You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

321 lines
11KB

  1. /*
  2. * DV decoder
  3. * Copyright (c) 2002 Fabrice Bellard
  4. * Copyright (c) 2004 Roman Shaposhnik
  5. *
  6. * DV encoder
  7. * Copyright (c) 2003 Roman Shaposhnik
  8. *
  9. * 50 Mbps (DVCPRO50) support
  10. * Copyright (c) 2006 Daniel Maas <dmaas@maasdigital.com>
  11. *
  12. * 100 Mbps (DVCPRO HD) support
  13. * Initial code by Daniel Maas <dmaas@maasdigital.com> (funded by BBC R&D)
  14. * Final code by Roman Shaposhnik
  15. *
  16. * Many thanks to Dan Dennedy <dan@dennedy.org> for providing wealth
  17. * of DV technical info.
  18. *
  19. * This file is part of Libav.
  20. *
  21. * Libav is free software; you can redistribute it and/or
  22. * modify it under the terms of the GNU Lesser General Public
  23. * License as published by the Free Software Foundation; either
  24. * version 2.1 of the License, or (at your option) any later version.
  25. *
  26. * Libav is distributed in the hope that it will be useful,
  27. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  28. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  29. * Lesser General Public License for more details.
  30. *
  31. * You should have received a copy of the GNU Lesser General Public
  32. * License along with Libav; if not, write to the Free Software
  33. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  34. */
  35. /**
  36. * @file
  37. * DV codec.
  38. */
  39. #include "libavutil/internal.h"
  40. #include "libavutil/pixdesc.h"
  41. #include "avcodec.h"
  42. #include "get_bits.h"
  43. #include "internal.h"
  44. #include "put_bits.h"
  45. #include "simple_idct.h"
  46. #include "dvdata.h"
  47. #include "dv.h"
  48. /* XXX: also include quantization */
  49. RL_VLC_ELEM ff_dv_rl_vlc[1184];
  50. static inline void dv_calc_mb_coordinates(const DVprofile *d, int chan, int seq, int slot,
  51. uint16_t *tbl)
  52. {
  53. static const uint8_t off[] = { 2, 6, 8, 0, 4 };
  54. static const uint8_t shuf1[] = { 36, 18, 54, 0, 72 };
  55. static const uint8_t shuf2[] = { 24, 12, 36, 0, 48 };
  56. static const uint8_t shuf3[] = { 18, 9, 27, 0, 36 };
  57. static const uint8_t l_start[] = {0, 4, 9, 13, 18, 22, 27, 31, 36, 40};
  58. static const uint8_t l_start_shuffled[] = { 9, 4, 13, 0, 18 };
  59. static const uint8_t serpent1[] = {0, 1, 2, 2, 1, 0,
  60. 0, 1, 2, 2, 1, 0,
  61. 0, 1, 2, 2, 1, 0,
  62. 0, 1, 2, 2, 1, 0,
  63. 0, 1, 2};
  64. static const uint8_t serpent2[] = {0, 1, 2, 3, 4, 5, 5, 4, 3, 2, 1, 0,
  65. 0, 1, 2, 3, 4, 5, 5, 4, 3, 2, 1, 0,
  66. 0, 1, 2, 3, 4, 5};
  67. static const uint8_t remap[][2] = {{ 0, 0}, { 0, 0}, { 0, 0}, { 0, 0}, /* dummy */
  68. { 0, 0}, { 0, 1}, { 0, 2}, { 0, 3}, {10, 0},
  69. {10, 1}, {10, 2}, {10, 3}, {20, 0}, {20, 1},
  70. {20, 2}, {20, 3}, {30, 0}, {30, 1}, {30, 2},
  71. {30, 3}, {40, 0}, {40, 1}, {40, 2}, {40, 3},
  72. {50, 0}, {50, 1}, {50, 2}, {50, 3}, {60, 0},
  73. {60, 1}, {60, 2}, {60, 3}, {70, 0}, {70, 1},
  74. {70, 2}, {70, 3}, { 0,64}, { 0,65}, { 0,66},
  75. {10,64}, {10,65}, {10,66}, {20,64}, {20,65},
  76. {20,66}, {30,64}, {30,65}, {30,66}, {40,64},
  77. {40,65}, {40,66}, {50,64}, {50,65}, {50,66},
  78. {60,64}, {60,65}, {60,66}, {70,64}, {70,65},
  79. {70,66}, { 0,67}, {20,67}, {40,67}, {60,67}};
  80. int i, k, m;
  81. int x, y, blk;
  82. for (m=0; m<5; m++) {
  83. switch (d->width) {
  84. case 1440:
  85. blk = (chan*11+seq)*27+slot;
  86. if (chan == 0 && seq == 11) {
  87. x = m*27+slot;
  88. if (x<90) {
  89. y = 0;
  90. } else {
  91. x = (x - 90)*2;
  92. y = 67;
  93. }
  94. } else {
  95. i = (4*chan + blk + off[m])%11;
  96. k = (blk/11)%27;
  97. x = shuf1[m] + (chan&1)*9 + k%9;
  98. y = (i*3+k/9)*2 + (chan>>1) + 1;
  99. }
  100. tbl[m] = (x<<1)|(y<<9);
  101. break;
  102. case 1280:
  103. blk = (chan*10+seq)*27+slot;
  104. i = (4*chan + (seq/5) + 2*blk + off[m])%10;
  105. k = (blk/5)%27;
  106. x = shuf1[m]+(chan&1)*9 + k%9;
  107. y = (i*3+k/9)*2 + (chan>>1) + 4;
  108. if (x >= 80) {
  109. x = remap[y][0]+((x-80)<<(y>59));
  110. y = remap[y][1];
  111. }
  112. tbl[m] = (x<<1)|(y<<9);
  113. break;
  114. case 960:
  115. blk = (chan*10+seq)*27+slot;
  116. i = (4*chan + (seq/5) + 2*blk + off[m])%10;
  117. k = (blk/5)%27 + (i&1)*3;
  118. x = shuf2[m] + k%6 + 6*(chan&1);
  119. y = l_start[i] + k/6 + 45*(chan>>1);
  120. tbl[m] = (x<<1)|(y<<9);
  121. break;
  122. case 720:
  123. switch (d->pix_fmt) {
  124. case AV_PIX_FMT_YUV422P:
  125. x = shuf3[m] + slot/3;
  126. y = serpent1[slot] +
  127. ((((seq + off[m]) % d->difseg_size)<<1) + chan)*3;
  128. tbl[m] = (x<<1)|(y<<8);
  129. break;
  130. case AV_PIX_FMT_YUV420P:
  131. x = shuf3[m] + slot/3;
  132. y = serpent1[slot] +
  133. ((seq + off[m]) % d->difseg_size)*3;
  134. tbl[m] = (x<<1)|(y<<9);
  135. break;
  136. case AV_PIX_FMT_YUV411P:
  137. i = (seq + off[m]) % d->difseg_size;
  138. k = slot + ((m==1||m==2)?3:0);
  139. x = l_start_shuffled[m] + k/6;
  140. y = serpent2[k] + i*6;
  141. if (x>21)
  142. y = y*2 - i*6;
  143. tbl[m] = (x<<2)|(y<<8);
  144. break;
  145. }
  146. default:
  147. break;
  148. }
  149. }
  150. }
  151. /* quantization quanta by QNO for DV100 */
  152. static const uint8_t dv100_qstep[16] = {
  153. 1, /* QNO = 0 and 1 both have no quantization */
  154. 1,
  155. 2, 3, 4, 5, 6, 7, 8, 16, 18, 20, 22, 24, 28, 52
  156. };
  157. static const uint8_t dv_quant_areas[4] = { 6, 21, 43, 64 };
  158. int ff_dv_init_dynamic_tables(const DVprofile *d)
  159. {
  160. int j,i,c,s,p;
  161. uint32_t *factor1, *factor2;
  162. const int *iweight1, *iweight2;
  163. if (!d->work_chunks[dv_work_pool_size(d)-1].buf_offset) {
  164. p = i = 0;
  165. for (c=0; c<d->n_difchan; c++) {
  166. for (s=0; s<d->difseg_size; s++) {
  167. p += 6;
  168. for (j=0; j<27; j++) {
  169. p += !(j%3);
  170. if (!(DV_PROFILE_IS_1080i50(d) && c != 0 && s == 11) &&
  171. !(DV_PROFILE_IS_720p50(d) && s > 9)) {
  172. dv_calc_mb_coordinates(d, c, s, j, &d->work_chunks[i].mb_coordinates[0]);
  173. d->work_chunks[i++].buf_offset = p;
  174. }
  175. p += 5;
  176. }
  177. }
  178. }
  179. }
  180. if (!d->idct_factor[DV_PROFILE_IS_HD(d)?8191:5631]) {
  181. factor1 = &d->idct_factor[0];
  182. factor2 = &d->idct_factor[DV_PROFILE_IS_HD(d)?4096:2816];
  183. if (d->height == 720) {
  184. iweight1 = &ff_dv_iweight_720_y[0];
  185. iweight2 = &ff_dv_iweight_720_c[0];
  186. } else {
  187. iweight1 = &ff_dv_iweight_1080_y[0];
  188. iweight2 = &ff_dv_iweight_1080_c[0];
  189. }
  190. if (DV_PROFILE_IS_HD(d)) {
  191. for (c = 0; c < 4; c++) {
  192. for (s = 0; s < 16; s++) {
  193. for (i = 0; i < 64; i++) {
  194. *factor1++ = (dv100_qstep[s] << (c + 9)) * iweight1[i];
  195. *factor2++ = (dv100_qstep[s] << (c + 9)) * iweight2[i];
  196. }
  197. }
  198. }
  199. } else {
  200. iweight1 = &ff_dv_iweight_88[0];
  201. for (j = 0; j < 2; j++, iweight1 = &ff_dv_iweight_248[0]) {
  202. for (s = 0; s < 22; s++) {
  203. for (i = c = 0; c < 4; c++) {
  204. for (; i < dv_quant_areas[c]; i++) {
  205. *factor1 = iweight1[i] << (ff_dv_quant_shifts[s][c] + 1);
  206. *factor2++ = (*factor1++) << 1;
  207. }
  208. }
  209. }
  210. }
  211. }
  212. }
  213. return 0;
  214. }
  215. av_cold int ff_dvvideo_init(AVCodecContext *avctx)
  216. {
  217. DVVideoContext *s = avctx->priv_data;
  218. DSPContext dsp;
  219. static int done = 0;
  220. int i, j;
  221. if (!done) {
  222. VLC dv_vlc;
  223. uint16_t new_dv_vlc_bits[NB_DV_VLC*2];
  224. uint8_t new_dv_vlc_len[NB_DV_VLC*2];
  225. uint8_t new_dv_vlc_run[NB_DV_VLC*2];
  226. int16_t new_dv_vlc_level[NB_DV_VLC*2];
  227. done = 1;
  228. /* it's faster to include sign bit in a generic VLC parsing scheme */
  229. for (i = 0, j = 0; i < NB_DV_VLC; i++, j++) {
  230. new_dv_vlc_bits[j] = ff_dv_vlc_bits[i];
  231. new_dv_vlc_len[j] = ff_dv_vlc_len[i];
  232. new_dv_vlc_run[j] = ff_dv_vlc_run[i];
  233. new_dv_vlc_level[j] = ff_dv_vlc_level[i];
  234. if (ff_dv_vlc_level[i]) {
  235. new_dv_vlc_bits[j] <<= 1;
  236. new_dv_vlc_len[j]++;
  237. j++;
  238. new_dv_vlc_bits[j] = (ff_dv_vlc_bits[i] << 1) | 1;
  239. new_dv_vlc_len[j] = ff_dv_vlc_len[i] + 1;
  240. new_dv_vlc_run[j] = ff_dv_vlc_run[i];
  241. new_dv_vlc_level[j] = -ff_dv_vlc_level[i];
  242. }
  243. }
  244. /* NOTE: as a trick, we use the fact the no codes are unused
  245. to accelerate the parsing of partial codes */
  246. init_vlc(&dv_vlc, TEX_VLC_BITS, j,
  247. new_dv_vlc_len, 1, 1, new_dv_vlc_bits, 2, 2, 0);
  248. assert(dv_vlc.table_size == 1184);
  249. for (i = 0; i < dv_vlc.table_size; i++){
  250. int code = dv_vlc.table[i][0];
  251. int len = dv_vlc.table[i][1];
  252. int level, run;
  253. if (len < 0){ //more bits needed
  254. run = 0;
  255. level = code;
  256. } else {
  257. run = new_dv_vlc_run [code] + 1;
  258. level = new_dv_vlc_level[code];
  259. }
  260. ff_dv_rl_vlc[i].len = len;
  261. ff_dv_rl_vlc[i].level = level;
  262. ff_dv_rl_vlc[i].run = run;
  263. }
  264. ff_free_vlc(&dv_vlc);
  265. }
  266. /* Generic DSP setup */
  267. ff_dsputil_init(&dsp, avctx);
  268. ff_set_cmp(&dsp, dsp.ildct_cmp, avctx->ildct_cmp);
  269. s->get_pixels = dsp.get_pixels;
  270. s->ildct_cmp = dsp.ildct_cmp[5];
  271. /* 88DCT setup */
  272. s->fdct[0] = dsp.fdct;
  273. s->idct_put[0] = dsp.idct_put;
  274. for (i = 0; i < 64; i++)
  275. s->dv_zigzag[0][i] = dsp.idct_permutation[ff_zigzag_direct[i]];
  276. /* 248DCT setup */
  277. s->fdct[1] = dsp.fdct248;
  278. s->idct_put[1] = ff_simple_idct248_put; // FIXME: need to add it to DSP
  279. memcpy(s->dv_zigzag[1], ff_dv_zigzag248_direct, 64);
  280. s->avctx = avctx;
  281. avctx->chroma_sample_location = AVCHROMA_LOC_TOPLEFT;
  282. return 0;
  283. }