You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

486 lines
16KB

  1. /*
  2. * WMA compatible codec
  3. * Copyright (c) 2002-2007 The Libav Project
  4. *
  5. * This file is part of Libav.
  6. *
  7. * Libav is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * Libav is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with Libav; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. #include "libavutil/attributes.h"
  22. #include "avcodec.h"
  23. #include "sinewin.h"
  24. #include "wma.h"
  25. #include "wma_common.h"
  26. #include "wmadata.h"
  27. #undef NDEBUG
  28. #include <assert.h>
  29. /* XXX: use same run/length optimization as mpeg decoders */
  30. //FIXME maybe split decode / encode or pass flag
  31. static av_cold void init_coef_vlc(VLC *vlc, uint16_t **prun_table,
  32. float **plevel_table, uint16_t **pint_table,
  33. const CoefVLCTable *vlc_table)
  34. {
  35. int n = vlc_table->n;
  36. const uint8_t *table_bits = vlc_table->huffbits;
  37. const uint32_t *table_codes = vlc_table->huffcodes;
  38. const uint16_t *levels_table = vlc_table->levels;
  39. uint16_t *run_table, *level_table, *int_table;
  40. float *flevel_table;
  41. int i, l, j, k, level;
  42. init_vlc(vlc, VLCBITS, n, table_bits, 1, 1, table_codes, 4, 4, 0);
  43. run_table = av_malloc(n * sizeof(uint16_t));
  44. level_table = av_malloc(n * sizeof(uint16_t));
  45. flevel_table= av_malloc(n * sizeof(*flevel_table));
  46. int_table = av_malloc(n * sizeof(uint16_t));
  47. i = 2;
  48. level = 1;
  49. k = 0;
  50. while (i < n) {
  51. int_table[k] = i;
  52. l = levels_table[k++];
  53. for (j = 0; j < l; j++) {
  54. run_table[i] = j;
  55. level_table[i] = level;
  56. flevel_table[i]= level;
  57. i++;
  58. }
  59. level++;
  60. }
  61. *prun_table = run_table;
  62. *plevel_table = flevel_table;
  63. *pint_table = int_table;
  64. av_free(level_table);
  65. }
  66. av_cold int ff_wma_init(AVCodecContext *avctx, int flags2)
  67. {
  68. WMACodecContext *s = avctx->priv_data;
  69. int i;
  70. float bps1, high_freq;
  71. volatile float bps;
  72. int sample_rate1;
  73. int coef_vlc_table;
  74. if ( avctx->sample_rate <= 0 || avctx->sample_rate > 50000
  75. || avctx->channels <= 0 || avctx->channels > 2
  76. || avctx->bit_rate <= 0)
  77. return -1;
  78. ff_fmt_convert_init(&s->fmt_conv, avctx);
  79. avpriv_float_dsp_init(&s->fdsp, avctx->flags & CODEC_FLAG_BITEXACT);
  80. if (avctx->codec->id == AV_CODEC_ID_WMAV1) {
  81. s->version = 1;
  82. } else {
  83. s->version = 2;
  84. }
  85. /* compute MDCT block size */
  86. s->frame_len_bits = ff_wma_get_frame_len_bits(avctx->sample_rate,
  87. s->version, 0);
  88. s->next_block_len_bits = s->frame_len_bits;
  89. s->prev_block_len_bits = s->frame_len_bits;
  90. s->block_len_bits = s->frame_len_bits;
  91. s->frame_len = 1 << s->frame_len_bits;
  92. if (s->use_variable_block_len) {
  93. int nb_max, nb;
  94. nb = ((flags2 >> 3) & 3) + 1;
  95. if ((avctx->bit_rate / avctx->channels) >= 32000)
  96. nb += 2;
  97. nb_max = s->frame_len_bits - BLOCK_MIN_BITS;
  98. if (nb > nb_max)
  99. nb = nb_max;
  100. s->nb_block_sizes = nb + 1;
  101. } else {
  102. s->nb_block_sizes = 1;
  103. }
  104. /* init rate dependent parameters */
  105. s->use_noise_coding = 1;
  106. high_freq = avctx->sample_rate * 0.5;
  107. /* if version 2, then the rates are normalized */
  108. sample_rate1 = avctx->sample_rate;
  109. if (s->version == 2) {
  110. if (sample_rate1 >= 44100) {
  111. sample_rate1 = 44100;
  112. } else if (sample_rate1 >= 22050) {
  113. sample_rate1 = 22050;
  114. } else if (sample_rate1 >= 16000) {
  115. sample_rate1 = 16000;
  116. } else if (sample_rate1 >= 11025) {
  117. sample_rate1 = 11025;
  118. } else if (sample_rate1 >= 8000) {
  119. sample_rate1 = 8000;
  120. }
  121. }
  122. bps = (float)avctx->bit_rate / (float)(avctx->channels * avctx->sample_rate);
  123. s->byte_offset_bits = av_log2((int)(bps * s->frame_len / 8.0 + 0.5)) + 2;
  124. /* compute high frequency value and choose if noise coding should
  125. be activated */
  126. bps1 = bps;
  127. if (avctx->channels == 2)
  128. bps1 = bps * 1.6;
  129. if (sample_rate1 == 44100) {
  130. if (bps1 >= 0.61) {
  131. s->use_noise_coding = 0;
  132. } else {
  133. high_freq = high_freq * 0.4;
  134. }
  135. } else if (sample_rate1 == 22050) {
  136. if (bps1 >= 1.16) {
  137. s->use_noise_coding = 0;
  138. } else if (bps1 >= 0.72) {
  139. high_freq = high_freq * 0.7;
  140. } else {
  141. high_freq = high_freq * 0.6;
  142. }
  143. } else if (sample_rate1 == 16000) {
  144. if (bps > 0.5) {
  145. high_freq = high_freq * 0.5;
  146. } else {
  147. high_freq = high_freq * 0.3;
  148. }
  149. } else if (sample_rate1 == 11025) {
  150. high_freq = high_freq * 0.7;
  151. } else if (sample_rate1 == 8000) {
  152. if (bps <= 0.625) {
  153. high_freq = high_freq * 0.5;
  154. } else if (bps > 0.75) {
  155. s->use_noise_coding = 0;
  156. } else {
  157. high_freq = high_freq * 0.65;
  158. }
  159. } else {
  160. if (bps >= 0.8) {
  161. high_freq = high_freq * 0.75;
  162. } else if (bps >= 0.6) {
  163. high_freq = high_freq * 0.6;
  164. } else {
  165. high_freq = high_freq * 0.5;
  166. }
  167. }
  168. av_dlog(s->avctx, "flags2=0x%x\n", flags2);
  169. av_dlog(s->avctx, "version=%d channels=%d sample_rate=%d bitrate=%d block_align=%d\n",
  170. s->version, avctx->channels, avctx->sample_rate, avctx->bit_rate,
  171. avctx->block_align);
  172. av_dlog(s->avctx, "bps=%f bps1=%f high_freq=%f bitoffset=%d\n",
  173. bps, bps1, high_freq, s->byte_offset_bits);
  174. av_dlog(s->avctx, "use_noise_coding=%d use_exp_vlc=%d nb_block_sizes=%d\n",
  175. s->use_noise_coding, s->use_exp_vlc, s->nb_block_sizes);
  176. /* compute the scale factor band sizes for each MDCT block size */
  177. {
  178. int a, b, pos, lpos, k, block_len, i, j, n;
  179. const uint8_t *table;
  180. if (s->version == 1) {
  181. s->coefs_start = 3;
  182. } else {
  183. s->coefs_start = 0;
  184. }
  185. for (k = 0; k < s->nb_block_sizes; k++) {
  186. block_len = s->frame_len >> k;
  187. if (s->version == 1) {
  188. lpos = 0;
  189. for (i = 0; i < 25; i++) {
  190. a = ff_wma_critical_freqs[i];
  191. b = avctx->sample_rate;
  192. pos = ((block_len * 2 * a) + (b >> 1)) / b;
  193. if (pos > block_len)
  194. pos = block_len;
  195. s->exponent_bands[0][i] = pos - lpos;
  196. if (pos >= block_len) {
  197. i++;
  198. break;
  199. }
  200. lpos = pos;
  201. }
  202. s->exponent_sizes[0] = i;
  203. } else {
  204. /* hardcoded tables */
  205. table = NULL;
  206. a = s->frame_len_bits - BLOCK_MIN_BITS - k;
  207. if (a < 3) {
  208. if (avctx->sample_rate >= 44100) {
  209. table = exponent_band_44100[a];
  210. } else if (avctx->sample_rate >= 32000) {
  211. table = exponent_band_32000[a];
  212. } else if (avctx->sample_rate >= 22050) {
  213. table = exponent_band_22050[a];
  214. }
  215. }
  216. if (table) {
  217. n = *table++;
  218. for (i = 0; i < n; i++)
  219. s->exponent_bands[k][i] = table[i];
  220. s->exponent_sizes[k] = n;
  221. } else {
  222. j = 0;
  223. lpos = 0;
  224. for (i = 0; i < 25; i++) {
  225. a = ff_wma_critical_freqs[i];
  226. b = avctx->sample_rate;
  227. pos = ((block_len * 2 * a) + (b << 1)) / (4 * b);
  228. pos <<= 2;
  229. if (pos > block_len)
  230. pos = block_len;
  231. if (pos > lpos)
  232. s->exponent_bands[k][j++] = pos - lpos;
  233. if (pos >= block_len)
  234. break;
  235. lpos = pos;
  236. }
  237. s->exponent_sizes[k] = j;
  238. }
  239. }
  240. /* max number of coefs */
  241. s->coefs_end[k] = (s->frame_len - ((s->frame_len * 9) / 100)) >> k;
  242. /* high freq computation */
  243. s->high_band_start[k] = (int)((block_len * 2 * high_freq) /
  244. avctx->sample_rate + 0.5);
  245. n = s->exponent_sizes[k];
  246. j = 0;
  247. pos = 0;
  248. for (i = 0; i < n; i++) {
  249. int start, end;
  250. start = pos;
  251. pos += s->exponent_bands[k][i];
  252. end = pos;
  253. if (start < s->high_band_start[k])
  254. start = s->high_band_start[k];
  255. if (end > s->coefs_end[k])
  256. end = s->coefs_end[k];
  257. if (end > start)
  258. s->exponent_high_bands[k][j++] = end - start;
  259. }
  260. s->exponent_high_sizes[k] = j;
  261. #if 0
  262. tprintf(s->avctx, "%5d: coefs_end=%d high_band_start=%d nb_high_bands=%d: ",
  263. s->frame_len >> k,
  264. s->coefs_end[k],
  265. s->high_band_start[k],
  266. s->exponent_high_sizes[k]);
  267. for (j = 0; j < s->exponent_high_sizes[k]; j++)
  268. tprintf(s->avctx, " %d", s->exponent_high_bands[k][j]);
  269. tprintf(s->avctx, "\n");
  270. #endif
  271. }
  272. }
  273. #ifdef TRACE
  274. {
  275. int i, j;
  276. for (i = 0; i < s->nb_block_sizes; i++) {
  277. tprintf(s->avctx, "%5d: n=%2d:",
  278. s->frame_len >> i,
  279. s->exponent_sizes[i]);
  280. for (j = 0; j < s->exponent_sizes[i]; j++)
  281. tprintf(s->avctx, " %d", s->exponent_bands[i][j]);
  282. tprintf(s->avctx, "\n");
  283. }
  284. }
  285. #endif
  286. /* init MDCT windows : simple sine window */
  287. for (i = 0; i < s->nb_block_sizes; i++) {
  288. ff_init_ff_sine_windows(s->frame_len_bits - i);
  289. s->windows[i] = ff_sine_windows[s->frame_len_bits - i];
  290. }
  291. s->reset_block_lengths = 1;
  292. if (s->use_noise_coding) {
  293. /* init the noise generator */
  294. if (s->use_exp_vlc) {
  295. s->noise_mult = 0.02;
  296. } else {
  297. s->noise_mult = 0.04;
  298. }
  299. #ifdef TRACE
  300. for (i = 0; i < NOISE_TAB_SIZE; i++)
  301. s->noise_table[i] = 1.0 * s->noise_mult;
  302. #else
  303. {
  304. unsigned int seed;
  305. float norm;
  306. seed = 1;
  307. norm = (1.0 / (float)(1LL << 31)) * sqrt(3) * s->noise_mult;
  308. for (i = 0; i < NOISE_TAB_SIZE; i++) {
  309. seed = seed * 314159 + 1;
  310. s->noise_table[i] = (float)((int)seed) * norm;
  311. }
  312. }
  313. #endif
  314. }
  315. /* choose the VLC tables for the coefficients */
  316. coef_vlc_table = 2;
  317. if (avctx->sample_rate >= 32000) {
  318. if (bps1 < 0.72) {
  319. coef_vlc_table = 0;
  320. } else if (bps1 < 1.16) {
  321. coef_vlc_table = 1;
  322. }
  323. }
  324. s->coef_vlcs[0]= &coef_vlcs[coef_vlc_table * 2 ];
  325. s->coef_vlcs[1]= &coef_vlcs[coef_vlc_table * 2 + 1];
  326. init_coef_vlc(&s->coef_vlc[0], &s->run_table[0], &s->level_table[0], &s->int_table[0],
  327. s->coef_vlcs[0]);
  328. init_coef_vlc(&s->coef_vlc[1], &s->run_table[1], &s->level_table[1], &s->int_table[1],
  329. s->coef_vlcs[1]);
  330. return 0;
  331. }
  332. int ff_wma_total_gain_to_bits(int total_gain)
  333. {
  334. if (total_gain < 15) return 13;
  335. else if (total_gain < 32) return 12;
  336. else if (total_gain < 40) return 11;
  337. else if (total_gain < 45) return 10;
  338. else return 9;
  339. }
  340. int ff_wma_end(AVCodecContext *avctx)
  341. {
  342. WMACodecContext *s = avctx->priv_data;
  343. int i;
  344. for (i = 0; i < s->nb_block_sizes; i++)
  345. ff_mdct_end(&s->mdct_ctx[i]);
  346. if (s->use_exp_vlc) {
  347. ff_free_vlc(&s->exp_vlc);
  348. }
  349. if (s->use_noise_coding) {
  350. ff_free_vlc(&s->hgain_vlc);
  351. }
  352. for (i = 0; i < 2; i++) {
  353. ff_free_vlc(&s->coef_vlc[i]);
  354. av_free(s->run_table[i]);
  355. av_free(s->level_table[i]);
  356. av_free(s->int_table[i]);
  357. }
  358. return 0;
  359. }
  360. /**
  361. * Decode an uncompressed coefficient.
  362. * @param gb GetBitContext
  363. * @return the decoded coefficient
  364. */
  365. unsigned int ff_wma_get_large_val(GetBitContext* gb)
  366. {
  367. /** consumes up to 34 bits */
  368. int n_bits = 8;
  369. /** decode length */
  370. if (get_bits1(gb)) {
  371. n_bits += 8;
  372. if (get_bits1(gb)) {
  373. n_bits += 8;
  374. if (get_bits1(gb)) {
  375. n_bits += 7;
  376. }
  377. }
  378. }
  379. return get_bits_long(gb, n_bits);
  380. }
  381. /**
  382. * Decode run level compressed coefficients.
  383. * @param avctx codec context
  384. * @param gb bitstream reader context
  385. * @param vlc vlc table for get_vlc2
  386. * @param level_table level codes
  387. * @param run_table run codes
  388. * @param version 0 for wma1,2 1 for wmapro
  389. * @param ptr output buffer
  390. * @param offset offset in the output buffer
  391. * @param num_coefs number of input coefficents
  392. * @param block_len input buffer length (2^n)
  393. * @param frame_len_bits number of bits for escaped run codes
  394. * @param coef_nb_bits number of bits for escaped level codes
  395. * @return 0 on success, -1 otherwise
  396. */
  397. int ff_wma_run_level_decode(AVCodecContext* avctx, GetBitContext* gb,
  398. VLC *vlc,
  399. const float *level_table, const uint16_t *run_table,
  400. int version, WMACoef *ptr, int offset,
  401. int num_coefs, int block_len, int frame_len_bits,
  402. int coef_nb_bits)
  403. {
  404. int code, level, sign;
  405. const uint32_t *ilvl = (const uint32_t*)level_table;
  406. uint32_t *iptr = (uint32_t*)ptr;
  407. const unsigned int coef_mask = block_len - 1;
  408. for (; offset < num_coefs; offset++) {
  409. code = get_vlc2(gb, vlc->table, VLCBITS, VLCMAX);
  410. if (code > 1) {
  411. /** normal code */
  412. offset += run_table[code];
  413. sign = get_bits1(gb) - 1;
  414. iptr[offset & coef_mask] = ilvl[code] ^ sign<<31;
  415. } else if (code == 1) {
  416. /** EOB */
  417. break;
  418. } else {
  419. /** escape */
  420. if (!version) {
  421. level = get_bits(gb, coef_nb_bits);
  422. /** NOTE: this is rather suboptimal. reading
  423. block_len_bits would be better */
  424. offset += get_bits(gb, frame_len_bits);
  425. } else {
  426. level = ff_wma_get_large_val(gb);
  427. /** escape decode */
  428. if (get_bits1(gb)) {
  429. if (get_bits1(gb)) {
  430. if (get_bits1(gb)) {
  431. av_log(avctx,AV_LOG_ERROR,
  432. "broken escape sequence\n");
  433. return -1;
  434. } else
  435. offset += get_bits(gb, frame_len_bits) + 4;
  436. } else
  437. offset += get_bits(gb, 2) + 1;
  438. }
  439. }
  440. sign = get_bits1(gb) - 1;
  441. ptr[offset & coef_mask] = (level^sign) - sign;
  442. }
  443. }
  444. /** NOTE: EOB can be omitted */
  445. if (offset > num_coefs) {
  446. av_log(avctx, AV_LOG_ERROR, "overflow in spectral RLE, ignoring\n");
  447. return -1;
  448. }
  449. return 0;
  450. }