You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1137 lines
38KB

  1. /*
  2. * VC3/DNxHD encoder
  3. * Copyright (c) 2007 Baptiste Coudurier <baptiste dot coudurier at smartjog dot com>
  4. * Copyright (c) 2011 MirriAd Ltd
  5. *
  6. * VC-3 encoder funded by the British Broadcasting Corporation
  7. * 10 bit support added by MirriAd Ltd, Joseph Artsimovich <joseph@mirriad.com>
  8. *
  9. * This file is part of Libav.
  10. *
  11. * Libav is free software; you can redistribute it and/or
  12. * modify it under the terms of the GNU Lesser General Public
  13. * License as published by the Free Software Foundation; either
  14. * version 2.1 of the License, or (at your option) any later version.
  15. *
  16. * Libav is distributed in the hope that it will be useful,
  17. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  18. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  19. * Lesser General Public License for more details.
  20. *
  21. * You should have received a copy of the GNU Lesser General Public
  22. * License along with Libav; if not, write to the Free Software
  23. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  24. */
  25. #include "libavutil/attributes.h"
  26. #include "libavutil/internal.h"
  27. #include "libavutil/opt.h"
  28. #include "libavutil/timer.h"
  29. #include "avcodec.h"
  30. #include "dsputil.h"
  31. #include "internal.h"
  32. #include "mpegvideo.h"
  33. #include "dnxhdenc.h"
  34. // The largest value that will not lead to overflow for 10bit samples.
  35. #define DNX10BIT_QMAT_SHIFT 18
  36. #define RC_VARIANCE 1 // use variance or ssd for fast rc
  37. #define LAMBDA_FRAC_BITS 10
  38. #define VE AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_ENCODING_PARAM
  39. static const AVOption options[] = {
  40. { "nitris_compat", "encode with Avid Nitris compatibility",
  41. offsetof(DNXHDEncContext, nitris_compat), AV_OPT_TYPE_INT, { .i64 = 0 }, 0, 1, VE },
  42. { NULL }
  43. };
  44. static const AVClass class = {
  45. "dnxhd",
  46. av_default_item_name,
  47. options,
  48. LIBAVUTIL_VERSION_INT
  49. };
  50. static void dnxhd_8bit_get_pixels_8x4_sym(int16_t *restrict block,
  51. const uint8_t *pixels,
  52. ptrdiff_t line_size)
  53. {
  54. int i;
  55. for (i = 0; i < 4; i++) {
  56. block[0] = pixels[0];
  57. block[1] = pixels[1];
  58. block[2] = pixels[2];
  59. block[3] = pixels[3];
  60. block[4] = pixels[4];
  61. block[5] = pixels[5];
  62. block[6] = pixels[6];
  63. block[7] = pixels[7];
  64. pixels += line_size;
  65. block += 8;
  66. }
  67. memcpy(block, block - 8, sizeof(*block) * 8);
  68. memcpy(block + 8, block - 16, sizeof(*block) * 8);
  69. memcpy(block + 16, block - 24, sizeof(*block) * 8);
  70. memcpy(block + 24, block - 32, sizeof(*block) * 8);
  71. }
  72. static av_always_inline
  73. void dnxhd_10bit_get_pixels_8x4_sym(int16_t *restrict block,
  74. const uint8_t *pixels,
  75. ptrdiff_t line_size)
  76. {
  77. int i;
  78. block += 32;
  79. for (i = 0; i < 4; i++) {
  80. memcpy(block + i * 8, pixels + i * line_size, 8 * sizeof(*block));
  81. memcpy(block - (i + 1) * 8, pixels + i * line_size, 8 * sizeof(*block));
  82. }
  83. }
  84. static int dnxhd_10bit_dct_quantize(MpegEncContext *ctx, int16_t *block,
  85. int n, int qscale, int *overflow)
  86. {
  87. const uint8_t *scantable= ctx->intra_scantable.scantable;
  88. const int *qmat = ctx->q_intra_matrix[qscale];
  89. int last_non_zero = 0;
  90. int i;
  91. ctx->dsp.fdct(block);
  92. // Divide by 4 with rounding, to compensate scaling of DCT coefficients
  93. block[0] = (block[0] + 2) >> 2;
  94. for (i = 1; i < 64; ++i) {
  95. int j = scantable[i];
  96. int sign = block[j] >> 31;
  97. int level = (block[j] ^ sign) - sign;
  98. level = level * qmat[j] >> DNX10BIT_QMAT_SHIFT;
  99. block[j] = (level ^ sign) - sign;
  100. if (level)
  101. last_non_zero = i;
  102. }
  103. return last_non_zero;
  104. }
  105. static av_cold int dnxhd_init_vlc(DNXHDEncContext *ctx)
  106. {
  107. int i, j, level, run;
  108. int max_level = 1 << (ctx->cid_table->bit_depth + 2);
  109. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->vlc_codes,
  110. max_level * 4 * sizeof(*ctx->vlc_codes), fail);
  111. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->vlc_bits,
  112. max_level * 4 * sizeof(*ctx->vlc_bits), fail);
  113. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->run_codes,
  114. 63 * 2, fail);
  115. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->run_bits,
  116. 63, fail);
  117. ctx->vlc_codes += max_level * 2;
  118. ctx->vlc_bits += max_level * 2;
  119. for (level = -max_level; level < max_level; level++) {
  120. for (run = 0; run < 2; run++) {
  121. int index = (level << 1) | run;
  122. int sign, offset = 0, alevel = level;
  123. MASK_ABS(sign, alevel);
  124. if (alevel > 64) {
  125. offset = (alevel - 1) >> 6;
  126. alevel -= offset << 6;
  127. }
  128. for (j = 0; j < 257; j++) {
  129. if (ctx->cid_table->ac_level[j] == alevel &&
  130. (!offset || (ctx->cid_table->ac_index_flag[j] && offset)) &&
  131. (!run || (ctx->cid_table->ac_run_flag [j] && run))) {
  132. assert(!ctx->vlc_codes[index]);
  133. if (alevel) {
  134. ctx->vlc_codes[index] =
  135. (ctx->cid_table->ac_codes[j] << 1) | (sign & 1);
  136. ctx->vlc_bits[index] = ctx->cid_table->ac_bits[j] + 1;
  137. } else {
  138. ctx->vlc_codes[index] = ctx->cid_table->ac_codes[j];
  139. ctx->vlc_bits[index] = ctx->cid_table->ac_bits[j];
  140. }
  141. break;
  142. }
  143. }
  144. assert(!alevel || j < 257);
  145. if (offset) {
  146. ctx->vlc_codes[index] =
  147. (ctx->vlc_codes[index] << ctx->cid_table->index_bits) | offset;
  148. ctx->vlc_bits[index] += ctx->cid_table->index_bits;
  149. }
  150. }
  151. }
  152. for (i = 0; i < 62; i++) {
  153. int run = ctx->cid_table->run[i];
  154. assert(run < 63);
  155. ctx->run_codes[run] = ctx->cid_table->run_codes[i];
  156. ctx->run_bits[run] = ctx->cid_table->run_bits[i];
  157. }
  158. return 0;
  159. fail:
  160. return AVERROR(ENOMEM);
  161. }
  162. static av_cold int dnxhd_init_qmat(DNXHDEncContext *ctx, int lbias, int cbias)
  163. {
  164. // init first elem to 1 to avoid div by 0 in convert_matrix
  165. uint16_t weight_matrix[64] = { 1, }; // convert_matrix needs uint16_t*
  166. int qscale, i;
  167. const uint8_t *luma_weight_table = ctx->cid_table->luma_weight;
  168. const uint8_t *chroma_weight_table = ctx->cid_table->chroma_weight;
  169. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->qmatrix_l,
  170. (ctx->m.avctx->qmax + 1) * 64 * sizeof(int), fail);
  171. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->qmatrix_c,
  172. (ctx->m.avctx->qmax + 1) * 64 * sizeof(int), fail);
  173. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->qmatrix_l16,
  174. (ctx->m.avctx->qmax + 1) * 64 * 2 * sizeof(uint16_t),
  175. fail);
  176. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->qmatrix_c16,
  177. (ctx->m.avctx->qmax + 1) * 64 * 2 * sizeof(uint16_t),
  178. fail);
  179. if (ctx->cid_table->bit_depth == 8) {
  180. for (i = 1; i < 64; i++) {
  181. int j = ctx->m.dsp.idct_permutation[ff_zigzag_direct[i]];
  182. weight_matrix[j] = ctx->cid_table->luma_weight[i];
  183. }
  184. ff_convert_matrix(&ctx->m.dsp, ctx->qmatrix_l, ctx->qmatrix_l16,
  185. weight_matrix, ctx->m.intra_quant_bias, 1,
  186. ctx->m.avctx->qmax, 1);
  187. for (i = 1; i < 64; i++) {
  188. int j = ctx->m.dsp.idct_permutation[ff_zigzag_direct[i]];
  189. weight_matrix[j] = ctx->cid_table->chroma_weight[i];
  190. }
  191. ff_convert_matrix(&ctx->m.dsp, ctx->qmatrix_c, ctx->qmatrix_c16,
  192. weight_matrix, ctx->m.intra_quant_bias, 1,
  193. ctx->m.avctx->qmax, 1);
  194. for (qscale = 1; qscale <= ctx->m.avctx->qmax; qscale++) {
  195. for (i = 0; i < 64; i++) {
  196. ctx->qmatrix_l[qscale][i] <<= 2;
  197. ctx->qmatrix_c[qscale][i] <<= 2;
  198. ctx->qmatrix_l16[qscale][0][i] <<= 2;
  199. ctx->qmatrix_l16[qscale][1][i] <<= 2;
  200. ctx->qmatrix_c16[qscale][0][i] <<= 2;
  201. ctx->qmatrix_c16[qscale][1][i] <<= 2;
  202. }
  203. }
  204. } else {
  205. // 10-bit
  206. for (qscale = 1; qscale <= ctx->m.avctx->qmax; qscale++) {
  207. for (i = 1; i < 64; i++) {
  208. int j = ctx->m.dsp.idct_permutation[ff_zigzag_direct[i]];
  209. /* The quantization formula from the VC-3 standard is:
  210. * quantized = sign(block[i]) * floor(abs(block[i]/s) * p /
  211. * (qscale * weight_table[i]))
  212. * Where p is 32 for 8-bit samples and 8 for 10-bit ones.
  213. * The s factor compensates scaling of DCT coefficients done by
  214. * the DCT routines, and therefore is not present in standard.
  215. * It's 8 for 8-bit samples and 4 for 10-bit ones.
  216. * We want values of ctx->qtmatrix_l and ctx->qtmatrix_r to be:
  217. * ((1 << DNX10BIT_QMAT_SHIFT) * (p / s)) /
  218. * (qscale * weight_table[i])
  219. * For 10-bit samples, p / s == 2 */
  220. ctx->qmatrix_l[qscale][j] = (1 << (DNX10BIT_QMAT_SHIFT + 1)) /
  221. (qscale * luma_weight_table[i]);
  222. ctx->qmatrix_c[qscale][j] = (1 << (DNX10BIT_QMAT_SHIFT + 1)) /
  223. (qscale * chroma_weight_table[i]);
  224. }
  225. }
  226. }
  227. return 0;
  228. fail:
  229. return AVERROR(ENOMEM);
  230. }
  231. static av_cold int dnxhd_init_rc(DNXHDEncContext *ctx)
  232. {
  233. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->mb_rc,
  234. 8160 * ctx->m.avctx->qmax * sizeof(RCEntry), fail);
  235. if (ctx->m.avctx->mb_decision != FF_MB_DECISION_RD)
  236. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->mb_cmp,
  237. ctx->m.mb_num * sizeof(RCCMPEntry), fail);
  238. ctx->frame_bits = (ctx->cid_table->coding_unit_size -
  239. 640 - 4 - ctx->min_padding) * 8;
  240. ctx->qscale = 1;
  241. ctx->lambda = 2 << LAMBDA_FRAC_BITS; // qscale 2
  242. return 0;
  243. fail:
  244. return AVERROR(ENOMEM);
  245. }
  246. static av_cold int dnxhd_encode_init(AVCodecContext *avctx)
  247. {
  248. DNXHDEncContext *ctx = avctx->priv_data;
  249. int i, index, bit_depth, ret;
  250. switch (avctx->pix_fmt) {
  251. case AV_PIX_FMT_YUV422P:
  252. bit_depth = 8;
  253. break;
  254. case AV_PIX_FMT_YUV422P10:
  255. bit_depth = 10;
  256. break;
  257. default:
  258. av_log(avctx, AV_LOG_ERROR,
  259. "pixel format is incompatible with DNxHD\n");
  260. return AVERROR(EINVAL);
  261. }
  262. ctx->cid = ff_dnxhd_find_cid(avctx, bit_depth);
  263. if (!ctx->cid) {
  264. av_log(avctx, AV_LOG_ERROR,
  265. "video parameters incompatible with DNxHD\n");
  266. return AVERROR(EINVAL);
  267. }
  268. av_log(avctx, AV_LOG_DEBUG, "cid %d\n", ctx->cid);
  269. index = ff_dnxhd_get_cid_table(ctx->cid);
  270. ctx->cid_table = &ff_dnxhd_cid_table[index];
  271. ctx->m.avctx = avctx;
  272. ctx->m.mb_intra = 1;
  273. ctx->m.h263_aic = 1;
  274. avctx->bits_per_raw_sample = ctx->cid_table->bit_depth;
  275. ff_dsputil_init(&ctx->m.dsp, avctx);
  276. ff_dct_common_init(&ctx->m);
  277. if (!ctx->m.dct_quantize)
  278. ctx->m.dct_quantize = ff_dct_quantize_c;
  279. if (ctx->cid_table->bit_depth == 10) {
  280. ctx->m.dct_quantize = dnxhd_10bit_dct_quantize;
  281. ctx->get_pixels_8x4_sym = dnxhd_10bit_get_pixels_8x4_sym;
  282. ctx->block_width_l2 = 4;
  283. } else {
  284. ctx->get_pixels_8x4_sym = dnxhd_8bit_get_pixels_8x4_sym;
  285. ctx->block_width_l2 = 3;
  286. }
  287. if (ARCH_X86)
  288. ff_dnxhdenc_init_x86(ctx);
  289. ctx->m.mb_height = (avctx->height + 15) / 16;
  290. ctx->m.mb_width = (avctx->width + 15) / 16;
  291. if (avctx->flags & CODEC_FLAG_INTERLACED_DCT) {
  292. ctx->interlaced = 1;
  293. ctx->m.mb_height /= 2;
  294. }
  295. ctx->m.mb_num = ctx->m.mb_height * ctx->m.mb_width;
  296. if (avctx->intra_quant_bias != FF_DEFAULT_QUANT_BIAS)
  297. ctx->m.intra_quant_bias = avctx->intra_quant_bias;
  298. // XXX tune lbias/cbias
  299. if ((ret = dnxhd_init_qmat(ctx, ctx->m.intra_quant_bias, 0)) < 0)
  300. return ret;
  301. /* Avid Nitris hardware decoder requires a minimum amount of padding
  302. * in the coding unit payload */
  303. if (ctx->nitris_compat)
  304. ctx->min_padding = 1600;
  305. if ((ret = dnxhd_init_vlc(ctx)) < 0)
  306. return ret;
  307. if ((ret = dnxhd_init_rc(ctx)) < 0)
  308. return ret;
  309. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->slice_size,
  310. ctx->m.mb_height * sizeof(uint32_t), fail);
  311. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->slice_offs,
  312. ctx->m.mb_height * sizeof(uint32_t), fail);
  313. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->mb_bits,
  314. ctx->m.mb_num * sizeof(uint16_t), fail);
  315. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->mb_qscale,
  316. ctx->m.mb_num * sizeof(uint8_t), fail);
  317. avctx->coded_frame = av_frame_alloc();
  318. if (!avctx->coded_frame)
  319. return AVERROR(ENOMEM);
  320. avctx->coded_frame->key_frame = 1;
  321. avctx->coded_frame->pict_type = AV_PICTURE_TYPE_I;
  322. if (avctx->thread_count > MAX_THREADS) {
  323. av_log(avctx, AV_LOG_ERROR, "too many threads\n");
  324. return AVERROR(EINVAL);
  325. }
  326. ctx->thread[0] = ctx;
  327. for (i = 1; i < avctx->thread_count; i++) {
  328. ctx->thread[i] = av_malloc(sizeof(DNXHDEncContext));
  329. memcpy(ctx->thread[i], ctx, sizeof(DNXHDEncContext));
  330. }
  331. return 0;
  332. fail: // for FF_ALLOCZ_OR_GOTO
  333. return AVERROR(ENOMEM);
  334. }
  335. static int dnxhd_write_header(AVCodecContext *avctx, uint8_t *buf)
  336. {
  337. DNXHDEncContext *ctx = avctx->priv_data;
  338. const uint8_t header_prefix[5] = { 0x00, 0x00, 0x02, 0x80, 0x01 };
  339. memset(buf, 0, 640);
  340. memcpy(buf, header_prefix, 5);
  341. buf[5] = ctx->interlaced ? ctx->cur_field + 2 : 0x01;
  342. buf[6] = 0x80; // crc flag off
  343. buf[7] = 0xa0; // reserved
  344. AV_WB16(buf + 0x18, avctx->height >> ctx->interlaced); // ALPF
  345. AV_WB16(buf + 0x1a, avctx->width); // SPL
  346. AV_WB16(buf + 0x1d, avctx->height >> ctx->interlaced); // NAL
  347. buf[0x21] = ctx->cid_table->bit_depth == 10 ? 0x58 : 0x38;
  348. buf[0x22] = 0x88 + (ctx->interlaced << 2);
  349. AV_WB32(buf + 0x28, ctx->cid); // CID
  350. buf[0x2c] = ctx->interlaced ? 0 : 0x80;
  351. buf[0x5f] = 0x01; // UDL
  352. buf[0x167] = 0x02; // reserved
  353. AV_WB16(buf + 0x16a, ctx->m.mb_height * 4 + 4); // MSIPS
  354. buf[0x16d] = ctx->m.mb_height; // Ns
  355. buf[0x16f] = 0x10; // reserved
  356. ctx->msip = buf + 0x170;
  357. return 0;
  358. }
  359. static av_always_inline void dnxhd_encode_dc(DNXHDEncContext *ctx, int diff)
  360. {
  361. int nbits;
  362. if (diff < 0) {
  363. nbits = av_log2_16bit(-2 * diff);
  364. diff--;
  365. } else {
  366. nbits = av_log2_16bit(2 * diff);
  367. }
  368. put_bits(&ctx->m.pb, ctx->cid_table->dc_bits[nbits] + nbits,
  369. (ctx->cid_table->dc_codes[nbits] << nbits) +
  370. (diff & ((1 << nbits) - 1)));
  371. }
  372. static av_always_inline
  373. void dnxhd_encode_block(DNXHDEncContext *ctx, int16_t *block,
  374. int last_index, int n)
  375. {
  376. int last_non_zero = 0;
  377. int slevel, i, j;
  378. dnxhd_encode_dc(ctx, block[0] - ctx->m.last_dc[n]);
  379. ctx->m.last_dc[n] = block[0];
  380. for (i = 1; i <= last_index; i++) {
  381. j = ctx->m.intra_scantable.permutated[i];
  382. slevel = block[j];
  383. if (slevel) {
  384. int run_level = i - last_non_zero - 1;
  385. int rlevel = (slevel << 1) | !!run_level;
  386. put_bits(&ctx->m.pb, ctx->vlc_bits[rlevel], ctx->vlc_codes[rlevel]);
  387. if (run_level)
  388. put_bits(&ctx->m.pb, ctx->run_bits[run_level],
  389. ctx->run_codes[run_level]);
  390. last_non_zero = i;
  391. }
  392. }
  393. put_bits(&ctx->m.pb, ctx->vlc_bits[0], ctx->vlc_codes[0]); // EOB
  394. }
  395. static av_always_inline
  396. void dnxhd_unquantize_c(DNXHDEncContext *ctx, int16_t *block, int n,
  397. int qscale, int last_index)
  398. {
  399. const uint8_t *weight_matrix;
  400. int level;
  401. int i;
  402. weight_matrix = (n & 2) ? ctx->cid_table->chroma_weight
  403. : ctx->cid_table->luma_weight;
  404. for (i = 1; i <= last_index; i++) {
  405. int j = ctx->m.intra_scantable.permutated[i];
  406. level = block[j];
  407. if (level) {
  408. if (level < 0) {
  409. level = (1 - 2 * level) * qscale * weight_matrix[i];
  410. if (ctx->cid_table->bit_depth == 10) {
  411. if (weight_matrix[i] != 8)
  412. level += 8;
  413. level >>= 4;
  414. } else {
  415. if (weight_matrix[i] != 32)
  416. level += 32;
  417. level >>= 6;
  418. }
  419. level = -level;
  420. } else {
  421. level = (2 * level + 1) * qscale * weight_matrix[i];
  422. if (ctx->cid_table->bit_depth == 10) {
  423. if (weight_matrix[i] != 8)
  424. level += 8;
  425. level >>= 4;
  426. } else {
  427. if (weight_matrix[i] != 32)
  428. level += 32;
  429. level >>= 6;
  430. }
  431. }
  432. block[j] = level;
  433. }
  434. }
  435. }
  436. static av_always_inline int dnxhd_ssd_block(int16_t *qblock, int16_t *block)
  437. {
  438. int score = 0;
  439. int i;
  440. for (i = 0; i < 64; i++)
  441. score += (block[i] - qblock[i]) * (block[i] - qblock[i]);
  442. return score;
  443. }
  444. static av_always_inline
  445. int dnxhd_calc_ac_bits(DNXHDEncContext *ctx, int16_t *block, int last_index)
  446. {
  447. int last_non_zero = 0;
  448. int bits = 0;
  449. int i, j, level;
  450. for (i = 1; i <= last_index; i++) {
  451. j = ctx->m.intra_scantable.permutated[i];
  452. level = block[j];
  453. if (level) {
  454. int run_level = i - last_non_zero - 1;
  455. bits += ctx->vlc_bits[(level << 1) |
  456. !!run_level] + ctx->run_bits[run_level];
  457. last_non_zero = i;
  458. }
  459. }
  460. return bits;
  461. }
  462. static av_always_inline
  463. void dnxhd_get_blocks(DNXHDEncContext *ctx, int mb_x, int mb_y)
  464. {
  465. const int bs = ctx->block_width_l2;
  466. const int bw = 1 << bs;
  467. const uint8_t *ptr_y = ctx->thread[0]->src[0] +
  468. ((mb_y << 4) * ctx->m.linesize) + (mb_x << bs + 1);
  469. const uint8_t *ptr_u = ctx->thread[0]->src[1] +
  470. ((mb_y << 4) * ctx->m.uvlinesize) + (mb_x << bs);
  471. const uint8_t *ptr_v = ctx->thread[0]->src[2] +
  472. ((mb_y << 4) * ctx->m.uvlinesize) + (mb_x << bs);
  473. DSPContext *dsp = &ctx->m.dsp;
  474. dsp->get_pixels(ctx->blocks[0], ptr_y, ctx->m.linesize);
  475. dsp->get_pixels(ctx->blocks[1], ptr_y + bw, ctx->m.linesize);
  476. dsp->get_pixels(ctx->blocks[2], ptr_u, ctx->m.uvlinesize);
  477. dsp->get_pixels(ctx->blocks[3], ptr_v, ctx->m.uvlinesize);
  478. if (mb_y + 1 == ctx->m.mb_height && ctx->m.avctx->height == 1080) {
  479. if (ctx->interlaced) {
  480. ctx->get_pixels_8x4_sym(ctx->blocks[4],
  481. ptr_y + ctx->dct_y_offset,
  482. ctx->m.linesize);
  483. ctx->get_pixels_8x4_sym(ctx->blocks[5],
  484. ptr_y + ctx->dct_y_offset + bw,
  485. ctx->m.linesize);
  486. ctx->get_pixels_8x4_sym(ctx->blocks[6],
  487. ptr_u + ctx->dct_uv_offset,
  488. ctx->m.uvlinesize);
  489. ctx->get_pixels_8x4_sym(ctx->blocks[7],
  490. ptr_v + ctx->dct_uv_offset,
  491. ctx->m.uvlinesize);
  492. } else {
  493. dsp->clear_block(ctx->blocks[4]);
  494. dsp->clear_block(ctx->blocks[5]);
  495. dsp->clear_block(ctx->blocks[6]);
  496. dsp->clear_block(ctx->blocks[7]);
  497. }
  498. } else {
  499. dsp->get_pixels(ctx->blocks[4],
  500. ptr_y + ctx->dct_y_offset, ctx->m.linesize);
  501. dsp->get_pixels(ctx->blocks[5],
  502. ptr_y + ctx->dct_y_offset + bw, ctx->m.linesize);
  503. dsp->get_pixels(ctx->blocks[6],
  504. ptr_u + ctx->dct_uv_offset, ctx->m.uvlinesize);
  505. dsp->get_pixels(ctx->blocks[7],
  506. ptr_v + ctx->dct_uv_offset, ctx->m.uvlinesize);
  507. }
  508. }
  509. static av_always_inline
  510. int dnxhd_switch_matrix(DNXHDEncContext *ctx, int i)
  511. {
  512. if (i & 2) {
  513. ctx->m.q_intra_matrix16 = ctx->qmatrix_c16;
  514. ctx->m.q_intra_matrix = ctx->qmatrix_c;
  515. return 1 + (i & 1);
  516. } else {
  517. ctx->m.q_intra_matrix16 = ctx->qmatrix_l16;
  518. ctx->m.q_intra_matrix = ctx->qmatrix_l;
  519. return 0;
  520. }
  521. }
  522. static int dnxhd_calc_bits_thread(AVCodecContext *avctx, void *arg,
  523. int jobnr, int threadnr)
  524. {
  525. DNXHDEncContext *ctx = avctx->priv_data;
  526. int mb_y = jobnr, mb_x;
  527. int qscale = ctx->qscale;
  528. LOCAL_ALIGNED_16(int16_t, block, [64]);
  529. ctx = ctx->thread[threadnr];
  530. ctx->m.last_dc[0] =
  531. ctx->m.last_dc[1] =
  532. ctx->m.last_dc[2] = 1 << (ctx->cid_table->bit_depth + 2);
  533. for (mb_x = 0; mb_x < ctx->m.mb_width; mb_x++) {
  534. unsigned mb = mb_y * ctx->m.mb_width + mb_x;
  535. int ssd = 0;
  536. int ac_bits = 0;
  537. int dc_bits = 0;
  538. int i;
  539. dnxhd_get_blocks(ctx, mb_x, mb_y);
  540. for (i = 0; i < 8; i++) {
  541. int16_t *src_block = ctx->blocks[i];
  542. int overflow, nbits, diff, last_index;
  543. int n = dnxhd_switch_matrix(ctx, i);
  544. memcpy(block, src_block, 64 * sizeof(*block));
  545. last_index = ctx->m.dct_quantize(&ctx->m, block, i,
  546. qscale, &overflow);
  547. ac_bits += dnxhd_calc_ac_bits(ctx, block, last_index);
  548. diff = block[0] - ctx->m.last_dc[n];
  549. if (diff < 0)
  550. nbits = av_log2_16bit(-2 * diff);
  551. else
  552. nbits = av_log2_16bit(2 * diff);
  553. assert(nbits < ctx->cid_table->bit_depth + 4);
  554. dc_bits += ctx->cid_table->dc_bits[nbits] + nbits;
  555. ctx->m.last_dc[n] = block[0];
  556. if (avctx->mb_decision == FF_MB_DECISION_RD || !RC_VARIANCE) {
  557. dnxhd_unquantize_c(ctx, block, i, qscale, last_index);
  558. ctx->m.dsp.idct(block);
  559. ssd += dnxhd_ssd_block(block, src_block);
  560. }
  561. }
  562. ctx->mb_rc[qscale][mb].ssd = ssd;
  563. ctx->mb_rc[qscale][mb].bits = ac_bits + dc_bits + 12 +
  564. 8 * ctx->vlc_bits[0];
  565. }
  566. return 0;
  567. }
  568. static int dnxhd_encode_thread(AVCodecContext *avctx, void *arg,
  569. int jobnr, int threadnr)
  570. {
  571. DNXHDEncContext *ctx = avctx->priv_data;
  572. int mb_y = jobnr, mb_x;
  573. ctx = ctx->thread[threadnr];
  574. init_put_bits(&ctx->m.pb, (uint8_t *)arg + 640 + ctx->slice_offs[jobnr],
  575. ctx->slice_size[jobnr]);
  576. ctx->m.last_dc[0] =
  577. ctx->m.last_dc[1] =
  578. ctx->m.last_dc[2] = 1 << (ctx->cid_table->bit_depth + 2);
  579. for (mb_x = 0; mb_x < ctx->m.mb_width; mb_x++) {
  580. unsigned mb = mb_y * ctx->m.mb_width + mb_x;
  581. int qscale = ctx->mb_qscale[mb];
  582. int i;
  583. put_bits(&ctx->m.pb, 12, qscale << 1);
  584. dnxhd_get_blocks(ctx, mb_x, mb_y);
  585. for (i = 0; i < 8; i++) {
  586. int16_t *block = ctx->blocks[i];
  587. int overflow, n = dnxhd_switch_matrix(ctx, i);
  588. int last_index = ctx->m.dct_quantize(&ctx->m, block, i,
  589. qscale, &overflow);
  590. // START_TIMER;
  591. dnxhd_encode_block(ctx, block, last_index, n);
  592. // STOP_TIMER("encode_block");
  593. }
  594. }
  595. if (put_bits_count(&ctx->m.pb) & 31)
  596. put_bits(&ctx->m.pb, 32 - (put_bits_count(&ctx->m.pb) & 31), 0);
  597. flush_put_bits(&ctx->m.pb);
  598. return 0;
  599. }
  600. static void dnxhd_setup_threads_slices(DNXHDEncContext *ctx)
  601. {
  602. int mb_y, mb_x;
  603. int offset = 0;
  604. for (mb_y = 0; mb_y < ctx->m.mb_height; mb_y++) {
  605. int thread_size;
  606. ctx->slice_offs[mb_y] = offset;
  607. ctx->slice_size[mb_y] = 0;
  608. for (mb_x = 0; mb_x < ctx->m.mb_width; mb_x++) {
  609. unsigned mb = mb_y * ctx->m.mb_width + mb_x;
  610. ctx->slice_size[mb_y] += ctx->mb_bits[mb];
  611. }
  612. ctx->slice_size[mb_y] = (ctx->slice_size[mb_y] + 31) & ~31;
  613. ctx->slice_size[mb_y] >>= 3;
  614. thread_size = ctx->slice_size[mb_y];
  615. offset += thread_size;
  616. }
  617. }
  618. static int dnxhd_mb_var_thread(AVCodecContext *avctx, void *arg,
  619. int jobnr, int threadnr)
  620. {
  621. DNXHDEncContext *ctx = avctx->priv_data;
  622. int mb_y = jobnr, mb_x, x, y;
  623. int partial_last_row = (mb_y == ctx->m.mb_height - 1) &&
  624. ((avctx->height >> ctx->interlaced) & 0xF);
  625. ctx = ctx->thread[threadnr];
  626. if (ctx->cid_table->bit_depth == 8) {
  627. uint8_t *pix = ctx->thread[0]->src[0] + ((mb_y << 4) * ctx->m.linesize);
  628. for (mb_x = 0; mb_x < ctx->m.mb_width; ++mb_x, pix += 16) {
  629. unsigned mb = mb_y * ctx->m.mb_width + mb_x;
  630. int sum;
  631. int varc;
  632. if (!partial_last_row && mb_x * 16 <= avctx->width - 16) {
  633. sum = ctx->m.dsp.pix_sum(pix, ctx->m.linesize);
  634. varc = ctx->m.dsp.pix_norm1(pix, ctx->m.linesize);
  635. } else {
  636. int bw = FFMIN(avctx->width - 16 * mb_x, 16);
  637. int bh = FFMIN((avctx->height >> ctx->interlaced) - 16 * mb_y, 16);
  638. sum = varc = 0;
  639. for (y = 0; y < bh; y++) {
  640. for (x = 0; x < bw; x++) {
  641. uint8_t val = pix[x + y * ctx->m.linesize];
  642. sum += val;
  643. varc += val * val;
  644. }
  645. }
  646. }
  647. varc = (varc - (((unsigned) sum * sum) >> 8) + 128) >> 8;
  648. ctx->mb_cmp[mb].value = varc;
  649. ctx->mb_cmp[mb].mb = mb;
  650. }
  651. } else { // 10-bit
  652. int const linesize = ctx->m.linesize >> 1;
  653. for (mb_x = 0; mb_x < ctx->m.mb_width; ++mb_x) {
  654. uint16_t *pix = (uint16_t *)ctx->thread[0]->src[0] +
  655. ((mb_y << 4) * linesize) + (mb_x << 4);
  656. unsigned mb = mb_y * ctx->m.mb_width + mb_x;
  657. int sum = 0;
  658. int sqsum = 0;
  659. int mean, sqmean;
  660. int i, j;
  661. // Macroblocks are 16x16 pixels, unlike DCT blocks which are 8x8.
  662. for (i = 0; i < 16; ++i) {
  663. for (j = 0; j < 16; ++j) {
  664. // Turn 16-bit pixels into 10-bit ones.
  665. int const sample = (unsigned) pix[j] >> 6;
  666. sum += sample;
  667. sqsum += sample * sample;
  668. // 2^10 * 2^10 * 16 * 16 = 2^28, which is less than INT_MAX
  669. }
  670. pix += linesize;
  671. }
  672. mean = sum >> 8; // 16*16 == 2^8
  673. sqmean = sqsum >> 8;
  674. ctx->mb_cmp[mb].value = sqmean - mean * mean;
  675. ctx->mb_cmp[mb].mb = mb;
  676. }
  677. }
  678. return 0;
  679. }
  680. static int dnxhd_encode_rdo(AVCodecContext *avctx, DNXHDEncContext *ctx)
  681. {
  682. int lambda, up_step, down_step;
  683. int last_lower = INT_MAX, last_higher = 0;
  684. int x, y, q;
  685. for (q = 1; q < avctx->qmax; q++) {
  686. ctx->qscale = q;
  687. avctx->execute2(avctx, dnxhd_calc_bits_thread,
  688. NULL, NULL, ctx->m.mb_height);
  689. }
  690. up_step = down_step = 2 << LAMBDA_FRAC_BITS;
  691. lambda = ctx->lambda;
  692. for (;;) {
  693. int bits = 0;
  694. int end = 0;
  695. if (lambda == last_higher) {
  696. lambda++;
  697. end = 1; // need to set final qscales/bits
  698. }
  699. for (y = 0; y < ctx->m.mb_height; y++) {
  700. for (x = 0; x < ctx->m.mb_width; x++) {
  701. unsigned min = UINT_MAX;
  702. int qscale = 1;
  703. int mb = y * ctx->m.mb_width + x;
  704. for (q = 1; q < avctx->qmax; q++) {
  705. unsigned score = ctx->mb_rc[q][mb].bits * lambda +
  706. ((unsigned) ctx->mb_rc[q][mb].ssd << LAMBDA_FRAC_BITS);
  707. if (score < min) {
  708. min = score;
  709. qscale = q;
  710. }
  711. }
  712. bits += ctx->mb_rc[qscale][mb].bits;
  713. ctx->mb_qscale[mb] = qscale;
  714. ctx->mb_bits[mb] = ctx->mb_rc[qscale][mb].bits;
  715. }
  716. bits = (bits + 31) & ~31; // padding
  717. if (bits > ctx->frame_bits)
  718. break;
  719. }
  720. // av_dlog(ctx->m.avctx,
  721. // "lambda %d, up %u, down %u, bits %d, frame %d\n",
  722. // lambda, last_higher, last_lower, bits, ctx->frame_bits);
  723. if (end) {
  724. if (bits > ctx->frame_bits)
  725. return AVERROR(EINVAL);
  726. break;
  727. }
  728. if (bits < ctx->frame_bits) {
  729. last_lower = FFMIN(lambda, last_lower);
  730. if (last_higher != 0)
  731. lambda = (lambda+last_higher)>>1;
  732. else
  733. lambda -= down_step;
  734. down_step = FFMIN((int64_t)down_step*5, INT_MAX);
  735. up_step = 1<<LAMBDA_FRAC_BITS;
  736. lambda = FFMAX(1, lambda);
  737. if (lambda == last_lower)
  738. break;
  739. } else {
  740. last_higher = FFMAX(lambda, last_higher);
  741. if (last_lower != INT_MAX)
  742. lambda = (lambda+last_lower)>>1;
  743. else if ((int64_t)lambda + up_step > INT_MAX)
  744. return AVERROR(EINVAL);
  745. else
  746. lambda += up_step;
  747. up_step = FFMIN((int64_t)up_step*5, INT_MAX);
  748. down_step = 1<<LAMBDA_FRAC_BITS;
  749. }
  750. }
  751. //av_dlog(ctx->m.avctx, "out lambda %d\n", lambda);
  752. ctx->lambda = lambda;
  753. return 0;
  754. }
  755. static int dnxhd_find_qscale(DNXHDEncContext *ctx)
  756. {
  757. int bits = 0;
  758. int up_step = 1;
  759. int down_step = 1;
  760. int last_higher = 0;
  761. int last_lower = INT_MAX;
  762. int qscale;
  763. int x, y;
  764. qscale = ctx->qscale;
  765. for (;;) {
  766. bits = 0;
  767. ctx->qscale = qscale;
  768. // XXX avoid recalculating bits
  769. ctx->m.avctx->execute2(ctx->m.avctx, dnxhd_calc_bits_thread,
  770. NULL, NULL, ctx->m.mb_height);
  771. for (y = 0; y < ctx->m.mb_height; y++) {
  772. for (x = 0; x < ctx->m.mb_width; x++)
  773. bits += ctx->mb_rc[qscale][y*ctx->m.mb_width+x].bits;
  774. bits = (bits+31)&~31; // padding
  775. if (bits > ctx->frame_bits)
  776. break;
  777. }
  778. // av_dlog(ctx->m.avctx,
  779. // "%d, qscale %d, bits %d, frame %d, higher %d, lower %d\n",
  780. // ctx->m.avctx->frame_number, qscale, bits, ctx->frame_bits,
  781. // last_higher, last_lower);
  782. if (bits < ctx->frame_bits) {
  783. if (qscale == 1)
  784. return 1;
  785. if (last_higher == qscale - 1) {
  786. qscale = last_higher;
  787. break;
  788. }
  789. last_lower = FFMIN(qscale, last_lower);
  790. if (last_higher != 0)
  791. qscale = (qscale + last_higher) >> 1;
  792. else
  793. qscale -= down_step++;
  794. if (qscale < 1)
  795. qscale = 1;
  796. up_step = 1;
  797. } else {
  798. if (last_lower == qscale + 1)
  799. break;
  800. last_higher = FFMAX(qscale, last_higher);
  801. if (last_lower != INT_MAX)
  802. qscale = (qscale + last_lower) >> 1;
  803. else
  804. qscale += up_step++;
  805. down_step = 1;
  806. if (qscale >= ctx->m.avctx->qmax)
  807. return AVERROR(EINVAL);
  808. }
  809. }
  810. //av_dlog(ctx->m.avctx, "out qscale %d\n", qscale);
  811. ctx->qscale = qscale;
  812. return 0;
  813. }
  814. #define BUCKET_BITS 8
  815. #define RADIX_PASSES 4
  816. #define NBUCKETS (1 << BUCKET_BITS)
  817. static inline int get_bucket(int value, int shift)
  818. {
  819. value >>= shift;
  820. value &= NBUCKETS - 1;
  821. return NBUCKETS - 1 - value;
  822. }
  823. static void radix_count(const RCCMPEntry *data, int size,
  824. int buckets[RADIX_PASSES][NBUCKETS])
  825. {
  826. int i, j;
  827. memset(buckets, 0, sizeof(buckets[0][0]) * RADIX_PASSES * NBUCKETS);
  828. for (i = 0; i < size; i++) {
  829. int v = data[i].value;
  830. for (j = 0; j < RADIX_PASSES; j++) {
  831. buckets[j][get_bucket(v, 0)]++;
  832. v >>= BUCKET_BITS;
  833. }
  834. assert(!v);
  835. }
  836. for (j = 0; j < RADIX_PASSES; j++) {
  837. int offset = size;
  838. for (i = NBUCKETS - 1; i >= 0; i--)
  839. buckets[j][i] = offset -= buckets[j][i];
  840. assert(!buckets[j][0]);
  841. }
  842. }
  843. static void radix_sort_pass(RCCMPEntry *dst, const RCCMPEntry *data,
  844. int size, int buckets[NBUCKETS], int pass)
  845. {
  846. int shift = pass * BUCKET_BITS;
  847. int i;
  848. for (i = 0; i < size; i++) {
  849. int v = get_bucket(data[i].value, shift);
  850. int pos = buckets[v]++;
  851. dst[pos] = data[i];
  852. }
  853. }
  854. static void radix_sort(RCCMPEntry *data, int size)
  855. {
  856. int buckets[RADIX_PASSES][NBUCKETS];
  857. RCCMPEntry *tmp = av_malloc(sizeof(*tmp) * size);
  858. radix_count(data, size, buckets);
  859. radix_sort_pass(tmp, data, size, buckets[0], 0);
  860. radix_sort_pass(data, tmp, size, buckets[1], 1);
  861. if (buckets[2][NBUCKETS - 1] || buckets[3][NBUCKETS - 1]) {
  862. radix_sort_pass(tmp, data, size, buckets[2], 2);
  863. radix_sort_pass(data, tmp, size, buckets[3], 3);
  864. }
  865. av_free(tmp);
  866. }
  867. static int dnxhd_encode_fast(AVCodecContext *avctx, DNXHDEncContext *ctx)
  868. {
  869. int max_bits = 0;
  870. int ret, x, y;
  871. if ((ret = dnxhd_find_qscale(ctx)) < 0)
  872. return ret;
  873. for (y = 0; y < ctx->m.mb_height; y++) {
  874. for (x = 0; x < ctx->m.mb_width; x++) {
  875. int mb = y * ctx->m.mb_width + x;
  876. int delta_bits;
  877. ctx->mb_qscale[mb] = ctx->qscale;
  878. ctx->mb_bits[mb] = ctx->mb_rc[ctx->qscale][mb].bits;
  879. max_bits += ctx->mb_rc[ctx->qscale][mb].bits;
  880. if (!RC_VARIANCE) {
  881. delta_bits = ctx->mb_rc[ctx->qscale][mb].bits -
  882. ctx->mb_rc[ctx->qscale + 1][mb].bits;
  883. ctx->mb_cmp[mb].mb = mb;
  884. ctx->mb_cmp[mb].value =
  885. delta_bits ? ((ctx->mb_rc[ctx->qscale][mb].ssd -
  886. ctx->mb_rc[ctx->qscale + 1][mb].ssd) * 100) /
  887. delta_bits
  888. : INT_MIN; // avoid increasing qscale
  889. }
  890. }
  891. max_bits += 31; // worst padding
  892. }
  893. if (!ret) {
  894. if (RC_VARIANCE)
  895. avctx->execute2(avctx, dnxhd_mb_var_thread,
  896. NULL, NULL, ctx->m.mb_height);
  897. radix_sort(ctx->mb_cmp, ctx->m.mb_num);
  898. for (x = 0; x < ctx->m.mb_num && max_bits > ctx->frame_bits; x++) {
  899. int mb = ctx->mb_cmp[x].mb;
  900. max_bits -= ctx->mb_rc[ctx->qscale][mb].bits -
  901. ctx->mb_rc[ctx->qscale + 1][mb].bits;
  902. ctx->mb_qscale[mb] = ctx->qscale + 1;
  903. ctx->mb_bits[mb] = ctx->mb_rc[ctx->qscale + 1][mb].bits;
  904. }
  905. }
  906. return 0;
  907. }
  908. static void dnxhd_load_picture(DNXHDEncContext *ctx, const AVFrame *frame)
  909. {
  910. int i;
  911. for (i = 0; i < ctx->m.avctx->thread_count; i++) {
  912. ctx->thread[i]->m.linesize = frame->linesize[0] << ctx->interlaced;
  913. ctx->thread[i]->m.uvlinesize = frame->linesize[1] << ctx->interlaced;
  914. ctx->thread[i]->dct_y_offset = ctx->m.linesize *8;
  915. ctx->thread[i]->dct_uv_offset = ctx->m.uvlinesize*8;
  916. }
  917. ctx->m.avctx->coded_frame->interlaced_frame = frame->interlaced_frame;
  918. ctx->cur_field = frame->interlaced_frame && !frame->top_field_first;
  919. }
  920. static int dnxhd_encode_picture(AVCodecContext *avctx, AVPacket *pkt,
  921. const AVFrame *frame, int *got_packet)
  922. {
  923. DNXHDEncContext *ctx = avctx->priv_data;
  924. int first_field = 1;
  925. int offset, i, ret;
  926. uint8_t *buf;
  927. if ((ret = ff_alloc_packet(pkt, ctx->cid_table->frame_size)) < 0) {
  928. av_log(avctx, AV_LOG_ERROR,
  929. "output buffer is too small to compress picture\n");
  930. return ret;
  931. }
  932. buf = pkt->data;
  933. dnxhd_load_picture(ctx, frame);
  934. encode_coding_unit:
  935. for (i = 0; i < 3; i++) {
  936. ctx->src[i] = frame->data[i];
  937. if (ctx->interlaced && ctx->cur_field)
  938. ctx->src[i] += frame->linesize[i];
  939. }
  940. dnxhd_write_header(avctx, buf);
  941. if (avctx->mb_decision == FF_MB_DECISION_RD)
  942. ret = dnxhd_encode_rdo(avctx, ctx);
  943. else
  944. ret = dnxhd_encode_fast(avctx, ctx);
  945. if (ret < 0) {
  946. av_log(avctx, AV_LOG_ERROR,
  947. "picture could not fit ratecontrol constraints, increase qmax\n");
  948. return ret;
  949. }
  950. dnxhd_setup_threads_slices(ctx);
  951. offset = 0;
  952. for (i = 0; i < ctx->m.mb_height; i++) {
  953. AV_WB32(ctx->msip + i * 4, offset);
  954. offset += ctx->slice_size[i];
  955. assert(!(ctx->slice_size[i] & 3));
  956. }
  957. avctx->execute2(avctx, dnxhd_encode_thread, buf, NULL, ctx->m.mb_height);
  958. assert(640 + offset + 4 <= ctx->cid_table->coding_unit_size);
  959. memset(buf + 640 + offset, 0,
  960. ctx->cid_table->coding_unit_size - 4 - offset - 640);
  961. AV_WB32(buf + ctx->cid_table->coding_unit_size - 4, 0x600DC0DE); // EOF
  962. if (ctx->interlaced && first_field) {
  963. first_field = 0;
  964. ctx->cur_field ^= 1;
  965. buf += ctx->cid_table->coding_unit_size;
  966. goto encode_coding_unit;
  967. }
  968. avctx->coded_frame->quality = ctx->qscale * FF_QP2LAMBDA;
  969. pkt->flags |= AV_PKT_FLAG_KEY;
  970. *got_packet = 1;
  971. return 0;
  972. }
  973. static av_cold int dnxhd_encode_end(AVCodecContext *avctx)
  974. {
  975. DNXHDEncContext *ctx = avctx->priv_data;
  976. int max_level = 1 << (ctx->cid_table->bit_depth + 2);
  977. int i;
  978. av_free(ctx->vlc_codes - max_level * 2);
  979. av_free(ctx->vlc_bits - max_level * 2);
  980. av_freep(&ctx->run_codes);
  981. av_freep(&ctx->run_bits);
  982. av_freep(&ctx->mb_bits);
  983. av_freep(&ctx->mb_qscale);
  984. av_freep(&ctx->mb_rc);
  985. av_freep(&ctx->mb_cmp);
  986. av_freep(&ctx->slice_size);
  987. av_freep(&ctx->slice_offs);
  988. av_freep(&ctx->qmatrix_c);
  989. av_freep(&ctx->qmatrix_l);
  990. av_freep(&ctx->qmatrix_c16);
  991. av_freep(&ctx->qmatrix_l16);
  992. for (i = 1; i < avctx->thread_count; i++)
  993. av_freep(&ctx->thread[i]);
  994. av_frame_free(&avctx->coded_frame);
  995. return 0;
  996. }
  997. AVCodec ff_dnxhd_encoder = {
  998. .name = "dnxhd",
  999. .long_name = NULL_IF_CONFIG_SMALL("VC3/DNxHD"),
  1000. .type = AVMEDIA_TYPE_VIDEO,
  1001. .id = AV_CODEC_ID_DNXHD,
  1002. .priv_data_size = sizeof(DNXHDEncContext),
  1003. .init = dnxhd_encode_init,
  1004. .encode2 = dnxhd_encode_picture,
  1005. .close = dnxhd_encode_end,
  1006. .capabilities = CODEC_CAP_SLICE_THREADS,
  1007. .pix_fmts = (const enum AVPixelFormat[]) {
  1008. AV_PIX_FMT_YUV422P,
  1009. AV_PIX_FMT_YUV422P10,
  1010. AV_PIX_FMT_NONE
  1011. },
  1012. .priv_class = &class,
  1013. };