
  734. } else {
  735. srcY = s->next_picture.data[0];
  736. srcU = s->next_picture.data[1];
  737. srcV = s->next_picture.data[2];
  738. }
  739. src_x = s->mb_x * 16 + (mx >> 2);
  740. src_y = s->mb_y * 16 + (my >> 2);
  741. uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
  742. uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
  743. if(v->profile != PROFILE_ADVANCED){
  744. src_x = av_clip( src_x, -16, s->mb_width * 16);
  745. src_y = av_clip( src_y, -16, s->mb_height * 16);
  746. uvsrc_x = av_clip(uvsrc_x, -8, s->mb_width * 8);
  747. uvsrc_y = av_clip(uvsrc_y, -8, s->mb_height * 8);
  748. }else{
  749. src_x = av_clip( src_x, -17, s->avctx->coded_width);
  750. src_y = av_clip( src_y, -18, s->avctx->coded_height + 1);
  751. uvsrc_x = av_clip(uvsrc_x, -8, s->avctx->coded_width >> 1);
  752. uvsrc_y = av_clip(uvsrc_y, -8, s->avctx->coded_height >> 1);
  753. }
  754. srcY += src_y * s->linesize + src_x;
  755. srcU += uvsrc_y * s->uvlinesize + uvsrc_x;
  756. srcV += uvsrc_y * s->uvlinesize + uvsrc_x;
  757. /* for grayscale we should not try to read from unknown area */
  758. if(s->flags & CODEC_FLAG_GRAY) {
  759. srcU = s->edge_emu_buffer + 18 * s->linesize;
  760. srcV = s->edge_emu_buffer + 18 * s->linesize;
  761. }
  762. if(v->rangeredfrm || (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  763. || (unsigned)(src_x - s->mspel) > s->h_edge_pos - (mx&3) - 16 - s->mspel*3
  764. || (unsigned)(src_y - s->mspel) > s->v_edge_pos - (my&3) - 16 - s->mspel*3){
  765. uint8_t *uvbuf= s->edge_emu_buffer + 19 * s->linesize;
  766. srcY -= s->mspel * (1 + s->linesize);
  767. ff_emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize, 17+s->mspel*2, 17+s->mspel*2,
  768. src_x - s->mspel, src_y - s->mspel, s->h_edge_pos, s->v_edge_pos);
  769. srcY = s->edge_emu_buffer;
  770. ff_emulated_edge_mc(uvbuf , srcU, s->uvlinesize, 8+1, 8+1,
  771. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  772. ff_emulated_edge_mc(uvbuf + 16, srcV, s->uvlinesize, 8+1, 8+1,
  773. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  774. srcU = uvbuf;
  775. srcV = uvbuf + 16;
  776. /* if we deal with range reduction we need to scale source blocks */
  777. if(v->rangeredfrm) {
  778. int i, j;
  779. uint8_t *src, *src2;
  780. src = srcY;
  781. for(j = 0; j < 17 + s->mspel*2; j++) {
  782. for(i = 0; i < 17 + s->mspel*2; i++) src[i] = ((src[i] - 128) >> 1) + 128;
  783. src += s->linesize;
  784. }
  785. src = srcU; src2 = srcV;
  786. for(j = 0; j < 9; j++) {
  787. for(i = 0; i < 9; i++) {
  788. src[i] = ((src[i] - 128) >> 1) + 128;
  789. src2[i] = ((src2[i] - 128) >> 1) + 128;
  790. }
  791. src += s->uvlinesize;
  792. src2 += s->uvlinesize;
  793. }
  794. }
  795. /* if we deal with intensity compensation we need to scale source blocks */
  796. if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  797. int i, j;
  798. uint8_t *src, *src2;
  799. src = srcY;
  800. for(j = 0; j < 17 + s->mspel*2; j++) {
  801. for(i = 0; i < 17 + s->mspel*2; i++) src[i] = v->luty[src[i]];
  802. src += s->linesize;
  803. }
  804. src = srcU; src2 = srcV;
  805. for(j = 0; j < 9; j++) {
  806. for(i = 0; i < 9; i++) {
  807. src[i] = v->lutuv[src[i]];
  808. src2[i] = v->lutuv[src2[i]];
  809. }
  810. src += s->uvlinesize;
  811. src2 += s->uvlinesize;
  812. }
  813. }
  814. srcY += s->mspel * (1 + s->linesize);
  815. }
  816. if(s->mspel) {
  817. dxy = ((my & 3) << 2) | (mx & 3);
  818. dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] , srcY , s->linesize, v->rnd);
  819. dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8, srcY + 8, s->linesize, v->rnd);
  820. srcY += s->linesize * 8;
  821. dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8 * s->linesize , srcY , s->linesize, v->rnd);
  822. dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8 * s->linesize + 8, srcY + 8, s->linesize, v->rnd);
  823. } else { // hpel mc - always used for luma
  824. dxy = (my & 2) | ((mx & 2) >> 1);
  825. if(!v->rnd)
  826. dsp->put_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
  827. else
  828. dsp->put_no_rnd_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
  829. }
  830. if(s->flags & CODEC_FLAG_GRAY) return;
  831. /* Chroma MC always uses qpel bilinear */
  832. uvdxy = ((uvmy & 3) << 2) | (uvmx & 3);
  833. uvmx = (uvmx&3)<<1;
  834. uvmy = (uvmy&3)<<1;
  835. if(!v->rnd){
  836. dsp->put_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  837. dsp->put_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  838. }else{
  839. dsp->put_no_rnd_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  840. dsp->put_no_rnd_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  841. }
  842. }
  843. /** Do motion compensation for 4-MV macroblock - luminance block
  844. */
  845. static void vc1_mc_4mv_luma(VC1Context *v, int n)
  846. {
  847. MpegEncContext *s = &v->s;
  848. DSPContext *dsp = &v->s.dsp;
  849. uint8_t *srcY;
  850. int dxy, mx, my, src_x, src_y;
  851. int off;
  852. if(!v->s.last_picture.data[0])return;
  853. mx = s->mv[0][n][0];
  854. my = s->mv[0][n][1];
  855. srcY = s->last_picture.data[0];
  856. off = s->linesize * 4 * (n&2) + (n&1) * 8;
  857. src_x = s->mb_x * 16 + (n&1) * 8 + (mx >> 2);
  858. src_y = s->mb_y * 16 + (n&2) * 4 + (my >> 2);
  859. if(v->profile != PROFILE_ADVANCED){
  860. src_x = av_clip( src_x, -16, s->mb_width * 16);
  861. src_y = av_clip( src_y, -16, s->mb_height * 16);
  862. }else{
  863. src_x = av_clip( src_x, -17, s->avctx->coded_width);
  864. src_y = av_clip( src_y, -18, s->avctx->coded_height + 1);
  865. }
  866. srcY += src_y * s->linesize + src_x;
  867. if(v->rangeredfrm || (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  868. || (unsigned)(src_x - s->mspel) > s->h_edge_pos - (mx&3) - 8 - s->mspel*2
  869. || (unsigned)(src_y - s->mspel) > s->v_edge_pos - (my&3) - 8 - s->mspel*2){
  870. srcY -= s->mspel * (1 + s->linesize);
  871. ff_emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize, 9+s->mspel*2, 9+s->mspel*2,
  872. src_x - s->mspel, src_y - s->mspel, s->h_edge_pos, s->v_edge_pos);
  873. srcY = s->edge_emu_buffer;
  874. /* if we deal with range reduction we need to scale source blocks */
  875. if(v->rangeredfrm) {
  876. int i, j;
  877. uint8_t *src;
  878. src = srcY;
  879. for(j = 0; j < 9 + s->mspel*2; j++) {
  880. for(i = 0; i < 9 + s->mspel*2; i++) src[i] = ((src[i] - 128) >> 1) + 128;
  881. src += s->linesize;
  882. }
  883. }
  884. /* if we deal with intensity compensation we need to scale source blocks */
  885. if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  886. int i, j;
  887. uint8_t *src;
  888. src = srcY;
  889. for(j = 0; j < 9 + s->mspel*2; j++) {
  890. for(i = 0; i < 9 + s->mspel*2; i++) src[i] = v->luty[src[i]];
  891. src += s->linesize;
  892. }
  893. }
  894. srcY += s->mspel * (1 + s->linesize);
  895. }
  896. if(s->mspel) {
  897. dxy = ((my & 3) << 2) | (mx & 3);
  898. dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + off, srcY, s->linesize, v->rnd);
  899. } else { // hpel mc - always used for luma
  900. dxy = (my & 2) | ((mx & 2) >> 1);
  901. if(!v->rnd)
  902. dsp->put_pixels_tab[1][dxy](s->dest[0] + off, srcY, s->linesize, 8);
  903. else
  904. dsp->put_no_rnd_pixels_tab[1][dxy](s->dest[0] + off, srcY, s->linesize, 8);
  905. }
  906. }
  907. static inline int median4(int a, int b, int c, int d)
  908. {
  909. if(a < b) {
  910. if(c < d) return (FFMIN(b, d) + FFMAX(a, c)) / 2;
  911. else return (FFMIN(b, c) + FFMAX(a, d)) / 2;
  912. } else {
  913. if(c < d) return (FFMIN(a, d) + FFMAX(b, c)) / 2;
  914. else return (FFMIN(a, c) + FFMAX(b, d)) / 2;
  915. }
  916. }
  917. /** Do motion compensation for 4-MV macroblock - both chroma blocks
  918. */
  919. static void vc1_mc_4mv_chroma(VC1Context *v)
  920. {
  921. MpegEncContext *s = &v->s;
  922. DSPContext *dsp = &v->s.dsp;
  923. uint8_t *srcU, *srcV;
  924. int uvdxy, uvmx, uvmy, uvsrc_x, uvsrc_y;
  925. int i, idx, tx = 0, ty = 0;
  926. int mvx[4], mvy[4], intra[4];
  927. static const int count[16] = { 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4};
  928. if(!v->s.last_picture.data[0])return;
  929. if(s->flags & CODEC_FLAG_GRAY) return;
  930. for(i = 0; i < 4; i++) {
  931. mvx[i] = s->mv[0][i][0];
  932. mvy[i] = s->mv[0][i][1];
  933. intra[i] = v->mb_type[0][s->block_index[i]];
  934. }
  935. /* calculate chroma MV vector from four luma MVs */
  936. idx = (intra[3] << 3) | (intra[2] << 2) | (intra[1] << 1) | intra[0];
  937. if(!idx) { // all blocks are inter
  938. tx = median4(mvx[0], mvx[1], mvx[2], mvx[3]);
  939. ty = median4(mvy[0], mvy[1], mvy[2], mvy[3]);
  940. } else if(count[idx] == 1) { // 3 inter blocks
  941. switch(idx) {
  942. case 0x1:
  943. tx = mid_pred(mvx[1], mvx[2], mvx[3]);
  944. ty = mid_pred(mvy[1], mvy[2], mvy[3]);
  945. break;
  946. case 0x2:
  947. tx = mid_pred(mvx[0], mvx[2], mvx[3]);
  948. ty = mid_pred(mvy[0], mvy[2], mvy[3]);
  949. break;
  950. case 0x4:
  951. tx = mid_pred(mvx[0], mvx[1], mvx[3]);
  952. ty = mid_pred(mvy[0], mvy[1], mvy[3]);
  953. break;
  954. case 0x8:
  955. tx = mid_pred(mvx[0], mvx[1], mvx[2]);
  956. ty = mid_pred(mvy[0], mvy[1], mvy[2]);
  957. break;
  958. }
  959. } else if(count[idx] == 2) {
  960. int t1 = 0, t2 = 0;
  961. for(i=0; i<3;i++) if(!intra[i]) {t1 = i; break;}
  962. for(i= t1+1; i<4; i++)if(!intra[i]) {t2 = i; break;}
  963. tx = (mvx[t1] + mvx[t2]) / 2;
  964. ty = (mvy[t1] + mvy[t2]) / 2;
  965. } else {
  966. s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
  967. s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
  968. return; //no need to do MC for inter blocks
  969. }
  970. s->current_picture.motion_val[1][s->block_index[0]][0] = tx;
  971. s->current_picture.motion_val[1][s->block_index[0]][1] = ty;
  972. uvmx = (tx + ((tx&3) == 3)) >> 1;
  973. uvmy = (ty + ((ty&3) == 3)) >> 1;
  974. if(v->fastuvmc) {
  975. uvmx = uvmx + ((uvmx<0)?(uvmx&1):-(uvmx&1));
  976. uvmy = uvmy + ((uvmy<0)?(uvmy&1):-(uvmy&1));
  977. }
  978. uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
  979. uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
  980. if(v->profile != PROFILE_ADVANCED){
  981. uvsrc_x = av_clip(uvsrc_x, -8, s->mb_width * 8);
  982. uvsrc_y = av_clip(uvsrc_y, -8, s->mb_height * 8);
  983. }else{
  984. uvsrc_x = av_clip(uvsrc_x, -8, s->avctx->coded_width >> 1);
  985. uvsrc_y = av_clip(uvsrc_y, -8, s->avctx->coded_height >> 1);
  986. }
  987. srcU = s->last_picture.data[1] + uvsrc_y * s->uvlinesize + uvsrc_x;
  988. srcV = s->last_picture.data[2] + uvsrc_y * s->uvlinesize + uvsrc_x;
  989. if(v->rangeredfrm || (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  990. || (unsigned)uvsrc_x > (s->h_edge_pos >> 1) - 9
  991. || (unsigned)uvsrc_y > (s->v_edge_pos >> 1) - 9){
  992. ff_emulated_edge_mc(s->edge_emu_buffer , srcU, s->uvlinesize, 8+1, 8+1,
  993. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  994. ff_emulated_edge_mc(s->edge_emu_buffer + 16, srcV, s->uvlinesize, 8+1, 8+1,
  995. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  996. srcU = s->edge_emu_buffer;
  997. srcV = s->edge_emu_buffer + 16;
  998. /* if we deal with range reduction we need to scale source blocks */
  999. if(v->rangeredfrm) {
  1000. int i, j;
  1001. uint8_t *src, *src2;
  1002. src = srcU; src2 = srcV;
  1003. for(j = 0; j < 9; j++) {
  1004. for(i = 0; i < 9; i++) {
  1005. src[i] = ((src[i] - 128) >> 1) + 128;
  1006. src2[i] = ((src2[i] - 128) >> 1) + 128;
  1007. }
  1008. src += s->uvlinesize;
  1009. src2 += s->uvlinesize;
  1010. }
  1011. }
  1012. /* if we deal with intensity compensation we need to scale source blocks */
  1013. if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  1014. int i, j;
  1015. uint8_t *src, *src2;
  1016. src = srcU; src2 = srcV;
  1017. for(j = 0; j < 9; j++) {
  1018. for(i = 0; i < 9; i++) {
  1019. src[i] = v->lutuv[src[i]];
  1020. src2[i] = v->lutuv[src2[i]];
  1021. }
  1022. src += s->uvlinesize;
  1023. src2 += s->uvlinesize;
  1024. }
  1025. }
  1026. }
  1027. /* Chroma MC always uses qpel bilinear */
  1028. uvdxy = ((uvmy & 3) << 2) | (uvmx & 3);
  1029. uvmx = (uvmx&3)<<1;
  1030. uvmy = (uvmy&3)<<1;
  1031. if(!v->rnd){
  1032. dsp->put_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  1033. dsp->put_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  1034. }else{
  1035. dsp->put_no_rnd_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  1036. dsp->put_no_rnd_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  1037. }
  1038. }
  1039. static int decode_sequence_header_adv(VC1Context *v, GetBitContext *gb);
  1040. /**
  1041. * Decode Simple/Main Profiles sequence header
  1042. * @see Figure 7-8, p16-17
  1043. * @param avctx Codec context
  1044. * @param gb GetBit context initialized from Codec context extra_data
  1045. * @return Status
  1046. */
  1047. static int decode_sequence_header(AVCodecContext *avctx, GetBitContext *gb)
  1048. {
  1049. VC1Context *v = avctx->priv_data;
  1050. av_log(avctx, AV_LOG_DEBUG, "Header: %0X\n", show_bits(gb, 32));
  1051. v->profile = get_bits(gb, 2);
  1052. if (v->profile == PROFILE_COMPLEX)
  1053. {
  1054. av_log(avctx, AV_LOG_ERROR, "WMV3 Complex Profile is not fully supported\n");
  1055. }
  1056. if (v->profile == PROFILE_ADVANCED)
  1057. {
  1058. return decode_sequence_header_adv(v, gb);
  1059. }
  1060. else
  1061. {
  1062. v->res_sm = get_bits(gb, 2); //reserved
  1063. if (v->res_sm)
  1064. {
  1065. av_log(avctx, AV_LOG_ERROR,
  1066. "Reserved RES_SM=%i is forbidden\n", v->res_sm);
  1067. return -1;
  1068. }
  1069. }
  1070. // (fps-2)/4 (->30)
  1071. v->frmrtq_postproc = get_bits(gb, 3); //common
  1072. // (bitrate-32kbps)/64kbps
  1073. v->bitrtq_postproc = get_bits(gb, 5); //common
  1074. v->s.loop_filter = get_bits(gb, 1); //common
  1075. if(v->s.loop_filter == 1 && v->profile == PROFILE_SIMPLE)
  1076. {
  1077. av_log(avctx, AV_LOG_ERROR,
  1078. "LOOPFILTER shell not be enabled in simple profile\n");
  1079. }
  1080. v->res_x8 = get_bits(gb, 1); //reserved
  1081. if (v->res_x8)
  1082. {
  1083. av_log(avctx, AV_LOG_ERROR,
  1084. "1 for reserved RES_X8 is forbidden\n");
  1085. //return -1;
  1086. }
  1087. v->multires = get_bits(gb, 1);
  1088. v->res_fasttx = get_bits(gb, 1);
  1089. if (!v->res_fasttx)
  1090. {
  1091. av_log(avctx, AV_LOG_ERROR,
  1092. "0 for reserved RES_FASTTX is forbidden\n");
  1093. //return -1;
  1094. }
  1095. v->fastuvmc = get_bits(gb, 1); //common
  1096. if (!v->profile && !v->fastuvmc)
  1097. {
  1098. av_log(avctx, AV_LOG_ERROR,
  1099. "FASTUVMC unavailable in Simple Profile\n");
  1100. return -1;
  1101. }
  1102. v->extended_mv = get_bits(gb, 1); //common
  1103. if (!v->profile && v->extended_mv)
  1104. {
  1105. av_log(avctx, AV_LOG_ERROR,
  1106. "Extended MVs unavailable in Simple Profile\n");
  1107. return -1;
  1108. }
  1109. v->dquant = get_bits(gb, 2); //common
  1110. v->vstransform = get_bits(gb, 1); //common
  1111. v->res_transtab = get_bits(gb, 1);
  1112. if (v->res_transtab)
  1113. {
  1114. av_log(avctx, AV_LOG_ERROR,
  1115. "1 for reserved RES_TRANSTAB is forbidden\n");
  1116. return -1;
  1117. }
  1118. v->overlap = get_bits(gb, 1); //common
  1119. v->s.resync_marker = get_bits(gb, 1);
  1120. v->rangered = get_bits(gb, 1);
  1121. if (v->rangered && v->profile == PROFILE_SIMPLE)
  1122. {
  1123. av_log(avctx, AV_LOG_INFO,
  1124. "RANGERED should be set to 0 in simple profile\n");
  1125. }
  1126. v->s.max_b_frames = avctx->max_b_frames = get_bits(gb, 3); //common
  1127. v->quantizer_mode = get_bits(gb, 2); //common
  1128. v->finterpflag = get_bits(gb, 1); //common
  1129. v->res_rtm_flag = get_bits(gb, 1); //reserved
  1130. if (!v->res_rtm_flag)
  1131. {
  1132. // av_log(avctx, AV_LOG_ERROR,
  1133. // "0 for reserved RES_RTM_FLAG is forbidden\n");
  1134. av_log(avctx, AV_LOG_ERROR,
  1135. "Old WMV3 version detected, only I-frames will be decoded\n");
  1136. //return -1;
  1137. }
  1138. //TODO: figure out what they mean (always 0x402F)
  1139. if(!v->res_fasttx) skip_bits(gb, 16);
  1140. av_log(avctx, AV_LOG_DEBUG,
  1141. "Profile %i:\nfrmrtq_postproc=%i, bitrtq_postproc=%i\n"
  1142. "LoopFilter=%i, MultiRes=%i, FastUVMC=%i, Extended MV=%i\n"
  1143. "Rangered=%i, VSTransform=%i, Overlap=%i, SyncMarker=%i\n"
  1144. "DQuant=%i, Quantizer mode=%i, Max B frames=%i\n",
  1145. v->profile, v->frmrtq_postproc, v->bitrtq_postproc,
  1146. v->s.loop_filter, v->multires, v->fastuvmc, v->extended_mv,
  1147. v->rangered, v->vstransform, v->overlap, v->s.resync_marker,
  1148. v->dquant, v->quantizer_mode, avctx->max_b_frames
  1149. );
  1150. return 0;
  1151. }
  1152. static int decode_sequence_header_adv(VC1Context *v, GetBitContext *gb)
  1153. {
  1154. v->res_rtm_flag = 1;
  1155. v->level = get_bits(gb, 3);
  1156. if(v->level >= 5)
  1157. {
  1158. av_log(v->s.avctx, AV_LOG_ERROR, "Reserved LEVEL %i\n",v->level);
  1159. }
  1160. v->chromaformat = get_bits(gb, 2);
  1161. if (v->chromaformat != 1)
  1162. {
  1163. av_log(v->s.avctx, AV_LOG_ERROR,
  1164. "Only 4:2:0 chroma format supported\n");
  1165. return -1;
  1166. }
  1167. // (fps-2)/4 (->30)
  1168. v->frmrtq_postproc = get_bits(gb, 3); //common
  1169. // (bitrate-32kbps)/64kbps
  1170. v->bitrtq_postproc = get_bits(gb, 5); //common
  1171. v->postprocflag = get_bits(gb, 1); //common
  1172. v->s.avctx->coded_width = (get_bits(gb, 12) + 1) << 1;
  1173. v->s.avctx->coded_height = (get_bits(gb, 12) + 1) << 1;
  1174. v->s.avctx->width = v->s.avctx->coded_width;
  1175. v->s.avctx->height = v->s.avctx->coded_height;
  1176. v->broadcast = get_bits1(gb);
  1177. v->interlace = get_bits1(gb);
  1178. v->tfcntrflag = get_bits1(gb);
  1179. v->finterpflag = get_bits1(gb);
  1180. get_bits1(gb); // reserved
  1181. v->s.h_edge_pos = v->s.avctx->coded_width;
  1182. v->s.v_edge_pos = v->s.avctx->coded_height;
  1183. av_log(v->s.avctx, AV_LOG_DEBUG,
  1184. "Advanced Profile level %i:\nfrmrtq_postproc=%i, bitrtq_postproc=%i\n"
  1185. "LoopFilter=%i, ChromaFormat=%i, Pulldown=%i, Interlace: %i\n"
  1186. "TFCTRflag=%i, FINTERPflag=%i\n",
  1187. v->level, v->frmrtq_postproc, v->bitrtq_postproc,
  1188. v->s.loop_filter, v->chromaformat, v->broadcast, v->interlace,
  1189. v->tfcntrflag, v->finterpflag
  1190. );
  1191. v->psf = get_bits1(gb);
  1192. if(v->psf) { //PsF, 6.1.13
  1193. av_log(v->s.avctx, AV_LOG_ERROR, "Progressive Segmented Frame mode: not supported (yet)\n");
  1194. return -1;
  1195. }
  1196. v->s.max_b_frames = v->s.avctx->max_b_frames = 7;
  1197. if(get_bits1(gb)) { //Display Info - decoding is not affected by it
  1198. int w, h, ar = 0;
  1199. av_log(v->s.avctx, AV_LOG_DEBUG, "Display extended info:\n");
  1200. v->s.avctx->width = v->s.width = w = get_bits(gb, 14) + 1;
  1201. v->s.avctx->height = v->s.height = h = get_bits(gb, 14) + 1;
  1202. av_log(v->s.avctx, AV_LOG_DEBUG, "Display dimensions: %ix%i\n", w, h);
  1203. if(get_bits1(gb))
  1204. ar = get_bits(gb, 4);
  1205. if(ar && ar < 14){
  1206. v->s.avctx->sample_aspect_ratio = vc1_pixel_aspect[ar];
  1207. }else if(ar == 15){
  1208. w = get_bits(gb, 8);
  1209. h = get_bits(gb, 8);
  1210. v->s.avctx->sample_aspect_ratio = (AVRational){w, h};
  1211. }
  1212. if(get_bits1(gb)){ //framerate stuff
  1213. if(get_bits1(gb)) {
  1214. v->s.avctx->time_base.num = 32;
  1215. v->s.avctx->time_base.den = get_bits(gb, 16) + 1;
  1216. } else {
  1217. int nr, dr;
  1218. nr = get_bits(gb, 8);
  1219. dr = get_bits(gb, 4);
  1220. if(nr && nr < 8 && dr && dr < 3){
  1221. v->s.avctx->time_base.num = fps_dr[dr - 1];
  1222. v->s.avctx->time_base.den = fps_nr[nr - 1] * 1000;
  1223. }
  1224. }
  1225. }
  1226. if(get_bits1(gb)){
  1227. v->color_prim = get_bits(gb, 8);
  1228. v->transfer_char = get_bits(gb, 8);
  1229. v->matrix_coef = get_bits(gb, 8);
  1230. }
  1231. }
  1232. v->hrd_param_flag = get_bits1(gb);
  1233. if(v->hrd_param_flag) {
  1234. int i;
  1235. v->hrd_num_leaky_buckets = get_bits(gb, 5);
  1236. get_bits(gb, 4); //bitrate exponent
  1237. get_bits(gb, 4); //buffer size exponent
  1238. for(i = 0; i < v->hrd_num_leaky_buckets; i++) {
  1239. get_bits(gb, 16); //hrd_rate[n]
  1240. get_bits(gb, 16); //hrd_buffer[n]
  1241. }
  1242. }
  1243. return 0;
  1244. }
  1245. static int decode_entry_point(AVCodecContext *avctx, GetBitContext *gb)
  1246. {
  1247. VC1Context *v = avctx->priv_data;
  1248. int i, blink, clentry, refdist;
  1249. av_log(avctx, AV_LOG_DEBUG, "Entry point: %08X\n", show_bits_long(gb, 32));
  1250. blink = get_bits1(gb); // broken link
  1251. clentry = get_bits1(gb); // closed entry
  1252. v->panscanflag = get_bits1(gb);
  1253. refdist = get_bits1(gb); // refdist flag
  1254. v->s.loop_filter = get_bits1(gb);
  1255. v->fastuvmc = get_bits1(gb);
  1256. v->extended_mv = get_bits1(gb);
  1257. v->dquant = get_bits(gb, 2);
  1258. v->vstransform = get_bits1(gb);
  1259. v->overlap = get_bits1(gb);
  1260. v->quantizer_mode = get_bits(gb, 2);
  1261. if(v->hrd_param_flag){
  1262. for(i = 0; i < v->hrd_num_leaky_buckets; i++) {
  1263. get_bits(gb, 8); //hrd_full[n]
  1264. }
  1265. }
  1266. if(get_bits1(gb)){
  1267. avctx->coded_width = (get_bits(gb, 12)+1)<<1;
  1268. avctx->coded_height = (get_bits(gb, 12)+1)<<1;
  1269. }
  1270. if(v->extended_mv)
  1271. v->extended_dmv = get_bits1(gb);
  1272. if(get_bits1(gb)) {
  1273. av_log(avctx, AV_LOG_ERROR, "Luma scaling is not supported, expect wrong picture\n");
  1274. skip_bits(gb, 3); // Y range, ignored for now
  1275. }
  1276. if(get_bits1(gb)) {
  1277. av_log(avctx, AV_LOG_ERROR, "Chroma scaling is not supported, expect wrong picture\n");
  1278. skip_bits(gb, 3); // UV range, ignored for now
  1279. }
  1280. av_log(avctx, AV_LOG_DEBUG, "Entry point info:\n"
  1281. "BrokenLink=%i, ClosedEntry=%i, PanscanFlag=%i\n"
  1282. "RefDist=%i, Postproc=%i, FastUVMC=%i, ExtMV=%i\n"
  1283. "DQuant=%i, VSTransform=%i, Overlap=%i, Qmode=%i\n",
  1284. blink, clentry, v->panscanflag, refdist, v->s.loop_filter,
  1285. v->fastuvmc, v->extended_mv, v->dquant, v->vstransform, v->overlap, v->quantizer_mode);
  1286. return 0;
  1287. }
  1288. static int vc1_parse_frame_header(VC1Context *v, GetBitContext* gb)
  1289. {
  1290. int pqindex, lowquant, status;
  1291. if(v->finterpflag) v->interpfrm = get_bits(gb, 1);
  1292. skip_bits(gb, 2); //framecnt unused
  1293. v->rangeredfrm = 0;
  1294. if (v->rangered) v->rangeredfrm = get_bits(gb, 1);
  1295. v->s.pict_type = get_bits(gb, 1);
  1296. if (v->s.avctx->max_b_frames) {
  1297. if (!v->s.pict_type) {
  1298. if (get_bits(gb, 1)) v->s.pict_type = I_TYPE;
  1299. else v->s.pict_type = B_TYPE;
  1300. } else v->s.pict_type = P_TYPE;
  1301. } else v->s.pict_type = v->s.pict_type ? P_TYPE : I_TYPE;
  1302. v->bi_type = 0;
  1303. if(v->s.pict_type == B_TYPE) {
  1304. v->bfraction = get_vlc2(gb, vc1_bfraction_vlc.table, VC1_BFRACTION_VLC_BITS, 1);
  1305. v->bfraction = vc1_bfraction_lut[v->bfraction];
  1306. if(v->bfraction == 0) {
  1307. v->s.pict_type = BI_TYPE;
  1308. }
  1309. }
  1310. if(v->s.pict_type == I_TYPE || v->s.pict_type == BI_TYPE)
  1311. get_bits(gb, 7); // skip buffer fullness
  1312. /* calculate RND */
  1313. if(v->s.pict_type == I_TYPE || v->s.pict_type == BI_TYPE)
  1314. v->rnd = 1;
  1315. if(v->s.pict_type == P_TYPE)
  1316. v->rnd ^= 1;
  1317. /* Quantizer stuff */
  1318. pqindex = get_bits(gb, 5);
  1319. if (v->quantizer_mode == QUANT_FRAME_IMPLICIT)
  1320. v->pq = pquant_table[0][pqindex];
  1321. else
  1322. v->pq = pquant_table[1][pqindex];
  1323. v->pquantizer = 1;
  1324. if (v->quantizer_mode == QUANT_FRAME_IMPLICIT)
  1325. v->pquantizer = pqindex < 9;
  1326. if (v->quantizer_mode == QUANT_NON_UNIFORM)
  1327. v->pquantizer = 0;
  1328. v->pqindex = pqindex;
  1329. if (pqindex < 9) v->halfpq = get_bits(gb, 1);
  1330. else v->halfpq = 0;
  1331. if (v->quantizer_mode == QUANT_FRAME_EXPLICIT)
  1332. v->pquantizer = get_bits(gb, 1);
  1333. v->dquantfrm = 0;
  1334. if (v->extended_mv == 1) v->mvrange = get_prefix(gb, 0, 3);
  1335. v->k_x = v->mvrange + 9 + (v->mvrange >> 1); //k_x can be 9 10 12 13
  1336. v->k_y = v->mvrange + 8; //k_y can be 8 9 10 11
  1337. v->range_x = 1 << (v->k_x - 1);
  1338. v->range_y = 1 << (v->k_y - 1);
  1339. if (v->profile == PROFILE_ADVANCED)
  1340. {
  1341. if (v->postprocflag) v->postproc = get_bits(gb, 1);
  1342. }
  1343. else
  1344. if (v->multires && v->s.pict_type != B_TYPE) v->respic = get_bits(gb, 2);
  1345. if(v->res_x8 && (v->s.pict_type == I_TYPE || v->s.pict_type == BI_TYPE)){
  1346. if(get_bits1(gb))return -1;
  1347. }
  1348. //av_log(v->s.avctx, AV_LOG_INFO, "%c Frame: QP=[%i]%i (+%i/2) %i\n",
  1349. // (v->s.pict_type == P_TYPE) ? 'P' : ((v->s.pict_type == I_TYPE) ? 'I' : 'B'), pqindex, v->pq, v->halfpq, v->rangeredfrm);
  1350. if(v->s.pict_type == I_TYPE || v->s.pict_type == P_TYPE) v->use_ic = 0;
  1351. switch(v->s.pict_type) {
  1352. case P_TYPE:
  1353. if (v->pq < 5) v->tt_index = 0;
  1354. else if(v->pq < 13) v->tt_index = 1;
  1355. else v->tt_index = 2;
  1356. lowquant = (v->pq > 12) ? 0 : 1;
  1357. v->mv_mode = mv_pmode_table[lowquant][get_prefix(gb, 1, 4)];
  1358. if (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  1359. {
  1360. int scale, shift, i;
  1361. v->mv_mode2 = mv_pmode_table2[lowquant][get_prefix(gb, 1, 3)];
  1362. v->lumscale = get_bits(gb, 6);
  1363. v->lumshift = get_bits(gb, 6);
  1364. v->use_ic = 1;
  1365. /* fill lookup tables for intensity compensation */
  1366. if(!v->lumscale) {
  1367. scale = -64;
  1368. shift = (255 - v->lumshift * 2) << 6;
  1369. if(v->lumshift > 31)
  1370. shift += 128 << 6;
  1371. } else {
  1372. scale = v->lumscale + 32;
  1373. if(v->lumshift > 31)
  1374. shift = (v->lumshift - 64) << 6;
  1375. else
  1376. shift = v->lumshift << 6;
  1377. }
  1378. for(i = 0; i < 256; i++) {
  1379. v->luty[i] = av_clip_uint8((scale * i + shift + 32) >> 6);
  1380. v->lutuv[i] = av_clip_uint8((scale * (i - 128) + 128*64 + 32) >> 6);
  1381. }
  1382. }
  1383. if(v->mv_mode == MV_PMODE_1MV_HPEL || v->mv_mode == MV_PMODE_1MV_HPEL_BILIN)
  1384. v->s.quarter_sample = 0;
  1385. else if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  1386. if(v->mv_mode2 == MV_PMODE_1MV_HPEL || v->mv_mode2 == MV_PMODE_1MV_HPEL_BILIN)
  1387. v->s.quarter_sample = 0;
  1388. else
  1389. v->s.quarter_sample = 1;
  1390. } else
  1391. v->s.quarter_sample = 1;
  1392. v->s.mspel = !(v->mv_mode == MV_PMODE_1MV_HPEL_BILIN || (v->mv_mode == MV_PMODE_INTENSITY_COMP && v->mv_mode2 == MV_PMODE_1MV_HPEL_BILIN));
  1393. if ((v->mv_mode == MV_PMODE_INTENSITY_COMP &&
  1394. v->mv_mode2 == MV_PMODE_MIXED_MV)
  1395. || v->mv_mode == MV_PMODE_MIXED_MV)
  1396. {
  1397. status = bitplane_decoding(v->mv_type_mb_plane, &v->mv_type_is_raw, v);
  1398. if (status < 0) return -1;
  1399. av_log(v->s.avctx, AV_LOG_DEBUG, "MB MV Type plane encoding: "
  1400. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1401. } else {
  1402. v->mv_type_is_raw = 0;
  1403. memset(v->mv_type_mb_plane, 0, v->s.mb_stride * v->s.mb_height);
  1404. }
  1405. status = bitplane_decoding(v->s.mbskip_table, &v->skip_is_raw, v);
  1406. if (status < 0) return -1;
  1407. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Skip plane encoding: "
  1408. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1409. /* Hopefully this is correct for P frames */
  1410. v->s.mv_table_index = get_bits(gb, 2); //but using vc1_ tables
  1411. v->cbpcy_vlc = &vc1_cbpcy_p_vlc[get_bits(gb, 2)];
  1412. if (v->dquant)
  1413. {
  1414. av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
  1415. vop_dquant_decoding(v);
  1416. }
  1417. v->ttfrm = 0; //FIXME Is that so ?
  1418. if (v->vstransform)
  1419. {
  1420. v->ttmbf = get_bits(gb, 1);
  1421. if (v->ttmbf)
  1422. {
  1423. v->ttfrm = ttfrm_to_tt[get_bits(gb, 2)];
  1424. }
  1425. } else {
  1426. v->ttmbf = 1;
  1427. v->ttfrm = TT_8X8;
  1428. }
  1429. break;
  1430. case B_TYPE:
  1431. if (v->pq < 5) v->tt_index = 0;
  1432. else if(v->pq < 13) v->tt_index = 1;
  1433. else v->tt_index = 2;
  1434. lowquant = (v->pq > 12) ? 0 : 1;
  1435. v->mv_mode = get_bits1(gb) ? MV_PMODE_1MV : MV_PMODE_1MV_HPEL_BILIN;
  1436. v->s.quarter_sample = (v->mv_mode == MV_PMODE_1MV);
  1437. v->s.mspel = v->s.quarter_sample;
  1438. status = bitplane_decoding(v->direct_mb_plane, &v->dmb_is_raw, v);
  1439. if (status < 0) return -1;
  1440. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Direct Type plane encoding: "
  1441. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1442. status = bitplane_decoding(v->s.mbskip_table, &v->skip_is_raw, v);
  1443. if (status < 0) return -1;
  1444. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Skip plane encoding: "
  1445. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1446. v->s.mv_table_index = get_bits(gb, 2);
  1447. v->cbpcy_vlc = &vc1_cbpcy_p_vlc[get_bits(gb, 2)];
  1448. if (v->dquant)
  1449. {
  1450. av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
  1451. vop_dquant_decoding(v);
  1452. }
  1453. v->ttfrm = 0;
  1454. if (v->vstransform)
  1455. {
  1456. v->ttmbf = get_bits(gb, 1);
  1457. if (v->ttmbf)
  1458. {
  1459. v->ttfrm = ttfrm_to_tt[get_bits(gb, 2)];
  1460. }
  1461. } else {
  1462. v->ttmbf = 1;
  1463. v->ttfrm = TT_8X8;
  1464. }
  1465. break;
  1466. }
  1467. /* AC Syntax */
  1468. v->c_ac_table_index = decode012(gb);
  1469. if (v->s.pict_type == I_TYPE || v->s.pict_type == BI_TYPE)
  1470. {
  1471. v->y_ac_table_index = decode012(gb);
  1472. }
  1473. /* DC Syntax */
  1474. v->s.dc_table_index = get_bits(gb, 1);
  1475. if(v->s.pict_type == BI_TYPE) {
  1476. v->s.pict_type = B_TYPE;
  1477. v->bi_type = 1;
  1478. }
  1479. return 0;
  1480. }
  1481. static int vc1_parse_frame_header_adv(VC1Context *v, GetBitContext* gb)
  1482. {
  1483. int pqindex, lowquant;
  1484. int status;
  1485. v->p_frame_skipped = 0;
  1486. if(v->interlace){
  1487. v->fcm = decode012(gb);
  1488. if(v->fcm) return -1; // interlaced frames/fields are not implemented
  1489. }
  1490. switch(get_prefix(gb, 0, 4)) {
  1491. case 0:
  1492. v->s.pict_type = P_TYPE;
  1493. break;
  1494. case 1:
  1495. v->s.pict_type = B_TYPE;
  1496. break;
  1497. case 2:
  1498. v->s.pict_type = I_TYPE;
  1499. break;
  1500. case 3:
  1501. v->s.pict_type = BI_TYPE;
  1502. break;
  1503. case 4:
  1504. v->s.pict_type = P_TYPE; // skipped pic
  1505. v->p_frame_skipped = 1;
  1506. return 0;
  1507. }
  1508. if(v->tfcntrflag)
  1509. get_bits(gb, 8);
  1510. if(v->broadcast) {
  1511. if(!v->interlace || v->psf) {
  1512. v->rptfrm = get_bits(gb, 2);
  1513. } else {
  1514. v->tff = get_bits1(gb);
  1515. v->rptfrm = get_bits1(gb);
  1516. }
  1517. }
  1518. if(v->panscanflag) {
  1519. //...
  1520. }
  1521. v->rnd = get_bits1(gb);
  1522. if(v->interlace)
  1523. v->uvsamp = get_bits1(gb);
  1524. if(v->finterpflag) v->interpfrm = get_bits(gb, 1);
  1525. if(v->s.pict_type == B_TYPE) {
  1526. v->bfraction = get_vlc2(gb, vc1_bfraction_vlc.table, VC1_BFRACTION_VLC_BITS, 1);
  1527. v->bfraction = vc1_bfraction_lut[v->bfraction];
  1528. if(v->bfraction == 0) {
  1529. v->s.pict_type = BI_TYPE; /* XXX: should not happen here */
  1530. }
  1531. }
  1532. pqindex = get_bits(gb, 5);
  1533. v->pqindex = pqindex;
  1534. if (v->quantizer_mode == QUANT_FRAME_IMPLICIT)
  1535. v->pq = pquant_table[0][pqindex];
  1536. else
  1537. v->pq = pquant_table[1][pqindex];
  1538. v->pquantizer = 1;
  1539. if (v->quantizer_mode == QUANT_FRAME_IMPLICIT)
  1540. v->pquantizer = pqindex < 9;
  1541. if (v->quantizer_mode == QUANT_NON_UNIFORM)
  1542. v->pquantizer = 0;
  1543. v->pqindex = pqindex;
  1544. if (pqindex < 9) v->halfpq = get_bits(gb, 1);
  1545. else v->halfpq = 0;
  1546. if (v->quantizer_mode == QUANT_FRAME_EXPLICIT)
  1547. v->pquantizer = get_bits(gb, 1);
  1548. if(v->s.pict_type == I_TYPE || v->s.pict_type == P_TYPE) v->use_ic = 0;
  1549. switch(v->s.pict_type) {
  1550. case I_TYPE:
  1551. case BI_TYPE:
  1552. status = bitplane_decoding(v->acpred_plane, &v->acpred_is_raw, v);
  1553. if (status < 0) return -1;
  1554. av_log(v->s.avctx, AV_LOG_DEBUG, "ACPRED plane encoding: "
  1555. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1556. v->condover = CONDOVER_NONE;
  1557. if(v->overlap && v->pq <= 8) {
  1558. v->condover = decode012(gb);
  1559. if(v->condover == CONDOVER_SELECT) {
  1560. status = bitplane_decoding(v->over_flags_plane, &v->overflg_is_raw, v);
  1561. if (status < 0) return -1;
  1562. av_log(v->s.avctx, AV_LOG_DEBUG, "CONDOVER plane encoding: "
  1563. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1564. }
  1565. }
  1566. break;
  1567. case P_TYPE:
  1568. if(v->postprocflag)
  1569. v->postproc = get_bits1(gb);
  1570. if (v->extended_mv) v->mvrange = get_prefix(gb, 0, 3);
  1571. else v->mvrange = 0;
  1572. v->k_x = v->mvrange + 9 + (v->mvrange >> 1); //k_x can be 9 10 12 13
  1573. v->k_y = v->mvrange + 8; //k_y can be 8 9 10 11
  1574. v->range_x = 1 << (v->k_x - 1);
  1575. v->range_y = 1 << (v->k_y - 1);
  1576. if (v->pq < 5) v->tt_index = 0;
  1577. else if(v->pq < 13) v->tt_index = 1;
  1578. else v->tt_index = 2;
  1579. lowquant = (v->pq > 12) ? 0 : 1;
  1580. v->mv_mode = mv_pmode_table[lowquant][get_prefix(gb, 1, 4)];
  1581. if (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  1582. {
  1583. int scale, shift, i;
  1584. v->mv_mode2 = mv_pmode_table2[lowquant][get_prefix(gb, 1, 3)];
  1585. v->lumscale = get_bits(gb, 6);
  1586. v->lumshift = get_bits(gb, 6);
  1587. /* fill lookup tables for intensity compensation */
  1588. if(!v->lumscale) {
  1589. scale = -64;
  1590. shift = (255 - v->lumshift * 2) << 6;
  1591. if(v->lumshift > 31)
  1592. shift += 128 << 6;
  1593. } else {
  1594. scale = v->lumscale + 32;
  1595. if(v->lumshift > 31)
  1596. shift = (v->lumshift - 64) << 6;
  1597. else
  1598. shift = v->lumshift << 6;
  1599. }
  1600. for(i = 0; i < 256; i++) {
  1601. v->luty[i] = av_clip_uint8((scale * i + shift + 32) >> 6);
  1602. v->lutuv[i] = av_clip_uint8((scale * (i - 128) + 128*64 + 32) >> 6);
  1603. }
  1604. v->use_ic = 1;
  1605. }
  1606. if(v->mv_mode == MV_PMODE_1MV_HPEL || v->mv_mode == MV_PMODE_1MV_HPEL_BILIN)
  1607. v->s.quarter_sample = 0;
  1608. else if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  1609. if(v->mv_mode2 == MV_PMODE_1MV_HPEL || v->mv_mode2 == MV_PMODE_1MV_HPEL_BILIN)
  1610. v->s.quarter_sample = 0;
  1611. else
  1612. v->s.quarter_sample = 1;
  1613. } else
  1614. v->s.quarter_sample = 1;
  1615. v->s.mspel = !(v->mv_mode == MV_PMODE_1MV_HPEL_BILIN || (v->mv_mode == MV_PMODE_INTENSITY_COMP && v->mv_mode2 == MV_PMODE_1MV_HPEL_BILIN));
  1616. if ((v->mv_mode == MV_PMODE_INTENSITY_COMP &&
  1617. v->mv_mode2 == MV_PMODE_MIXED_MV)
  1618. || v->mv_mode == MV_PMODE_MIXED_MV)
  1619. {
  1620. status = bitplane_decoding(v->mv_type_mb_plane, &v->mv_type_is_raw, v);
  1621. if (status < 0) return -1;
  1622. av_log(v->s.avctx, AV_LOG_DEBUG, "MB MV Type plane encoding: "
  1623. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1624. } else {
  1625. v->mv_type_is_raw = 0;
  1626. memset(v->mv_type_mb_plane, 0, v->s.mb_stride * v->s.mb_height);
  1627. }
  1628. status = bitplane_decoding(v->s.mbskip_table, &v->skip_is_raw, v);
  1629. if (status < 0) return -1;
  1630. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Skip plane encoding: "
  1631. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1632. /* Hopefully this is correct for P frames */
  1633. v->s.mv_table_index = get_bits(gb, 2); //but using vc1_ tables
  1634. v->cbpcy_vlc = &vc1_cbpcy_p_vlc[get_bits(gb, 2)];
  1635. if (v->dquant)
  1636. {
  1637. av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
  1638. vop_dquant_decoding(v);
  1639. }
  1640. v->ttfrm = 0; //FIXME Is that so ?
  1641. if (v->vstransform)
  1642. {
  1643. v->ttmbf = get_bits(gb, 1);
  1644. if (v->ttmbf)
  1645. {
  1646. v->ttfrm = ttfrm_to_tt[get_bits(gb, 2)];
  1647. }
  1648. } else {
  1649. v->ttmbf = 1;
  1650. v->ttfrm = TT_8X8;
  1651. }
  1652. break;
  1653. case B_TYPE:
  1654. if(v->postprocflag)
  1655. v->postproc = get_bits1(gb);
  1656. if (v->extended_mv) v->mvrange = get_prefix(gb, 0, 3);
  1657. else v->mvrange = 0;
  1658. v->k_x = v->mvrange + 9 + (v->mvrange >> 1); //k_x can be 9 10 12 13
  1659. v->k_y = v->mvrange + 8; //k_y can be 8 9 10 11
  1660. v->range_x = 1 << (v->k_x - 1);
  1661. v->range_y = 1 << (v->k_y - 1);
  1662. if (v->pq < 5) v->tt_index = 0;
  1663. else if(v->pq < 13) v->tt_index = 1;
  1664. else v->tt_index = 2;
  1665. lowquant = (v->pq > 12) ? 0 : 1;
  1666. v->mv_mode = get_bits1(gb) ? MV_PMODE_1MV : MV_PMODE_1MV_HPEL_BILIN;
  1667. v->s.quarter_sample = (v->mv_mode == MV_PMODE_1MV);
  1668. v->s.mspel = v->s.quarter_sample;
  1669. status = bitplane_decoding(v->direct_mb_plane, &v->dmb_is_raw, v);
  1670. if (status < 0) return -1;
  1671. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Direct Type plane encoding: "
  1672. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1673. status = bitplane_decoding(v->s.mbskip_table, &v->skip_is_raw, v);
  1674. if (status < 0) return -1;
  1675. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Skip plane encoding: "
  1676. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1677. v->s.mv_table_index = get_bits(gb, 2);
  1678. v->cbpcy_vlc = &vc1_cbpcy_p_vlc[get_bits(gb, 2)];
  1679. if (v->dquant)
  1680. {
  1681. av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
  1682. vop_dquant_decoding(v);
  1683. }
  1684. v->ttfrm = 0;
  1685. if (v->vstransform)
  1686. {
  1687. v->ttmbf = get_bits(gb, 1);
  1688. if (v->ttmbf)
  1689. {
  1690. v->ttfrm = ttfrm_to_tt[get_bits(gb, 2)];
  1691. }
  1692. } else {
  1693. v->ttmbf = 1;
  1694. v->ttfrm = TT_8X8;
  1695. }
  1696. break;
  1697. }
  1698. /* AC Syntax */
  1699. v->c_ac_table_index = decode012(gb);
  1700. if (v->s.pict_type == I_TYPE || v->s.pict_type == BI_TYPE)
  1701. {
  1702. v->y_ac_table_index = decode012(gb);
  1703. }
  1704. /* DC Syntax */
  1705. v->s.dc_table_index = get_bits(gb, 1);
  1706. if ((v->s.pict_type == I_TYPE || v->s.pict_type == BI_TYPE) && v->dquant) {
  1707. av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
  1708. vop_dquant_decoding(v);
  1709. }
  1710. v->bi_type = 0;
  1711. if(v->s.pict_type == BI_TYPE) {
  1712. v->s.pict_type = B_TYPE;
  1713. v->bi_type = 1;
  1714. }
  1715. return 0;
  1716. }
  1717. /***********************************************************************/
  1718. /**
  1719. * @defgroup block VC-1 Block-level functions
  1720. * @see 7.1.4, p91 and 8.1.1.7, p(1)04
  1721. * @{
  1722. */
  1723. /**
  1724. * @def GET_MQUANT
  1725. * @brief Get macroblock-level quantizer scale
  1726. */
  1727. #define GET_MQUANT() \
  1728. if (v->dquantfrm) \
  1729. { \
  1730. int edges = 0; \
  1731. if (v->dqprofile == DQPROFILE_ALL_MBS) \
  1732. { \
  1733. if (v->dqbilevel) \
  1734. { \
  1735. mquant = (get_bits(gb, 1)) ? v->altpq : v->pq; \
  1736. } \
  1737. else \
  1738. { \
  1739. mqdiff = get_bits(gb, 3); \
  1740. if (mqdiff != 7) mquant = v->pq + mqdiff; \
  1741. else mquant = get_bits(gb, 5); \
  1742. } \
  1743. } \
  1744. if(v->dqprofile == DQPROFILE_SINGLE_EDGE) \
  1745. edges = 1 << v->dqsbedge; \
  1746. else if(v->dqprofile == DQPROFILE_DOUBLE_EDGES) \
  1747. edges = (3 << v->dqsbedge) % 15; \
  1748. else if(v->dqprofile == DQPROFILE_FOUR_EDGES) \
  1749. edges = 15; \
  1750. if((edges&1) && !s->mb_x) \
  1751. mquant = v->altpq; \
  1752. if((edges&2) && s->first_slice_line) \
  1753. mquant = v->altpq; \
  1754. if((edges&4) && s->mb_x == (s->mb_width - 1)) \
  1755. mquant = v->altpq; \
  1756. if((edges&8) && s->mb_y == (s->mb_height - 1)) \
  1757. mquant = v->altpq; \
  1758. }
  1759. /**
  1760. * @def GET_MVDATA(_dmv_x, _dmv_y)
  1761. * @brief Get MV differentials
  1762. * @see MVDATA decoding from 8.3.5.2, p(1)20
  1763. * @param _dmv_x Horizontal differential for decoded MV
  1764. * @param _dmv_y Vertical differential for decoded MV
  1765. */
  1766. #define GET_MVDATA(_dmv_x, _dmv_y) \
  1767. index = 1 + get_vlc2(gb, vc1_mv_diff_vlc[s->mv_table_index].table,\
  1768. VC1_MV_DIFF_VLC_BITS, 2); \
  1769. if (index > 36) \
  1770. { \
  1771. mb_has_coeffs = 1; \
  1772. index -= 37; \
  1773. } \
  1774. else mb_has_coeffs = 0; \
  1775. s->mb_intra = 0; \
  1776. if (!index) { _dmv_x = _dmv_y = 0; } \
  1777. else if (index == 35) \
  1778. { \
  1779. _dmv_x = get_bits(gb, v->k_x - 1 + s->quarter_sample); \
  1780. _dmv_y = get_bits(gb, v->k_y - 1 + s->quarter_sample); \
  1781. } \
  1782. else if (index == 36) \
  1783. { \
  1784. _dmv_x = 0; \
  1785. _dmv_y = 0; \
  1786. s->mb_intra = 1; \
  1787. } \
  1788. else \
  1789. { \
  1790. index1 = index%6; \
  1791. if (!s->quarter_sample && index1 == 5) val = 1; \
  1792. else val = 0; \
  1793. if(size_table[index1] - val > 0) \
  1794. val = get_bits(gb, size_table[index1] - val); \
  1795. else val = 0; \
  1796. sign = 0 - (val&1); \
  1797. _dmv_x = (sign ^ ((val>>1) + offset_table[index1])) - sign; \
  1798. \
  1799. index1 = index/6; \
  1800. if (!s->quarter_sample && index1 == 5) val = 1; \
  1801. else val = 0; \
  1802. if(size_table[index1] - val > 0) \
  1803. val = get_bits(gb, size_table[index1] - val); \
  1804. else val = 0; \
  1805. sign = 0 - (val&1); \
  1806. _dmv_y = (sign ^ ((val>>1) + offset_table[index1])) - sign; \
  1807. }
  1808. /** Predict and set motion vector
  1809. */
  1810. static inline void vc1_pred_mv(MpegEncContext *s, int n, int dmv_x, int dmv_y, int mv1, int r_x, int r_y, uint8_t* is_intra)
  1811. {
  1812. int xy, wrap, off = 0;
  1813. int16_t *A, *B, *C;
  1814. int px, py;
  1815. int sum;
  1816. /* scale MV difference to be quad-pel */
  1817. dmv_x <<= 1 - s->quarter_sample;
  1818. dmv_y <<= 1 - s->quarter_sample;
  1819. wrap = s->b8_stride;
  1820. xy = s->block_index[n];
  1821. if(s->mb_intra){
  1822. s->mv[0][n][0] = s->current_picture.motion_val[0][xy][0] = 0;
  1823. s->mv[0][n][1] = s->current_picture.motion_val[0][xy][1] = 0;
  1824. s->current_picture.motion_val[1][xy][0] = 0;
  1825. s->current_picture.motion_val[1][xy][1] = 0;
  1826. if(mv1) { /* duplicate motion data for 1-MV block */
  1827. s->current_picture.motion_val[0][xy + 1][0] = 0;
  1828. s->current_picture.motion_val[0][xy + 1][1] = 0;
  1829. s->current_picture.motion_val[0][xy + wrap][0] = 0;
  1830. s->current_picture.motion_val[0][xy + wrap][1] = 0;
  1831. s->current_picture.motion_val[0][xy + wrap + 1][0] = 0;
  1832. s->current_picture.motion_val[0][xy + wrap + 1][1] = 0;
  1833. s->current_picture.motion_val[1][xy + 1][0] = 0;
  1834. s->current_picture.motion_val[1][xy + 1][1] = 0;
  1835. s->current_picture.motion_val[1][xy + wrap][0] = 0;
  1836. s->current_picture.motion_val[1][xy + wrap][1] = 0;
  1837. s->current_picture.motion_val[1][xy + wrap + 1][0] = 0;
  1838. s->current_picture.motion_val[1][xy + wrap + 1][1] = 0;
  1839. }
  1840. return;
  1841. }
  1842. C = s->current_picture.motion_val[0][xy - 1];
  1843. A = s->current_picture.motion_val[0][xy - wrap];
  1844. if(mv1)
  1845. off = (s->mb_x == (s->mb_width - 1)) ? -1 : 2;
  1846. else {
  1847. //in 4-MV mode different blocks have different B predictor position
  1848. switch(n){
  1849. case 0:
  1850. off = (s->mb_x > 0) ? -1 : 1;
  1851. break;
  1852. case 1:
  1853. off = (s->mb_x == (s->mb_width - 1)) ? -1 : 1;
  1854. break;
  1855. case 2:
  1856. off = 1;
  1857. break;
  1858. case 3:
  1859. off = -1;
  1860. }
  1861. }
  1862. B = s->current_picture.motion_val[0][xy - wrap + off];
  1863. if(!s->first_slice_line || (n==2 || n==3)) { // predictor A is not out of bounds
  1864. if(s->mb_width == 1) {
  1865. px = A[0];
  1866. py = A[1];
  1867. } else {
  1868. px = mid_pred(A[0], B[0], C[0]);
  1869. py = mid_pred(A[1], B[1], C[1]);
  1870. }
  1871. } else if(s->mb_x || (n==1 || n==3)) { // predictor C is not out of bounds
  1872. px = C[0];
  1873. py = C[1];
  1874. } else {
  1875. px = py = 0;
  1876. }
  1877. /* Pullback MV as specified in 8.3.5.3.4 */
  1878. {
  1879. int qx, qy, X, Y;
  1880. qx = (s->mb_x << 6) + ((n==1 || n==3) ? 32 : 0);
  1881. qy = (s->mb_y << 6) + ((n==2 || n==3) ? 32 : 0);
  1882. X = (s->mb_width << 6) - 4;
  1883. Y = (s->mb_height << 6) - 4;
  1884. if(mv1) {
  1885. if(qx + px < -60) px = -60 - qx;
  1886. if(qy + py < -60) py = -60 - qy;
  1887. } else {
  1888. if(qx + px < -28) px = -28 - qx;
  1889. if(qy + py < -28) py = -28 - qy;
  1890. }
  1891. if(qx + px > X) px = X - qx;
  1892. if(qy + py > Y) py = Y - qy;
  1893. }
  1894. /* Calculate hybrid prediction as specified in 8.3.5.3.5 */
  1895. if((!s->first_slice_line || (n==2 || n==3)) && (s->mb_x || (n==1 || n==3))) {
  1896. if(is_intra[xy - wrap])
  1897. sum = FFABS(px) + FFABS(py);
  1898. else
  1899. sum = FFABS(px - A[0]) + FFABS(py - A[1]);
  1900. if(sum > 32) {
  1901. if(get_bits1(&s->gb)) {
  1902. px = A[0];
  1903. py = A[1];
  1904. } else {
  1905. px = C[0];
  1906. py = C[1];
  1907. }
  1908. } else {
  1909. if(is_intra[xy - 1])
  1910. sum = FFABS(px) + FFABS(py);
  1911. else
  1912. sum = FFABS(px - C[0]) + FFABS(py - C[1]);
  1913. if(sum > 32) {
  1914. if(get_bits1(&s->gb)) {
  1915. px = A[0];
  1916. py = A[1];
  1917. } else {
  1918. px = C[0];
  1919. py = C[1];
  1920. }
  1921. }
  1922. }
  1923. }
  1924. /* store MV using signed modulus of MV range defined in 4.11 */
  1925. s->mv[0][n][0] = s->current_picture.motion_val[0][xy][0] = ((px + dmv_x + r_x) & ((r_x << 1) - 1)) - r_x;
  1926. s->mv[0][n][1] = s->current_picture.motion_val[0][xy][1] = ((py + dmv_y + r_y) & ((r_y << 1) - 1)) - r_y;
  1927. if(mv1) { /* duplicate motion data for 1-MV block */
  1928. s->current_picture.motion_val[0][xy + 1][0] = s->current_picture.motion_val[0][xy][0];
  1929. s->current_picture.motion_val[0][xy + 1][1] = s->current_picture.motion_val[0][xy][1];
  1930. s->current_picture.motion_val[0][xy + wrap][0] = s->current_picture.motion_val[0][xy][0];
  1931. s->current_picture.motion_val[0][xy + wrap][1] = s->current_picture.motion_val[0][xy][1];
  1932. s->current_picture.motion_val[0][xy + wrap + 1][0] = s->current_picture.motion_val[0][xy][0];
  1933. s->current_picture.motion_val[0][xy + wrap + 1][1] = s->current_picture.motion_val[0][xy][1];
  1934. }
  1935. }
  1936. /** Motion compensation for direct or interpolated blocks in B-frames
  1937. */
  1938. static void vc1_interp_mc(VC1Context *v)
  1939. {
  1940. MpegEncContext *s = &v->s;
  1941. DSPContext *dsp = &v->s.dsp;
  1942. uint8_t *srcY, *srcU, *srcV;
  1943. int dxy, uvdxy, mx, my, uvmx, uvmy, src_x, src_y, uvsrc_x, uvsrc_y;
  1944. if(!v->s.next_picture.data[0])return;
  1945. mx = s->mv[1][0][0];
  1946. my = s->mv[1][0][1];
  1947. uvmx = (mx + ((mx & 3) == 3)) >> 1;
  1948. uvmy = (my + ((my & 3) == 3)) >> 1;
  1949. if(v->fastuvmc) {
  1950. uvmx = uvmx + ((uvmx<0)?-(uvmx&1):(uvmx&1));
  1951. uvmy = uvmy + ((uvmy<0)?-(uvmy&1):(uvmy&1));
  1952. }
  1953. srcY = s->next_picture.data[0];
  1954. srcU = s->next_picture.data[1];
  1955. srcV = s->next_picture.data[2];
  1956. src_x = s->mb_x * 16 + (mx >> 2);
  1957. src_y = s->mb_y * 16 + (my >> 2);
  1958. uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
  1959. uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
  1960. if(v->profile != PROFILE_ADVANCED){
  1961. src_x = av_clip( src_x, -16, s->mb_width * 16);
  1962. src_y = av_clip( src_y, -16, s->mb_height * 16);
  1963. uvsrc_x = av_clip(uvsrc_x, -8, s->mb_width * 8);
  1964. uvsrc_y = av_clip(uvsrc_y, -8, s->mb_height * 8);
  1965. }else{
  1966. src_x = av_clip( src_x, -17, s->avctx->coded_width);
  1967. src_y = av_clip( src_y, -18, s->avctx->coded_height + 1);
  1968. uvsrc_x = av_clip(uvsrc_x, -8, s->avctx->coded_width >> 1);
  1969. uvsrc_y = av_clip(uvsrc_y, -8, s->avctx->coded_height >> 1);
  1970. }
  1971. srcY += src_y * s->linesize + src_x;
  1972. srcU += uvsrc_y * s->uvlinesize + uvsrc_x;
  1973. srcV += uvsrc_y * s->uvlinesize + uvsrc_x;
  1974. /* for grayscale we should not try to read from unknown area */
  1975. if(s->flags & CODEC_FLAG_GRAY) {
  1976. srcU = s->edge_emu_buffer + 18 * s->linesize;
  1977. srcV = s->edge_emu_buffer + 18 * s->linesize;
  1978. }
  1979. if(v->rangeredfrm
  1980. || (unsigned)src_x > s->h_edge_pos - (mx&3) - 16
  1981. || (unsigned)src_y > s->v_edge_pos - (my&3) - 16){
  1982. uint8_t *uvbuf= s->edge_emu_buffer + 19 * s->linesize;
  1983. srcY -= s->mspel * (1 + s->linesize);
  1984. ff_emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize, 17+s->mspel*2, 17+s->mspel*2,
  1985. src_x - s->mspel, src_y - s->mspel, s->h_edge_pos, s->v_edge_pos);
  1986. srcY = s->edge_emu_buffer;
  1987. ff_emulated_edge_mc(uvbuf , srcU, s->uvlinesize, 8+1, 8+1,
  1988. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  1989. ff_emulated_edge_mc(uvbuf + 16, srcV, s->uvlinesize, 8+1, 8+1,
  1990. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  1991. srcU = uvbuf;
  1992. srcV = uvbuf + 16;
  1993. /* if we deal with range reduction we need to scale source blocks */
  1994. if(v->rangeredfrm) {
  1995. int i, j;
  1996. uint8_t *src, *src2;
  1997. src = srcY;
  1998. for(j = 0; j < 17 + s->mspel*2; j++) {
  1999. for(i = 0; i < 17 + s->mspel*2; i++) src[i] = ((src[i] - 128) >> 1) + 128;
  2000. src += s->linesize;
  2001. }
  2002. src = srcU; src2 = srcV;
  2003. for(j = 0; j < 9; j++) {
  2004. for(i = 0; i < 9; i++) {
  2005. src[i] = ((src[i] - 128) >> 1) + 128;
  2006. src2[i] = ((src2[i] - 128) >> 1) + 128;
  2007. }
  2008. src += s->uvlinesize;
  2009. src2 += s->uvlinesize;
  2010. }
  2011. }
  2012. srcY += s->mspel * (1 + s->linesize);
  2013. }
  2014. mx >>= 1;
  2015. my >>= 1;
  2016. dxy = ((my & 1) << 1) | (mx & 1);
  2017. dsp->avg_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
  2018. if(s->flags & CODEC_FLAG_GRAY) return;
  2019. /* Chroma MC always uses qpel blilinear */
  2020. uvdxy = ((uvmy & 3) << 2) | (uvmx & 3);
  2021. uvmx = (uvmx&3)<<1;
  2022. uvmy = (uvmy&3)<<1;
  2023. dsp->avg_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  2024. dsp->avg_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  2025. }
  2026. static av_always_inline int scale_mv(int value, int bfrac, int inv, int qs)
  2027. {
  2028. int n = bfrac;
  2029. #if B_FRACTION_DEN==256
  2030. if(inv)
  2031. n -= 256;
  2032. if(!qs)
  2033. return 2 * ((value * n + 255) >> 9);
  2034. return (value * n + 128) >> 8;
  2035. #else
  2036. if(inv)
  2037. n -= B_FRACTION_DEN;
  2038. if(!qs)
  2039. return 2 * ((value * n + B_FRACTION_DEN - 1) / (2 * B_FRACTION_DEN));
  2040. return (value * n + B_FRACTION_DEN/2) / B_FRACTION_DEN;
  2041. #endif
  2042. }
  2043. /** Reconstruct motion vector for B-frame and do motion compensation
  2044. */
  2045. static inline void vc1_b_mc(VC1Context *v, int dmv_x[2], int dmv_y[2], int direct, int mode)
  2046. {
  2047. if(v->use_ic) {
  2048. v->mv_mode2 = v->mv_mode;
  2049. v->mv_mode = MV_PMODE_INTENSITY_COMP;
  2050. }
  2051. if(direct) {
  2052. vc1_mc_1mv(v, 0);
  2053. vc1_interp_mc(v);
  2054. if(v->use_ic) v->mv_mode = v->mv_mode2;
  2055. return;
  2056. }
  2057. if(mode == BMV_TYPE_INTERPOLATED) {
  2058. vc1_mc_1mv(v, 0);
  2059. vc1_interp_mc(v);
  2060. if(v->use_ic) v->mv_mode = v->mv_mode2;
  2061. return;
  2062. }
  2063. if(v->use_ic && (mode == BMV_TYPE_BACKWARD)) v->mv_mode = v->mv_mode2;
  2064. vc1_mc_1mv(v, (mode == BMV_TYPE_BACKWARD));
  2065. if(v->use_ic) v->mv_mode = v->mv_mode2;
  2066. }
  2067. static inline void vc1_pred_b_mv(VC1Context *v, int dmv_x[2], int dmv_y[2], int direct, int mvtype)
  2068. {
  2069. MpegEncContext *s = &v->s;
  2070. int xy, wrap, off = 0;
  2071. int16_t *A, *B, *C;
  2072. int px, py;
  2073. int sum;
  2074. int r_x, r_y;
  2075. const uint8_t *is_intra = v->mb_type[0];
  2076. r_x = v->range_x;
  2077. r_y = v->range_y;
  2078. /* scale MV difference to be quad-pel */
  2079. dmv_x[0] <<= 1 - s->quarter_sample;
  2080. dmv_y[0] <<= 1 - s->quarter_sample;
  2081. dmv_x[1] <<= 1 - s->quarter_sample;
  2082. dmv_y[1] <<= 1 - s->quarter_sample;
  2083. wrap = s->b8_stride;
  2084. xy = s->block_index[0];
  2085. if(s->mb_intra) {
  2086. s->current_picture.motion_val[0][xy][0] =
  2087. s->current_picture.motion_val[0][xy][1] =
  2088. s->current_picture.motion_val[1][xy][0] =
  2089. s->current_picture.motion_val[1][xy][1] = 0;
  2090. return;
  2091. }
  2092. s->mv[0][0][0] = scale_mv(s->next_picture.motion_val[1][xy][0], v->bfraction, 0, s->quarter_sample);
  2093. s->mv[0][0][1] = scale_mv(s->next_picture.motion_val[1][xy][1], v->bfraction, 0, s->quarter_sample);
  2094. s->mv[1][0][0] = scale_mv(s->next_picture.motion_val[1][xy][0], v->bfraction, 1, s->quarter_sample);
  2095. s->mv[1][0][1] = scale_mv(s->next_picture.motion_val[1][xy][1], v->bfraction, 1, s->quarter_sample);
  2096. /* Pullback predicted motion vectors as specified in 8.4.5.4 */
  2097. s->mv[0][0][0] = av_clip(s->mv[0][0][0], -60 - (s->mb_x << 6), (s->mb_width << 6) - 4 - (s->mb_x << 6));
  2098. s->mv[0][0][1] = av_clip(s->mv[0][0][1], -60 - (s->mb_y << 6), (s->mb_height << 6) - 4 - (s->mb_y << 6));
  2099. s->mv[1][0][0] = av_clip(s->mv[1][0][0], -60 - (s->mb_x << 6), (s->mb_width << 6) - 4 - (s->mb_x << 6));
  2100. s->mv[1][0][1] = av_clip(s->mv[1][0][1], -60 - (s->mb_y << 6), (s->mb_height << 6) - 4 - (s->mb_y << 6));
  2101. if(direct) {
  2102. s->current_picture.motion_val[0][xy][0] = s->mv[0][0][0];
  2103. s->current_picture.motion_val[0][xy][1] = s->mv[0][0][1];
  2104. s->current_picture.motion_val[1][xy][0] = s->mv[1][0][0];
  2105. s->current_picture.motion_val[1][xy][1] = s->mv[1][0][1];
  2106. return;
  2107. }
  2108. if((mvtype == BMV_TYPE_FORWARD) || (mvtype == BMV_TYPE_INTERPOLATED)) {
  2109. C = s->current_picture.motion_val[0][xy - 2];
  2110. A = s->current_picture.motion_val[0][xy - wrap*2];
  2111. off = (s->mb_x == (s->mb_width - 1)) ? -2 : 2;
  2112. B = s->current_picture.motion_val[0][xy - wrap*2 + off];
  2113. if(!s->mb_x) C[0] = C[1] = 0;
  2114. if(!s->first_slice_line) { // predictor A is not out of bounds
  2115. if(s->mb_width == 1) {
  2116. px = A[0];
  2117. py = A[1];
  2118. } else {
  2119. px = mid_pred(A[0], B[0], C[0]);
  2120. py = mid_pred(A[1], B[1], C[1]);
  2121. }
  2122. } else if(s->mb_x) { // predictor C is not out of bounds
  2123. px = C[0];
  2124. py = C[1];
  2125. } else {
  2126. px = py = 0;
  2127. }
  2128. /* Pullback MV as specified in 8.3.5.3.4 */
  2129. {
  2130. int qx, qy, X, Y;
  2131. if(v->profile < PROFILE_ADVANCED) {
  2132. qx = (s->mb_x << 5);
  2133. qy = (s->mb_y << 5);
  2134. X = (s->mb_width << 5) - 4;
  2135. Y = (s->mb_height << 5) - 4;
  2136. if(qx + px < -28) px = -28 - qx;
  2137. if(qy + py < -28) py = -28 - qy;
  2138. if(qx + px > X) px = X - qx;
  2139. if(qy + py > Y) py = Y - qy;
  2140. } else {
  2141. qx = (s->mb_x << 6);
  2142. qy = (s->mb_y << 6);
  2143. X = (s->mb_width << 6) - 4;
  2144. Y = (s->mb_height << 6) - 4;
  2145. if(qx + px < -60) px = -60 - qx;
  2146. if(qy + py < -60) py = -60 - qy;
  2147. if(qx + px > X) px = X - qx;
  2148. if(qy + py > Y) py = Y - qy;
  2149. }
  2150. }
  2151. /* Calculate hybrid prediction as specified in 8.3.5.3.5 */
  2152. if(0 && !s->first_slice_line && s->mb_x) {
  2153. if(is_intra[xy - wrap])
  2154. sum = FFABS(px) + FFABS(py);
  2155. else
  2156. sum = FFABS(px - A[0]) + FFABS(py - A[1]);
  2157. if(sum > 32) {
  2158. if(get_bits1(&s->gb)) {
  2159. px = A[0];
  2160. py = A[1];
  2161. } else {
  2162. px = C[0];
  2163. py = C[1];
  2164. }
  2165. } else {
  2166. if(is_intra[xy - 2])
  2167. sum = FFABS(px) + FFABS(py);
  2168. else
  2169. sum = FFABS(px - C[0]) + FFABS(py - C[1]);
  2170. if(sum > 32) {
  2171. if(get_bits1(&s->gb)) {
  2172. px = A[0];
  2173. py = A[1];
  2174. } else {
  2175. px = C[0];
  2176. py = C[1];
  2177. }
  2178. }
  2179. }
  2180. }
  2181. /* store MV using signed modulus of MV range defined in 4.11 */
  2182. s->mv[0][0][0] = ((px + dmv_x[0] + r_x) & ((r_x << 1) - 1)) - r_x;
  2183. s->mv[0][0][1] = ((py + dmv_y[0] + r_y) & ((r_y << 1) - 1)) - r_y;
  2184. }
  2185. if((mvtype == BMV_TYPE_BACKWARD) || (mvtype == BMV_TYPE_INTERPOLATED)) {
  2186. C = s->current_picture.motion_val[1][xy - 2];
  2187. A = s->current_picture.motion_val[1][xy - wrap*2];
  2188. off = (s->mb_x == (s->mb_width - 1)) ? -2 : 2;
  2189. B = s->current_picture.motion_val[1][xy - wrap*2 + off];
  2190. if(!s->mb_x) C[0] = C[1] = 0;
  2191. if(!s->first_slice_line) { // predictor A is not out of bounds
  2192. if(s->mb_width == 1) {
  2193. px = A[0];
  2194. py = A[1];
  2195. } else {
  2196. px = mid_pred(A[0], B[0], C[0]);
  2197. py = mid_pred(A[1], B[1], C[1]);
  2198. }
  2199. } else if(s->mb_x) { // predictor C is not out of bounds
  2200. px = C[0];
  2201. py = C[1];
  2202. } else {
  2203. px = py = 0;
  2204. }
  2205. /* Pullback MV as specified in 8.3.5.3.4 */
  2206. {
  2207. int qx, qy, X, Y;
  2208. if(v->profile < PROFILE_ADVANCED) {
  2209. qx = (s->mb_x << 5);
  2210. qy = (s->mb_y << 5);
  2211. X = (s->mb_width << 5) - 4;
  2212. Y = (s->mb_height << 5) - 4;
  2213. if(qx + px < -28) px = -28 - qx;
  2214. if(qy + py < -28) py = -28 - qy;
  2215. if(qx + px > X) px = X - qx;
  2216. if(qy + py > Y) py = Y - qy;
  2217. } else {
  2218. qx = (s->mb_x << 6);
  2219. qy = (s->mb_y << 6);
  2220. X = (s->mb_width << 6) - 4;
  2221. Y = (s->mb_height << 6) - 4;
  2222. if(qx + px < -60) px = -60 - qx;
  2223. if(qy + py < -60) py = -60 - qy;
  2224. if(qx + px > X) px = X - qx;
  2225. if(qy + py > Y) py = Y - qy;
  2226. }
  2227. }
  2228. /* Calculate hybrid prediction as specified in 8.3.5.3.5 */
  2229. if(0 && !s->first_slice_line && s->mb_x) {
  2230. if(is_intra[xy - wrap])
  2231. sum = FFABS(px) + FFABS(py);
  2232. else
  2233. sum = FFABS(px - A[0]) + FFABS(py - A[1]);
  2234. if(sum > 32) {
  2235. if(get_bits1(&s->gb)) {
  2236. px = A[0];
  2237. py = A[1];
  2238. } else {
  2239. px = C[0];
  2240. py = C[1];
  2241. }
  2242. } else {
  2243. if(is_intra[xy - 2])
  2244. sum = FFABS(px) + FFABS(py);
  2245. else
  2246. sum = FFABS(px - C[0]) + FFABS(py - C[1]);
  2247. if(sum > 32) {
  2248. if(get_bits1(&s->gb)) {
  2249. px = A[0];
  2250. py = A[1];
  2251. } else {
  2252. px = C[0];
  2253. py = C[1];
  2254. }
  2255. }
  2256. }
  2257. }
  2258. /* store MV using signed modulus of MV range defined in 4.11 */
  2259. s->mv[1][0][0] = ((px + dmv_x[1] + r_x) & ((r_x << 1) - 1)) - r_x;
  2260. s->mv[1][0][1] = ((py + dmv_y[1] + r_y) & ((r_y << 1) - 1)) - r_y;
  2261. }
  2262. s->current_picture.motion_val[0][xy][0] = s->mv[0][0][0];
  2263. s->current_picture.motion_val[0][xy][1] = s->mv[0][0][1];
  2264. s->current_picture.motion_val[1][xy][0] = s->mv[1][0][0];
  2265. s->current_picture.motion_val[1][xy][1] = s->mv[1][0][1];
  2266. }
  2267. /** Get predicted DC value for I-frames only
  2268. * prediction dir: left=0, top=1
  2269. * @param s MpegEncContext
  2270. * @param[in] n block index in the current MB
  2271. * @param dc_val_ptr Pointer to DC predictor
  2272. * @param dir_ptr Prediction direction for use in AC prediction
  2273. */
  2274. static inline int vc1_i_pred_dc(MpegEncContext *s, int overlap, int pq, int n,
  2275. int16_t **dc_val_ptr, int *dir_ptr)
  2276. {
  2277. int a, b, c, wrap, pred, scale;
  2278. int16_t *dc_val;
  2279. static const uint16_t dcpred[32] = {
  2280. -1, 1024, 512, 341, 256, 205, 171, 146, 128,
  2281. 114, 102, 93, 85, 79, 73, 68, 64,
  2282. 60, 57, 54, 51, 49, 47, 45, 43,
  2283. 41, 39, 38, 37, 35, 34, 33
  2284. };
  2285. /* find prediction - wmv3_dc_scale always used here in fact */
  2286. if (n < 4) scale = s->y_dc_scale;
  2287. else scale = s->c_dc_scale;
  2288. wrap = s->block_wrap[n];
  2289. dc_val= s->dc_val[0] + s->block_index[n];
  2290. /* B A
  2291. * C X
  2292. */
  2293. c = dc_val[ - 1];
  2294. b = dc_val[ - 1 - wrap];
  2295. a = dc_val[ - wrap];
  2296. if (pq < 9 || !overlap)
  2297. {
  2298. /* Set outer values */
  2299. if (s->first_slice_line && (n!=2 && n!=3)) b=a=dcpred[scale];
  2300. if (s->mb_x == 0 && (n!=1 && n!=3)) b=c=dcpred[scale];
  2301. }
  2302. else
  2303. {
  2304. /* Set outer values */
  2305. if (s->first_slice_line && (n!=2 && n!=3)) b=a=0;
  2306. if (s->mb_x == 0 && (n!=1 && n!=3)) b=c=0;
  2307. }
  2308. if (abs(a - b) <= abs(b - c)) {
  2309. pred = c;
  2310. *dir_ptr = 1;//left
  2311. } else {
  2312. pred = a;
  2313. *dir_ptr = 0;//top
  2314. }
  2315. /* update predictor */
  2316. *dc_val_ptr = &dc_val[0];
  2317. return pred;
  2318. }
  2319. /** Get predicted DC value
  2320. * prediction dir: left=0, top=1
  2321. * @param s MpegEncContext
  2322. * @param[in] n block index in the current MB
  2323. * @param dc_val_ptr Pointer to DC predictor
  2324. * @param dir_ptr Prediction direction for use in AC prediction
  2325. */
  2326. static inline int vc1_pred_dc(MpegEncContext *s, int overlap, int pq, int n,
  2327. int a_avail, int c_avail,
  2328. int16_t **dc_val_ptr, int *dir_ptr)
  2329. {
  2330. int a, b, c, wrap, pred, scale;
  2331. int16_t *dc_val;
  2332. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  2333. int q1, q2 = 0;
  2334. /* find prediction - wmv3_dc_scale always used here in fact */
  2335. if (n < 4) scale = s->y_dc_scale;
  2336. else scale = s->c_dc_scale;
  2337. wrap = s->block_wrap[n];
  2338. dc_val= s->dc_val[0] + s->block_index[n];
  2339. /* B A
  2340. * C X
  2341. */
  2342. c = dc_val[ - 1];
  2343. b = dc_val[ - 1 - wrap];
  2344. a = dc_val[ - wrap];
  2345. /* scale predictors if needed */
  2346. q1 = s->current_picture.qscale_table[mb_pos];
  2347. if(c_avail && (n!= 1 && n!=3)) {
  2348. q2 = s->current_picture.qscale_table[mb_pos - 1];
  2349. if(q2 && q2 != q1)
  2350. c = (c * s->y_dc_scale_table[q2] * vc1_dqscale[s->y_dc_scale_table[q1] - 1] + 0x20000) >> 18;
  2351. }
  2352. if(a_avail && (n!= 2 && n!=3)) {
  2353. q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
  2354. if(q2 && q2 != q1)
  2355. a = (a * s->y_dc_scale_table[q2] * vc1_dqscale[s->y_dc_scale_table[q1] - 1] + 0x20000) >> 18;
  2356. }
  2357. if(a_avail && c_avail && (n!=3)) {
  2358. int off = mb_pos;
  2359. if(n != 1) off--;
  2360. if(n != 2) off -= s->mb_stride;
  2361. q2 = s->current_picture.qscale_table[off];
  2362. if(q2 && q2 != q1)
  2363. b = (b * s->y_dc_scale_table[q2] * vc1_dqscale[s->y_dc_scale_table[q1] - 1] + 0x20000) >> 18;
  2364. }
  2365. if(a_avail && c_avail) {
  2366. if(abs(a - b) <= abs(b - c)) {
  2367. pred = c;
  2368. *dir_ptr = 1;//left
  2369. } else {
  2370. pred = a;
  2371. *dir_ptr = 0;//top
  2372. }
  2373. } else if(a_avail) {
  2374. pred = a;
  2375. *dir_ptr = 0;//top
  2376. } else if(c_avail) {
  2377. pred = c;
  2378. *dir_ptr = 1;//left
  2379. } else {
  2380. pred = 0;
  2381. *dir_ptr = 1;//left
  2382. }
  2383. /* update predictor */
  2384. *dc_val_ptr = &dc_val[0];
  2385. return pred;
  2386. }
  2387. /**
  2388. * @defgroup std_mb VC1 Macroblock-level functions in Simple/Main Profiles
  2389. * @see 7.1.4, p91 and 8.1.1.7, p(1)04
  2390. * @{
  2391. */
  2392. static inline int vc1_coded_block_pred(MpegEncContext * s, int n, uint8_t **coded_block_ptr)
  2393. {
  2394. int xy, wrap, pred, a, b, c;
  2395. xy = s->block_index[n];
  2396. wrap = s->b8_stride;
  2397. /* B C
  2398. * A X
  2399. */
  2400. a = s->coded_block[xy - 1 ];
  2401. b = s->coded_block[xy - 1 - wrap];
  2402. c = s->coded_block[xy - wrap];
  2403. if (b == c) {
  2404. pred = a;
  2405. } else {
  2406. pred = c;
  2407. }
  2408. /* store value */
  2409. *coded_block_ptr = &s->coded_block[xy];
  2410. return pred;
  2411. }
  2412. /**
  2413. * Decode one AC coefficient
  2414. * @param v The VC1 context
  2415. * @param last Last coefficient
  2416. * @param skip How much zero coefficients to skip
  2417. * @param value Decoded AC coefficient value
  2418. * @see 8.1.3.4
  2419. */
  2420. static void vc1_decode_ac_coeff(VC1Context *v, int *last, int *skip, int *value, int codingset)
  2421. {
  2422. GetBitContext *gb = &v->s.gb;
  2423. int index, escape, run = 0, level = 0, lst = 0;
  2424. index = get_vlc2(gb, vc1_ac_coeff_table[codingset].table, AC_VLC_BITS, 3);
  2425. if (index != vc1_ac_sizes[codingset] - 1) {
  2426. run = vc1_index_decode_table[codingset][index][0];
  2427. level = vc1_index_decode_table[codingset][index][1];
  2428. lst = index >= vc1_last_decode_table[codingset];
  2429. if(get_bits(gb, 1))
  2430. level = -level;
  2431. } else {
  2432. escape = decode210(gb);
  2433. if (escape != 2) {
  2434. index = get_vlc2(gb, vc1_ac_coeff_table[codingset].table, AC_VLC_BITS, 3);
  2435. run = vc1_index_decode_table[codingset][index][0];
  2436. level = vc1_index_decode_table[codingset][index][1];
  2437. lst = index >= vc1_last_decode_table[codingset];
  2438. if(escape == 0) {
  2439. if(lst)
  2440. level += vc1_last_delta_level_table[codingset][run];
  2441. else
  2442. level += vc1_delta_level_table[codingset][run];
  2443. } else {
  2444. if(lst)
  2445. run += vc1_last_delta_run_table[codingset][level] + 1;
  2446. else
  2447. run += vc1_delta_run_table[codingset][level] + 1;
  2448. }
  2449. if(get_bits(gb, 1))
  2450. level = -level;
  2451. } else {
  2452. int sign;
  2453. lst = get_bits(gb, 1);
  2454. if(v->s.esc3_level_length == 0) {
  2455. if(v->pq < 8 || v->dquantfrm) { // table 59
  2456. v->s.esc3_level_length = get_bits(gb, 3);
  2457. if(!v->s.esc3_level_length)
  2458. v->s.esc3_level_length = get_bits(gb, 2) + 8;
  2459. } else { //table 60
  2460. v->s.esc3_level_length = get_prefix(gb, 1, 6) + 2;
  2461. }
  2462. v->s.esc3_run_length = 3 + get_bits(gb, 2);
  2463. }
  2464. run = get_bits(gb, v->s.esc3_run_length);
  2465. sign = get_bits(gb, 1);
  2466. level = get_bits(gb, v->s.esc3_level_length);
  2467. if(sign)
  2468. level = -level;
  2469. }
  2470. }
  2471. *last = lst;
  2472. *skip = run;
  2473. *value = level;
  2474. }
  2475. /** Decode intra block in intra frames - should be faster than decode_intra_block
  2476. * @param v VC1Context
  2477. * @param block block to decode
  2478. * @param coded are AC coeffs present or not
  2479. * @param codingset set of VLC to decode data
  2480. */
  2481. static int vc1_decode_i_block(VC1Context *v, DCTELEM block[64], int n, int coded, int codingset)
  2482. {
  2483. GetBitContext *gb = &v->s.gb;
  2484. MpegEncContext *s = &v->s;
  2485. int dc_pred_dir = 0; /* Direction of the DC prediction used */
  2486. int run_diff, i;
  2487. int16_t *dc_val;
  2488. int16_t *ac_val, *ac_val2;
  2489. int dcdiff;
  2490. /* Get DC differential */
  2491. if (n < 4) {
  2492. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2493. } else {
  2494. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2495. }
  2496. if (dcdiff < 0){
  2497. av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
  2498. return -1;
  2499. }
  2500. if (dcdiff)
  2501. {
  2502. if (dcdiff == 119 /* ESC index value */)
  2503. {
  2504. /* TODO: Optimize */
  2505. if (v->pq == 1) dcdiff = get_bits(gb, 10);
  2506. else if (v->pq == 2) dcdiff = get_bits(gb, 9);
  2507. else dcdiff = get_bits(gb, 8);
  2508. }
  2509. else
  2510. {
  2511. if (v->pq == 1)
  2512. dcdiff = (dcdiff<<2) + get_bits(gb, 2) - 3;
  2513. else if (v->pq == 2)
  2514. dcdiff = (dcdiff<<1) + get_bits(gb, 1) - 1;
  2515. }
  2516. if (get_bits(gb, 1))
  2517. dcdiff = -dcdiff;
  2518. }
  2519. /* Prediction */
  2520. dcdiff += vc1_i_pred_dc(&v->s, v->overlap, v->pq, n, &dc_val, &dc_pred_dir);
  2521. *dc_val = dcdiff;
  2522. /* Store the quantized DC coeff, used for prediction */
  2523. if (n < 4) {
  2524. block[0] = dcdiff * s->y_dc_scale;
  2525. } else {
  2526. block[0] = dcdiff * s->c_dc_scale;
  2527. }
  2528. /* Skip ? */
  2529. run_diff = 0;
  2530. i = 0;
  2531. if (!coded) {
  2532. goto not_coded;
  2533. }
  2534. //AC Decoding
  2535. i = 1;
  2536. {
  2537. int last = 0, skip, value;
  2538. const int8_t *zz_table;
  2539. int scale;
  2540. int k;
  2541. scale = v->pq * 2 + v->halfpq;
  2542. if(v->s.ac_pred) {
  2543. if(!dc_pred_dir)
  2544. zz_table = vc1_horizontal_zz;
  2545. else
  2546. zz_table = vc1_vertical_zz;
  2547. } else
  2548. zz_table = vc1_normal_zz;
  2549. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  2550. ac_val2 = ac_val;
  2551. if(dc_pred_dir) //left
  2552. ac_val -= 16;
  2553. else //top
  2554. ac_val -= 16 * s->block_wrap[n];
  2555. while (!last) {
  2556. vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
  2557. i += skip;
  2558. if(i > 63)
  2559. break;
  2560. block[zz_table[i++]] = value;
  2561. }
  2562. /* apply AC prediction if needed */
  2563. if(s->ac_pred) {
  2564. if(dc_pred_dir) { //left
  2565. for(k = 1; k < 8; k++)
  2566. block[k << 3] += ac_val[k];
  2567. } else { //top
  2568. for(k = 1; k < 8; k++)
  2569. block[k] += ac_val[k + 8];
  2570. }
  2571. }
  2572. /* save AC coeffs for further prediction */
  2573. for(k = 1; k < 8; k++) {
  2574. ac_val2[k] = block[k << 3];
  2575. ac_val2[k + 8] = block[k];
  2576. }
  2577. /* scale AC coeffs */
  2578. for(k = 1; k < 64; k++)
  2579. if(block[k]) {
  2580. block[k] *= scale;
  2581. if(!v->pquantizer)
  2582. block[k] += (block[k] < 0) ? -v->pq : v->pq;
  2583. }
  2584. if(s->ac_pred) i = 63;
  2585. }
  2586. not_coded:
  2587. if(!coded) {
  2588. int k, scale;
  2589. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  2590. ac_val2 = ac_val;
  2591. scale = v->pq * 2 + v->halfpq;
  2592. memset(ac_val2, 0, 16 * 2);
  2593. if(dc_pred_dir) {//left
  2594. ac_val -= 16;
  2595. if(s->ac_pred)
  2596. memcpy(ac_val2, ac_val, 8 * 2);
  2597. } else {//top
  2598. ac_val -= 16 * s->block_wrap[n];
  2599. if(s->ac_pred)
  2600. memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
  2601. }
  2602. /* apply AC prediction if needed */
  2603. if(s->ac_pred) {
  2604. if(dc_pred_dir) { //left
  2605. for(k = 1; k < 8; k++) {
  2606. block[k << 3] = ac_val[k] * scale;
  2607. if(!v->pquantizer && block[k << 3])
  2608. block[k << 3] += (block[k << 3] < 0) ? -v->pq : v->pq;
  2609. }
  2610. } else { //top
  2611. for(k = 1; k < 8; k++) {
  2612. block[k] = ac_val[k + 8] * scale;
  2613. if(!v->pquantizer && block[k])
  2614. block[k] += (block[k] < 0) ? -v->pq : v->pq;
  2615. }
  2616. }
  2617. i = 63;
  2618. }
  2619. }
  2620. s->block_last_index[n] = i;
  2621. return 0;
  2622. }
  2623. /** Decode intra block in intra frames - should be faster than decode_intra_block
  2624. * @param v VC1Context
  2625. * @param block block to decode
  2626. * @param coded are AC coeffs present or not
  2627. * @param codingset set of VLC to decode data
  2628. */
  2629. static int vc1_decode_i_block_adv(VC1Context *v, DCTELEM block[64], int n, int coded, int codingset, int mquant)
  2630. {
  2631. GetBitContext *gb = &v->s.gb;
  2632. MpegEncContext *s = &v->s;
  2633. int dc_pred_dir = 0; /* Direction of the DC prediction used */
  2634. int run_diff, i;
  2635. int16_t *dc_val;
  2636. int16_t *ac_val, *ac_val2;
  2637. int dcdiff;
  2638. int a_avail = v->a_avail, c_avail = v->c_avail;
  2639. int use_pred = s->ac_pred;
  2640. int scale;
  2641. int q1, q2 = 0;
  2642. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  2643. /* Get DC differential */
  2644. if (n < 4) {
  2645. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2646. } else {
  2647. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2648. }
  2649. if (dcdiff < 0){
  2650. av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
  2651. return -1;
  2652. }
  2653. if (dcdiff)
  2654. {
  2655. if (dcdiff == 119 /* ESC index value */)
  2656. {
  2657. /* TODO: Optimize */
  2658. if (mquant == 1) dcdiff = get_bits(gb, 10);
  2659. else if (mquant == 2) dcdiff = get_bits(gb, 9);
  2660. else dcdiff = get_bits(gb, 8);
  2661. }
  2662. else
  2663. {
  2664. if (mquant == 1)
  2665. dcdiff = (dcdiff<<2) + get_bits(gb, 2) - 3;
  2666. else if (mquant == 2)
  2667. dcdiff = (dcdiff<<1) + get_bits(gb, 1) - 1;
  2668. }
  2669. if (get_bits(gb, 1))
  2670. dcdiff = -dcdiff;
  2671. }
  2672. /* Prediction */
  2673. dcdiff += vc1_pred_dc(&v->s, v->overlap, mquant, n, v->a_avail, v->c_avail, &dc_val, &dc_pred_dir);
  2674. *dc_val = dcdiff;
  2675. /* Store the quantized DC coeff, used for prediction */
  2676. if (n < 4) {
  2677. block[0] = dcdiff * s->y_dc_scale;
  2678. } else {
  2679. block[0] = dcdiff * s->c_dc_scale;
  2680. }
  2681. /* Skip ? */
  2682. run_diff = 0;
  2683. i = 0;
  2684. //AC Decoding
  2685. i = 1;
  2686. /* check if AC is needed at all and adjust direction if needed */
  2687. if(!a_avail) dc_pred_dir = 1;
  2688. if(!c_avail) dc_pred_dir = 0;
  2689. if(!a_avail && !c_avail) use_pred = 0;
  2690. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  2691. ac_val2 = ac_val;
  2692. scale = mquant * 2 + v->halfpq;
  2693. if(dc_pred_dir) //left
  2694. ac_val -= 16;
  2695. else //top
  2696. ac_val -= 16 * s->block_wrap[n];
  2697. q1 = s->current_picture.qscale_table[mb_pos];
  2698. if(dc_pred_dir && c_avail && mb_pos) q2 = s->current_picture.qscale_table[mb_pos - 1];
  2699. if(!dc_pred_dir && a_avail && mb_pos >= s->mb_stride) q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
  2700. if(dc_pred_dir && n==1) q2 = q1;
  2701. if(!dc_pred_dir && n==2) q2 = q1;
  2702. if(n==3) q2 = q1;
  2703. if(coded) {
  2704. int last = 0, skip, value;
  2705. const int8_t *zz_table;
  2706. int k;
  2707. if(v->s.ac_pred) {
  2708. if(!dc_pred_dir)
  2709. zz_table = vc1_horizontal_zz;
  2710. else
  2711. zz_table = vc1_vertical_zz;
  2712. } else
  2713. zz_table = vc1_normal_zz;
  2714. while (!last) {
  2715. vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
  2716. i += skip;
  2717. if(i > 63)
  2718. break;
  2719. block[zz_table[i++]] = value;
  2720. }
  2721. /* apply AC prediction if needed */
  2722. if(use_pred) {
  2723. /* scale predictors if needed*/
  2724. if(q2 && q1!=q2) {
  2725. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2726. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2727. if(dc_pred_dir) { //left
  2728. for(k = 1; k < 8; k++)
  2729. block[k << 3] += (ac_val[k] * q2 * vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2730. } else { //top
  2731. for(k = 1; k < 8; k++)
  2732. block[k] += (ac_val[k + 8] * q2 * vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2733. }
  2734. } else {
  2735. if(dc_pred_dir) { //left
  2736. for(k = 1; k < 8; k++)
  2737. block[k << 3] += ac_val[k];
  2738. } else { //top
  2739. for(k = 1; k < 8; k++)
  2740. block[k] += ac_val[k + 8];
  2741. }
  2742. }
  2743. }
  2744. /* save AC coeffs for further prediction */
  2745. for(k = 1; k < 8; k++) {
  2746. ac_val2[k] = block[k << 3];
  2747. ac_val2[k + 8] = block[k];
  2748. }
  2749. /* scale AC coeffs */
  2750. for(k = 1; k < 64; k++)
  2751. if(block[k]) {
  2752. block[k] *= scale;
  2753. if(!v->pquantizer)
  2754. block[k] += (block[k] < 0) ? -mquant : mquant;
  2755. }
  2756. if(use_pred) i = 63;
  2757. } else { // no AC coeffs
  2758. int k;
  2759. memset(ac_val2, 0, 16 * 2);
  2760. if(dc_pred_dir) {//left
  2761. if(use_pred) {
  2762. memcpy(ac_val2, ac_val, 8 * 2);
  2763. if(q2 && q1!=q2) {
  2764. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2765. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2766. for(k = 1; k < 8; k++)
  2767. ac_val2[k] = (ac_val2[k] * q2 * vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2768. }
  2769. }
  2770. } else {//top
  2771. if(use_pred) {
  2772. memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
  2773. if(q2 && q1!=q2) {
  2774. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2775. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2776. for(k = 1; k < 8; k++)
  2777. ac_val2[k + 8] = (ac_val2[k + 8] * q2 * vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2778. }
  2779. }
  2780. }
  2781. /* apply AC prediction if needed */
  2782. if(use_pred) {
  2783. if(dc_pred_dir) { //left
  2784. for(k = 1; k < 8; k++) {
  2785. block[k << 3] = ac_val2[k] * scale;
  2786. if(!v->pquantizer && block[k << 3])
  2787. block[k << 3] += (block[k << 3] < 0) ? -mquant : mquant;
  2788. }
  2789. } else { //top
  2790. for(k = 1; k < 8; k++) {
  2791. block[k] = ac_val2[k + 8] * scale;
  2792. if(!v->pquantizer && block[k])
  2793. block[k] += (block[k] < 0) ? -mquant : mquant;
  2794. }
  2795. }
  2796. i = 63;
  2797. }
  2798. }
  2799. s->block_last_index[n] = i;
  2800. return 0;
  2801. }
  2802. /** Decode intra block in inter frames - more generic version than vc1_decode_i_block
  2803. * @param v VC1Context
  2804. * @param block block to decode
  2805. * @param coded are AC coeffs present or not
  2806. * @param mquant block quantizer
  2807. * @param codingset set of VLC to decode data
  2808. */
  2809. static int vc1_decode_intra_block(VC1Context *v, DCTELEM block[64], int n, int coded, int mquant, int codingset)
  2810. {
  2811. GetBitContext *gb = &v->s.gb;
  2812. MpegEncContext *s = &v->s;
  2813. int dc_pred_dir = 0; /* Direction of the DC prediction used */
  2814. int run_diff, i;
  2815. int16_t *dc_val;
  2816. int16_t *ac_val, *ac_val2;
  2817. int dcdiff;
  2818. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  2819. int a_avail = v->a_avail, c_avail = v->c_avail;
  2820. int use_pred = s->ac_pred;
  2821. int scale;
  2822. int q1, q2 = 0;
  2823. /* XXX: Guard against dumb values of mquant */
  2824. mquant = (mquant < 1) ? 0 : ( (mquant>31) ? 31 : mquant );
  2825. /* Set DC scale - y and c use the same */
  2826. s->y_dc_scale = s->y_dc_scale_table[mquant];
  2827. s->c_dc_scale = s->c_dc_scale_table[mquant];
  2828. /* Get DC differential */
  2829. if (n < 4) {
  2830. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2831. } else {
  2832. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2833. }
  2834. if (dcdiff < 0){
  2835. av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
  2836. return -1;
  2837. }
  2838. if (dcdiff)
  2839. {
  2840. if (dcdiff == 119 /* ESC index value */)
  2841. {
  2842. /* TODO: Optimize */
  2843. if (mquant == 1) dcdiff = get_bits(gb, 10);
  2844. else if (mquant == 2) dcdiff = get_bits(gb, 9);
  2845. else dcdiff = get_bits(gb, 8);
  2846. }
  2847. else
  2848. {
  2849. if (mquant == 1)
  2850. dcdiff = (dcdiff<<2) + get_bits(gb, 2) - 3;
  2851. else if (mquant == 2)
  2852. dcdiff = (dcdiff<<1) + get_bits(gb, 1) - 1;
  2853. }
  2854. if (get_bits(gb, 1))
  2855. dcdiff = -dcdiff;
  2856. }
  2857. /* Prediction */
  2858. dcdiff += vc1_pred_dc(&v->s, v->overlap, mquant, n, a_avail, c_avail, &dc_val, &dc_pred_dir);
  2859. *dc_val = dcdiff;
  2860. /* Store the quantized DC coeff, used for prediction */
  2861. if (n < 4) {
  2862. block[0] = dcdiff * s->y_dc_scale;
  2863. } else {
  2864. block[0] = dcdiff * s->c_dc_scale;
  2865. }
  2866. /* Skip ? */
  2867. run_diff = 0;
  2868. i = 0;
  2869. //AC Decoding
  2870. i = 1;
  2871. /* check if AC is needed at all and adjust direction if needed */
  2872. if(!a_avail) dc_pred_dir = 1;
  2873. if(!c_avail) dc_pred_dir = 0;
  2874. if(!a_avail && !c_avail) use_pred = 0;
  2875. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  2876. ac_val2 = ac_val;
  2877. scale = mquant * 2 + v->halfpq;
  2878. if(dc_pred_dir) //left
  2879. ac_val -= 16;
  2880. else //top
  2881. ac_val -= 16 * s->block_wrap[n];
  2882. q1 = s->current_picture.qscale_table[mb_pos];
  2883. if(dc_pred_dir && c_avail && mb_pos) q2 = s->current_picture.qscale_table[mb_pos - 1];
  2884. if(!dc_pred_dir && a_avail && mb_pos >= s->mb_stride) q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
  2885. if(dc_pred_dir && n==1) q2 = q1;
  2886. if(!dc_pred_dir && n==2) q2 = q1;
  2887. if(n==3) q2 = q1;
  2888. if(coded) {
  2889. int last = 0, skip, value;
  2890. const int8_t *zz_table;
  2891. int k;
  2892. zz_table = vc1_simple_progressive_8x8_zz;
  2893. while (!last) {
  2894. vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
  2895. i += skip;
  2896. if(i > 63)
  2897. break;
  2898. block[zz_table[i++]] = value;
  2899. }
  2900. /* apply AC prediction if needed */
  2901. if(use_pred) {
  2902. /* scale predictors if needed*/
  2903. if(q2 && q1!=q2) {
  2904. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2905. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2906. if(dc_pred_dir) { //left
  2907. for(k = 1; k < 8; k++)
  2908. block[k << 3] += (ac_val[k] * q2 * vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2909. } else { //top
  2910. for(k = 1; k < 8; k++)
  2911. block[k] += (ac_val[k + 8] * q2 * vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2912. }
  2913. } else {
  2914. if(dc_pred_dir) { //left
  2915. for(k = 1; k < 8; k++)
  2916. block[k << 3] += ac_val[k];
  2917. } else { //top
  2918. for(k = 1; k < 8; k++)
  2919. block[k] += ac_val[k + 8];
  2920. }
  2921. }
  2922. }
  2923. /* save AC coeffs for further prediction */
  2924. for(k = 1; k < 8; k++) {
  2925. ac_val2[k] = block[k << 3];
  2926. ac_val2[k + 8] = block[k];
  2927. }
  2928. /* scale AC coeffs */
  2929. for(k = 1; k < 64; k++)
  2930. if(block[k]) {
  2931. block[k] *= scale;
  2932. if(!v->pquantizer)
  2933. block[k] += (block[k] < 0) ? -mquant : mquant;
  2934. }
  2935. if(use_pred) i = 63;
  2936. } else { // no AC coeffs
  2937. int k;
  2938. memset(ac_val2, 0, 16 * 2);
  2939. if(dc_pred_dir) {//left
  2940. if(use_pred) {
  2941. memcpy(ac_val2, ac_val, 8 * 2);
  2942. if(q2 && q1!=q2) {
  2943. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2944. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2945. for(k = 1; k < 8; k++)
  2946. ac_val2[k] = (ac_val2[k] * q2 * vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2947. }
  2948. }
  2949. } else {//top
  2950. if(use_pred) {
  2951. memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
  2952. if(q2 && q1!=q2) {
  2953. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2954. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2955. for(k = 1; k < 8; k++)
  2956. ac_val2[k + 8] = (ac_val2[k + 8] * q2 * vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2957. }
  2958. }
  2959. }
  2960. /* apply AC prediction if needed */
  2961. if(use_pred) {
  2962. if(dc_pred_dir) { //left
  2963. for(k = 1; k < 8; k++) {
  2964. block[k << 3] = ac_val2[k] * scale;
  2965. if(!v->pquantizer && block[k << 3])
  2966. block[k << 3] += (block[k << 3] < 0) ? -mquant : mquant;
  2967. }
  2968. } else { //top
  2969. for(k = 1; k < 8; k++) {
  2970. block[k] = ac_val2[k + 8] * scale;
  2971. if(!v->pquantizer && block[k])
  2972. block[k] += (block[k] < 0) ? -mquant : mquant;
  2973. }
  2974. }
  2975. i = 63;
  2976. }
  2977. }
  2978. s->block_last_index[n] = i;
  2979. return 0;
  2980. }
  2981. /** Decode P block
  2982. */
  2983. static int vc1_decode_p_block(VC1Context *v, DCTELEM block[64], int n, int mquant, int ttmb, int first_block)
  2984. {
  2985. MpegEncContext *s = &v->s;
  2986. GetBitContext *gb = &s->gb;
  2987. int i, j;
  2988. int subblkpat = 0;
  2989. int scale, off, idx, last, skip, value;
  2990. int ttblk = ttmb & 7;
  2991. if(ttmb == -1) {
  2992. ttblk = ttblk_to_tt[v->tt_index][get_vlc2(gb, vc1_ttblk_vlc[v->tt_index].table, VC1_TTBLK_VLC_BITS, 1)];
  2993. }
  2994. if(ttblk == TT_4X4) {
  2995. subblkpat = ~(get_vlc2(gb, vc1_subblkpat_vlc[v->tt_index].table, VC1_SUBBLKPAT_VLC_BITS, 1) + 1);
  2996. }
  2997. if((ttblk != TT_8X8 && ttblk != TT_4X4) && (v->ttmbf || (ttmb != -1 && (ttmb & 8) && !first_block))) {
  2998. subblkpat = decode012(gb);
  2999. if(subblkpat) subblkpat ^= 3; //swap decoded pattern bits
  3000. if(ttblk == TT_8X4_TOP || ttblk == TT_8X4_BOTTOM) ttblk = TT_8X4;
  3001. if(ttblk == TT_4X8_RIGHT || ttblk == TT_4X8_LEFT) ttblk = TT_4X8;
  3002. }
  3003. scale = 2 * mquant + v->halfpq;
  3004. // convert transforms like 8X4_TOP to generic TT and SUBBLKPAT
  3005. if(ttblk == TT_8X4_TOP || ttblk == TT_8X4_BOTTOM) {
  3006. subblkpat = 2 - (ttblk == TT_8X4_TOP);
  3007. ttblk = TT_8X4;
  3008. }
  3009. if(ttblk == TT_4X8_RIGHT || ttblk == TT_4X8_LEFT) {
  3010. subblkpat = 2 - (ttblk == TT_4X8_LEFT);
  3011. ttblk = TT_4X8;
  3012. }
  3013. switch(ttblk) {
  3014. case TT_8X8:
  3015. i = 0;
  3016. last = 0;
  3017. while (!last) {
  3018. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  3019. i += skip;
  3020. if(i > 63)
  3021. break;
  3022. idx = vc1_simple_progressive_8x8_zz[i++];
  3023. block[idx] = value * scale;
  3024. if(!v->pquantizer)
  3025. block[idx] += (block[idx] < 0) ? -mquant : mquant;
  3026. }
  3027. s->dsp.vc1_inv_trans_8x8(block);
  3028. break;
  3029. case TT_4X4:
  3030. for(j = 0; j < 4; j++) {
  3031. last = subblkpat & (1 << (3 - j));
  3032. i = 0;
  3033. off = (j & 1) * 4 + (j & 2) * 16;
  3034. while (!last) {
  3035. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  3036. i += skip;
  3037. if(i > 15)
  3038. break;
  3039. idx = vc1_simple_progressive_4x4_zz[i++];
  3040. block[idx + off] = value * scale;
  3041. if(!v->pquantizer)
  3042. block[idx + off] += (block[idx + off] < 0) ? -mquant : mquant;
  3043. }
  3044. if(!(subblkpat & (1 << (3 - j))))
  3045. s->dsp.vc1_inv_trans_4x4(block, j);
  3046. }
  3047. break;
  3048. case TT_8X4:
  3049. for(j = 0; j < 2; j++) {
  3050. last = subblkpat & (1 << (1 - j));
  3051. i = 0;
  3052. off = j * 32;
  3053. while (!last) {
  3054. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  3055. i += skip;
  3056. if(i > 31)
  3057. break;
  3058. if(v->profile < PROFILE_ADVANCED)
  3059. idx = vc1_simple_progressive_8x4_zz[i++];
  3060. else
  3061. idx = vc1_adv_progressive_8x4_zz[i++];
  3062. block[idx + off] = value * scale;
  3063. if(!v->pquantizer)
  3064. block[idx + off] += (block[idx + off] < 0) ? -mquant : mquant;
  3065. }
  3066. if(!(subblkpat & (1 << (1 - j))))
  3067. s->dsp.vc1_inv_trans_8x4(block, j);
  3068. }
  3069. break;
  3070. case TT_4X8:
  3071. for(j = 0; j < 2; j++) {
  3072. last = subblkpat & (1 << (1 - j));
  3073. i = 0;
  3074. off = j * 4;
  3075. while (!last) {
  3076. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  3077. i += skip;
  3078. if(i > 31)
  3079. break;
  3080. if(v->profile < PROFILE_ADVANCED)
  3081. idx = vc1_simple_progressive_4x8_zz[i++];
  3082. else
  3083. idx = vc1_adv_progressive_4x8_zz[i++];
  3084. block[idx + off] = value * scale;
  3085. if(!v->pquantizer)
  3086. block[idx + off] += (block[idx + off] < 0) ? -mquant : mquant;
  3087. }
  3088. if(!(subblkpat & (1 << (1 - j))))
  3089. s->dsp.vc1_inv_trans_4x8(block, j);
  3090. }
  3091. break;
  3092. }
  3093. return 0;
  3094. }
  3095. /** Decode one P-frame MB (in Simple/Main profile)
  3096. */
  3097. static int vc1_decode_p_mb(VC1Context *v)
  3098. {
  3099. MpegEncContext *s = &v->s;
  3100. GetBitContext *gb = &s->gb;
  3101. int i, j;
  3102. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  3103. int cbp; /* cbp decoding stuff */
  3104. int mqdiff, mquant; /* MB quantization */
  3105. int ttmb = v->ttfrm; /* MB Transform type */
  3106. int status;
  3107. static const int size_table[6] = { 0, 2, 3, 4, 5, 8 },
  3108. offset_table[6] = { 0, 1, 3, 7, 15, 31 };
  3109. int mb_has_coeffs = 1; /* last_flag */
  3110. int dmv_x, dmv_y; /* Differential MV components */
  3111. int index, index1; /* LUT indices */
  3112. int val, sign; /* temp values */
  3113. int first_block = 1;
  3114. int dst_idx, off;
  3115. int skipped, fourmv;
  3116. mquant = v->pq; /* Loosy initialization */
  3117. if (v->mv_type_is_raw)
  3118. fourmv = get_bits1(gb);
  3119. else
  3120. fourmv = v->mv_type_mb_plane[mb_pos];
  3121. if (v->skip_is_raw)
  3122. skipped = get_bits1(gb);
  3123. else
  3124. skipped = v->s.mbskip_table[mb_pos];
  3125. s->dsp.clear_blocks(s->block[0]);
  3126. if (!fourmv) /* 1MV mode */
  3127. {
  3128. if (!skipped)
  3129. {
  3130. GET_MVDATA(dmv_x, dmv_y);
  3131. if (s->mb_intra) {
  3132. s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
  3133. s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
  3134. }
  3135. s->current_picture.mb_type[mb_pos] = s->mb_intra ? MB_TYPE_INTRA : MB_TYPE_16x16;
  3136. vc1_pred_mv(s, 0, dmv_x, dmv_y, 1, v->range_x, v->range_y, v->mb_type[0]);
  3137. /* FIXME Set DC val for inter block ? */
  3138. if (s->mb_intra && !mb_has_coeffs)
  3139. {
  3140. GET_MQUANT();
  3141. s->ac_pred = get_bits(gb, 1);
  3142. cbp = 0;
  3143. }
  3144. else if (mb_has_coeffs)
  3145. {
  3146. if (s->mb_intra) s->ac_pred = get_bits(gb, 1);
  3147. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  3148. GET_MQUANT();
  3149. }
  3150. else
  3151. {
  3152. mquant = v->pq;
  3153. cbp = 0;
  3154. }
  3155. s->current_picture.qscale_table[mb_pos] = mquant;
  3156. if (!v->ttmbf && !s->mb_intra && mb_has_coeffs)
  3157. ttmb = get_vlc2(gb, vc1_ttmb_vlc[v->tt_index].table,
  3158. VC1_TTMB_VLC_BITS, 2);
  3159. if(!s->mb_intra) vc1_mc_1mv(v, 0);
  3160. dst_idx = 0;
  3161. for (i=0; i<6; i++)
  3162. {
  3163. s->dc_val[0][s->block_index[i]] = 0;
  3164. dst_idx += i >> 2;
  3165. val = ((cbp >> (5 - i)) & 1);
  3166. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  3167. v->mb_type[0][s->block_index[i]] = s->mb_intra;
  3168. if(s->mb_intra) {
  3169. /* check if prediction blocks A and C are available */
  3170. v->a_avail = v->c_avail = 0;
  3171. if(i == 2 || i == 3 || !s->first_slice_line)
  3172. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  3173. if(i == 1 || i == 3 || s->mb_x)
  3174. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  3175. vc1_decode_intra_block(v, s->block[i], i, val, mquant, (i&4)?v->codingset2:v->codingset);
  3176. if((i>3) && (s->flags & CODEC_FLAG_GRAY)) continue;
  3177. s->dsp.vc1_inv_trans_8x8(s->block[i]);
  3178. if(v->rangeredfrm) for(j = 0; j < 64; j++) s->block[i][j] <<= 1;
  3179. for(j = 0; j < 64; j++) s->block[i][j] += 128;
  3180. if(!v->res_fasttx && v->res_x8) for(j = 0; j < 64; j++) s->block[i][j] += 16;
  3181. s->dsp.put_pixels_clamped(s->block[i], s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  3182. if(v->pq >= 9 && v->overlap) {
  3183. if(v->c_avail)
  3184. s->dsp.vc1_h_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  3185. if(v->a_avail)
  3186. s->dsp.vc1_v_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  3187. }
  3188. } else if(val) {
  3189. vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block);
  3190. if(!v->ttmbf && ttmb < 8) ttmb = -1;
  3191. first_block = 0;
  3192. if((i<4) || !(s->flags & CODEC_FLAG_GRAY))
  3193. s->dsp.add_pixels_clamped(s->block[i], s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize);
  3194. }
  3195. }
  3196. }
  3197. else //Skipped
  3198. {
  3199. s->mb_intra = 0;
  3200. for(i = 0; i < 6; i++) {
  3201. v->mb_type[0][s->block_index[i]] = 0;
  3202. s->dc_val[0][s->block_index[i]] = 0;
  3203. }
  3204. s->current_picture.mb_type[mb_pos] = MB_TYPE_SKIP;
  3205. s->current_picture.qscale_table[mb_pos] = 0;
  3206. vc1_pred_mv(s, 0, 0, 0, 1, v->range_x, v->range_y, v->mb_type[0]);
  3207. vc1_mc_1mv(v, 0);
  3208. return 0;
  3209. }
  3210. } //1MV mode
  3211. else //4MV mode
  3212. {
  3213. if (!skipped /* unskipped MB */)
  3214. {
  3215. int intra_count = 0, coded_inter = 0;
  3216. int is_intra[6], is_coded[6];
  3217. /* Get CBPCY */
  3218. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  3219. for (i=0; i<6; i++)
  3220. {
  3221. val = ((cbp >> (5 - i)) & 1);
  3222. s->dc_val[0][s->block_index[i]] = 0;
  3223. s->mb_intra = 0;
  3224. if(i < 4) {
  3225. dmv_x = dmv_y = 0;
  3226. s->mb_intra = 0;
  3227. mb_has_coeffs = 0;
  3228. if(val) {
  3229. GET_MVDATA(dmv_x, dmv_y);
  3230. }
  3231. vc1_pred_mv(s, i, dmv_x, dmv_y, 0, v->range_x, v->range_y, v->mb_type[0]);
  3232. if(!s->mb_intra) vc1_mc_4mv_luma(v, i);
  3233. intra_count += s->mb_intra;
  3234. is_intra[i] = s->mb_intra;
  3235. is_coded[i] = mb_has_coeffs;
  3236. }
  3237. if(i&4){
  3238. is_intra[i] = (intra_count >= 3);
  3239. is_coded[i] = val;
  3240. }
  3241. if(i == 4) vc1_mc_4mv_chroma(v);
  3242. v->mb_type[0][s->block_index[i]] = is_intra[i];
  3243. if(!coded_inter) coded_inter = !is_intra[i] & is_coded[i];
  3244. }
  3245. // if there are no coded blocks then don't do anything more
  3246. if(!intra_count && !coded_inter) return 0;
  3247. dst_idx = 0;
  3248. GET_MQUANT();
  3249. s->current_picture.qscale_table[mb_pos] = mquant;
  3250. /* test if block is intra and has pred */
  3251. {
  3252. int intrapred = 0;
  3253. for(i=0; i<6; i++)
  3254. if(is_intra[i]) {
  3255. if(((!s->first_slice_line || (i==2 || i==3)) && v->mb_type[0][s->block_index[i] - s->block_wrap[i]])
  3256. || ((s->mb_x || (i==1 || i==3)) && v->mb_type[0][s->block_index[i] - 1])) {
  3257. intrapred = 1;
  3258. break;
  3259. }
  3260. }
  3261. if(intrapred)s->ac_pred = get_bits(gb, 1);
  3262. else s->ac_pred = 0;
  3263. }
  3264. if (!v->ttmbf && coded_inter)
  3265. ttmb = get_vlc2(gb, vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  3266. for (i=0; i<6; i++)
  3267. {
  3268. dst_idx += i >> 2;
  3269. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  3270. s->mb_intra = is_intra[i];
  3271. if (is_intra[i]) {
  3272. /* check if prediction blocks A and C are available */
  3273. v->a_avail = v->c_avail = 0;
  3274. if(i == 2 || i == 3 || !s->first_slice_line)
  3275. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  3276. if(i == 1 || i == 3 || s->mb_x)
  3277. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  3278. vc1_decode_intra_block(v, s->block[i], i, is_coded[i], mquant, (i&4)?v->codingset2:v->codingset);
  3279. if((i>3) && (s->flags & CODEC_FLAG_GRAY)) continue;
  3280. s->dsp.vc1_inv_trans_8x8(s->block[i]);
  3281. if(v->rangeredfrm) for(j = 0; j < 64; j++) s->block[i][j] <<= 1;
  3282. for(j = 0; j < 64; j++) s->block[i][j] += 128;
  3283. if(!v->res_fasttx && v->res_x8) for(j = 0; j < 64; j++) s->block[i][j] += 16;
  3284. s->dsp.put_pixels_clamped(s->block[i], s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize);
  3285. if(v->pq >= 9 && v->overlap) {
  3286. if(v->c_avail)
  3287. s->dsp.vc1_h_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  3288. if(v->a_avail)
  3289. s->dsp.vc1_v_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  3290. }
  3291. } else if(is_coded[i]) {
  3292. status = vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block);
  3293. if(!v->ttmbf && ttmb < 8) ttmb = -1;
  3294. first_block = 0;
  3295. if((i<4) || !(s->flags & CODEC_FLAG_GRAY))
  3296. s->dsp.add_pixels_clamped(s->block[i], s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize);
  3297. }
  3298. }
  3299. return status;
  3300. }
  3301. else //Skipped MB
  3302. {
  3303. s->mb_intra = 0;
  3304. s->current_picture.qscale_table[mb_pos] = 0;
  3305. for (i=0; i<6; i++) {
  3306. v->mb_type[0][s->block_index[i]] = 0;
  3307. s->dc_val[0][s->block_index[i]] = 0;
  3308. }
  3309. for (i=0; i<4; i++)
  3310. {
  3311. vc1_pred_mv(s, i, 0, 0, 0, v->range_x, v->range_y, v->mb_type[0]);
  3312. vc1_mc_4mv_luma(v, i);
  3313. }
  3314. vc1_mc_4mv_chroma(v);
  3315. s->current_picture.qscale_table[mb_pos] = 0;
  3316. return 0;
  3317. }
  3318. }
  3319. /* Should never happen */
  3320. return -1;
  3321. }
  3322. /** Decode one B-frame MB (in Main profile)
  3323. */
  3324. static void vc1_decode_b_mb(VC1Context *v)
  3325. {
  3326. MpegEncContext *s = &v->s;
  3327. GetBitContext *gb = &s->gb;
  3328. int i, j;
  3329. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  3330. int cbp = 0; /* cbp decoding stuff */
  3331. int mqdiff, mquant; /* MB quantization */
  3332. int ttmb = v->ttfrm; /* MB Transform type */
  3333. static const int size_table[6] = { 0, 2, 3, 4, 5, 8 },
  3334. offset_table[6] = { 0, 1, 3, 7, 15, 31 };
  3335. int mb_has_coeffs = 0; /* last_flag */
  3336. int index, index1; /* LUT indices */
  3337. int val, sign; /* temp values */
  3338. int first_block = 1;
  3339. int dst_idx, off;
  3340. int skipped, direct;
  3341. int dmv_x[2], dmv_y[2];
  3342. int bmvtype = BMV_TYPE_BACKWARD;
  3343. mquant = v->pq; /* Loosy initialization */
  3344. s->mb_intra = 0;
  3345. if (v->dmb_is_raw)
  3346. direct = get_bits1(gb);
  3347. else
  3348. direct = v->direct_mb_plane[mb_pos];
  3349. if (v->skip_is_raw)
  3350. skipped = get_bits1(gb);
  3351. else
  3352. skipped = v->s.mbskip_table[mb_pos];
  3353. s->dsp.clear_blocks(s->block[0]);
  3354. dmv_x[0] = dmv_x[1] = dmv_y[0] = dmv_y[1] = 0;
  3355. for(i = 0; i < 6; i++) {
  3356. v->mb_type[0][s->block_index[i]] = 0;
  3357. s->dc_val[0][s->block_index[i]] = 0;
  3358. }
  3359. s->current_picture.qscale_table[mb_pos] = 0;
  3360. if (!direct) {
  3361. if (!skipped) {
  3362. GET_MVDATA(dmv_x[0], dmv_y[0]);
  3363. dmv_x[1] = dmv_x[0];
  3364. dmv_y[1] = dmv_y[0];
  3365. }
  3366. if(skipped || !s->mb_intra) {
  3367. bmvtype = decode012(gb);
  3368. switch(bmvtype) {
  3369. case 0:
  3370. bmvtype = (v->bfraction >= (B_FRACTION_DEN/2)) ? BMV_TYPE_BACKWARD : BMV_TYPE_FORWARD;
  3371. break;
  3372. case 1:
  3373. bmvtype = (v->bfraction >= (B_FRACTION_DEN/2)) ? BMV_TYPE_FORWARD : BMV_TYPE_BACKWARD;
  3374. break;
  3375. case 2:
  3376. bmvtype = BMV_TYPE_INTERPOLATED;
  3377. dmv_x[0] = dmv_y[0] = 0;
  3378. }
  3379. }
  3380. }
  3381. for(i = 0; i < 6; i++)
  3382. v->mb_type[0][s->block_index[i]] = s->mb_intra;
  3383. if (skipped) {
  3384. if(direct) bmvtype = BMV_TYPE_INTERPOLATED;
  3385. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3386. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  3387. return;
  3388. }
  3389. if (direct) {
  3390. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  3391. GET_MQUANT();
  3392. s->mb_intra = 0;
  3393. mb_has_coeffs = 0;
  3394. s->current_picture.qscale_table[mb_pos] = mquant;
  3395. if(!v->ttmbf)
  3396. ttmb = get_vlc2(gb, vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  3397. dmv_x[0] = dmv_y[0] = dmv_x[1] = dmv_y[1] = 0;
  3398. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3399. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  3400. } else {
  3401. if(!mb_has_coeffs && !s->mb_intra) {
  3402. /* no coded blocks - effectively skipped */
  3403. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3404. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  3405. return;
  3406. }
  3407. if(s->mb_intra && !mb_has_coeffs) {
  3408. GET_MQUANT();
  3409. s->current_picture.qscale_table[mb_pos] = mquant;
  3410. s->ac_pred = get_bits1(gb);
  3411. cbp = 0;
  3412. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3413. } else {
  3414. if(bmvtype == BMV_TYPE_INTERPOLATED) {
  3415. GET_MVDATA(dmv_x[0], dmv_y[0]);
  3416. if(!mb_has_coeffs) {
  3417. /* interpolated skipped block */
  3418. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3419. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  3420. return;
  3421. }
  3422. }
  3423. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3424. if(!s->mb_intra) {
  3425. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  3426. }
  3427. if(s->mb_intra)
  3428. s->ac_pred = get_bits1(gb);
  3429. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  3430. GET_MQUANT();
  3431. s->current_picture.qscale_table[mb_pos] = mquant;
  3432. if(!v->ttmbf && !s->mb_intra && mb_has_coeffs)
  3433. ttmb = get_vlc2(gb, vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  3434. }
  3435. }
  3436. dst_idx = 0;
  3437. for (i=0; i<6; i++)
  3438. {
  3439. s->dc_val[0][s->block_index[i]] = 0;
  3440. dst_idx += i >> 2;
  3441. val = ((cbp >> (5 - i)) & 1);
  3442. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  3443. v->mb_type[0][s->block_index[i]] = s->mb_intra;
  3444. if(s->mb_intra) {
  3445. /* check if prediction blocks A and C are available */
  3446. v->a_avail = v->c_avail = 0;
  3447. if(i == 2 || i == 3 || !s->first_slice_line)
  3448. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  3449. if(i == 1 || i == 3 || s->mb_x)
  3450. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  3451. vc1_decode_intra_block(v, s->block[i], i, val, mquant, (i&4)?v->codingset2:v->codingset);
  3452. if((i>3) && (s->flags & CODEC_FLAG_GRAY)) continue;
  3453. s->dsp.vc1_inv_trans_8x8(s->block[i]);
  3454. if(v->rangeredfrm) for(j = 0; j < 64; j++) s->block[i][j] <<= 1;
  3455. for(j = 0; j < 64; j++) s->block[i][j] += 128;
  3456. s->dsp.put_pixels_clamped(s->block[i], s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  3457. } else if(val) {
  3458. vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block);
  3459. if(!v->ttmbf && ttmb < 8) ttmb = -1;
  3460. first_block = 0;
  3461. if((i<4) || !(s->flags & CODEC_FLAG_GRAY))
  3462. s->dsp.add_pixels_clamped(s->block[i], s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize);
  3463. }
  3464. }
  3465. }
  3466. /** Decode blocks of I-frame
  3467. */
  3468. static void vc1_decode_i_blocks(VC1Context *v)
  3469. {
  3470. int k, j;
  3471. MpegEncContext *s = &v->s;
  3472. int cbp, val;
  3473. uint8_t *coded_val;
  3474. int mb_pos;
  3475. /* select codingmode used for VLC tables selection */
  3476. switch(v->y_ac_table_index){
  3477. case 0:
  3478. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  3479. break;
  3480. case 1:
  3481. v->codingset = CS_HIGH_MOT_INTRA;
  3482. break;
  3483. case 2:
  3484. v->codingset = CS_MID_RATE_INTRA;
  3485. break;
  3486. }
  3487. switch(v->c_ac_table_index){
  3488. case 0:
  3489. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  3490. break;
  3491. case 1:
  3492. v->codingset2 = CS_HIGH_MOT_INTER;
  3493. break;
  3494. case 2:
  3495. v->codingset2 = CS_MID_RATE_INTER;
  3496. break;
  3497. }
  3498. /* Set DC scale - y and c use the same */
  3499. s->y_dc_scale = s->y_dc_scale_table[v->pq];
  3500. s->c_dc_scale = s->c_dc_scale_table[v->pq];
  3501. //do frame decode
  3502. s->mb_x = s->mb_y = 0;
  3503. s->mb_intra = 1;
  3504. s->first_slice_line = 1;
  3505. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  3506. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  3507. for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
  3508. ff_init_block_index(s);
  3509. ff_update_block_index(s);
  3510. s->dsp.clear_blocks(s->block[0]);
  3511. mb_pos = s->mb_x + s->mb_y * s->mb_width;
  3512. s->current_picture.mb_type[mb_pos] = MB_TYPE_INTRA;
  3513. s->current_picture.qscale_table[mb_pos] = v->pq;
  3514. s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
  3515. s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
  3516. // do actual MB decoding and displaying
  3517. cbp = get_vlc2(&v->s.gb, ff_msmp4_mb_i_vlc.table, MB_INTRA_VLC_BITS, 2);
  3518. v->s.ac_pred = get_bits(&v->s.gb, 1);
  3519. for(k = 0; k < 6; k++) {
  3520. val = ((cbp >> (5 - k)) & 1);
  3521. if (k < 4) {
  3522. int pred = vc1_coded_block_pred(&v->s, k, &coded_val);
  3523. val = val ^ pred;
  3524. *coded_val = val;
  3525. }
  3526. cbp |= val << (5 - k);
  3527. vc1_decode_i_block(v, s->block[k], k, val, (k<4)? v->codingset : v->codingset2);
  3528. s->dsp.vc1_inv_trans_8x8(s->block[k]);
  3529. if(!v->res_fasttx && !v->res_x8) for(j = 0; j < 64; j++) s->block[k][j] -= 16;
  3530. if(v->pq >= 9 && v->overlap) {
  3531. for(j = 0; j < 64; j++) s->block[k][j] += 128;
  3532. }
  3533. }
  3534. vc1_put_block(v, s->block);
  3535. if(v->pq >= 9 && v->overlap) {
  3536. if(s->mb_x) {
  3537. s->dsp.vc1_h_overlap(s->dest[0], s->linesize);
  3538. s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
  3539. if(!(s->flags & CODEC_FLAG_GRAY)) {
  3540. s->dsp.vc1_h_overlap(s->dest[1], s->uvlinesize);
  3541. s->dsp.vc1_h_overlap(s->dest[2], s->uvlinesize);
  3542. }
  3543. }
  3544. s->dsp.vc1_h_overlap(s->dest[0] + 8, s->linesize);
  3545. s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
  3546. if(!s->first_slice_line) {
  3547. s->dsp.vc1_v_overlap(s->dest[0], s->linesize);
  3548. s->dsp.vc1_v_overlap(s->dest[0] + 8, s->linesize);
  3549. if(!(s->flags & CODEC_FLAG_GRAY)) {
  3550. s->dsp.vc1_v_overlap(s->dest[1], s->uvlinesize);
  3551. s->dsp.vc1_v_overlap(s->dest[2], s->uvlinesize);
  3552. }
  3553. }
  3554. s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
  3555. s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
  3556. }
  3557. if(get_bits_count(&s->gb) > v->bits) {
  3558. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i\n", get_bits_count(&s->gb), v->bits);
  3559. return;
  3560. }
  3561. }
  3562. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  3563. s->first_slice_line = 0;
  3564. }
  3565. }
  3566. /** Decode blocks of I-frame for advanced profile
  3567. */
  3568. static void vc1_decode_i_blocks_adv(VC1Context *v)
  3569. {
  3570. int k, j;
  3571. MpegEncContext *s = &v->s;
  3572. int cbp, val;
  3573. uint8_t *coded_val;
  3574. int mb_pos;
  3575. int mquant = v->pq;
  3576. int mqdiff;
  3577. int overlap;
  3578. GetBitContext *gb = &s->gb;
  3579. /* select codingmode used for VLC tables selection */
  3580. switch(v->y_ac_table_index){
  3581. case 0:
  3582. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  3583. break;
  3584. case 1:
  3585. v->codingset = CS_HIGH_MOT_INTRA;
  3586. break;
  3587. case 2:
  3588. v->codingset = CS_MID_RATE_INTRA;
  3589. break;
  3590. }
  3591. switch(v->c_ac_table_index){
  3592. case 0:
  3593. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  3594. break;
  3595. case 1:
  3596. v->codingset2 = CS_HIGH_MOT_INTER;
  3597. break;
  3598. case 2:
  3599. v->codingset2 = CS_MID_RATE_INTER;
  3600. break;
  3601. }
  3602. //do frame decode
  3603. s->mb_x = s->mb_y = 0;
  3604. s->mb_intra = 1;
  3605. s->first_slice_line = 1;
  3606. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  3607. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  3608. for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
  3609. ff_init_block_index(s);
  3610. ff_update_block_index(s);
  3611. s->dsp.clear_blocks(s->block[0]);
  3612. mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  3613. s->current_picture.mb_type[mb_pos] = MB_TYPE_INTRA;
  3614. s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
  3615. s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
  3616. // do actual MB decoding and displaying
  3617. cbp = get_vlc2(&v->s.gb, ff_msmp4_mb_i_vlc.table, MB_INTRA_VLC_BITS, 2);
  3618. if(v->acpred_is_raw)
  3619. v->s.ac_pred = get_bits(&v->s.gb, 1);
  3620. else
  3621. v->s.ac_pred = v->acpred_plane[mb_pos];
  3622. if(v->condover == CONDOVER_SELECT) {
  3623. if(v->overflg_is_raw)
  3624. overlap = get_bits(&v->s.gb, 1);
  3625. else
  3626. overlap = v->over_flags_plane[mb_pos];
  3627. } else
  3628. overlap = (v->condover == CONDOVER_ALL);
  3629. GET_MQUANT();
  3630. s->current_picture.qscale_table[mb_pos] = mquant;
  3631. /* Set DC scale - y and c use the same */
  3632. s->y_dc_scale = s->y_dc_scale_table[mquant];
  3633. s->c_dc_scale = s->c_dc_scale_table[mquant];
  3634. for(k = 0; k < 6; k++) {
  3635. val = ((cbp >> (5 - k)) & 1);
  3636. if (k < 4) {
  3637. int pred = vc1_coded_block_pred(&v->s, k, &coded_val);
  3638. val = val ^ pred;
  3639. *coded_val = val;
  3640. }
  3641. cbp |= val << (5 - k);
  3642. v->a_avail = !s->first_slice_line || (k==2 || k==3);
  3643. v->c_avail = !!s->mb_x || (k==1 || k==3);
  3644. vc1_decode_i_block_adv(v, s->block[k], k, val, (k<4)? v->codingset : v->codingset2, mquant);
  3645. s->dsp.vc1_inv_trans_8x8(s->block[k]);
  3646. for(j = 0; j < 64; j++) s->block[k][j] += 128;
  3647. }
  3648. vc1_put_block(v, s->block);
  3649. if(overlap) {
  3650. if(s->mb_x) {
  3651. s->dsp.vc1_h_overlap(s->dest[0], s->linesize);
  3652. s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
  3653. if(!(s->flags & CODEC_FLAG_GRAY)) {
  3654. s->dsp.vc1_h_overlap(s->dest[1], s->uvlinesize);
  3655. s->dsp.vc1_h_overlap(s->dest[2], s->uvlinesize);
  3656. }
  3657. }
  3658. s->dsp.vc1_h_overlap(s->dest[0] + 8, s->linesize);
  3659. s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
  3660. if(!s->first_slice_line) {
  3661. s->dsp.vc1_v_overlap(s->dest[0], s->linesize);
  3662. s->dsp.vc1_v_overlap(s->dest[0] + 8, s->linesize);
  3663. if(!(s->flags & CODEC_FLAG_GRAY)) {
  3664. s->dsp.vc1_v_overlap(s->dest[1], s->uvlinesize);
  3665. s->dsp.vc1_v_overlap(s->dest[2], s->uvlinesize);
  3666. }
  3667. }
  3668. s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
  3669. s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
  3670. }
  3671. if(get_bits_count(&s->gb) > v->bits) {
  3672. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i\n", get_bits_count(&s->gb), v->bits);
  3673. return;
  3674. }
  3675. }
  3676. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  3677. s->first_slice_line = 0;
  3678. }
  3679. }
  3680. static void vc1_decode_p_blocks(VC1Context *v)
  3681. {
  3682. MpegEncContext *s = &v->s;
  3683. /* select codingmode used for VLC tables selection */
  3684. switch(v->c_ac_table_index){
  3685. case 0:
  3686. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  3687. break;
  3688. case 1:
  3689. v->codingset = CS_HIGH_MOT_INTRA;
  3690. break;
  3691. case 2:
  3692. v->codingset = CS_MID_RATE_INTRA;
  3693. break;
  3694. }
  3695. switch(v->c_ac_table_index){
  3696. case 0:
  3697. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  3698. break;
  3699. case 1:
  3700. v->codingset2 = CS_HIGH_MOT_INTER;
  3701. break;
  3702. case 2:
  3703. v->codingset2 = CS_MID_RATE_INTER;
  3704. break;
  3705. }
  3706. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  3707. s->first_slice_line = 1;
  3708. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  3709. for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
  3710. ff_init_block_index(s);
  3711. ff_update_block_index(s);
  3712. s->dsp.clear_blocks(s->block[0]);
  3713. vc1_decode_p_mb(v);
  3714. if(get_bits_count(&s->gb) > v->bits || get_bits_count(&s->gb) < 0) {
  3715. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i at %ix%i\n", get_bits_count(&s->gb), v->bits,s->mb_x,s->mb_y);
  3716. return;
  3717. }
  3718. }
  3719. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  3720. s->first_slice_line = 0;
  3721. }
  3722. }
  3723. static void vc1_decode_b_blocks(VC1Context *v)
  3724. {
  3725. MpegEncContext *s = &v->s;
  3726. /* select codingmode used for VLC tables selection */
  3727. switch(v->c_ac_table_index){
  3728. case 0:
  3729. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  3730. break;
  3731. case 1:
  3732. v->codingset = CS_HIGH_MOT_INTRA;
  3733. break;
  3734. case 2:
  3735. v->codingset = CS_MID_RATE_INTRA;
  3736. break;
  3737. }
  3738. switch(v->c_ac_table_index){
  3739. case 0:
  3740. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  3741. break;
  3742. case 1:
  3743. v->codingset2 = CS_HIGH_MOT_INTER;
  3744. break;
  3745. case 2:
  3746. v->codingset2 = CS_MID_RATE_INTER;
  3747. break;
  3748. }
  3749. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  3750. s->first_slice_line = 1;
  3751. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  3752. for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
  3753. ff_init_block_index(s);
  3754. ff_update_block_index(s);
  3755. s->dsp.clear_blocks(s->block[0]);
  3756. vc1_decode_b_mb(v);
  3757. if(get_bits_count(&s->gb) > v->bits || get_bits_count(&s->gb) < 0) {
  3758. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i at %ix%i\n", get_bits_count(&s->gb), v->bits,s->mb_x,s->mb_y);
  3759. return;
  3760. }
  3761. }
  3762. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  3763. s->first_slice_line = 0;
  3764. }
  3765. }
  3766. static void vc1_decode_skip_blocks(VC1Context *v)
  3767. {
  3768. MpegEncContext *s = &v->s;
  3769. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  3770. s->first_slice_line = 1;
  3771. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  3772. s->mb_x = 0;
  3773. ff_init_block_index(s);
  3774. ff_update_block_index(s);
  3775. memcpy(s->dest[0], s->last_picture.data[0] + s->mb_y * 16 * s->linesize, s->linesize * 16);
  3776. memcpy(s->dest[1], s->last_picture.data[1] + s->mb_y * 8 * s->uvlinesize, s->uvlinesize * 8);
  3777. memcpy(s->dest[2], s->last_picture.data[2] + s->mb_y * 8 * s->uvlinesize, s->uvlinesize * 8);
  3778. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  3779. s->first_slice_line = 0;
  3780. }
  3781. s->pict_type = P_TYPE;
  3782. }
  3783. static void vc1_decode_blocks(VC1Context *v)
  3784. {
  3785. v->s.esc3_level_length = 0;
  3786. switch(v->s.pict_type) {
  3787. case I_TYPE:
  3788. if(v->profile == PROFILE_ADVANCED)
  3789. vc1_decode_i_blocks_adv(v);
  3790. else
  3791. vc1_decode_i_blocks(v);
  3792. break;
  3793. case P_TYPE:
  3794. if(v->p_frame_skipped)
  3795. vc1_decode_skip_blocks(v);
  3796. else
  3797. vc1_decode_p_blocks(v);
  3798. break;
  3799. case B_TYPE:
  3800. if(v->bi_type){
  3801. if(v->profile == PROFILE_ADVANCED)
  3802. vc1_decode_i_blocks_adv(v);
  3803. else
  3804. vc1_decode_i_blocks(v);
  3805. }else
  3806. vc1_decode_b_blocks(v);
  3807. break;
  3808. }
  3809. }
  3810. /** Find VC-1 marker in buffer
  3811. * @return position where next marker starts or end of buffer if no marker found
  3812. */
  3813. static av_always_inline uint8_t* find_next_marker(uint8_t *src, uint8_t *end)
  3814. {
  3815. uint32_t mrk = 0xFFFFFFFF;
  3816. if(end-src < 4) return end;
  3817. while(src < end){
  3818. mrk = (mrk << 8) | *src++;
  3819. if(IS_MARKER(mrk))
  3820. return src-4;
  3821. }
  3822. return end;
  3823. }
  3824. static av_always_inline int vc1_unescape_buffer(uint8_t *src, int size, uint8_t *dst)
  3825. {
  3826. int dsize = 0, i;
  3827. if(size < 4){
  3828. for(dsize = 0; dsize < size; dsize++) *dst++ = *src++;
  3829. return size;
  3830. }
  3831. for(i = 0; i < size; i++, src++) {
  3832. if(src[0] == 3 && i >= 2 && !src[-1] && !src[-2] && i < size-1 && src[1] < 4) {
  3833. dst[dsize++] = src[1];
  3834. src++;
  3835. i++;
  3836. } else
  3837. dst[dsize++] = *src;
  3838. }
  3839. return dsize;
  3840. }
  3841. /** Initialize a VC1/WMV3 decoder
  3842. * @todo TODO: Handle VC-1 IDUs (Transport level?)
  3843. * @todo TODO: Decypher remaining bits in extra_data
  3844. */
  3845. static int vc1_decode_init(AVCodecContext *avctx)
  3846. {
  3847. VC1Context *v = avctx->priv_data;
  3848. MpegEncContext *s = &v->s;
  3849. GetBitContext gb;
  3850. if (!avctx->extradata_size || !avctx->extradata) return -1;
  3851. if (!(avctx->flags & CODEC_FLAG_GRAY))
  3852. avctx->pix_fmt = PIX_FMT_YUV420P;
  3853. else
  3854. avctx->pix_fmt = PIX_FMT_GRAY8;
  3855. v->s.avctx = avctx;
  3856. avctx->flags |= CODEC_FLAG_EMU_EDGE;
  3857. v->s.flags |= CODEC_FLAG_EMU_EDGE;
  3858. if(ff_h263_decode_init(avctx) < 0)
  3859. return -1;
  3860. if (vc1_init_common(v) < 0) return -1;
  3861. avctx->coded_width = avctx->width;
  3862. avctx->coded_height = avctx->height;
  3863. if (avctx->codec_id == CODEC_ID_WMV3)
  3864. {
  3865. int count = 0;
  3866. // looks like WMV3 has a sequence header stored in the extradata
  3867. // advanced sequence header may be before the first frame
  3868. // the last byte of the extradata is a version number, 1 for the
  3869. // samples we can decode
  3870. init_get_bits(&gb, avctx->extradata, avctx->extradata_size*8);
  3871. if (decode_sequence_header(avctx, &gb) < 0)
  3872. return -1;
  3873. count = avctx->extradata_size*8 - get_bits_count(&gb);
  3874. if (count>0)
  3875. {
  3876. av_log(avctx, AV_LOG_INFO, "Extra data: %i bits left, value: %X\n",
  3877. count, get_bits(&gb, count));
  3878. }
  3879. else if (count < 0)
  3880. {
  3881. av_log(avctx, AV_LOG_INFO, "Read %i bits in overflow\n", -count);
  3882. }
  3883. } else { // VC1/WVC1
  3884. uint8_t *start = avctx->extradata, *end = avctx->extradata + avctx->extradata_size;
  3885. uint8_t *next; int size, buf2_size;
  3886. uint8_t *buf2 = NULL;
  3887. int seq_inited = 0, ep_inited = 0;
  3888. if(avctx->extradata_size < 16) {
  3889. av_log(avctx, AV_LOG_ERROR, "Extradata size too small: %i\n", avctx->extradata_size);
  3890. return -1;
  3891. }
  3892. buf2 = av_mallocz(avctx->extradata_size + FF_INPUT_BUFFER_PADDING_SIZE);
  3893. if(start[0]) start++; // in WVC1 extradata first byte is its size
  3894. next = start;
  3895. for(; next < end; start = next){
  3896. next = find_next_marker(start + 4, end);
  3897. size = next - start - 4;
  3898. if(size <= 0) continue;
  3899. buf2_size = vc1_unescape_buffer(start + 4, size, buf2);
  3900. init_get_bits(&gb, buf2, buf2_size * 8);
  3901. switch(AV_RB32(start)){
  3902. case VC1_CODE_SEQHDR:
  3903. if(decode_sequence_header(avctx, &gb) < 0){
  3904. av_free(buf2);
  3905. return -1;
  3906. }
  3907. seq_inited = 1;
  3908. break;
  3909. case VC1_CODE_ENTRYPOINT:
  3910. if(decode_entry_point(avctx, &gb) < 0){
  3911. av_free(buf2);
  3912. return -1;
  3913. }
  3914. ep_inited = 1;
  3915. break;
  3916. }
  3917. }
  3918. av_free(buf2);
  3919. if(!seq_inited || !ep_inited){
  3920. av_log(avctx, AV_LOG_ERROR, "Incomplete extradata\n");
  3921. return -1;
  3922. }
  3923. }
  3924. avctx->has_b_frames= !!(avctx->max_b_frames);
  3925. s->low_delay = !avctx->has_b_frames;
  3926. s->mb_width = (avctx->coded_width+15)>>4;
  3927. s->mb_height = (avctx->coded_height+15)>>4;
  3928. /* Allocate mb bitplanes */
  3929. v->mv_type_mb_plane = av_malloc(s->mb_stride * s->mb_height);
  3930. v->direct_mb_plane = av_malloc(s->mb_stride * s->mb_height);
  3931. v->acpred_plane = av_malloc(s->mb_stride * s->mb_height);
  3932. v->over_flags_plane = av_malloc(s->mb_stride * s->mb_height);
  3933. /* allocate block type info in that way so it could be used with s->block_index[] */
  3934. v->mb_type_base = av_malloc(s->b8_stride * (s->mb_height * 2 + 1) + s->mb_stride * (s->mb_height + 1) * 2);
  3935. v->mb_type[0] = v->mb_type_base + s->b8_stride + 1;
  3936. v->mb_type[1] = v->mb_type_base + s->b8_stride * (s->mb_height * 2 + 1) + s->mb_stride + 1;
  3937. v->mb_type[2] = v->mb_type[1] + s->mb_stride * (s->mb_height + 1);
  3938. /* Init coded blocks info */
  3939. if (v->profile == PROFILE_ADVANCED)
  3940. {
  3941. // if (alloc_bitplane(&v->over_flags_plane, s->mb_width, s->mb_height) < 0)
  3942. // return -1;
  3943. // if (alloc_bitplane(&v->ac_pred_plane, s->mb_width, s->mb_height) < 0)
  3944. // return -1;
  3945. }
  3946. return 0;
  3947. }
  3948. /** Decode a VC1/WMV3 frame
  3949. * @todo TODO: Handle VC-1 IDUs (Transport level?)
  3950. */
  3951. static int vc1_decode_frame(AVCodecContext *avctx,
  3952. void *data, int *data_size,
  3953. uint8_t *buf, int buf_size)
  3954. {
  3955. VC1Context *v = avctx->priv_data;
  3956. MpegEncContext *s = &v->s;
  3957. AVFrame *pict = data;
  3958. uint8_t *buf2 = NULL;
  3959. /* no supplementary picture */
  3960. if (buf_size == 0) {
  3961. /* special case for last picture */
  3962. if (s->low_delay==0 && s->next_picture_ptr) {
  3963. *pict= *(AVFrame*)s->next_picture_ptr;
  3964. s->next_picture_ptr= NULL;
  3965. *data_size = sizeof(AVFrame);
  3966. }
  3967. return 0;
  3968. }
  3969. //we need to set current_picture_ptr before reading the header, otherwise we cant store anyting im there
  3970. if(s->current_picture_ptr==NULL || s->current_picture_ptr->data[0]){
  3971. int i= ff_find_unused_picture(s, 0);
  3972. s->current_picture_ptr= &s->picture[i];
  3973. }
  3974. //for advanced profile we may need to parse and unescape data
  3975. if (avctx->codec_id == CODEC_ID_VC1) {
  3976. int buf_size2 = 0;
  3977. buf2 = av_mallocz(buf_size + FF_INPUT_BUFFER_PADDING_SIZE);
  3978. if(IS_MARKER(AV_RB32(buf))){ /* frame starts with marker and needs to be parsed */
  3979. uint8_t *start, *end, *next;
  3980. int size;
  3981. next = buf;
  3982. for(start = buf, end = buf + buf_size; next < end; start = next){
  3983. next = find_next_marker(start + 4, end);
  3984. size = next - start - 4;
  3985. if(size <= 0) continue;
  3986. switch(AV_RB32(start)){
  3987. case VC1_CODE_FRAME:
  3988. buf_size2 = vc1_unescape_buffer(start + 4, size, buf2);
  3989. break;
  3990. case VC1_CODE_ENTRYPOINT: /* it should be before frame data */
  3991. buf_size2 = vc1_unescape_buffer(start + 4, size, buf2);
  3992. init_get_bits(&s->gb, buf2, buf_size2*8);
  3993. decode_entry_point(avctx, &s->gb);
  3994. break;
  3995. case VC1_CODE_SLICE:
  3996. av_log(avctx, AV_LOG_ERROR, "Sliced decoding is not implemented (yet)\n");
  3997. av_free(buf2);
  3998. return -1;
  3999. }
  4000. }
  4001. }else if(v->interlace && ((buf[0] & 0xC0) == 0xC0)){ /* WVC1 interlaced stores both fields divided by marker */
  4002. uint8_t *divider;
  4003. divider = find_next_marker(buf, buf + buf_size);
  4004. if((divider == (buf + buf_size)) || AV_RB32(divider) != VC1_CODE_FIELD){
  4005. av_log(avctx, AV_LOG_ERROR, "Error in WVC1 interlaced frame\n");
  4006. return -1;
  4007. }
  4008. buf_size2 = vc1_unescape_buffer(buf, divider - buf, buf2);
  4009. // TODO
  4010. av_free(buf2);return -1;
  4011. }else{
  4012. buf_size2 = vc1_unescape_buffer(buf, buf_size, buf2);
  4013. }
  4014. init_get_bits(&s->gb, buf2, buf_size2*8);
  4015. } else
  4016. init_get_bits(&s->gb, buf, buf_size*8);
  4017. // do parse frame header
  4018. if(v->profile < PROFILE_ADVANCED) {
  4019. if(vc1_parse_frame_header(v, &s->gb) == -1) {
  4020. av_free(buf2);
  4021. return -1;
  4022. }
  4023. } else {
  4024. if(vc1_parse_frame_header_adv(v, &s->gb) == -1) {
  4025. av_free(buf2);
  4026. return -1;
  4027. }
  4028. }
  4029. if(s->pict_type != I_TYPE && !v->res_rtm_flag){
  4030. av_free(buf2);
  4031. return -1;
  4032. }
  4033. // for hurry_up==5
  4034. s->current_picture.pict_type= s->pict_type;
  4035. s->current_picture.key_frame= s->pict_type == I_TYPE;
  4036. /* skip B-frames if we don't have reference frames */
  4037. if(s->last_picture_ptr==NULL && (s->pict_type==B_TYPE || s->dropable)){
  4038. av_free(buf2);
  4039. return -1;//buf_size;
  4040. }
  4041. /* skip b frames if we are in a hurry */
  4042. if(avctx->hurry_up && s->pict_type==B_TYPE) return -1;//buf_size;
  4043. if( (avctx->skip_frame >= AVDISCARD_NONREF && s->pict_type==B_TYPE)
  4044. || (avctx->skip_frame >= AVDISCARD_NONKEY && s->pict_type!=I_TYPE)
  4045. || avctx->skip_frame >= AVDISCARD_ALL) {
  4046. av_free(buf2);
  4047. return buf_size;
  4048. }
  4049. /* skip everything if we are in a hurry>=5 */
  4050. if(avctx->hurry_up>=5) {
  4051. av_free(buf2);
  4052. return -1;//buf_size;
  4053. }
  4054. if(s->next_p_frame_damaged){
  4055. if(s->pict_type==B_TYPE)
  4056. return buf_size;
  4057. else
  4058. s->next_p_frame_damaged=0;
  4059. }
  4060. if(MPV_frame_start(s, avctx) < 0) {
  4061. av_free(buf2);
  4062. return -1;
  4063. }
  4064. ff_er_frame_start(s);
  4065. v->bits = buf_size * 8;
  4066. vc1_decode_blocks(v);
  4067. //av_log(s->avctx, AV_LOG_INFO, "Consumed %i/%i bits\n", get_bits_count(&s->gb), buf_size*8);
  4068. // if(get_bits_count(&s->gb) > buf_size * 8)
  4069. // return -1;
  4070. ff_er_frame_end(s);
  4071. MPV_frame_end(s);
  4072. assert(s->current_picture.pict_type == s->current_picture_ptr->pict_type);
  4073. assert(s->current_picture.pict_type == s->pict_type);
  4074. if (s->pict_type == B_TYPE || s->low_delay) {
  4075. *pict= *(AVFrame*)s->current_picture_ptr;
  4076. } else if (s->last_picture_ptr != NULL) {
  4077. *pict= *(AVFrame*)s->last_picture_ptr;
  4078. }
  4079. if(s->last_picture_ptr || s->low_delay){
  4080. *data_size = sizeof(AVFrame);
  4081. ff_print_debug_info(s, pict);
  4082. }
  4083. /* Return the Picture timestamp as the frame number */
  4084. /* we substract 1 because it is added on utils.c */
  4085. avctx->frame_number = s->picture_number - 1;
  4086. av_free(buf2);
  4087. return buf_size;
  4088. }
  4089. /** Close a VC1/WMV3 decoder
  4090. * @warning Initial try at using MpegEncContext stuff
  4091. */
  4092. static int vc1_decode_end(AVCodecContext *avctx)
  4093. {
  4094. VC1Context *v = avctx->priv_data;
  4095. av_freep(&v->hrd_rate);
  4096. av_freep(&v->hrd_buffer);
  4097. MPV_common_end(&v->s);
  4098. av_freep(&v->mv_type_mb_plane);
  4099. av_freep(&v->direct_mb_plane);
  4100. av_freep(&v->acpred_plane);
  4101. av_freep(&v->over_flags_plane);
  4102. av_freep(&v->mb_type_base);
  4103. return 0;
  4104. }
  4105. AVCodec vc1_decoder = {
  4106. "vc1",
  4107. CODEC_TYPE_VIDEO,
  4108. CODEC_ID_VC1,
  4109. sizeof(VC1Context),
  4110. vc1_decode_init,
  4111. NULL,
  4112. vc1_decode_end,
  4113. vc1_decode_frame,
  4114. CODEC_CAP_DELAY,
  4115. NULL
  4116. };
  4117. AVCodec wmv3_decoder = {
  4118. "wmv3",
  4119. CODEC_TYPE_VIDEO,
  4120. CODEC_ID_WMV3,
  4121. sizeof(VC1Context),
  4122. vc1_decode_init,
  4123. NULL,
  4124. vc1_decode_end,
  4125. vc1_decode_frame,
  4126. CODEC_CAP_DELAY,
  4127. NULL
  4128. };