You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1040 lines
34KB

  1. /*
  2. * Rate control for video encoders
  3. *
  4. * Copyright (c) 2002-2004 Michael Niedermayer <michaelni@gmx.at>
  5. *
  6. * This file is part of Libav.
  7. *
  8. * Libav is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU Lesser General Public
  10. * License as published by the Free Software Foundation; either
  11. * version 2.1 of the License, or (at your option) any later version.
  12. *
  13. * Libav is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * Lesser General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU Lesser General Public
  19. * License along with Libav; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  21. */
  22. /**
  23. * @file
  24. * Rate control for video encoders.
  25. */
  26. #include "libavutil/attributes.h"
  27. #include "avcodec.h"
  28. #include "ratecontrol.h"
  29. #include "mpegutils.h"
  30. #include "mpegvideo.h"
  31. #include "libavutil/eval.h"
  32. #undef NDEBUG // Always check asserts, the speed effect is far too small to disable them.
  33. #include <assert.h>
  34. #ifndef M_E
  35. #define M_E 2.718281828
  36. #endif
  37. static int init_pass2(MpegEncContext *s);
  38. static double get_qscale(MpegEncContext *s, RateControlEntry *rce,
  39. double rate_factor, int frame_num);
  40. void ff_write_pass1_stats(MpegEncContext *s)
  41. {
  42. snprintf(s->avctx->stats_out, 256,
  43. "in:%d out:%d type:%d q:%d itex:%d ptex:%d mv:%d misc:%d "
  44. "fcode:%d bcode:%d mc-var:%d var:%d icount:%d skipcount:%d hbits:%d;\n",
  45. s->current_picture_ptr->f->display_picture_number,
  46. s->current_picture_ptr->f->coded_picture_number,
  47. s->pict_type,
  48. s->current_picture.f->quality,
  49. s->i_tex_bits,
  50. s->p_tex_bits,
  51. s->mv_bits,
  52. s->misc_bits,
  53. s->f_code,
  54. s->b_code,
  55. s->current_picture.mc_mb_var_sum,
  56. s->current_picture.mb_var_sum,
  57. s->i_count, s->skip_count,
  58. s->header_bits);
  59. }
  60. static inline double qp2bits(RateControlEntry *rce, double qp)
  61. {
  62. if (qp <= 0.0) {
  63. av_log(NULL, AV_LOG_ERROR, "qp<=0.0\n");
  64. }
  65. return rce->qscale * (double)(rce->i_tex_bits + rce->p_tex_bits + 1) / qp;
  66. }
  67. static inline double bits2qp(RateControlEntry *rce, double bits)
  68. {
  69. if (bits < 0.9) {
  70. av_log(NULL, AV_LOG_ERROR, "bits<0.9\n");
  71. }
  72. return rce->qscale * (double)(rce->i_tex_bits + rce->p_tex_bits + 1) / bits;
  73. }
  74. av_cold int ff_rate_control_init(MpegEncContext *s)
  75. {
  76. RateControlContext *rcc = &s->rc_context;
  77. int i, res;
  78. static const char * const const_names[] = {
  79. "PI",
  80. "E",
  81. "iTex",
  82. "pTex",
  83. "tex",
  84. "mv",
  85. "fCode",
  86. "iCount",
  87. "mcVar",
  88. "var",
  89. "isI",
  90. "isP",
  91. "isB",
  92. "avgQP",
  93. "qComp",
  94. #if 0
  95. "lastIQP",
  96. "lastPQP",
  97. "lastBQP",
  98. "nextNonBQP",
  99. #endif
  100. "avgIITex",
  101. "avgPITex",
  102. "avgPPTex",
  103. "avgBPTex",
  104. "avgTex",
  105. NULL
  106. };
  107. static double (* const func1[])(void *, double) = {
  108. (void *)bits2qp,
  109. (void *)qp2bits,
  110. NULL
  111. };
  112. static const char * const func1_names[] = {
  113. "bits2qp",
  114. "qp2bits",
  115. NULL
  116. };
  117. emms_c();
  118. res = av_expr_parse(&rcc->rc_eq_eval,
  119. s->avctx->rc_eq ? s->avctx->rc_eq : "tex^qComp",
  120. const_names, func1_names, func1,
  121. NULL, NULL, 0, s->avctx);
  122. if (res < 0) {
  123. av_log(s->avctx, AV_LOG_ERROR, "Error parsing rc_eq \"%s\"\n", s->avctx->rc_eq);
  124. return res;
  125. }
  126. for (i = 0; i < 5; i++) {
  127. rcc->pred[i].coeff = FF_QP2LAMBDA * 7.0;
  128. rcc->pred[i].count = 1.0;
  129. rcc->pred[i].decay = 0.4;
  130. rcc->i_cplx_sum [i] =
  131. rcc->p_cplx_sum [i] =
  132. rcc->mv_bits_sum[i] =
  133. rcc->qscale_sum [i] =
  134. rcc->frame_count[i] = 1; // 1 is better because of 1/0 and such
  135. rcc->last_qscale_for[i] = FF_QP2LAMBDA * 5;
  136. }
  137. rcc->buffer_index = s->avctx->rc_initial_buffer_occupancy;
  138. if (s->flags & CODEC_FLAG_PASS2) {
  139. int i;
  140. char *p;
  141. /* find number of pics */
  142. p = s->avctx->stats_in;
  143. for (i = -1; p; i++)
  144. p = strchr(p + 1, ';');
  145. i += s->max_b_frames;
  146. if (i <= 0 || i >= INT_MAX / sizeof(RateControlEntry))
  147. return -1;
  148. rcc->entry = av_mallocz(i * sizeof(RateControlEntry));
  149. rcc->num_entries = i;
  150. /* init all to skipped p frames
  151. * (with b frames we might have a not encoded frame at the end FIXME) */
  152. for (i = 0; i < rcc->num_entries; i++) {
  153. RateControlEntry *rce = &rcc->entry[i];
  154. rce->pict_type = rce->new_pict_type = AV_PICTURE_TYPE_P;
  155. rce->qscale = rce->new_qscale = FF_QP2LAMBDA * 2;
  156. rce->misc_bits = s->mb_num + 10;
  157. rce->mb_var_sum = s->mb_num * 100;
  158. }
  159. /* read stats */
  160. p = s->avctx->stats_in;
  161. for (i = 0; i < rcc->num_entries - s->max_b_frames; i++) {
  162. RateControlEntry *rce;
  163. int picture_number;
  164. int e;
  165. char *next;
  166. next = strchr(p, ';');
  167. if (next) {
  168. (*next) = 0; // sscanf in unbelievably slow on looong strings // FIXME copy / do not write
  169. next++;
  170. }
  171. e = sscanf(p, " in:%d ", &picture_number);
  172. assert(picture_number >= 0);
  173. assert(picture_number < rcc->num_entries);
  174. rce = &rcc->entry[picture_number];
  175. e += sscanf(p, " in:%*d out:%*d type:%d q:%f itex:%d ptex:%d mv:%d misc:%d fcode:%d bcode:%d mc-var:%d var:%d icount:%d skipcount:%d hbits:%d",
  176. &rce->pict_type, &rce->qscale, &rce->i_tex_bits, &rce->p_tex_bits,
  177. &rce->mv_bits, &rce->misc_bits,
  178. &rce->f_code, &rce->b_code,
  179. &rce->mc_mb_var_sum, &rce->mb_var_sum,
  180. &rce->i_count, &rce->skip_count, &rce->header_bits);
  181. if (e != 14) {
  182. av_log(s->avctx, AV_LOG_ERROR,
  183. "statistics are damaged at line %d, parser out=%d\n",
  184. i, e);
  185. return -1;
  186. }
  187. p = next;
  188. }
  189. if (init_pass2(s) < 0)
  190. return -1;
  191. // FIXME maybe move to end
  192. if ((s->flags & CODEC_FLAG_PASS2) && s->avctx->rc_strategy == FF_RC_STRATEGY_XVID) {
  193. #if CONFIG_LIBXVID
  194. return ff_xvid_rate_control_init(s);
  195. #else
  196. av_log(s->avctx, AV_LOG_ERROR,
  197. "Xvid ratecontrol requires libavcodec compiled with Xvid support.\n");
  198. return -1;
  199. #endif
  200. }
  201. }
  202. if (!(s->flags & CODEC_FLAG_PASS2)) {
  203. rcc->short_term_qsum = 0.001;
  204. rcc->short_term_qcount = 0.001;
  205. rcc->pass1_rc_eq_output_sum = 0.001;
  206. rcc->pass1_wanted_bits = 0.001;
  207. if (s->avctx->qblur > 1.0) {
  208. av_log(s->avctx, AV_LOG_ERROR, "qblur too large\n");
  209. return -1;
  210. }
  211. /* init stuff with the user specified complexity */
  212. if (s->avctx->rc_initial_cplx) {
  213. for (i = 0; i < 60 * 30; i++) {
  214. double bits = s->avctx->rc_initial_cplx * (i / 10000.0 + 1.0) * s->mb_num;
  215. RateControlEntry rce;
  216. if (i % ((s->gop_size + 3) / 4) == 0)
  217. rce.pict_type = AV_PICTURE_TYPE_I;
  218. else if (i % (s->max_b_frames + 1))
  219. rce.pict_type = AV_PICTURE_TYPE_B;
  220. else
  221. rce.pict_type = AV_PICTURE_TYPE_P;
  222. rce.new_pict_type = rce.pict_type;
  223. rce.mc_mb_var_sum = bits * s->mb_num / 100000;
  224. rce.mb_var_sum = s->mb_num;
  225. rce.qscale = FF_QP2LAMBDA * 2;
  226. rce.f_code = 2;
  227. rce.b_code = 1;
  228. rce.misc_bits = 1;
  229. if (s->pict_type == AV_PICTURE_TYPE_I) {
  230. rce.i_count = s->mb_num;
  231. rce.i_tex_bits = bits;
  232. rce.p_tex_bits = 0;
  233. rce.mv_bits = 0;
  234. } else {
  235. rce.i_count = 0; // FIXME we do know this approx
  236. rce.i_tex_bits = 0;
  237. rce.p_tex_bits = bits * 0.9;
  238. rce.mv_bits = bits * 0.1;
  239. }
  240. rcc->i_cplx_sum[rce.pict_type] += rce.i_tex_bits * rce.qscale;
  241. rcc->p_cplx_sum[rce.pict_type] += rce.p_tex_bits * rce.qscale;
  242. rcc->mv_bits_sum[rce.pict_type] += rce.mv_bits;
  243. rcc->frame_count[rce.pict_type]++;
  244. get_qscale(s, &rce, rcc->pass1_wanted_bits / rcc->pass1_rc_eq_output_sum, i);
  245. // FIXME misbehaves a little for variable fps
  246. rcc->pass1_wanted_bits += s->bit_rate / (1 / av_q2d(s->avctx->time_base));
  247. }
  248. }
  249. }
  250. return 0;
  251. }
  252. av_cold void ff_rate_control_uninit(MpegEncContext *s)
  253. {
  254. RateControlContext *rcc = &s->rc_context;
  255. emms_c();
  256. av_expr_free(rcc->rc_eq_eval);
  257. av_freep(&rcc->entry);
  258. #if CONFIG_LIBXVID
  259. if ((s->flags & CODEC_FLAG_PASS2) && s->avctx->rc_strategy == FF_RC_STRATEGY_XVID)
  260. ff_xvid_rate_control_uninit(s);
  261. #endif
  262. }
  263. int ff_vbv_update(MpegEncContext *s, int frame_size)
  264. {
  265. RateControlContext *rcc = &s->rc_context;
  266. const double fps = 1 / av_q2d(s->avctx->time_base);
  267. const int buffer_size = s->avctx->rc_buffer_size;
  268. const double min_rate = s->avctx->rc_min_rate / fps;
  269. const double max_rate = s->avctx->rc_max_rate / fps;
  270. av_dlog(s, "%d %f %d %f %f\n",
  271. buffer_size, rcc->buffer_index, frame_size, min_rate, max_rate);
  272. if (buffer_size) {
  273. int left;
  274. rcc->buffer_index -= frame_size;
  275. if (rcc->buffer_index < 0) {
  276. av_log(s->avctx, AV_LOG_ERROR, "rc buffer underflow\n");
  277. rcc->buffer_index = 0;
  278. }
  279. left = buffer_size - rcc->buffer_index - 1;
  280. rcc->buffer_index += av_clip(left, min_rate, max_rate);
  281. if (rcc->buffer_index > buffer_size) {
  282. int stuffing = ceil((rcc->buffer_index - buffer_size) / 8);
  283. if (stuffing < 4 && s->codec_id == AV_CODEC_ID_MPEG4)
  284. stuffing = 4;
  285. rcc->buffer_index -= 8 * stuffing;
  286. if (s->avctx->debug & FF_DEBUG_RC)
  287. av_log(s->avctx, AV_LOG_DEBUG, "stuffing %d bytes\n", stuffing);
  288. return stuffing;
  289. }
  290. }
  291. return 0;
  292. }
  293. /**
  294. * Modify the bitrate curve from pass1 for one frame.
  295. */
  296. static double get_qscale(MpegEncContext *s, RateControlEntry *rce,
  297. double rate_factor, int frame_num)
  298. {
  299. RateControlContext *rcc = &s->rc_context;
  300. AVCodecContext *a = s->avctx;
  301. const int pict_type = rce->new_pict_type;
  302. const double mb_num = s->mb_num;
  303. double q, bits;
  304. int i;
  305. double const_values[] = {
  306. M_PI,
  307. M_E,
  308. rce->i_tex_bits * rce->qscale,
  309. rce->p_tex_bits * rce->qscale,
  310. (rce->i_tex_bits + rce->p_tex_bits) * (double)rce->qscale,
  311. rce->mv_bits / mb_num,
  312. rce->pict_type == AV_PICTURE_TYPE_B ? (rce->f_code + rce->b_code) * 0.5 : rce->f_code,
  313. rce->i_count / mb_num,
  314. rce->mc_mb_var_sum / mb_num,
  315. rce->mb_var_sum / mb_num,
  316. rce->pict_type == AV_PICTURE_TYPE_I,
  317. rce->pict_type == AV_PICTURE_TYPE_P,
  318. rce->pict_type == AV_PICTURE_TYPE_B,
  319. rcc->qscale_sum[pict_type] / (double)rcc->frame_count[pict_type],
  320. a->qcompress,
  321. #if 0
  322. rcc->last_qscale_for[AV_PICTURE_TYPE_I],
  323. rcc->last_qscale_for[AV_PICTURE_TYPE_P],
  324. rcc->last_qscale_for[AV_PICTURE_TYPE_B],
  325. rcc->next_non_b_qscale,
  326. #endif
  327. rcc->i_cplx_sum[AV_PICTURE_TYPE_I] / (double)rcc->frame_count[AV_PICTURE_TYPE_I],
  328. rcc->i_cplx_sum[AV_PICTURE_TYPE_P] / (double)rcc->frame_count[AV_PICTURE_TYPE_P],
  329. rcc->p_cplx_sum[AV_PICTURE_TYPE_P] / (double)rcc->frame_count[AV_PICTURE_TYPE_P],
  330. rcc->p_cplx_sum[AV_PICTURE_TYPE_B] / (double)rcc->frame_count[AV_PICTURE_TYPE_B],
  331. (rcc->i_cplx_sum[pict_type] + rcc->p_cplx_sum[pict_type]) / (double)rcc->frame_count[pict_type],
  332. 0
  333. };
  334. bits = av_expr_eval(rcc->rc_eq_eval, const_values, rce);
  335. if (isnan(bits)) {
  336. av_log(s->avctx, AV_LOG_ERROR, "Error evaluating rc_eq \"%s\"\n", s->avctx->rc_eq);
  337. return -1;
  338. }
  339. rcc->pass1_rc_eq_output_sum += bits;
  340. bits *= rate_factor;
  341. if (bits < 0.0)
  342. bits = 0.0;
  343. bits += 1.0; // avoid 1/0 issues
  344. /* user override */
  345. for (i = 0; i < s->avctx->rc_override_count; i++) {
  346. RcOverride *rco = s->avctx->rc_override;
  347. if (rco[i].start_frame > frame_num)
  348. continue;
  349. if (rco[i].end_frame < frame_num)
  350. continue;
  351. if (rco[i].qscale)
  352. bits = qp2bits(rce, rco[i].qscale); // FIXME move at end to really force it?
  353. else
  354. bits *= rco[i].quality_factor;
  355. }
  356. q = bits2qp(rce, bits);
  357. /* I/B difference */
  358. if (pict_type == AV_PICTURE_TYPE_I && s->avctx->i_quant_factor < 0.0)
  359. q = -q * s->avctx->i_quant_factor + s->avctx->i_quant_offset;
  360. else if (pict_type == AV_PICTURE_TYPE_B && s->avctx->b_quant_factor < 0.0)
  361. q = -q * s->avctx->b_quant_factor + s->avctx->b_quant_offset;
  362. if (q < 1)
  363. q = 1;
  364. return q;
  365. }
  366. static double get_diff_limited_q(MpegEncContext *s, RateControlEntry *rce, double q)
  367. {
  368. RateControlContext *rcc = &s->rc_context;
  369. AVCodecContext *a = s->avctx;
  370. const int pict_type = rce->new_pict_type;
  371. const double last_p_q = rcc->last_qscale_for[AV_PICTURE_TYPE_P];
  372. const double last_non_b_q = rcc->last_qscale_for[rcc->last_non_b_pict_type];
  373. if (pict_type == AV_PICTURE_TYPE_I &&
  374. (a->i_quant_factor > 0.0 || rcc->last_non_b_pict_type == AV_PICTURE_TYPE_P))
  375. q = last_p_q * FFABS(a->i_quant_factor) + a->i_quant_offset;
  376. else if (pict_type == AV_PICTURE_TYPE_B &&
  377. a->b_quant_factor > 0.0)
  378. q = last_non_b_q * a->b_quant_factor + a->b_quant_offset;
  379. if (q < 1)
  380. q = 1;
  381. /* last qscale / qdiff stuff */
  382. if (rcc->last_non_b_pict_type == pict_type || pict_type != AV_PICTURE_TYPE_I) {
  383. double last_q = rcc->last_qscale_for[pict_type];
  384. const int maxdiff = FF_QP2LAMBDA * a->max_qdiff;
  385. if (q > last_q + maxdiff)
  386. q = last_q + maxdiff;
  387. else if (q < last_q - maxdiff)
  388. q = last_q - maxdiff;
  389. }
  390. rcc->last_qscale_for[pict_type] = q; // Note we cannot do that after blurring
  391. if (pict_type != AV_PICTURE_TYPE_B)
  392. rcc->last_non_b_pict_type = pict_type;
  393. return q;
  394. }
  395. /**
  396. * Get the qmin & qmax for pict_type.
  397. */
  398. static void get_qminmax(int *qmin_ret, int *qmax_ret, MpegEncContext *s, int pict_type)
  399. {
  400. int qmin = s->avctx->lmin;
  401. int qmax = s->avctx->lmax;
  402. assert(qmin <= qmax);
  403. switch (pict_type) {
  404. case AV_PICTURE_TYPE_B:
  405. qmin = (int)(qmin * FFABS(s->avctx->b_quant_factor) + s->avctx->b_quant_offset + 0.5);
  406. qmax = (int)(qmax * FFABS(s->avctx->b_quant_factor) + s->avctx->b_quant_offset + 0.5);
  407. break;
  408. case AV_PICTURE_TYPE_I:
  409. qmin = (int)(qmin * FFABS(s->avctx->i_quant_factor) + s->avctx->i_quant_offset + 0.5);
  410. qmax = (int)(qmax * FFABS(s->avctx->i_quant_factor) + s->avctx->i_quant_offset + 0.5);
  411. break;
  412. }
  413. qmin = av_clip(qmin, 1, FF_LAMBDA_MAX);
  414. qmax = av_clip(qmax, 1, FF_LAMBDA_MAX);
  415. if (qmax < qmin)
  416. qmax = qmin;
  417. *qmin_ret = qmin;
  418. *qmax_ret = qmax;
  419. }
  420. static double modify_qscale(MpegEncContext *s, RateControlEntry *rce,
  421. double q, int frame_num)
  422. {
  423. RateControlContext *rcc = &s->rc_context;
  424. const double buffer_size = s->avctx->rc_buffer_size;
  425. const double fps = 1 / av_q2d(s->avctx->time_base);
  426. const double min_rate = s->avctx->rc_min_rate / fps;
  427. const double max_rate = s->avctx->rc_max_rate / fps;
  428. const int pict_type = rce->new_pict_type;
  429. int qmin, qmax;
  430. get_qminmax(&qmin, &qmax, s, pict_type);
  431. /* modulation */
  432. if (s->avctx->rc_qmod_freq &&
  433. frame_num % s->avctx->rc_qmod_freq == 0 &&
  434. pict_type == AV_PICTURE_TYPE_P)
  435. q *= s->avctx->rc_qmod_amp;
  436. /* buffer overflow/underflow protection */
  437. if (buffer_size) {
  438. double expected_size = rcc->buffer_index;
  439. double q_limit;
  440. if (min_rate) {
  441. double d = 2 * (buffer_size - expected_size) / buffer_size;
  442. if (d > 1.0)
  443. d = 1.0;
  444. else if (d < 0.0001)
  445. d = 0.0001;
  446. q *= pow(d, 1.0 / s->avctx->rc_buffer_aggressivity);
  447. q_limit = bits2qp(rce,
  448. FFMAX((min_rate - buffer_size + rcc->buffer_index) *
  449. s->avctx->rc_min_vbv_overflow_use, 1));
  450. if (q > q_limit) {
  451. if (s->avctx->debug & FF_DEBUG_RC)
  452. av_log(s->avctx, AV_LOG_DEBUG,
  453. "limiting QP %f -> %f\n", q, q_limit);
  454. q = q_limit;
  455. }
  456. }
  457. if (max_rate) {
  458. double d = 2 * expected_size / buffer_size;
  459. if (d > 1.0)
  460. d = 1.0;
  461. else if (d < 0.0001)
  462. d = 0.0001;
  463. q /= pow(d, 1.0 / s->avctx->rc_buffer_aggressivity);
  464. q_limit = bits2qp(rce,
  465. FFMAX(rcc->buffer_index *
  466. s->avctx->rc_max_available_vbv_use,
  467. 1));
  468. if (q < q_limit) {
  469. if (s->avctx->debug & FF_DEBUG_RC)
  470. av_log(s->avctx, AV_LOG_DEBUG,
  471. "limiting QP %f -> %f\n", q, q_limit);
  472. q = q_limit;
  473. }
  474. }
  475. }
  476. av_dlog(s, "q:%f max:%f min:%f size:%f index:%f agr:%f\n",
  477. q, max_rate, min_rate, buffer_size, rcc->buffer_index,
  478. s->avctx->rc_buffer_aggressivity);
  479. if (s->avctx->rc_qsquish == 0.0 || qmin == qmax) {
  480. if (q < qmin)
  481. q = qmin;
  482. else if (q > qmax)
  483. q = qmax;
  484. } else {
  485. double min2 = log(qmin);
  486. double max2 = log(qmax);
  487. q = log(q);
  488. q = (q - min2) / (max2 - min2) - 0.5;
  489. q *= -4.0;
  490. q = 1.0 / (1.0 + exp(q));
  491. q = q * (max2 - min2) + min2;
  492. q = exp(q);
  493. }
  494. return q;
  495. }
  496. // ----------------------------------
  497. // 1 Pass Code
  498. static double predict_size(Predictor *p, double q, double var)
  499. {
  500. return p->coeff * var / (q * p->count);
  501. }
  502. static void update_predictor(Predictor *p, double q, double var, double size)
  503. {
  504. double new_coeff = size * q / (var + 1);
  505. if (var < 10)
  506. return;
  507. p->count *= p->decay;
  508. p->coeff *= p->decay;
  509. p->count++;
  510. p->coeff += new_coeff;
  511. }
  512. static void adaptive_quantization(MpegEncContext *s, double q)
  513. {
  514. int i;
  515. const float lumi_masking = s->avctx->lumi_masking / (128.0 * 128.0);
  516. const float dark_masking = s->avctx->dark_masking / (128.0 * 128.0);
  517. const float temp_cplx_masking = s->avctx->temporal_cplx_masking;
  518. const float spatial_cplx_masking = s->avctx->spatial_cplx_masking;
  519. const float p_masking = s->avctx->p_masking;
  520. const float border_masking = s->avctx->border_masking;
  521. float bits_sum = 0.0;
  522. float cplx_sum = 0.0;
  523. float *cplx_tab = s->cplx_tab;
  524. float *bits_tab = s->bits_tab;
  525. const int qmin = s->avctx->mb_lmin;
  526. const int qmax = s->avctx->mb_lmax;
  527. Picture *const pic = &s->current_picture;
  528. const int mb_width = s->mb_width;
  529. const int mb_height = s->mb_height;
  530. for (i = 0; i < s->mb_num; i++) {
  531. const int mb_xy = s->mb_index2xy[i];
  532. float temp_cplx = sqrt(pic->mc_mb_var[mb_xy]); // FIXME merge in pow()
  533. float spat_cplx = sqrt(pic->mb_var[mb_xy]);
  534. const int lumi = pic->mb_mean[mb_xy];
  535. float bits, cplx, factor;
  536. int mb_x = mb_xy % s->mb_stride;
  537. int mb_y = mb_xy / s->mb_stride;
  538. int mb_distance;
  539. float mb_factor = 0.0;
  540. if (spat_cplx < 4)
  541. spat_cplx = 4; // FIXME finetune
  542. if (temp_cplx < 4)
  543. temp_cplx = 4; // FIXME finetune
  544. if ((s->mb_type[mb_xy] & CANDIDATE_MB_TYPE_INTRA)) { // FIXME hq mode
  545. cplx = spat_cplx;
  546. factor = 1.0 + p_masking;
  547. } else {
  548. cplx = temp_cplx;
  549. factor = pow(temp_cplx, -temp_cplx_masking);
  550. }
  551. factor *= pow(spat_cplx, -spatial_cplx_masking);
  552. if (lumi > 127)
  553. factor *= (1.0 - (lumi - 128) * (lumi - 128) * lumi_masking);
  554. else
  555. factor *= (1.0 - (lumi - 128) * (lumi - 128) * dark_masking);
  556. if (mb_x < mb_width / 5) {
  557. mb_distance = mb_width / 5 - mb_x;
  558. mb_factor = (float)mb_distance / (float)(mb_width / 5);
  559. } else if (mb_x > 4 * mb_width / 5) {
  560. mb_distance = mb_x - 4 * mb_width / 5;
  561. mb_factor = (float)mb_distance / (float)(mb_width / 5);
  562. }
  563. if (mb_y < mb_height / 5) {
  564. mb_distance = mb_height / 5 - mb_y;
  565. mb_factor = FFMAX(mb_factor,
  566. (float)mb_distance / (float)(mb_height / 5));
  567. } else if (mb_y > 4 * mb_height / 5) {
  568. mb_distance = mb_y - 4 * mb_height / 5;
  569. mb_factor = FFMAX(mb_factor,
  570. (float)mb_distance / (float)(mb_height / 5));
  571. }
  572. factor *= 1.0 - border_masking * mb_factor;
  573. if (factor < 0.00001)
  574. factor = 0.00001;
  575. bits = cplx * factor;
  576. cplx_sum += cplx;
  577. bits_sum += bits;
  578. cplx_tab[i] = cplx;
  579. bits_tab[i] = bits;
  580. }
  581. /* handle qmin/qmax clipping */
  582. if (s->mpv_flags & FF_MPV_FLAG_NAQ) {
  583. float factor = bits_sum / cplx_sum;
  584. for (i = 0; i < s->mb_num; i++) {
  585. float newq = q * cplx_tab[i] / bits_tab[i];
  586. newq *= factor;
  587. if (newq > qmax) {
  588. bits_sum -= bits_tab[i];
  589. cplx_sum -= cplx_tab[i] * q / qmax;
  590. } else if (newq < qmin) {
  591. bits_sum -= bits_tab[i];
  592. cplx_sum -= cplx_tab[i] * q / qmin;
  593. }
  594. }
  595. if (bits_sum < 0.001)
  596. bits_sum = 0.001;
  597. if (cplx_sum < 0.001)
  598. cplx_sum = 0.001;
  599. }
  600. for (i = 0; i < s->mb_num; i++) {
  601. const int mb_xy = s->mb_index2xy[i];
  602. float newq = q * cplx_tab[i] / bits_tab[i];
  603. int intq;
  604. if (s->mpv_flags & FF_MPV_FLAG_NAQ) {
  605. newq *= bits_sum / cplx_sum;
  606. }
  607. intq = (int)(newq + 0.5);
  608. if (intq > qmax)
  609. intq = qmax;
  610. else if (intq < qmin)
  611. intq = qmin;
  612. s->lambda_table[mb_xy] = intq;
  613. }
  614. }
  615. void ff_get_2pass_fcode(MpegEncContext *s)
  616. {
  617. RateControlContext *rcc = &s->rc_context;
  618. RateControlEntry *rce = &rcc->entry[s->picture_number];
  619. s->f_code = rce->f_code;
  620. s->b_code = rce->b_code;
  621. }
  622. // FIXME rd or at least approx for dquant
  623. float ff_rate_estimate_qscale(MpegEncContext *s, int dry_run)
  624. {
  625. float q;
  626. int qmin, qmax;
  627. float br_compensation;
  628. double diff;
  629. double short_term_q;
  630. double fps;
  631. int picture_number = s->picture_number;
  632. int64_t wanted_bits;
  633. RateControlContext *rcc = &s->rc_context;
  634. AVCodecContext *a = s->avctx;
  635. RateControlEntry local_rce, *rce;
  636. double bits;
  637. double rate_factor;
  638. int var;
  639. const int pict_type = s->pict_type;
  640. Picture * const pic = &s->current_picture;
  641. emms_c();
  642. #if CONFIG_LIBXVID
  643. if ((s->flags & CODEC_FLAG_PASS2) &&
  644. s->avctx->rc_strategy == FF_RC_STRATEGY_XVID)
  645. return ff_xvid_rate_estimate_qscale(s, dry_run);
  646. #endif
  647. get_qminmax(&qmin, &qmax, s, pict_type);
  648. fps = 1 / av_q2d(s->avctx->time_base);
  649. /* update predictors */
  650. if (picture_number > 2 && !dry_run) {
  651. const int last_var = s->last_pict_type == AV_PICTURE_TYPE_I ? rcc->last_mb_var_sum
  652. : rcc->last_mc_mb_var_sum;
  653. update_predictor(&rcc->pred[s->last_pict_type],
  654. rcc->last_qscale,
  655. sqrt(last_var), s->frame_bits);
  656. }
  657. if (s->flags & CODEC_FLAG_PASS2) {
  658. assert(picture_number >= 0);
  659. assert(picture_number < rcc->num_entries);
  660. rce = &rcc->entry[picture_number];
  661. wanted_bits = rce->expected_bits;
  662. } else {
  663. Picture *dts_pic;
  664. rce = &local_rce;
  665. /* FIXME add a dts field to AVFrame and ensure it is set and use it
  666. * here instead of reordering but the reordering is simpler for now
  667. * until H.264 B-pyramid must be handled. */
  668. if (s->pict_type == AV_PICTURE_TYPE_B || s->low_delay)
  669. dts_pic = s->current_picture_ptr;
  670. else
  671. dts_pic = s->last_picture_ptr;
  672. if (!dts_pic || dts_pic->f->pts == AV_NOPTS_VALUE)
  673. wanted_bits = (uint64_t)(s->bit_rate * (double)picture_number / fps);
  674. else
  675. wanted_bits = (uint64_t)(s->bit_rate * (double)dts_pic->f->pts / fps);
  676. }
  677. diff = s->total_bits - wanted_bits;
  678. br_compensation = (a->bit_rate_tolerance - diff) / a->bit_rate_tolerance;
  679. if (br_compensation <= 0.0)
  680. br_compensation = 0.001;
  681. var = pict_type == AV_PICTURE_TYPE_I ? pic->mb_var_sum : pic->mc_mb_var_sum;
  682. short_term_q = 0; /* avoid warning */
  683. if (s->flags & CODEC_FLAG_PASS2) {
  684. if (pict_type != AV_PICTURE_TYPE_I)
  685. assert(pict_type == rce->new_pict_type);
  686. q = rce->new_qscale / br_compensation;
  687. av_dlog(s, "%f %f %f last:%d var:%d type:%d//\n", q, rce->new_qscale,
  688. br_compensation, s->frame_bits, var, pict_type);
  689. } else {
  690. rce->pict_type =
  691. rce->new_pict_type = pict_type;
  692. rce->mc_mb_var_sum = pic->mc_mb_var_sum;
  693. rce->mb_var_sum = pic->mb_var_sum;
  694. rce->qscale = FF_QP2LAMBDA * 2;
  695. rce->f_code = s->f_code;
  696. rce->b_code = s->b_code;
  697. rce->misc_bits = 1;
  698. bits = predict_size(&rcc->pred[pict_type], rce->qscale, sqrt(var));
  699. if (pict_type == AV_PICTURE_TYPE_I) {
  700. rce->i_count = s->mb_num;
  701. rce->i_tex_bits = bits;
  702. rce->p_tex_bits = 0;
  703. rce->mv_bits = 0;
  704. } else {
  705. rce->i_count = 0; // FIXME we do know this approx
  706. rce->i_tex_bits = 0;
  707. rce->p_tex_bits = bits * 0.9;
  708. rce->mv_bits = bits * 0.1;
  709. }
  710. rcc->i_cplx_sum[pict_type] += rce->i_tex_bits * rce->qscale;
  711. rcc->p_cplx_sum[pict_type] += rce->p_tex_bits * rce->qscale;
  712. rcc->mv_bits_sum[pict_type] += rce->mv_bits;
  713. rcc->frame_count[pict_type]++;
  714. bits = rce->i_tex_bits + rce->p_tex_bits;
  715. rate_factor = rcc->pass1_wanted_bits /
  716. rcc->pass1_rc_eq_output_sum * br_compensation;
  717. q = get_qscale(s, rce, rate_factor, picture_number);
  718. if (q < 0)
  719. return -1;
  720. assert(q > 0.0);
  721. q = get_diff_limited_q(s, rce, q);
  722. assert(q > 0.0);
  723. // FIXME type dependent blur like in 2-pass
  724. if (pict_type == AV_PICTURE_TYPE_P || s->intra_only) {
  725. rcc->short_term_qsum *= a->qblur;
  726. rcc->short_term_qcount *= a->qblur;
  727. rcc->short_term_qsum += q;
  728. rcc->short_term_qcount++;
  729. q = short_term_q = rcc->short_term_qsum / rcc->short_term_qcount;
  730. }
  731. assert(q > 0.0);
  732. q = modify_qscale(s, rce, q, picture_number);
  733. rcc->pass1_wanted_bits += s->bit_rate / fps;
  734. assert(q > 0.0);
  735. }
  736. if (s->avctx->debug & FF_DEBUG_RC) {
  737. av_log(s->avctx, AV_LOG_DEBUG,
  738. "%c qp:%d<%2.1f<%d %d want:%d total:%d comp:%f st_q:%2.2f "
  739. "size:%d var:%d/%d br:%d fps:%d\n",
  740. av_get_picture_type_char(pict_type),
  741. qmin, q, qmax, picture_number,
  742. (int)wanted_bits / 1000, (int)s->total_bits / 1000,
  743. br_compensation, short_term_q, s->frame_bits,
  744. pic->mb_var_sum, pic->mc_mb_var_sum,
  745. s->bit_rate / 1000, (int)fps);
  746. }
  747. if (q < qmin)
  748. q = qmin;
  749. else if (q > qmax)
  750. q = qmax;
  751. if (s->adaptive_quant)
  752. adaptive_quantization(s, q);
  753. else
  754. q = (int)(q + 0.5);
  755. if (!dry_run) {
  756. rcc->last_qscale = q;
  757. rcc->last_mc_mb_var_sum = pic->mc_mb_var_sum;
  758. rcc->last_mb_var_sum = pic->mb_var_sum;
  759. }
  760. return q;
  761. }
  762. // ----------------------------------------------
  763. // 2-Pass code
  764. static int init_pass2(MpegEncContext *s)
  765. {
  766. RateControlContext *rcc = &s->rc_context;
  767. AVCodecContext *a = s->avctx;
  768. int i, toobig;
  769. double fps = 1 / av_q2d(s->avctx->time_base);
  770. double complexity[5] = { 0 }; // approximate bits at quant=1
  771. uint64_t const_bits[5] = { 0 }; // quantizer independent bits
  772. uint64_t all_const_bits;
  773. uint64_t all_available_bits = (uint64_t)(s->bit_rate *
  774. (double)rcc->num_entries / fps);
  775. double rate_factor = 0;
  776. double step;
  777. const int filter_size = (int)(a->qblur * 4) | 1;
  778. double expected_bits;
  779. double *qscale, *blurred_qscale, qscale_sum;
  780. /* find complexity & const_bits & decide the pict_types */
  781. for (i = 0; i < rcc->num_entries; i++) {
  782. RateControlEntry *rce = &rcc->entry[i];
  783. rce->new_pict_type = rce->pict_type;
  784. rcc->i_cplx_sum[rce->pict_type] += rce->i_tex_bits * rce->qscale;
  785. rcc->p_cplx_sum[rce->pict_type] += rce->p_tex_bits * rce->qscale;
  786. rcc->mv_bits_sum[rce->pict_type] += rce->mv_bits;
  787. rcc->frame_count[rce->pict_type]++;
  788. complexity[rce->new_pict_type] += (rce->i_tex_bits + rce->p_tex_bits) *
  789. (double)rce->qscale;
  790. const_bits[rce->new_pict_type] += rce->mv_bits + rce->misc_bits;
  791. }
  792. all_const_bits = const_bits[AV_PICTURE_TYPE_I] +
  793. const_bits[AV_PICTURE_TYPE_P] +
  794. const_bits[AV_PICTURE_TYPE_B];
  795. if (all_available_bits < all_const_bits) {
  796. av_log(s->avctx, AV_LOG_ERROR, "requested bitrate is too low\n");
  797. return -1;
  798. }
  799. qscale = av_malloc(sizeof(double) * rcc->num_entries);
  800. blurred_qscale = av_malloc(sizeof(double) * rcc->num_entries);
  801. toobig = 0;
  802. for (step = 256 * 256; step > 0.0000001; step *= 0.5) {
  803. expected_bits = 0;
  804. rate_factor += step;
  805. rcc->buffer_index = s->avctx->rc_buffer_size / 2;
  806. /* find qscale */
  807. for (i = 0; i < rcc->num_entries; i++) {
  808. RateControlEntry *rce = &rcc->entry[i];
  809. qscale[i] = get_qscale(s, &rcc->entry[i], rate_factor, i);
  810. rcc->last_qscale_for[rce->pict_type] = qscale[i];
  811. }
  812. assert(filter_size % 2 == 1);
  813. /* fixed I/B QP relative to P mode */
  814. for (i = rcc->num_entries - 1; i >= 0; i--) {
  815. RateControlEntry *rce = &rcc->entry[i];
  816. qscale[i] = get_diff_limited_q(s, rce, qscale[i]);
  817. }
  818. /* smooth curve */
  819. for (i = 0; i < rcc->num_entries; i++) {
  820. RateControlEntry *rce = &rcc->entry[i];
  821. const int pict_type = rce->new_pict_type;
  822. int j;
  823. double q = 0.0, sum = 0.0;
  824. for (j = 0; j < filter_size; j++) {
  825. int index = i + j - filter_size / 2;
  826. double d = index - i;
  827. double coeff = a->qblur == 0 ? 1.0 : exp(-d * d / (a->qblur * a->qblur));
  828. if (index < 0 || index >= rcc->num_entries)
  829. continue;
  830. if (pict_type != rcc->entry[index].new_pict_type)
  831. continue;
  832. q += qscale[index] * coeff;
  833. sum += coeff;
  834. }
  835. blurred_qscale[i] = q / sum;
  836. }
  837. /* find expected bits */
  838. for (i = 0; i < rcc->num_entries; i++) {
  839. RateControlEntry *rce = &rcc->entry[i];
  840. double bits;
  841. rce->new_qscale = modify_qscale(s, rce, blurred_qscale[i], i);
  842. bits = qp2bits(rce, rce->new_qscale) + rce->mv_bits + rce->misc_bits;
  843. bits += 8 * ff_vbv_update(s, bits);
  844. rce->expected_bits = expected_bits;
  845. expected_bits += bits;
  846. }
  847. av_dlog(s->avctx,
  848. "expected_bits: %f all_available_bits: %d rate_factor: %f\n",
  849. expected_bits, (int)all_available_bits, rate_factor);
  850. if (expected_bits > all_available_bits) {
  851. rate_factor -= step;
  852. ++toobig;
  853. }
  854. }
  855. av_free(qscale);
  856. av_free(blurred_qscale);
  857. /* check bitrate calculations and print info */
  858. qscale_sum = 0.0;
  859. for (i = 0; i < rcc->num_entries; i++) {
  860. av_dlog(s, "[lavc rc] entry[%d].new_qscale = %.3f qp = %.3f\n",
  861. i,
  862. rcc->entry[i].new_qscale,
  863. rcc->entry[i].new_qscale / FF_QP2LAMBDA);
  864. qscale_sum += av_clip(rcc->entry[i].new_qscale / FF_QP2LAMBDA,
  865. s->avctx->qmin, s->avctx->qmax);
  866. }
  867. assert(toobig <= 40);
  868. av_log(s->avctx, AV_LOG_DEBUG,
  869. "[lavc rc] requested bitrate: %d bps expected bitrate: %d bps\n",
  870. s->bit_rate,
  871. (int)(expected_bits / ((double)all_available_bits / s->bit_rate)));
  872. av_log(s->avctx, AV_LOG_DEBUG,
  873. "[lavc rc] estimated target average qp: %.3f\n",
  874. (float)qscale_sum / rcc->num_entries);
  875. if (toobig == 0) {
  876. av_log(s->avctx, AV_LOG_INFO,
  877. "[lavc rc] Using all of requested bitrate is not "
  878. "necessary for this video with these parameters.\n");
  879. } else if (toobig == 40) {
  880. av_log(s->avctx, AV_LOG_ERROR,
  881. "[lavc rc] Error: bitrate too low for this video "
  882. "with these parameters.\n");
  883. return -1;
  884. } else if (fabs(expected_bits / all_available_bits - 1.0) > 0.01) {
  885. av_log(s->avctx, AV_LOG_ERROR,
  886. "[lavc rc] Error: 2pass curve failed to converge\n");
  887. return -1;
  888. }
  889. return 0;
  890. }