You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

718 lines
24KB

  1. /*
  2. * Copyright (c) 2002-2003 Michael Niedermayer <michaelni@gmx.at>
  3. *
  4. * see http://www.pcisys.net/~melanson/codecs/huffyuv.txt for a description of
  5. * the algorithm used
  6. *
  7. * This file is part of Libav.
  8. *
  9. * Libav is free software; you can redistribute it and/or
  10. * modify it under the terms of the GNU Lesser General Public
  11. * License as published by the Free Software Foundation; either
  12. * version 2.1 of the License, or (at your option) any later version.
  13. *
  14. * Libav is distributed in the hope that it will be useful,
  15. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  16. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  17. * Lesser General Public License for more details.
  18. *
  19. * You should have received a copy of the GNU Lesser General Public
  20. * License along with Libav; if not, write to the Free Software
  21. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  22. */
  23. /**
  24. * @file
  25. * huffyuv encoder
  26. */
  27. #include "avcodec.h"
  28. #include "huffyuv.h"
  29. #include "huffman.h"
  30. #include "huffyuvencdsp.h"
  31. #include "put_bits.h"
  32. static inline int sub_left_prediction(HYuvContext *s, uint8_t *dst,
  33. uint8_t *src, int w, int left)
  34. {
  35. int i;
  36. if (w < 32) {
  37. for (i = 0; i < w; i++) {
  38. const int temp = src[i];
  39. dst[i] = temp - left;
  40. left = temp;
  41. }
  42. return left;
  43. } else {
  44. for (i = 0; i < 16; i++) {
  45. const int temp = src[i];
  46. dst[i] = temp - left;
  47. left = temp;
  48. }
  49. s->hencdsp.diff_bytes(dst + 16, src + 16, src + 15, w - 16);
  50. return src[w-1];
  51. }
  52. }
  53. static inline void sub_left_prediction_bgr32(HYuvContext *s, uint8_t *dst,
  54. uint8_t *src, int w,
  55. int *red, int *green, int *blue,
  56. int *alpha)
  57. {
  58. int i;
  59. int r, g, b, a;
  60. r = *red;
  61. g = *green;
  62. b = *blue;
  63. a = *alpha;
  64. for (i = 0; i < FFMIN(w, 4); i++) {
  65. const int rt = src[i * 4 + R];
  66. const int gt = src[i * 4 + G];
  67. const int bt = src[i * 4 + B];
  68. const int at = src[i * 4 + A];
  69. dst[i * 4 + R] = rt - r;
  70. dst[i * 4 + G] = gt - g;
  71. dst[i * 4 + B] = bt - b;
  72. dst[i * 4 + A] = at - a;
  73. r = rt;
  74. g = gt;
  75. b = bt;
  76. a = at;
  77. }
  78. s->hencdsp.diff_bytes(dst + 16, src + 16, src + 12, w * 4 - 16);
  79. *red = src[(w - 1) * 4 + R];
  80. *green = src[(w - 1) * 4 + G];
  81. *blue = src[(w - 1) * 4 + B];
  82. *alpha = src[(w - 1) * 4 + A];
  83. }
  84. static inline void sub_left_prediction_rgb24(HYuvContext *s, uint8_t *dst,
  85. uint8_t *src, int w,
  86. int *red, int *green, int *blue)
  87. {
  88. int i;
  89. int r, g, b;
  90. r = *red;
  91. g = *green;
  92. b = *blue;
  93. for (i = 0; i < FFMIN(w, 16); i++) {
  94. const int rt = src[i * 3 + 0];
  95. const int gt = src[i * 3 + 1];
  96. const int bt = src[i * 3 + 2];
  97. dst[i * 3 + 0] = rt - r;
  98. dst[i * 3 + 1] = gt - g;
  99. dst[i * 3 + 2] = bt - b;
  100. r = rt;
  101. g = gt;
  102. b = bt;
  103. }
  104. s->hencdsp.diff_bytes(dst + 48, src + 48, src + 48 - 3, w * 3 - 48);
  105. *red = src[(w - 1) * 3 + 0];
  106. *green = src[(w - 1) * 3 + 1];
  107. *blue = src[(w - 1) * 3 + 2];
  108. }
  109. static int store_table(HYuvContext *s, const uint8_t *len, uint8_t *buf)
  110. {
  111. int i;
  112. int index = 0;
  113. for (i = 0; i < 256;) {
  114. int val = len[i];
  115. int repeat = 0;
  116. for (; i < 256 && len[i] == val && repeat < 255; i++)
  117. repeat++;
  118. assert(val < 32 && val >0 && repeat<256 && repeat>0);
  119. if ( repeat > 7) {
  120. buf[index++] = val;
  121. buf[index++] = repeat;
  122. } else {
  123. buf[index++] = val | (repeat << 5);
  124. }
  125. }
  126. return index;
  127. }
  128. static av_cold int encode_init(AVCodecContext *avctx)
  129. {
  130. HYuvContext *s = avctx->priv_data;
  131. int i, j;
  132. ff_huffyuv_common_init(avctx);
  133. ff_huffyuvencdsp_init(&s->hencdsp);
  134. avctx->extradata = av_mallocz(1024*30); // 256*3+4 == 772
  135. avctx->stats_out = av_mallocz(1024*30); // 21*256*3(%llu ) + 3(\n) + 1(0) = 16132
  136. s->version = 2;
  137. avctx->coded_frame = av_frame_alloc();
  138. if (!avctx->coded_frame)
  139. return AVERROR(ENOMEM);
  140. avctx->coded_frame->pict_type = AV_PICTURE_TYPE_I;
  141. avctx->coded_frame->key_frame = 1;
  142. switch (avctx->pix_fmt) {
  143. case AV_PIX_FMT_YUV420P:
  144. case AV_PIX_FMT_YUV422P:
  145. if (s->width & 1) {
  146. av_log(avctx, AV_LOG_ERROR, "Width must be even for this colorspace.\n");
  147. return -1;
  148. }
  149. s->bitstream_bpp = avctx->pix_fmt == AV_PIX_FMT_YUV420P ? 12 : 16;
  150. break;
  151. case AV_PIX_FMT_RGB32:
  152. s->bitstream_bpp = 32;
  153. break;
  154. case AV_PIX_FMT_RGB24:
  155. s->bitstream_bpp = 24;
  156. break;
  157. default:
  158. av_log(avctx, AV_LOG_ERROR, "format not supported\n");
  159. return -1;
  160. }
  161. avctx->bits_per_coded_sample = s->bitstream_bpp;
  162. s->decorrelate = s->bitstream_bpp >= 24;
  163. s->predictor = avctx->prediction_method;
  164. s->interlaced = avctx->flags&CODEC_FLAG_INTERLACED_ME ? 1 : 0;
  165. if (avctx->context_model == 1) {
  166. s->context = avctx->context_model;
  167. if (s->flags & (CODEC_FLAG_PASS1|CODEC_FLAG_PASS2)) {
  168. av_log(avctx, AV_LOG_ERROR,
  169. "context=1 is not compatible with "
  170. "2 pass huffyuv encoding\n");
  171. return -1;
  172. }
  173. }else s->context= 0;
  174. if (avctx->codec->id == AV_CODEC_ID_HUFFYUV) {
  175. if (avctx->pix_fmt == AV_PIX_FMT_YUV420P) {
  176. av_log(avctx, AV_LOG_ERROR,
  177. "Error: YV12 is not supported by huffyuv; use "
  178. "vcodec=ffvhuff or format=422p\n");
  179. return -1;
  180. }
  181. if (avctx->context_model) {
  182. av_log(avctx, AV_LOG_ERROR,
  183. "Error: per-frame huffman tables are not supported "
  184. "by huffyuv; use vcodec=ffvhuff\n");
  185. return -1;
  186. }
  187. if (s->interlaced != ( s->height > 288 ))
  188. av_log(avctx, AV_LOG_INFO,
  189. "using huffyuv 2.2.0 or newer interlacing flag\n");
  190. }
  191. if (s->bitstream_bpp >= 24 && s->predictor == MEDIAN) {
  192. av_log(avctx, AV_LOG_ERROR,
  193. "Error: RGB is incompatible with median predictor\n");
  194. return -1;
  195. }
  196. ((uint8_t*)avctx->extradata)[0] = s->predictor | (s->decorrelate << 6);
  197. ((uint8_t*)avctx->extradata)[1] = s->bitstream_bpp;
  198. ((uint8_t*)avctx->extradata)[2] = s->interlaced ? 0x10 : 0x20;
  199. if (s->context)
  200. ((uint8_t*)avctx->extradata)[2] |= 0x40;
  201. ((uint8_t*)avctx->extradata)[3] = 0;
  202. s->avctx->extradata_size = 4;
  203. if (avctx->stats_in) {
  204. char *p = avctx->stats_in;
  205. for (i = 0; i < 3; i++)
  206. for (j = 0; j < 256; j++)
  207. s->stats[i][j] = 1;
  208. for (;;) {
  209. for (i = 0; i < 3; i++) {
  210. char *next;
  211. for (j = 0; j < 256; j++) {
  212. s->stats[i][j] += strtol(p, &next, 0);
  213. if (next == p) return -1;
  214. p = next;
  215. }
  216. }
  217. if (p[0] == 0 || p[1] == 0 || p[2] == 0) break;
  218. }
  219. } else {
  220. for (i = 0; i < 3; i++)
  221. for (j = 0; j < 256; j++) {
  222. int d = FFMIN(j, 256 - j);
  223. s->stats[i][j] = 100000000 / (d + 1);
  224. }
  225. }
  226. for (i = 0; i < 3; i++) {
  227. ff_huff_gen_len_table(s->len[i], s->stats[i]);
  228. if (ff_huffyuv_generate_bits_table(s->bits[i], s->len[i]) < 0) {
  229. return -1;
  230. }
  231. s->avctx->extradata_size +=
  232. store_table(s, s->len[i], &((uint8_t*)s->avctx->extradata)[s->avctx->extradata_size]);
  233. }
  234. if (s->context) {
  235. for (i = 0; i < 3; i++) {
  236. int pels = s->width * s->height / (i ? 40 : 10);
  237. for (j = 0; j < 256; j++) {
  238. int d = FFMIN(j, 256 - j);
  239. s->stats[i][j] = pels/(d + 1);
  240. }
  241. }
  242. } else {
  243. for (i = 0; i < 3; i++)
  244. for (j = 0; j < 256; j++)
  245. s->stats[i][j]= 0;
  246. }
  247. ff_huffyuv_alloc_temp(s);
  248. s->picture_number=0;
  249. return 0;
  250. }
  251. static int encode_422_bitstream(HYuvContext *s, int offset, int count)
  252. {
  253. int i;
  254. const uint8_t *y = s->temp[0] + offset;
  255. const uint8_t *u = s->temp[1] + offset / 2;
  256. const uint8_t *v = s->temp[2] + offset / 2;
  257. if (s->pb.buf_end - s->pb.buf - (put_bits_count(&s->pb) >> 3) < 2 * 4 * count) {
  258. av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
  259. return -1;
  260. }
  261. #define LOAD4\
  262. int y0 = y[2 * i];\
  263. int y1 = y[2 * i + 1];\
  264. int u0 = u[i];\
  265. int v0 = v[i];
  266. count /= 2;
  267. if (s->flags & CODEC_FLAG_PASS1) {
  268. for(i = 0; i < count; i++) {
  269. LOAD4;
  270. s->stats[0][y0]++;
  271. s->stats[1][u0]++;
  272. s->stats[0][y1]++;
  273. s->stats[2][v0]++;
  274. }
  275. }
  276. if (s->avctx->flags2 & CODEC_FLAG2_NO_OUTPUT)
  277. return 0;
  278. if (s->context) {
  279. for (i = 0; i < count; i++) {
  280. LOAD4;
  281. s->stats[0][y0]++;
  282. put_bits(&s->pb, s->len[0][y0], s->bits[0][y0]);
  283. s->stats[1][u0]++;
  284. put_bits(&s->pb, s->len[1][u0], s->bits[1][u0]);
  285. s->stats[0][y1]++;
  286. put_bits(&s->pb, s->len[0][y1], s->bits[0][y1]);
  287. s->stats[2][v0]++;
  288. put_bits(&s->pb, s->len[2][v0], s->bits[2][v0]);
  289. }
  290. } else {
  291. for(i = 0; i < count; i++) {
  292. LOAD4;
  293. put_bits(&s->pb, s->len[0][y0], s->bits[0][y0]);
  294. put_bits(&s->pb, s->len[1][u0], s->bits[1][u0]);
  295. put_bits(&s->pb, s->len[0][y1], s->bits[0][y1]);
  296. put_bits(&s->pb, s->len[2][v0], s->bits[2][v0]);
  297. }
  298. }
  299. return 0;
  300. }
  301. static int encode_gray_bitstream(HYuvContext *s, int count)
  302. {
  303. int i;
  304. if (s->pb.buf_end - s->pb.buf - (put_bits_count(&s->pb) >> 3) < 4 * count) {
  305. av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
  306. return -1;
  307. }
  308. #define LOAD2\
  309. int y0 = s->temp[0][2 * i];\
  310. int y1 = s->temp[0][2 * i + 1];
  311. #define STAT2\
  312. s->stats[0][y0]++;\
  313. s->stats[0][y1]++;
  314. #define WRITE2\
  315. put_bits(&s->pb, s->len[0][y0], s->bits[0][y0]);\
  316. put_bits(&s->pb, s->len[0][y1], s->bits[0][y1]);
  317. count /= 2;
  318. if (s->flags & CODEC_FLAG_PASS1) {
  319. for (i = 0; i < count; i++) {
  320. LOAD2;
  321. STAT2;
  322. }
  323. }
  324. if (s->avctx->flags2 & CODEC_FLAG2_NO_OUTPUT)
  325. return 0;
  326. if (s->context) {
  327. for (i = 0; i < count; i++) {
  328. LOAD2;
  329. STAT2;
  330. WRITE2;
  331. }
  332. } else {
  333. for (i = 0; i < count; i++) {
  334. LOAD2;
  335. WRITE2;
  336. }
  337. }
  338. return 0;
  339. }
  340. static inline int encode_bgra_bitstream(HYuvContext *s, int count, int planes)
  341. {
  342. int i;
  343. if (s->pb.buf_end - s->pb.buf - (put_bits_count(&s->pb) >> 3) <
  344. 4 * planes * count) {
  345. av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
  346. return -1;
  347. }
  348. #define LOAD_GBRA \
  349. int g = s->temp[0][planes == 3 ? 3 * i + 1 : 4 * i + G]; \
  350. int b = s->temp[0][planes == 3 ? 3 * i + 2 : 4 * i + B] - g & 0xFF; \
  351. int r = s->temp[0][planes == 3 ? 3 * i + 0 : 4 * i + R] - g & 0xFF; \
  352. int a = s->temp[0][planes * i + A];
  353. #define STAT_BGRA \
  354. s->stats[0][b]++; \
  355. s->stats[1][g]++; \
  356. s->stats[2][r]++; \
  357. if (planes == 4) \
  358. s->stats[2][a]++;
  359. #define WRITE_GBRA \
  360. put_bits(&s->pb, s->len[1][g], s->bits[1][g]); \
  361. put_bits(&s->pb, s->len[0][b], s->bits[0][b]); \
  362. put_bits(&s->pb, s->len[2][r], s->bits[2][r]); \
  363. if (planes == 4) \
  364. put_bits(&s->pb, s->len[2][a], s->bits[2][a]);
  365. if ((s->flags & CODEC_FLAG_PASS1) &&
  366. (s->avctx->flags2 & CODEC_FLAG2_NO_OUTPUT)) {
  367. for (i = 0; i < count; i++) {
  368. LOAD_GBRA;
  369. STAT_BGRA;
  370. }
  371. } else if (s->context || (s->flags & CODEC_FLAG_PASS1)) {
  372. for (i = 0; i < count; i++) {
  373. LOAD_GBRA;
  374. STAT_BGRA;
  375. WRITE_GBRA;
  376. }
  377. } else {
  378. for (i = 0; i < count; i++) {
  379. LOAD_GBRA;
  380. WRITE_GBRA;
  381. }
  382. }
  383. return 0;
  384. }
  385. static int encode_frame(AVCodecContext *avctx, AVPacket *pkt,
  386. const AVFrame *pict, int *got_packet)
  387. {
  388. HYuvContext *s = avctx->priv_data;
  389. const int width = s->width;
  390. const int width2 = s->width>>1;
  391. const int height = s->height;
  392. const int fake_ystride = s->interlaced ? pict->linesize[0]*2 : pict->linesize[0];
  393. const int fake_ustride = s->interlaced ? pict->linesize[1]*2 : pict->linesize[1];
  394. const int fake_vstride = s->interlaced ? pict->linesize[2]*2 : pict->linesize[2];
  395. const AVFrame * const p = pict;
  396. int i, j, size = 0, ret;
  397. if (!pkt->data &&
  398. (ret = av_new_packet(pkt, width * height * 3 * 4 + FF_MIN_BUFFER_SIZE)) < 0) {
  399. av_log(avctx, AV_LOG_ERROR, "Error allocating output packet.\n");
  400. return ret;
  401. }
  402. if (s->context) {
  403. for (i = 0; i < 3; i++) {
  404. ff_huff_gen_len_table(s->len[i], s->stats[i]);
  405. if (ff_huffyuv_generate_bits_table(s->bits[i], s->len[i]) < 0)
  406. return -1;
  407. size += store_table(s, s->len[i], &pkt->data[size]);
  408. }
  409. for (i = 0; i < 3; i++)
  410. for (j = 0; j < 256; j++)
  411. s->stats[i][j] >>= 1;
  412. }
  413. init_put_bits(&s->pb, pkt->data + size, pkt->size - size);
  414. if (avctx->pix_fmt == AV_PIX_FMT_YUV422P ||
  415. avctx->pix_fmt == AV_PIX_FMT_YUV420P) {
  416. int lefty, leftu, leftv, y, cy;
  417. put_bits(&s->pb, 8, leftv = p->data[2][0]);
  418. put_bits(&s->pb, 8, lefty = p->data[0][1]);
  419. put_bits(&s->pb, 8, leftu = p->data[1][0]);
  420. put_bits(&s->pb, 8, p->data[0][0]);
  421. lefty = sub_left_prediction(s, s->temp[0], p->data[0], width , 0);
  422. leftu = sub_left_prediction(s, s->temp[1], p->data[1], width2, 0);
  423. leftv = sub_left_prediction(s, s->temp[2], p->data[2], width2, 0);
  424. encode_422_bitstream(s, 2, width-2);
  425. if (s->predictor==MEDIAN) {
  426. int lefttopy, lefttopu, lefttopv;
  427. cy = y = 1;
  428. if (s->interlaced) {
  429. lefty = sub_left_prediction(s, s->temp[0], p->data[0] + p->linesize[0], width , lefty);
  430. leftu = sub_left_prediction(s, s->temp[1], p->data[1] + p->linesize[1], width2, leftu);
  431. leftv = sub_left_prediction(s, s->temp[2], p->data[2] + p->linesize[2], width2, leftv);
  432. encode_422_bitstream(s, 0, width);
  433. y++; cy++;
  434. }
  435. lefty = sub_left_prediction(s, s->temp[0], p->data[0] + fake_ystride, 4, lefty);
  436. leftu = sub_left_prediction(s, s->temp[1], p->data[1] + fake_ustride, 2, leftu);
  437. leftv = sub_left_prediction(s, s->temp[2], p->data[2] + fake_vstride, 2, leftv);
  438. encode_422_bitstream(s, 0, 4);
  439. lefttopy = p->data[0][3];
  440. lefttopu = p->data[1][1];
  441. lefttopv = p->data[2][1];
  442. s->hencdsp.sub_hfyu_median_pred(s->temp[0], p->data[0] + 4, p->data[0] + fake_ystride + 4, width - 4, &lefty, &lefttopy);
  443. s->hencdsp.sub_hfyu_median_pred(s->temp[1], p->data[1] + 2, p->data[1] + fake_ustride + 2, width2 - 2, &leftu, &lefttopu);
  444. s->hencdsp.sub_hfyu_median_pred(s->temp[2], p->data[2] + 2, p->data[2] + fake_vstride + 2, width2 - 2, &leftv, &lefttopv);
  445. encode_422_bitstream(s, 0, width - 4);
  446. y++; cy++;
  447. for (; y < height; y++,cy++) {
  448. uint8_t *ydst, *udst, *vdst;
  449. if (s->bitstream_bpp == 12) {
  450. while (2 * cy > y) {
  451. ydst = p->data[0] + p->linesize[0] * y;
  452. s->hencdsp.sub_hfyu_median_pred(s->temp[0], ydst - fake_ystride, ydst, width, &lefty, &lefttopy);
  453. encode_gray_bitstream(s, width);
  454. y++;
  455. }
  456. if (y >= height) break;
  457. }
  458. ydst = p->data[0] + p->linesize[0] * y;
  459. udst = p->data[1] + p->linesize[1] * cy;
  460. vdst = p->data[2] + p->linesize[2] * cy;
  461. s->hencdsp.sub_hfyu_median_pred(s->temp[0], ydst - fake_ystride, ydst, width, &lefty, &lefttopy);
  462. s->hencdsp.sub_hfyu_median_pred(s->temp[1], udst - fake_ustride, udst, width2, &leftu, &lefttopu);
  463. s->hencdsp.sub_hfyu_median_pred(s->temp[2], vdst - fake_vstride, vdst, width2, &leftv, &lefttopv);
  464. encode_422_bitstream(s, 0, width);
  465. }
  466. } else {
  467. for (cy = y = 1; y < height; y++, cy++) {
  468. uint8_t *ydst, *udst, *vdst;
  469. /* encode a luma only line & y++ */
  470. if (s->bitstream_bpp == 12) {
  471. ydst = p->data[0] + p->linesize[0] * y;
  472. if (s->predictor == PLANE && s->interlaced < y) {
  473. s->hencdsp.diff_bytes(s->temp[1], ydst, ydst - fake_ystride, width);
  474. lefty = sub_left_prediction(s, s->temp[0], s->temp[1], width , lefty);
  475. } else {
  476. lefty = sub_left_prediction(s, s->temp[0], ydst, width , lefty);
  477. }
  478. encode_gray_bitstream(s, width);
  479. y++;
  480. if (y >= height) break;
  481. }
  482. ydst = p->data[0] + p->linesize[0] * y;
  483. udst = p->data[1] + p->linesize[1] * cy;
  484. vdst = p->data[2] + p->linesize[2] * cy;
  485. if (s->predictor == PLANE && s->interlaced < cy) {
  486. s->hencdsp.diff_bytes(s->temp[1], ydst, ydst - fake_ystride, width);
  487. s->hencdsp.diff_bytes(s->temp[2], udst, udst - fake_ustride, width2);
  488. s->hencdsp.diff_bytes(s->temp[2] + width2, vdst, vdst - fake_vstride, width2);
  489. lefty = sub_left_prediction(s, s->temp[0], s->temp[1], width , lefty);
  490. leftu = sub_left_prediction(s, s->temp[1], s->temp[2], width2, leftu);
  491. leftv = sub_left_prediction(s, s->temp[2], s->temp[2] + width2, width2, leftv);
  492. } else {
  493. lefty = sub_left_prediction(s, s->temp[0], ydst, width , lefty);
  494. leftu = sub_left_prediction(s, s->temp[1], udst, width2, leftu);
  495. leftv = sub_left_prediction(s, s->temp[2], vdst, width2, leftv);
  496. }
  497. encode_422_bitstream(s, 0, width);
  498. }
  499. }
  500. } else if(avctx->pix_fmt == AV_PIX_FMT_RGB32) {
  501. uint8_t *data = p->data[0] + (height - 1) * p->linesize[0];
  502. const int stride = -p->linesize[0];
  503. const int fake_stride = -fake_ystride;
  504. int y;
  505. int leftr, leftg, leftb, lefta;
  506. put_bits(&s->pb, 8, lefta = data[A]);
  507. put_bits(&s->pb, 8, leftr = data[R]);
  508. put_bits(&s->pb, 8, leftg = data[G]);
  509. put_bits(&s->pb, 8, leftb = data[B]);
  510. sub_left_prediction_bgr32(s, s->temp[0], data + 4, width - 1,
  511. &leftr, &leftg, &leftb, &lefta);
  512. encode_bgra_bitstream(s, width - 1, 4);
  513. for (y = 1; y < s->height; y++) {
  514. uint8_t *dst = data + y*stride;
  515. if (s->predictor == PLANE && s->interlaced < y) {
  516. s->hencdsp.diff_bytes(s->temp[1], dst, dst - fake_stride, width * 4);
  517. sub_left_prediction_bgr32(s, s->temp[0], s->temp[1], width,
  518. &leftr, &leftg, &leftb, &lefta);
  519. } else {
  520. sub_left_prediction_bgr32(s, s->temp[0], dst, width,
  521. &leftr, &leftg, &leftb, &lefta);
  522. }
  523. encode_bgra_bitstream(s, width, 4);
  524. }
  525. } else if (avctx->pix_fmt == AV_PIX_FMT_RGB24) {
  526. uint8_t *data = p->data[0] + (height - 1) * p->linesize[0];
  527. const int stride = -p->linesize[0];
  528. const int fake_stride = -fake_ystride;
  529. int y;
  530. int leftr, leftg, leftb;
  531. put_bits(&s->pb, 8, leftr = data[0]);
  532. put_bits(&s->pb, 8, leftg = data[1]);
  533. put_bits(&s->pb, 8, leftb = data[2]);
  534. put_bits(&s->pb, 8, 0);
  535. sub_left_prediction_rgb24(s, s->temp[0], data + 3, width - 1,
  536. &leftr, &leftg, &leftb);
  537. encode_bgra_bitstream(s, width-1, 3);
  538. for (y = 1; y < s->height; y++) {
  539. uint8_t *dst = data + y * stride;
  540. if (s->predictor == PLANE && s->interlaced < y) {
  541. s->hencdsp.diff_bytes(s->temp[1], dst, dst - fake_stride,
  542. width * 3);
  543. sub_left_prediction_rgb24(s, s->temp[0], s->temp[1], width,
  544. &leftr, &leftg, &leftb);
  545. } else {
  546. sub_left_prediction_rgb24(s, s->temp[0], dst, width,
  547. &leftr, &leftg, &leftb);
  548. }
  549. encode_bgra_bitstream(s, width, 3);
  550. }
  551. } else {
  552. av_log(avctx, AV_LOG_ERROR, "Format not supported!\n");
  553. }
  554. emms_c();
  555. size += (put_bits_count(&s->pb) + 31) / 8;
  556. put_bits(&s->pb, 16, 0);
  557. put_bits(&s->pb, 15, 0);
  558. size /= 4;
  559. if ((s->flags&CODEC_FLAG_PASS1) && (s->picture_number & 31) == 0) {
  560. int j;
  561. char *p = avctx->stats_out;
  562. char *end = p + 1024*30;
  563. for (i = 0; i < 3; i++) {
  564. for (j = 0; j < 256; j++) {
  565. snprintf(p, end-p, "%"PRIu64" ", s->stats[i][j]);
  566. p += strlen(p);
  567. s->stats[i][j]= 0;
  568. }
  569. snprintf(p, end-p, "\n");
  570. p++;
  571. }
  572. } else
  573. avctx->stats_out[0] = '\0';
  574. if (!(s->avctx->flags2 & CODEC_FLAG2_NO_OUTPUT)) {
  575. flush_put_bits(&s->pb);
  576. s->dsp.bswap_buf((uint32_t*)pkt->data, (uint32_t*)pkt->data, size);
  577. }
  578. s->picture_number++;
  579. pkt->size = size * 4;
  580. pkt->flags |= AV_PKT_FLAG_KEY;
  581. *got_packet = 1;
  582. return 0;
  583. }
  584. static av_cold int encode_end(AVCodecContext *avctx)
  585. {
  586. HYuvContext *s = avctx->priv_data;
  587. ff_huffyuv_common_end(s);
  588. av_freep(&avctx->extradata);
  589. av_freep(&avctx->stats_out);
  590. av_frame_free(&avctx->coded_frame);
  591. return 0;
  592. }
  593. AVCodec ff_huffyuv_encoder = {
  594. .name = "huffyuv",
  595. .long_name = NULL_IF_CONFIG_SMALL("Huffyuv / HuffYUV"),
  596. .type = AVMEDIA_TYPE_VIDEO,
  597. .id = AV_CODEC_ID_HUFFYUV,
  598. .priv_data_size = sizeof(HYuvContext),
  599. .init = encode_init,
  600. .encode2 = encode_frame,
  601. .close = encode_end,
  602. .pix_fmts = (const enum AVPixelFormat[]){
  603. AV_PIX_FMT_YUV422P, AV_PIX_FMT_RGB24,
  604. AV_PIX_FMT_RGB32, AV_PIX_FMT_NONE
  605. },
  606. };
  607. #if CONFIG_FFVHUFF_ENCODER
  608. AVCodec ff_ffvhuff_encoder = {
  609. .name = "ffvhuff",
  610. .long_name = NULL_IF_CONFIG_SMALL("Huffyuv FFmpeg variant"),
  611. .type = AVMEDIA_TYPE_VIDEO,
  612. .id = AV_CODEC_ID_FFVHUFF,
  613. .priv_data_size = sizeof(HYuvContext),
  614. .init = encode_init,
  615. .encode2 = encode_frame,
  616. .close = encode_end,
  617. .pix_fmts = (const enum AVPixelFormat[]){
  618. AV_PIX_FMT_YUV420P, AV_PIX_FMT_YUV422P, AV_PIX_FMT_RGB24,
  619. AV_PIX_FMT_RGB32, AV_PIX_FMT_NONE
  620. },
  621. };
  622. #endif