You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1468 lines
47KB

  1. /*
  2. * WebP (.webp) image decoder
  3. * Copyright (c) 2013 Aneesh Dogra <aneesh@sugarlabs.org>
  4. * Copyright (c) 2013 Justin Ruggles <justin.ruggles@gmail.com>
  5. *
  6. * This file is part of Libav.
  7. *
  8. * Libav is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU Lesser General Public
  10. * License as published by the Free Software Foundation; either
  11. * version 2.1 of the License, or (at your option) any later version.
  12. *
  13. * Libav is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * Lesser General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU Lesser General Public
  19. * License along with Libav; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  21. */
  22. /**
  23. * @file
  24. * WebP image decoder
  25. *
  26. * @author Aneesh Dogra <aneesh@sugarlabs.org>
  27. * Container and Lossy decoding
  28. *
  29. * @author Justin Ruggles <justin.ruggles@gmail.com>
  30. * Lossless decoder
  31. * Compressed alpha for lossy
  32. *
  33. * Unimplemented:
  34. * - Animation
  35. * - ICC profile
  36. * - Exif and XMP metadata
  37. */
  38. #define BITSTREAM_READER_LE
  39. #include "libavutil/imgutils.h"
  40. #include "avcodec.h"
  41. #include "bytestream.h"
  42. #include "internal.h"
  43. #include "get_bits.h"
  44. #include "thread.h"
  45. #include "vp8.h"
  46. #define VP8X_FLAG_ANIMATION 0x02
  47. #define VP8X_FLAG_XMP_METADATA 0x04
  48. #define VP8X_FLAG_EXIF_METADATA 0x08
  49. #define VP8X_FLAG_ALPHA 0x10
  50. #define VP8X_FLAG_ICC 0x20
  51. #define MAX_PALETTE_SIZE 256
  52. #define MAX_CACHE_BITS 11
  53. #define NUM_CODE_LENGTH_CODES 19
  54. #define HUFFMAN_CODES_PER_META_CODE 5
  55. #define NUM_LITERAL_CODES 256
  56. #define NUM_LENGTH_CODES 24
  57. #define NUM_DISTANCE_CODES 40
  58. #define NUM_SHORT_DISTANCES 120
  59. #define MAX_HUFFMAN_CODE_LENGTH 15
  60. static const uint16_t alphabet_sizes[HUFFMAN_CODES_PER_META_CODE] = {
  61. NUM_LITERAL_CODES + NUM_LENGTH_CODES,
  62. NUM_LITERAL_CODES, NUM_LITERAL_CODES, NUM_LITERAL_CODES,
  63. NUM_DISTANCE_CODES
  64. };
  65. static const uint8_t code_length_code_order[NUM_CODE_LENGTH_CODES] = {
  66. 17, 18, 0, 1, 2, 3, 4, 5, 16, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
  67. };
  68. static const int8_t lz77_distance_offsets[NUM_SHORT_DISTANCES][2] = {
  69. { 0, 1 }, { 1, 0 }, { 1, 1 }, { -1, 1 }, { 0, 2 }, { 2, 0 }, { 1, 2 }, { -1, 2 },
  70. { 2, 1 }, { -2, 1 }, { 2, 2 }, { -2, 2 }, { 0, 3 }, { 3, 0 }, { 1, 3 }, { -1, 3 },
  71. { 3, 1 }, { -3, 1 }, { 2, 3 }, { -2, 3 }, { 3, 2 }, { -3, 2 }, { 0, 4 }, { 4, 0 },
  72. { 1, 4 }, { -1, 4 }, { 4, 1 }, { -4, 1 }, { 3, 3 }, { -3, 3 }, { 2, 4 }, { -2, 4 },
  73. { 4, 2 }, { -4, 2 }, { 0, 5 }, { 3, 4 }, { -3, 4 }, { 4, 3 }, { -4, 3 }, { 5, 0 },
  74. { 1, 5 }, { -1, 5 }, { 5, 1 }, { -5, 1 }, { 2, 5 }, { -2, 5 }, { 5, 2 }, { -5, 2 },
  75. { 4, 4 }, { -4, 4 }, { 3, 5 }, { -3, 5 }, { 5, 3 }, { -5, 3 }, { 0, 6 }, { 6, 0 },
  76. { 1, 6 }, { -1, 6 }, { 6, 1 }, { -6, 1 }, { 2, 6 }, { -2, 6 }, { 6, 2 }, { -6, 2 },
  77. { 4, 5 }, { -4, 5 }, { 5, 4 }, { -5, 4 }, { 3, 6 }, { -3, 6 }, { 6, 3 }, { -6, 3 },
  78. { 0, 7 }, { 7, 0 }, { 1, 7 }, { -1, 7 }, { 5, 5 }, { -5, 5 }, { 7, 1 }, { -7, 1 },
  79. { 4, 6 }, { -4, 6 }, { 6, 4 }, { -6, 4 }, { 2, 7 }, { -2, 7 }, { 7, 2 }, { -7, 2 },
  80. { 3, 7 }, { -3, 7 }, { 7, 3 }, { -7, 3 }, { 5, 6 }, { -5, 6 }, { 6, 5 }, { -6, 5 },
  81. { 8, 0 }, { 4, 7 }, { -4, 7 }, { 7, 4 }, { -7, 4 }, { 8, 1 }, { 8, 2 }, { 6, 6 },
  82. { -6, 6 }, { 8, 3 }, { 5, 7 }, { -5, 7 }, { 7, 5 }, { -7, 5 }, { 8, 4 }, { 6, 7 },
  83. { -6, 7 }, { 7, 6 }, { -7, 6 }, { 8, 5 }, { 7, 7 }, { -7, 7 }, { 8, 6 }, { 8, 7 }
  84. };
  85. enum AlphaCompression {
  86. ALPHA_COMPRESSION_NONE,
  87. ALPHA_COMPRESSION_VP8L,
  88. };
  89. enum AlphaFilter {
  90. ALPHA_FILTER_NONE,
  91. ALPHA_FILTER_HORIZONTAL,
  92. ALPHA_FILTER_VERTICAL,
  93. ALPHA_FILTER_GRADIENT,
  94. };
  95. enum TransformType {
  96. PREDICTOR_TRANSFORM = 0,
  97. COLOR_TRANSFORM = 1,
  98. SUBTRACT_GREEN = 2,
  99. COLOR_INDEXING_TRANSFORM = 3,
  100. };
  101. enum PredictionMode {
  102. PRED_MODE_BLACK,
  103. PRED_MODE_L,
  104. PRED_MODE_T,
  105. PRED_MODE_TR,
  106. PRED_MODE_TL,
  107. PRED_MODE_AVG_T_AVG_L_TR,
  108. PRED_MODE_AVG_L_TL,
  109. PRED_MODE_AVG_L_T,
  110. PRED_MODE_AVG_TL_T,
  111. PRED_MODE_AVG_T_TR,
  112. PRED_MODE_AVG_AVG_L_TL_AVG_T_TR,
  113. PRED_MODE_SELECT,
  114. PRED_MODE_ADD_SUBTRACT_FULL,
  115. PRED_MODE_ADD_SUBTRACT_HALF,
  116. };
  117. enum HuffmanIndex {
  118. HUFF_IDX_GREEN = 0,
  119. HUFF_IDX_RED = 1,
  120. HUFF_IDX_BLUE = 2,
  121. HUFF_IDX_ALPHA = 3,
  122. HUFF_IDX_DIST = 4
  123. };
  124. /* The structure of WebP lossless is an optional series of transformation data,
  125. * followed by the primary image. The primary image also optionally contains
  126. * an entropy group mapping if there are multiple entropy groups. There is a
  127. * basic image type called an "entropy coded image" that is used for all of
  128. * these. The type of each entropy coded image is referred to by the
  129. * specification as its role. */
  130. enum ImageRole {
  131. /* Primary Image: Stores the actual pixels of the image. */
  132. IMAGE_ROLE_ARGB,
  133. /* Entropy Image: Defines which Huffman group to use for different areas of
  134. * the primary image. */
  135. IMAGE_ROLE_ENTROPY,
  136. /* Predictors: Defines which predictor type to use for different areas of
  137. * the primary image. */
  138. IMAGE_ROLE_PREDICTOR,
  139. /* Color Transform Data: Defines the color transformation for different
  140. * areas of the primary image. */
  141. IMAGE_ROLE_COLOR_TRANSFORM,
  142. /* Color Index: Stored as an image of height == 1. */
  143. IMAGE_ROLE_COLOR_INDEXING,
  144. IMAGE_ROLE_NB,
  145. };
  146. typedef struct HuffReader {
  147. VLC vlc; /* Huffman decoder context */
  148. int simple; /* whether to use simple mode */
  149. int nb_symbols; /* number of coded symbols */
  150. uint16_t simple_symbols[2]; /* symbols for simple mode */
  151. } HuffReader;
  152. typedef struct ImageContext {
  153. enum ImageRole role; /* role of this image */
  154. AVFrame *frame; /* AVFrame for data */
  155. int color_cache_bits; /* color cache size, log2 */
  156. uint32_t *color_cache; /* color cache data */
  157. int nb_huffman_groups; /* number of huffman groups */
  158. HuffReader *huffman_groups; /* reader for each huffman group */
  159. int size_reduction; /* relative size compared to primary image, log2 */
  160. int is_alpha_primary;
  161. } ImageContext;
  162. typedef struct WebPContext {
  163. VP8Context v; /* VP8 Context used for lossy decoding */
  164. GetBitContext gb; /* bitstream reader for main image chunk */
  165. AVFrame *alpha_frame; /* AVFrame for alpha data decompressed from VP8L */
  166. AVCodecContext *avctx; /* parent AVCodecContext */
  167. int initialized; /* set once the VP8 context is initialized */
  168. int has_alpha; /* has a separate alpha chunk */
  169. enum AlphaCompression alpha_compression; /* compression type for alpha chunk */
  170. enum AlphaFilter alpha_filter; /* filtering method for alpha chunk */
  171. uint8_t *alpha_data; /* alpha chunk data */
  172. int alpha_data_size; /* alpha chunk data size */
  173. int width; /* image width */
  174. int height; /* image height */
  175. int lossless; /* indicates lossless or lossy */
  176. int nb_transforms; /* number of transforms */
  177. enum TransformType transforms[4]; /* transformations used in the image, in order */
  178. int reduced_width; /* reduced width for index image, if applicable */
  179. int nb_huffman_groups; /* number of huffman groups in the primary image */
  180. ImageContext image[IMAGE_ROLE_NB]; /* image context for each role */
  181. } WebPContext;
  182. #define GET_PIXEL(frame, x, y) \
  183. ((frame)->data[0] + (y) * frame->linesize[0] + 4 * (x))
  184. #define GET_PIXEL_COMP(frame, x, y, c) \
  185. (*((frame)->data[0] + (y) * frame->linesize[0] + 4 * (x) + c))
  186. static void image_ctx_free(ImageContext *img)
  187. {
  188. int i, j;
  189. av_free(img->color_cache);
  190. if (img->role != IMAGE_ROLE_ARGB && !img->is_alpha_primary)
  191. av_frame_free(&img->frame);
  192. if (img->huffman_groups) {
  193. for (i = 0; i < img->nb_huffman_groups; i++) {
  194. for (j = 0; j < HUFFMAN_CODES_PER_META_CODE; j++)
  195. ff_free_vlc(&img->huffman_groups[i * HUFFMAN_CODES_PER_META_CODE + j].vlc);
  196. }
  197. av_free(img->huffman_groups);
  198. }
  199. memset(img, 0, sizeof(*img));
  200. }
  201. /* Differs from get_vlc2() in the following ways:
  202. * - codes are bit-reversed
  203. * - assumes 8-bit table to make reversal simpler
  204. * - assumes max depth of 2 since the max code length for WebP is 15
  205. */
  206. static av_always_inline int webp_get_vlc(GetBitContext *gb, VLC_TYPE (*table)[2])
  207. {
  208. int n, nb_bits;
  209. unsigned int index;
  210. int code;
  211. OPEN_READER(re, gb);
  212. UPDATE_CACHE(re, gb);
  213. index = SHOW_UBITS(re, gb, 8);
  214. index = ff_reverse[index];
  215. code = table[index][0];
  216. n = table[index][1];
  217. if (n < 0) {
  218. LAST_SKIP_BITS(re, gb, 8);
  219. UPDATE_CACHE(re, gb);
  220. nb_bits = -n;
  221. index = SHOW_UBITS(re, gb, nb_bits);
  222. index = (ff_reverse[index] >> (8 - nb_bits)) + code;
  223. code = table[index][0];
  224. n = table[index][1];
  225. }
  226. SKIP_BITS(re, gb, n);
  227. CLOSE_READER(re, gb);
  228. return code;
  229. }
  230. static int huff_reader_get_symbol(HuffReader *r, GetBitContext *gb)
  231. {
  232. if (r->simple) {
  233. if (r->nb_symbols == 1)
  234. return r->simple_symbols[0];
  235. else
  236. return r->simple_symbols[get_bits1(gb)];
  237. } else
  238. return webp_get_vlc(gb, r->vlc.table);
  239. }
  240. static int huff_reader_build_canonical(HuffReader *r, int *code_lengths,
  241. int alphabet_size)
  242. {
  243. int len = 0, sym, code = 0, ret;
  244. int max_code_length = 0;
  245. uint16_t *codes;
  246. /* special-case 1 symbol since the vlc reader cannot handle it */
  247. for (sym = 0; sym < alphabet_size; sym++) {
  248. if (code_lengths[sym] > 0) {
  249. len++;
  250. code = sym;
  251. if (len > 1)
  252. break;
  253. }
  254. }
  255. if (len == 1) {
  256. r->nb_symbols = 1;
  257. r->simple_symbols[0] = code;
  258. r->simple = 1;
  259. return 0;
  260. }
  261. for (sym = 0; sym < alphabet_size; sym++)
  262. max_code_length = FFMAX(max_code_length, code_lengths[sym]);
  263. if (max_code_length == 0 || max_code_length > MAX_HUFFMAN_CODE_LENGTH)
  264. return AVERROR(EINVAL);
  265. codes = av_malloc(alphabet_size * sizeof(*codes));
  266. if (!codes)
  267. return AVERROR(ENOMEM);
  268. code = 0;
  269. r->nb_symbols = 0;
  270. for (len = 1; len <= max_code_length; len++) {
  271. for (sym = 0; sym < alphabet_size; sym++) {
  272. if (code_lengths[sym] != len)
  273. continue;
  274. codes[sym] = code++;
  275. r->nb_symbols++;
  276. }
  277. code <<= 1;
  278. }
  279. if (!r->nb_symbols) {
  280. av_free(codes);
  281. return AVERROR_INVALIDDATA;
  282. }
  283. ret = init_vlc(&r->vlc, 8, alphabet_size,
  284. code_lengths, sizeof(*code_lengths), sizeof(*code_lengths),
  285. codes, sizeof(*codes), sizeof(*codes), 0);
  286. if (ret < 0) {
  287. av_free(codes);
  288. return ret;
  289. }
  290. r->simple = 0;
  291. av_free(codes);
  292. return 0;
  293. }
  294. static void read_huffman_code_simple(WebPContext *s, HuffReader *hc)
  295. {
  296. hc->nb_symbols = get_bits1(&s->gb) + 1;
  297. if (get_bits1(&s->gb))
  298. hc->simple_symbols[0] = get_bits(&s->gb, 8);
  299. else
  300. hc->simple_symbols[0] = get_bits1(&s->gb);
  301. if (hc->nb_symbols == 2)
  302. hc->simple_symbols[1] = get_bits(&s->gb, 8);
  303. hc->simple = 1;
  304. }
  305. static int read_huffman_code_normal(WebPContext *s, HuffReader *hc,
  306. int alphabet_size)
  307. {
  308. HuffReader code_len_hc = { { 0 }, 0, 0, { 0 } };
  309. int *code_lengths = NULL;
  310. int code_length_code_lengths[NUM_CODE_LENGTH_CODES] = { 0 };
  311. int i, symbol, max_symbol, prev_code_len, ret;
  312. int num_codes = 4 + get_bits(&s->gb, 4);
  313. if (num_codes > NUM_CODE_LENGTH_CODES)
  314. return AVERROR_INVALIDDATA;
  315. for (i = 0; i < num_codes; i++)
  316. code_length_code_lengths[code_length_code_order[i]] = get_bits(&s->gb, 3);
  317. ret = huff_reader_build_canonical(&code_len_hc, code_length_code_lengths,
  318. NUM_CODE_LENGTH_CODES);
  319. if (ret < 0)
  320. goto finish;
  321. code_lengths = av_mallocz_array(alphabet_size, sizeof(*code_lengths));
  322. if (!code_lengths) {
  323. ret = AVERROR(ENOMEM);
  324. goto finish;
  325. }
  326. if (get_bits1(&s->gb)) {
  327. int bits = 2 + 2 * get_bits(&s->gb, 3);
  328. max_symbol = 2 + get_bits(&s->gb, bits);
  329. if (max_symbol > alphabet_size) {
  330. av_log(s->avctx, AV_LOG_ERROR, "max symbol %d > alphabet size %d\n",
  331. max_symbol, alphabet_size);
  332. ret = AVERROR_INVALIDDATA;
  333. goto finish;
  334. }
  335. } else {
  336. max_symbol = alphabet_size;
  337. }
  338. prev_code_len = 8;
  339. symbol = 0;
  340. while (symbol < alphabet_size) {
  341. int code_len;
  342. if (!max_symbol--)
  343. break;
  344. code_len = huff_reader_get_symbol(&code_len_hc, &s->gb);
  345. if (code_len < 16) {
  346. /* Code length code [0..15] indicates literal code lengths. */
  347. code_lengths[symbol++] = code_len;
  348. if (code_len)
  349. prev_code_len = code_len;
  350. } else {
  351. int repeat = 0, length = 0;
  352. switch (code_len) {
  353. case 16:
  354. /* Code 16 repeats the previous non-zero value [3..6] times,
  355. * i.e., 3 + ReadBits(2) times. If code 16 is used before a
  356. * non-zero value has been emitted, a value of 8 is repeated. */
  357. repeat = 3 + get_bits(&s->gb, 2);
  358. length = prev_code_len;
  359. break;
  360. case 17:
  361. /* Code 17 emits a streak of zeros [3..10], i.e.,
  362. * 3 + ReadBits(3) times. */
  363. repeat = 3 + get_bits(&s->gb, 3);
  364. break;
  365. case 18:
  366. /* Code 18 emits a streak of zeros of length [11..138], i.e.,
  367. * 11 + ReadBits(7) times. */
  368. repeat = 11 + get_bits(&s->gb, 7);
  369. break;
  370. }
  371. if (symbol + repeat > alphabet_size) {
  372. av_log(s->avctx, AV_LOG_ERROR,
  373. "invalid symbol %d + repeat %d > alphabet size %d\n",
  374. symbol, repeat, alphabet_size);
  375. ret = AVERROR_INVALIDDATA;
  376. goto finish;
  377. }
  378. while (repeat-- > 0)
  379. code_lengths[symbol++] = length;
  380. }
  381. }
  382. ret = huff_reader_build_canonical(hc, code_lengths, alphabet_size);
  383. finish:
  384. ff_free_vlc(&code_len_hc.vlc);
  385. av_free(code_lengths);
  386. return ret;
  387. }
  388. static int decode_entropy_coded_image(WebPContext *s, enum ImageRole role,
  389. int w, int h);
  390. #define PARSE_BLOCK_SIZE(w, h) do { \
  391. block_bits = get_bits(&s->gb, 3) + 2; \
  392. blocks_w = FFALIGN((w), 1 << block_bits) >> block_bits; \
  393. blocks_h = FFALIGN((h), 1 << block_bits) >> block_bits; \
  394. } while (0)
  395. static int decode_entropy_image(WebPContext *s)
  396. {
  397. ImageContext *img;
  398. int ret, block_bits, width, blocks_w, blocks_h, x, y, max;
  399. width = s->width;
  400. if (s->reduced_width > 0)
  401. width = s->reduced_width;
  402. PARSE_BLOCK_SIZE(width, s->height);
  403. ret = decode_entropy_coded_image(s, IMAGE_ROLE_ENTROPY, blocks_w, blocks_h);
  404. if (ret < 0)
  405. return ret;
  406. img = &s->image[IMAGE_ROLE_ENTROPY];
  407. img->size_reduction = block_bits;
  408. /* the number of huffman groups is determined by the maximum group number
  409. * coded in the entropy image */
  410. max = 0;
  411. for (y = 0; y < img->frame->height; y++) {
  412. for (x = 0; x < img->frame->width; x++) {
  413. int p = GET_PIXEL_COMP(img->frame, x, y, 2);
  414. max = FFMAX(max, p);
  415. }
  416. }
  417. s->nb_huffman_groups = max + 1;
  418. return 0;
  419. }
  420. static int parse_transform_predictor(WebPContext *s)
  421. {
  422. int block_bits, blocks_w, blocks_h, ret;
  423. PARSE_BLOCK_SIZE(s->width, s->height);
  424. ret = decode_entropy_coded_image(s, IMAGE_ROLE_PREDICTOR, blocks_w,
  425. blocks_h);
  426. if (ret < 0)
  427. return ret;
  428. s->image[IMAGE_ROLE_PREDICTOR].size_reduction = block_bits;
  429. return 0;
  430. }
  431. static int parse_transform_color(WebPContext *s)
  432. {
  433. int block_bits, blocks_w, blocks_h, ret;
  434. PARSE_BLOCK_SIZE(s->width, s->height);
  435. ret = decode_entropy_coded_image(s, IMAGE_ROLE_COLOR_TRANSFORM, blocks_w,
  436. blocks_h);
  437. if (ret < 0)
  438. return ret;
  439. s->image[IMAGE_ROLE_COLOR_TRANSFORM].size_reduction = block_bits;
  440. return 0;
  441. }
  442. static int parse_transform_color_indexing(WebPContext *s)
  443. {
  444. ImageContext *img;
  445. int width_bits, index_size, ret, x;
  446. uint8_t *ct;
  447. index_size = get_bits(&s->gb, 8) + 1;
  448. if (index_size <= 2)
  449. width_bits = 3;
  450. else if (index_size <= 4)
  451. width_bits = 2;
  452. else if (index_size <= 16)
  453. width_bits = 1;
  454. else
  455. width_bits = 0;
  456. ret = decode_entropy_coded_image(s, IMAGE_ROLE_COLOR_INDEXING,
  457. index_size, 1);
  458. if (ret < 0)
  459. return ret;
  460. img = &s->image[IMAGE_ROLE_COLOR_INDEXING];
  461. img->size_reduction = width_bits;
  462. if (width_bits > 0)
  463. s->reduced_width = (s->width + ((1 << width_bits) - 1)) >> width_bits;
  464. /* color index values are delta-coded */
  465. ct = img->frame->data[0] + 4;
  466. for (x = 4; x < img->frame->width * 4; x++, ct++)
  467. ct[0] += ct[-4];
  468. return 0;
  469. }
  470. static HuffReader *get_huffman_group(WebPContext *s, ImageContext *img,
  471. int x, int y)
  472. {
  473. ImageContext *gimg = &s->image[IMAGE_ROLE_ENTROPY];
  474. int group = 0;
  475. if (gimg->size_reduction > 0) {
  476. int group_x = x >> gimg->size_reduction;
  477. int group_y = y >> gimg->size_reduction;
  478. group = GET_PIXEL_COMP(gimg->frame, group_x, group_y, 2);
  479. }
  480. return &img->huffman_groups[group * HUFFMAN_CODES_PER_META_CODE];
  481. }
  482. static av_always_inline void color_cache_put(ImageContext *img, uint32_t c)
  483. {
  484. uint32_t cache_idx = (0x1E35A7BD * c) >> (32 - img->color_cache_bits);
  485. img->color_cache[cache_idx] = c;
  486. }
  487. static int decode_entropy_coded_image(WebPContext *s, enum ImageRole role,
  488. int w, int h)
  489. {
  490. ImageContext *img;
  491. HuffReader *hg;
  492. int i, j, ret, x, y, width;
  493. img = &s->image[role];
  494. img->role = role;
  495. if (!img->frame) {
  496. img->frame = av_frame_alloc();
  497. if (!img->frame)
  498. return AVERROR(ENOMEM);
  499. }
  500. img->frame->format = AV_PIX_FMT_ARGB;
  501. img->frame->width = w;
  502. img->frame->height = h;
  503. if (role == IMAGE_ROLE_ARGB && !img->is_alpha_primary) {
  504. ThreadFrame pt = { .f = img->frame };
  505. ret = ff_thread_get_buffer(s->avctx, &pt, 0);
  506. } else
  507. ret = av_frame_get_buffer(img->frame, 1);
  508. if (ret < 0)
  509. return ret;
  510. if (get_bits1(&s->gb)) {
  511. img->color_cache_bits = get_bits(&s->gb, 4);
  512. if (img->color_cache_bits < 1 || img->color_cache_bits > 11) {
  513. av_log(s->avctx, AV_LOG_ERROR, "invalid color cache bits: %d\n",
  514. img->color_cache_bits);
  515. return AVERROR_INVALIDDATA;
  516. }
  517. img->color_cache = av_mallocz_array(1 << img->color_cache_bits,
  518. sizeof(*img->color_cache));
  519. if (!img->color_cache)
  520. return AVERROR(ENOMEM);
  521. } else {
  522. img->color_cache_bits = 0;
  523. }
  524. img->nb_huffman_groups = 1;
  525. if (role == IMAGE_ROLE_ARGB && get_bits1(&s->gb)) {
  526. ret = decode_entropy_image(s);
  527. if (ret < 0)
  528. return ret;
  529. img->nb_huffman_groups = s->nb_huffman_groups;
  530. }
  531. img->huffman_groups = av_mallocz_array(img->nb_huffman_groups *
  532. HUFFMAN_CODES_PER_META_CODE,
  533. sizeof(*img->huffman_groups));
  534. if (!img->huffman_groups)
  535. return AVERROR(ENOMEM);
  536. for (i = 0; i < img->nb_huffman_groups; i++) {
  537. hg = &img->huffman_groups[i * HUFFMAN_CODES_PER_META_CODE];
  538. for (j = 0; j < HUFFMAN_CODES_PER_META_CODE; j++) {
  539. int alphabet_size = alphabet_sizes[j];
  540. if (!j && img->color_cache_bits > 0)
  541. alphabet_size += 1 << img->color_cache_bits;
  542. if (get_bits1(&s->gb)) {
  543. read_huffman_code_simple(s, &hg[j]);
  544. } else {
  545. ret = read_huffman_code_normal(s, &hg[j], alphabet_size);
  546. if (ret < 0)
  547. return ret;
  548. }
  549. }
  550. }
  551. width = img->frame->width;
  552. if (role == IMAGE_ROLE_ARGB && s->reduced_width > 0)
  553. width = s->reduced_width;
  554. x = 0; y = 0;
  555. while (y < img->frame->height) {
  556. int v;
  557. hg = get_huffman_group(s, img, x, y);
  558. v = huff_reader_get_symbol(&hg[HUFF_IDX_GREEN], &s->gb);
  559. if (v < NUM_LITERAL_CODES) {
  560. /* literal pixel values */
  561. uint8_t *p = GET_PIXEL(img->frame, x, y);
  562. p[2] = v;
  563. p[1] = huff_reader_get_symbol(&hg[HUFF_IDX_RED], &s->gb);
  564. p[3] = huff_reader_get_symbol(&hg[HUFF_IDX_BLUE], &s->gb);
  565. p[0] = huff_reader_get_symbol(&hg[HUFF_IDX_ALPHA], &s->gb);
  566. if (img->color_cache_bits)
  567. color_cache_put(img, AV_RB32(p));
  568. x++;
  569. if (x == width) {
  570. x = 0;
  571. y++;
  572. }
  573. } else if (v < NUM_LITERAL_CODES + NUM_LENGTH_CODES) {
  574. /* LZ77 backwards mapping */
  575. int prefix_code, length, distance, ref_x, ref_y;
  576. /* parse length and distance */
  577. prefix_code = v - NUM_LITERAL_CODES;
  578. if (prefix_code < 4) {
  579. length = prefix_code + 1;
  580. } else {
  581. int extra_bits = (prefix_code - 2) >> 1;
  582. int offset = 2 + (prefix_code & 1) << extra_bits;
  583. length = offset + get_bits(&s->gb, extra_bits) + 1;
  584. }
  585. prefix_code = huff_reader_get_symbol(&hg[HUFF_IDX_DIST], &s->gb);
  586. if (prefix_code < 4) {
  587. distance = prefix_code + 1;
  588. } else {
  589. int extra_bits = prefix_code - 2 >> 1;
  590. int offset = 2 + (prefix_code & 1) << extra_bits;
  591. distance = offset + get_bits(&s->gb, extra_bits) + 1;
  592. }
  593. /* find reference location */
  594. if (distance <= NUM_SHORT_DISTANCES) {
  595. int xi = lz77_distance_offsets[distance - 1][0];
  596. int yi = lz77_distance_offsets[distance - 1][1];
  597. distance = FFMAX(1, xi + yi * width);
  598. } else {
  599. distance -= NUM_SHORT_DISTANCES;
  600. }
  601. ref_x = x;
  602. ref_y = y;
  603. if (distance <= x) {
  604. ref_x -= distance;
  605. distance = 0;
  606. } else {
  607. ref_x = 0;
  608. distance -= x;
  609. }
  610. while (distance >= width) {
  611. ref_y--;
  612. distance -= width;
  613. }
  614. if (distance > 0) {
  615. ref_x = width - distance;
  616. ref_y--;
  617. }
  618. ref_x = FFMAX(0, ref_x);
  619. ref_y = FFMAX(0, ref_y);
  620. /* copy pixels
  621. * source and dest regions can overlap and wrap lines, so just
  622. * copy per-pixel */
  623. for (i = 0; i < length; i++) {
  624. uint8_t *p_ref = GET_PIXEL(img->frame, ref_x, ref_y);
  625. uint8_t *p = GET_PIXEL(img->frame, x, y);
  626. AV_COPY32(p, p_ref);
  627. if (img->color_cache_bits)
  628. color_cache_put(img, AV_RB32(p));
  629. x++;
  630. ref_x++;
  631. if (x == width) {
  632. x = 0;
  633. y++;
  634. }
  635. if (ref_x == width) {
  636. ref_x = 0;
  637. ref_y++;
  638. }
  639. if (y == img->frame->height || ref_y == img->frame->height)
  640. break;
  641. }
  642. } else {
  643. /* read from color cache */
  644. uint8_t *p = GET_PIXEL(img->frame, x, y);
  645. int cache_idx = v - (NUM_LITERAL_CODES + NUM_LENGTH_CODES);
  646. if (!img->color_cache_bits) {
  647. av_log(s->avctx, AV_LOG_ERROR, "color cache not found\n");
  648. return AVERROR_INVALIDDATA;
  649. }
  650. if (cache_idx >= 1 << img->color_cache_bits) {
  651. av_log(s->avctx, AV_LOG_ERROR,
  652. "color cache index out-of-bounds\n");
  653. return AVERROR_INVALIDDATA;
  654. }
  655. AV_WB32(p, img->color_cache[cache_idx]);
  656. x++;
  657. if (x == width) {
  658. x = 0;
  659. y++;
  660. }
  661. }
  662. }
  663. return 0;
  664. }
  665. /* PRED_MODE_BLACK */
  666. static void inv_predict_0(uint8_t *p, const uint8_t *p_l, const uint8_t *p_tl,
  667. const uint8_t *p_t, const uint8_t *p_tr)
  668. {
  669. AV_WB32(p, 0xFF000000);
  670. }
  671. /* PRED_MODE_L */
  672. static void inv_predict_1(uint8_t *p, const uint8_t *p_l, const uint8_t *p_tl,
  673. const uint8_t *p_t, const uint8_t *p_tr)
  674. {
  675. AV_COPY32(p, p_l);
  676. }
  677. /* PRED_MODE_T */
  678. static void inv_predict_2(uint8_t *p, const uint8_t *p_l, const uint8_t *p_tl,
  679. const uint8_t *p_t, const uint8_t *p_tr)
  680. {
  681. AV_COPY32(p, p_t);
  682. }
  683. /* PRED_MODE_TR */
  684. static void inv_predict_3(uint8_t *p, const uint8_t *p_l, const uint8_t *p_tl,
  685. const uint8_t *p_t, const uint8_t *p_tr)
  686. {
  687. AV_COPY32(p, p_tr);
  688. }
  689. /* PRED_MODE_TL */
  690. static void inv_predict_4(uint8_t *p, const uint8_t *p_l, const uint8_t *p_tl,
  691. const uint8_t *p_t, const uint8_t *p_tr)
  692. {
  693. AV_COPY32(p, p_tl);
  694. }
  695. /* PRED_MODE_AVG_T_AVG_L_TR */
  696. static void inv_predict_5(uint8_t *p, const uint8_t *p_l, const uint8_t *p_tl,
  697. const uint8_t *p_t, const uint8_t *p_tr)
  698. {
  699. p[0] = p_t[0] + (p_l[0] + p_tr[0] >> 1) >> 1;
  700. p[1] = p_t[1] + (p_l[1] + p_tr[1] >> 1) >> 1;
  701. p[2] = p_t[2] + (p_l[2] + p_tr[2] >> 1) >> 1;
  702. p[3] = p_t[3] + (p_l[3] + p_tr[3] >> 1) >> 1;
  703. }
  704. /* PRED_MODE_AVG_L_TL */
  705. static void inv_predict_6(uint8_t *p, const uint8_t *p_l, const uint8_t *p_tl,
  706. const uint8_t *p_t, const uint8_t *p_tr)
  707. {
  708. p[0] = p_l[0] + p_tl[0] >> 1;
  709. p[1] = p_l[1] + p_tl[1] >> 1;
  710. p[2] = p_l[2] + p_tl[2] >> 1;
  711. p[3] = p_l[3] + p_tl[3] >> 1;
  712. }
  713. /* PRED_MODE_AVG_L_T */
  714. static void inv_predict_7(uint8_t *p, const uint8_t *p_l, const uint8_t *p_tl,
  715. const uint8_t *p_t, const uint8_t *p_tr)
  716. {
  717. p[0] = p_l[0] + p_t[0] >> 1;
  718. p[1] = p_l[1] + p_t[1] >> 1;
  719. p[2] = p_l[2] + p_t[2] >> 1;
  720. p[3] = p_l[3] + p_t[3] >> 1;
  721. }
  722. /* PRED_MODE_AVG_TL_T */
  723. static void inv_predict_8(uint8_t *p, const uint8_t *p_l, const uint8_t *p_tl,
  724. const uint8_t *p_t, const uint8_t *p_tr)
  725. {
  726. p[0] = p_tl[0] + p_t[0] >> 1;
  727. p[1] = p_tl[1] + p_t[1] >> 1;
  728. p[2] = p_tl[2] + p_t[2] >> 1;
  729. p[3] = p_tl[3] + p_t[3] >> 1;
  730. }
  731. /* PRED_MODE_AVG_T_TR */
  732. static void inv_predict_9(uint8_t *p, const uint8_t *p_l, const uint8_t *p_tl,
  733. const uint8_t *p_t, const uint8_t *p_tr)
  734. {
  735. p[0] = p_t[0] + p_tr[0] >> 1;
  736. p[1] = p_t[1] + p_tr[1] >> 1;
  737. p[2] = p_t[2] + p_tr[2] >> 1;
  738. p[3] = p_t[3] + p_tr[3] >> 1;
  739. }
  740. /* PRED_MODE_AVG_AVG_L_TL_AVG_T_TR */
  741. static void inv_predict_10(uint8_t *p, const uint8_t *p_l, const uint8_t *p_tl,
  742. const uint8_t *p_t, const uint8_t *p_tr)
  743. {
  744. p[0] = (p_l[0] + p_tl[0] >> 1) + (p_t[0] + p_tr[0] >> 1) >> 1;
  745. p[1] = (p_l[1] + p_tl[1] >> 1) + (p_t[1] + p_tr[1] >> 1) >> 1;
  746. p[2] = (p_l[2] + p_tl[2] >> 1) + (p_t[2] + p_tr[2] >> 1) >> 1;
  747. p[3] = (p_l[3] + p_tl[3] >> 1) + (p_t[3] + p_tr[3] >> 1) >> 1;
  748. }
  749. /* PRED_MODE_SELECT */
  750. static void inv_predict_11(uint8_t *p, const uint8_t *p_l, const uint8_t *p_tl,
  751. const uint8_t *p_t, const uint8_t *p_tr)
  752. {
  753. int diff = (FFABS(p_l[0] - p_tl[0]) - FFABS(p_t[0] - p_tl[0])) +
  754. (FFABS(p_l[1] - p_tl[1]) - FFABS(p_t[1] - p_tl[1])) +
  755. (FFABS(p_l[2] - p_tl[2]) - FFABS(p_t[2] - p_tl[2])) +
  756. (FFABS(p_l[3] - p_tl[3]) - FFABS(p_t[3] - p_tl[3]));
  757. if (diff <= 0)
  758. AV_COPY32(p, p_t);
  759. else
  760. AV_COPY32(p, p_l);
  761. }
  762. /* PRED_MODE_ADD_SUBTRACT_FULL */
  763. static void inv_predict_12(uint8_t *p, const uint8_t *p_l, const uint8_t *p_tl,
  764. const uint8_t *p_t, const uint8_t *p_tr)
  765. {
  766. p[0] = av_clip_uint8(p_l[0] + p_t[0] - p_tl[0]);
  767. p[1] = av_clip_uint8(p_l[1] + p_t[1] - p_tl[1]);
  768. p[2] = av_clip_uint8(p_l[2] + p_t[2] - p_tl[2]);
  769. p[3] = av_clip_uint8(p_l[3] + p_t[3] - p_tl[3]);
  770. }
  771. static av_always_inline uint8_t clamp_add_subtract_half(int a, int b, int c)
  772. {
  773. int d = a + b >> 1;
  774. return av_clip_uint8(d + (d - c) / 2);
  775. }
  776. /* PRED_MODE_ADD_SUBTRACT_HALF */
  777. static void inv_predict_13(uint8_t *p, const uint8_t *p_l, const uint8_t *p_tl,
  778. const uint8_t *p_t, const uint8_t *p_tr)
  779. {
  780. p[0] = clamp_add_subtract_half(p_l[0], p_t[0], p_tl[0]);
  781. p[1] = clamp_add_subtract_half(p_l[1], p_t[1], p_tl[1]);
  782. p[2] = clamp_add_subtract_half(p_l[2], p_t[2], p_tl[2]);
  783. p[3] = clamp_add_subtract_half(p_l[3], p_t[3], p_tl[3]);
  784. }
  785. typedef void (*inv_predict_func)(uint8_t *p, const uint8_t *p_l,
  786. const uint8_t *p_tl, const uint8_t *p_t,
  787. const uint8_t *p_tr);
  788. static const inv_predict_func inverse_predict[14] = {
  789. inv_predict_0, inv_predict_1, inv_predict_2, inv_predict_3,
  790. inv_predict_4, inv_predict_5, inv_predict_6, inv_predict_7,
  791. inv_predict_8, inv_predict_9, inv_predict_10, inv_predict_11,
  792. inv_predict_12, inv_predict_13,
  793. };
  794. static void inverse_prediction(AVFrame *frame, enum PredictionMode m, int x, int y)
  795. {
  796. uint8_t *dec, *p_l, *p_tl, *p_t, *p_tr;
  797. uint8_t p[4];
  798. dec = GET_PIXEL(frame, x, y);
  799. p_l = GET_PIXEL(frame, x - 1, y);
  800. p_tl = GET_PIXEL(frame, x - 1, y - 1);
  801. p_t = GET_PIXEL(frame, x, y - 1);
  802. if (x == frame->width - 1)
  803. p_tr = GET_PIXEL(frame, 0, y);
  804. else
  805. p_tr = GET_PIXEL(frame, x + 1, y - 1);
  806. inverse_predict[m](p, p_l, p_tl, p_t, p_tr);
  807. dec[0] += p[0];
  808. dec[1] += p[1];
  809. dec[2] += p[2];
  810. dec[3] += p[3];
  811. }
  812. static int apply_predictor_transform(WebPContext *s)
  813. {
  814. ImageContext *img = &s->image[IMAGE_ROLE_ARGB];
  815. ImageContext *pimg = &s->image[IMAGE_ROLE_PREDICTOR];
  816. int x, y;
  817. for (y = 0; y < img->frame->height; y++) {
  818. for (x = 0; x < img->frame->width; x++) {
  819. int tx = x >> pimg->size_reduction;
  820. int ty = y >> pimg->size_reduction;
  821. enum PredictionMode m = GET_PIXEL_COMP(pimg->frame, tx, ty, 2);
  822. if (x == 0) {
  823. if (y == 0)
  824. m = PRED_MODE_BLACK;
  825. else
  826. m = PRED_MODE_T;
  827. } else if (y == 0)
  828. m = PRED_MODE_L;
  829. if (m > 13) {
  830. av_log(s->avctx, AV_LOG_ERROR,
  831. "invalid predictor mode: %d\n", m);
  832. return AVERROR_INVALIDDATA;
  833. }
  834. inverse_prediction(img->frame, m, x, y);
  835. }
  836. }
  837. return 0;
  838. }
  839. static av_always_inline uint8_t color_transform_delta(uint8_t color_pred,
  840. uint8_t color)
  841. {
  842. return (int)ff_u8_to_s8(color_pred) * ff_u8_to_s8(color) >> 5;
  843. }
  844. static int apply_color_transform(WebPContext *s)
  845. {
  846. ImageContext *img, *cimg;
  847. int x, y, cx, cy;
  848. uint8_t *p, *cp;
  849. img = &s->image[IMAGE_ROLE_ARGB];
  850. cimg = &s->image[IMAGE_ROLE_COLOR_TRANSFORM];
  851. for (y = 0; y < img->frame->height; y++) {
  852. for (x = 0; x < img->frame->width; x++) {
  853. cx = x >> cimg->size_reduction;
  854. cy = y >> cimg->size_reduction;
  855. cp = GET_PIXEL(cimg->frame, cx, cy);
  856. p = GET_PIXEL(img->frame, x, y);
  857. p[1] += color_transform_delta(cp[3], p[2]);
  858. p[3] += color_transform_delta(cp[2], p[2]) +
  859. color_transform_delta(cp[1], p[1]);
  860. }
  861. }
  862. return 0;
  863. }
  864. static int apply_subtract_green_transform(WebPContext *s)
  865. {
  866. int x, y;
  867. ImageContext *img = &s->image[IMAGE_ROLE_ARGB];
  868. for (y = 0; y < img->frame->height; y++) {
  869. for (x = 0; x < img->frame->width; x++) {
  870. uint8_t *p = GET_PIXEL(img->frame, x, y);
  871. p[1] += p[2];
  872. p[3] += p[2];
  873. }
  874. }
  875. return 0;
  876. }
  877. static int apply_color_indexing_transform(WebPContext *s)
  878. {
  879. ImageContext *img;
  880. ImageContext *pal;
  881. int i, x, y;
  882. uint8_t *p, *pi;
  883. img = &s->image[IMAGE_ROLE_ARGB];
  884. pal = &s->image[IMAGE_ROLE_COLOR_INDEXING];
  885. if (pal->size_reduction > 0) {
  886. GetBitContext gb_g;
  887. uint8_t *line;
  888. int pixel_bits = 8 >> pal->size_reduction;
  889. line = av_malloc(img->frame->linesize[0]);
  890. if (!line)
  891. return AVERROR(ENOMEM);
  892. for (y = 0; y < img->frame->height; y++) {
  893. p = GET_PIXEL(img->frame, 0, y);
  894. memcpy(line, p, img->frame->linesize[0]);
  895. init_get_bits(&gb_g, line, img->frame->linesize[0] * 8);
  896. skip_bits(&gb_g, 16);
  897. i = 0;
  898. for (x = 0; x < img->frame->width; x++) {
  899. p = GET_PIXEL(img->frame, x, y);
  900. p[2] = get_bits(&gb_g, pixel_bits);
  901. i++;
  902. if (i == 1 << pal->size_reduction) {
  903. skip_bits(&gb_g, 24);
  904. i = 0;
  905. }
  906. }
  907. }
  908. av_free(line);
  909. }
  910. for (y = 0; y < img->frame->height; y++) {
  911. for (x = 0; x < img->frame->width; x++) {
  912. p = GET_PIXEL(img->frame, x, y);
  913. i = p[2];
  914. if (i >= pal->frame->width) {
  915. av_log(s->avctx, AV_LOG_ERROR, "invalid palette index %d\n", i);
  916. return AVERROR_INVALIDDATA;
  917. }
  918. pi = GET_PIXEL(pal->frame, i, 0);
  919. AV_COPY32(p, pi);
  920. }
  921. }
  922. return 0;
  923. }
  924. static int vp8_lossless_decode_frame(AVCodecContext *avctx, AVFrame *p,
  925. int *got_frame, uint8_t *data_start,
  926. unsigned int data_size, int is_alpha_chunk)
  927. {
  928. WebPContext *s = avctx->priv_data;
  929. int w, h, ret, i;
  930. if (!is_alpha_chunk) {
  931. s->lossless = 1;
  932. avctx->pix_fmt = AV_PIX_FMT_ARGB;
  933. }
  934. ret = init_get_bits(&s->gb, data_start, data_size * 8);
  935. if (ret < 0)
  936. return ret;
  937. if (!is_alpha_chunk) {
  938. if (get_bits(&s->gb, 8) != 0x2F) {
  939. av_log(avctx, AV_LOG_ERROR, "Invalid WebP Lossless signature\n");
  940. return AVERROR_INVALIDDATA;
  941. }
  942. w = get_bits(&s->gb, 14) + 1;
  943. h = get_bits(&s->gb, 14) + 1;
  944. if (s->width && s->width != w) {
  945. av_log(avctx, AV_LOG_WARNING, "Width mismatch. %d != %d\n",
  946. s->width, w);
  947. }
  948. s->width = w;
  949. if (s->height && s->height != h) {
  950. av_log(avctx, AV_LOG_WARNING, "Height mismatch. %d != %d\n",
  951. s->width, w);
  952. }
  953. s->height = h;
  954. ret = ff_set_dimensions(avctx, s->width, s->height);
  955. if (ret < 0)
  956. return ret;
  957. s->has_alpha = get_bits1(&s->gb);
  958. if (get_bits(&s->gb, 3) != 0x0) {
  959. av_log(avctx, AV_LOG_ERROR, "Invalid WebP Lossless version\n");
  960. return AVERROR_INVALIDDATA;
  961. }
  962. } else {
  963. if (!s->width || !s->height)
  964. return AVERROR_BUG;
  965. w = s->width;
  966. h = s->height;
  967. }
  968. /* parse transformations */
  969. s->nb_transforms = 0;
  970. s->reduced_width = 0;
  971. while (get_bits1(&s->gb)) {
  972. enum TransformType transform = get_bits(&s->gb, 2);
  973. s->transforms[s->nb_transforms++] = transform;
  974. switch (transform) {
  975. case PREDICTOR_TRANSFORM:
  976. ret = parse_transform_predictor(s);
  977. break;
  978. case COLOR_TRANSFORM:
  979. ret = parse_transform_color(s);
  980. break;
  981. case COLOR_INDEXING_TRANSFORM:
  982. ret = parse_transform_color_indexing(s);
  983. break;
  984. }
  985. if (ret < 0)
  986. goto free_and_return;
  987. }
  988. /* decode primary image */
  989. s->image[IMAGE_ROLE_ARGB].frame = p;
  990. if (is_alpha_chunk)
  991. s->image[IMAGE_ROLE_ARGB].is_alpha_primary = 1;
  992. ret = decode_entropy_coded_image(s, IMAGE_ROLE_ARGB, w, h);
  993. if (ret < 0)
  994. goto free_and_return;
  995. /* apply transformations */
  996. for (i = s->nb_transforms - 1; i >= 0; i--) {
  997. switch (s->transforms[i]) {
  998. case PREDICTOR_TRANSFORM:
  999. ret = apply_predictor_transform(s);
  1000. break;
  1001. case COLOR_TRANSFORM:
  1002. ret = apply_color_transform(s);
  1003. break;
  1004. case SUBTRACT_GREEN:
  1005. ret = apply_subtract_green_transform(s);
  1006. break;
  1007. case COLOR_INDEXING_TRANSFORM:
  1008. ret = apply_color_indexing_transform(s);
  1009. break;
  1010. }
  1011. if (ret < 0)
  1012. goto free_and_return;
  1013. }
  1014. *got_frame = 1;
  1015. p->pict_type = AV_PICTURE_TYPE_I;
  1016. p->key_frame = 1;
  1017. ret = data_size;
  1018. free_and_return:
  1019. for (i = 0; i < IMAGE_ROLE_NB; i++)
  1020. image_ctx_free(&s->image[i]);
  1021. return ret;
  1022. }
  1023. static void alpha_inverse_prediction(AVFrame *frame, enum AlphaFilter m)
  1024. {
  1025. int x, y, ls;
  1026. uint8_t *dec;
  1027. ls = frame->linesize[3];
  1028. /* filter first row using horizontal filter */
  1029. dec = frame->data[3] + 1;
  1030. for (x = 1; x < frame->width; x++, dec++)
  1031. *dec += *(dec - 1);
  1032. /* filter first column using vertical filter */
  1033. dec = frame->data[3] + ls;
  1034. for (y = 1; y < frame->height; y++, dec += ls)
  1035. *dec += *(dec - ls);
  1036. /* filter the rest using the specified filter */
  1037. switch (m) {
  1038. case ALPHA_FILTER_HORIZONTAL:
  1039. for (y = 1; y < frame->height; y++) {
  1040. dec = frame->data[3] + y * ls + 1;
  1041. for (x = 1; x < frame->width; x++, dec++)
  1042. *dec += *(dec - 1);
  1043. }
  1044. break;
  1045. case ALPHA_FILTER_VERTICAL:
  1046. for (y = 1; y < frame->height; y++) {
  1047. dec = frame->data[3] + y * ls + 1;
  1048. for (x = 1; x < frame->width; x++, dec++)
  1049. *dec += *(dec - ls);
  1050. }
  1051. break;
  1052. case ALPHA_FILTER_GRADIENT:
  1053. for (y = 1; y < frame->height; y++) {
  1054. dec = frame->data[3] + y * ls + 1;
  1055. for (x = 1; x < frame->width; x++, dec++)
  1056. dec[0] += av_clip_uint8(*(dec - 1) + *(dec - ls) - *(dec - ls - 1));
  1057. }
  1058. break;
  1059. }
  1060. }
  1061. static int vp8_lossy_decode_alpha(AVCodecContext *avctx, AVFrame *p,
  1062. uint8_t *data_start,
  1063. unsigned int data_size)
  1064. {
  1065. WebPContext *s = avctx->priv_data;
  1066. int x, y, ret;
  1067. if (s->alpha_compression == ALPHA_COMPRESSION_NONE) {
  1068. GetByteContext gb;
  1069. bytestream2_init(&gb, data_start, data_size);
  1070. for (y = 0; y < s->height; y++)
  1071. bytestream2_get_buffer(&gb, p->data[3] + p->linesize[3] * y,
  1072. s->width);
  1073. } else if (s->alpha_compression == ALPHA_COMPRESSION_VP8L) {
  1074. uint8_t *ap, *pp;
  1075. int alpha_got_frame = 0;
  1076. s->alpha_frame = av_frame_alloc();
  1077. if (!s->alpha_frame)
  1078. return AVERROR(ENOMEM);
  1079. ret = vp8_lossless_decode_frame(avctx, s->alpha_frame, &alpha_got_frame,
  1080. data_start, data_size, 1);
  1081. if (ret < 0) {
  1082. av_frame_free(&s->alpha_frame);
  1083. return ret;
  1084. }
  1085. if (!alpha_got_frame) {
  1086. av_frame_free(&s->alpha_frame);
  1087. return AVERROR_INVALIDDATA;
  1088. }
  1089. /* copy green component of alpha image to alpha plane of primary image */
  1090. for (y = 0; y < s->height; y++) {
  1091. ap = GET_PIXEL(s->alpha_frame, 0, y) + 2;
  1092. pp = p->data[3] + p->linesize[3] * y;
  1093. for (x = 0; x < s->width; x++) {
  1094. *pp = *ap;
  1095. pp++;
  1096. ap += 4;
  1097. }
  1098. }
  1099. av_frame_free(&s->alpha_frame);
  1100. }
  1101. /* apply alpha filtering */
  1102. if (s->alpha_filter)
  1103. alpha_inverse_prediction(p, s->alpha_filter);
  1104. return 0;
  1105. }
  1106. static int vp8_lossy_decode_frame(AVCodecContext *avctx, AVFrame *p,
  1107. int *got_frame, uint8_t *data_start,
  1108. unsigned int data_size)
  1109. {
  1110. WebPContext *s = avctx->priv_data;
  1111. AVPacket pkt;
  1112. int ret;
  1113. if (!s->initialized) {
  1114. ff_vp8_decode_init(avctx);
  1115. s->initialized = 1;
  1116. if (s->has_alpha)
  1117. avctx->pix_fmt = AV_PIX_FMT_YUVA420P;
  1118. }
  1119. s->lossless = 0;
  1120. if (data_size > INT_MAX) {
  1121. av_log(avctx, AV_LOG_ERROR, "unsupported chunk size\n");
  1122. return AVERROR_PATCHWELCOME;
  1123. }
  1124. av_init_packet(&pkt);
  1125. pkt.data = data_start;
  1126. pkt.size = data_size;
  1127. ret = ff_vp8_decode_frame(avctx, p, got_frame, &pkt);
  1128. if (s->has_alpha) {
  1129. ret = vp8_lossy_decode_alpha(avctx, p, s->alpha_data,
  1130. s->alpha_data_size);
  1131. if (ret < 0)
  1132. return ret;
  1133. }
  1134. return ret;
  1135. }
  1136. static int webp_decode_frame(AVCodecContext *avctx, void *data, int *got_frame,
  1137. AVPacket *avpkt)
  1138. {
  1139. AVFrame * const p = data;
  1140. WebPContext *s = avctx->priv_data;
  1141. GetByteContext gb;
  1142. int ret;
  1143. uint32_t chunk_type, chunk_size;
  1144. int vp8x_flags = 0;
  1145. s->avctx = avctx;
  1146. s->width = 0;
  1147. s->height = 0;
  1148. *got_frame = 0;
  1149. s->has_alpha = 0;
  1150. bytestream2_init(&gb, avpkt->data, avpkt->size);
  1151. if (bytestream2_get_bytes_left(&gb) < 12)
  1152. return AVERROR_INVALIDDATA;
  1153. if (bytestream2_get_le32(&gb) != MKTAG('R', 'I', 'F', 'F')) {
  1154. av_log(avctx, AV_LOG_ERROR, "missing RIFF tag\n");
  1155. return AVERROR_INVALIDDATA;
  1156. }
  1157. chunk_size = bytestream2_get_le32(&gb);
  1158. if (bytestream2_get_bytes_left(&gb) < chunk_size)
  1159. return AVERROR_INVALIDDATA;
  1160. if (bytestream2_get_le32(&gb) != MKTAG('W', 'E', 'B', 'P')) {
  1161. av_log(avctx, AV_LOG_ERROR, "missing WEBP tag\n");
  1162. return AVERROR_INVALIDDATA;
  1163. }
  1164. while (bytestream2_get_bytes_left(&gb) > 0) {
  1165. char chunk_str[5] = { 0 };
  1166. chunk_type = bytestream2_get_le32(&gb);
  1167. chunk_size = bytestream2_get_le32(&gb);
  1168. if (chunk_size == UINT32_MAX)
  1169. return AVERROR_INVALIDDATA;
  1170. chunk_size += chunk_size & 1;
  1171. if (bytestream2_get_bytes_left(&gb) < chunk_size)
  1172. return AVERROR_INVALIDDATA;
  1173. switch (chunk_type) {
  1174. case MKTAG('V', 'P', '8', ' '):
  1175. if (!*got_frame) {
  1176. ret = vp8_lossy_decode_frame(avctx, p, got_frame,
  1177. avpkt->data + bytestream2_tell(&gb),
  1178. chunk_size);
  1179. if (ret < 0)
  1180. return ret;
  1181. }
  1182. bytestream2_skip(&gb, chunk_size);
  1183. break;
  1184. case MKTAG('V', 'P', '8', 'L'):
  1185. if (!*got_frame) {
  1186. ret = vp8_lossless_decode_frame(avctx, p, got_frame,
  1187. avpkt->data + bytestream2_tell(&gb),
  1188. chunk_size, 0);
  1189. if (ret < 0)
  1190. return ret;
  1191. }
  1192. bytestream2_skip(&gb, chunk_size);
  1193. break;
  1194. case MKTAG('V', 'P', '8', 'X'):
  1195. vp8x_flags = bytestream2_get_byte(&gb);
  1196. bytestream2_skip(&gb, 3);
  1197. s->width = bytestream2_get_le24(&gb) + 1;
  1198. s->height = bytestream2_get_le24(&gb) + 1;
  1199. ret = av_image_check_size(s->width, s->height, 0, avctx);
  1200. if (ret < 0)
  1201. return ret;
  1202. break;
  1203. case MKTAG('A', 'L', 'P', 'H'): {
  1204. int alpha_header, filter_m, compression;
  1205. if (!(vp8x_flags & VP8X_FLAG_ALPHA)) {
  1206. av_log(avctx, AV_LOG_WARNING,
  1207. "ALPHA chunk present, but alpha bit not set in the "
  1208. "VP8X header\n");
  1209. }
  1210. if (chunk_size == 0) {
  1211. av_log(avctx, AV_LOG_ERROR, "invalid ALPHA chunk size\n");
  1212. return AVERROR_INVALIDDATA;
  1213. }
  1214. alpha_header = bytestream2_get_byte(&gb);
  1215. s->alpha_data = avpkt->data + bytestream2_tell(&gb);
  1216. s->alpha_data_size = chunk_size - 1;
  1217. bytestream2_skip(&gb, s->alpha_data_size);
  1218. filter_m = (alpha_header >> 2) & 0x03;
  1219. compression = alpha_header & 0x03;
  1220. if (compression > ALPHA_COMPRESSION_VP8L) {
  1221. av_log(avctx, AV_LOG_VERBOSE,
  1222. "skipping unsupported ALPHA chunk\n");
  1223. } else {
  1224. s->has_alpha = 1;
  1225. s->alpha_compression = compression;
  1226. s->alpha_filter = filter_m;
  1227. }
  1228. break;
  1229. }
  1230. case MKTAG('I', 'C', 'C', 'P'):
  1231. case MKTAG('A', 'N', 'I', 'M'):
  1232. case MKTAG('A', 'N', 'M', 'F'):
  1233. case MKTAG('E', 'X', 'I', 'F'):
  1234. case MKTAG('X', 'M', 'P', ' '):
  1235. AV_WL32(chunk_str, chunk_type);
  1236. av_log(avctx, AV_LOG_VERBOSE, "skipping unsupported chunk: %s\n",
  1237. chunk_str);
  1238. bytestream2_skip(&gb, chunk_size);
  1239. break;
  1240. default:
  1241. AV_WL32(chunk_str, chunk_type);
  1242. av_log(avctx, AV_LOG_VERBOSE, "skipping unknown chunk: %s\n",
  1243. chunk_str);
  1244. bytestream2_skip(&gb, chunk_size);
  1245. break;
  1246. }
  1247. }
  1248. if (!*got_frame) {
  1249. av_log(avctx, AV_LOG_ERROR, "image data not found\n");
  1250. return AVERROR_INVALIDDATA;
  1251. }
  1252. return avpkt->size;
  1253. }
  1254. static av_cold int webp_decode_close(AVCodecContext *avctx)
  1255. {
  1256. WebPContext *s = avctx->priv_data;
  1257. if (s->initialized)
  1258. return ff_vp8_decode_free(avctx);
  1259. return 0;
  1260. }
  1261. AVCodec ff_webp_decoder = {
  1262. .name = "webp",
  1263. .long_name = NULL_IF_CONFIG_SMALL("WebP image"),
  1264. .type = AVMEDIA_TYPE_VIDEO,
  1265. .id = AV_CODEC_ID_WEBP,
  1266. .priv_data_size = sizeof(WebPContext),
  1267. .decode = webp_decode_frame,
  1268. .close = webp_decode_close,
  1269. .capabilities = CODEC_CAP_DR1 | CODEC_CAP_FRAME_THREADS,
  1270. };