You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

823 lines
29KB

  1. /*
  2. * Chinese AVS video (AVS1-P2, JiZhun profile) decoder.
  3. * Copyright (c) 2006 Stefan Gehrer <stefan.gehrer@gmx.de>
  4. *
  5. * This file is part of Libav.
  6. *
  7. * Libav is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * Libav is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with Libav; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file
  23. * Chinese AVS video (AVS1-P2, JiZhun profile) decoder
  24. * @author Stefan Gehrer <stefan.gehrer@gmx.de>
  25. */
  26. #include "avcodec.h"
  27. #include "get_bits.h"
  28. #include "golomb.h"
  29. #include "h264chroma.h"
  30. #include "mathops.h"
  31. #include "cavs.h"
  32. static const uint8_t alpha_tab[64] = {
  33. 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 3, 3,
  34. 4, 4, 5, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16, 18, 20,
  35. 22, 24, 26, 28, 30, 33, 33, 35, 35, 36, 37, 37, 39, 39, 42, 44,
  36. 46, 48, 50, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64
  37. };
  38. static const uint8_t beta_tab[64] = {
  39. 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2,
  40. 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 6, 6,
  41. 6, 7, 7, 7, 8, 8, 8, 9, 9, 10, 10, 11, 11, 12, 13, 14,
  42. 15, 16, 17, 18, 19, 20, 21, 22, 23, 23, 24, 24, 25, 25, 26, 27
  43. };
  44. static const uint8_t tc_tab[64] = {
  45. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  46. 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2,
  47. 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4,
  48. 5, 5, 5, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 9, 9, 9
  49. };
  50. /** mark block as unavailable, i.e. out of picture
  51. * or not yet decoded */
  52. static const cavs_vector un_mv = { 0, 0, 1, NOT_AVAIL };
  53. static const int8_t left_modifier_l[8] = { 0, -1, 6, -1, -1, 7, 6, 7 };
  54. static const int8_t top_modifier_l[8] = { -1, 1, 5, -1, -1, 5, 7, 7 };
  55. static const int8_t left_modifier_c[7] = { 5, -1, 2, -1, 6, 5, 6 };
  56. static const int8_t top_modifier_c[7] = { 4, 1, -1, -1, 4, 6, 6 };
  57. /*****************************************************************************
  58. *
  59. * in-loop deblocking filter
  60. *
  61. ****************************************************************************/
  62. static inline int get_bs(cavs_vector *mvP, cavs_vector *mvQ, int b)
  63. {
  64. if ((mvP->ref == REF_INTRA) || (mvQ->ref == REF_INTRA))
  65. return 2;
  66. if ((abs(mvP->x - mvQ->x) >= 4) || (abs(mvP->y - mvQ->y) >= 4))
  67. return 1;
  68. if (b) {
  69. mvP += MV_BWD_OFFS;
  70. mvQ += MV_BWD_OFFS;
  71. if ((abs(mvP->x - mvQ->x) >= 4) || (abs(mvP->y - mvQ->y) >= 4))
  72. return 1;
  73. } else {
  74. if (mvP->ref != mvQ->ref)
  75. return 1;
  76. }
  77. return 0;
  78. }
  79. #define SET_PARAMS \
  80. alpha = alpha_tab[av_clip(qp_avg + h->alpha_offset, 0, 63)]; \
  81. beta = beta_tab[av_clip(qp_avg + h->beta_offset, 0, 63)]; \
  82. tc = tc_tab[av_clip(qp_avg + h->alpha_offset, 0, 63)];
  83. /**
  84. * in-loop deblocking filter for a single macroblock
  85. *
  86. * boundary strength (bs) mapping:
  87. *
  88. * --4---5--
  89. * 0 2 |
  90. * | 6 | 7 |
  91. * 1 3 |
  92. * ---------
  93. *
  94. */
  95. void ff_cavs_filter(AVSContext *h, enum cavs_mb mb_type)
  96. {
  97. uint8_t bs[8];
  98. int qp_avg, alpha, beta, tc;
  99. int i;
  100. /* save un-deblocked lines */
  101. h->topleft_border_y = h->top_border_y[h->mbx * 16 + 15];
  102. h->topleft_border_u = h->top_border_u[h->mbx * 10 + 8];
  103. h->topleft_border_v = h->top_border_v[h->mbx * 10 + 8];
  104. memcpy(&h->top_border_y[h->mbx * 16], h->cy + 15 * h->l_stride, 16);
  105. memcpy(&h->top_border_u[h->mbx * 10 + 1], h->cu + 7 * h->c_stride, 8);
  106. memcpy(&h->top_border_v[h->mbx * 10 + 1], h->cv + 7 * h->c_stride, 8);
  107. for (i = 0; i < 8; i++) {
  108. h->left_border_y[i * 2 + 1] = *(h->cy + 15 + (i * 2 + 0) * h->l_stride);
  109. h->left_border_y[i * 2 + 2] = *(h->cy + 15 + (i * 2 + 1) * h->l_stride);
  110. h->left_border_u[i + 1] = *(h->cu + 7 + i * h->c_stride);
  111. h->left_border_v[i + 1] = *(h->cv + 7 + i * h->c_stride);
  112. }
  113. if (!h->loop_filter_disable) {
  114. /* determine bs */
  115. if (mb_type == I_8X8)
  116. memset(bs, 2, 8);
  117. else {
  118. memset(bs, 0, 8);
  119. if (ff_cavs_partition_flags[mb_type] & SPLITV) {
  120. bs[2] = get_bs(&h->mv[MV_FWD_X0], &h->mv[MV_FWD_X1], mb_type > P_8X8);
  121. bs[3] = get_bs(&h->mv[MV_FWD_X2], &h->mv[MV_FWD_X3], mb_type > P_8X8);
  122. }
  123. if (ff_cavs_partition_flags[mb_type] & SPLITH) {
  124. bs[6] = get_bs(&h->mv[MV_FWD_X0], &h->mv[MV_FWD_X2], mb_type > P_8X8);
  125. bs[7] = get_bs(&h->mv[MV_FWD_X1], &h->mv[MV_FWD_X3], mb_type > P_8X8);
  126. }
  127. bs[0] = get_bs(&h->mv[MV_FWD_A1], &h->mv[MV_FWD_X0], mb_type > P_8X8);
  128. bs[1] = get_bs(&h->mv[MV_FWD_A3], &h->mv[MV_FWD_X2], mb_type > P_8X8);
  129. bs[4] = get_bs(&h->mv[MV_FWD_B2], &h->mv[MV_FWD_X0], mb_type > P_8X8);
  130. bs[5] = get_bs(&h->mv[MV_FWD_B3], &h->mv[MV_FWD_X1], mb_type > P_8X8);
  131. }
  132. if (AV_RN64(bs)) {
  133. if (h->flags & A_AVAIL) {
  134. qp_avg = (h->qp + h->left_qp + 1) >> 1;
  135. SET_PARAMS;
  136. h->cdsp.cavs_filter_lv(h->cy, h->l_stride, alpha, beta, tc, bs[0], bs[1]);
  137. h->cdsp.cavs_filter_cv(h->cu, h->c_stride, alpha, beta, tc, bs[0], bs[1]);
  138. h->cdsp.cavs_filter_cv(h->cv, h->c_stride, alpha, beta, tc, bs[0], bs[1]);
  139. }
  140. qp_avg = h->qp;
  141. SET_PARAMS;
  142. h->cdsp.cavs_filter_lv(h->cy + 8, h->l_stride, alpha, beta, tc, bs[2], bs[3]);
  143. h->cdsp.cavs_filter_lh(h->cy + 8 * h->l_stride, h->l_stride, alpha, beta, tc, bs[6], bs[7]);
  144. if (h->flags & B_AVAIL) {
  145. qp_avg = (h->qp + h->top_qp[h->mbx] + 1) >> 1;
  146. SET_PARAMS;
  147. h->cdsp.cavs_filter_lh(h->cy, h->l_stride, alpha, beta, tc, bs[4], bs[5]);
  148. h->cdsp.cavs_filter_ch(h->cu, h->c_stride, alpha, beta, tc, bs[4], bs[5]);
  149. h->cdsp.cavs_filter_ch(h->cv, h->c_stride, alpha, beta, tc, bs[4], bs[5]);
  150. }
  151. }
  152. }
  153. h->left_qp = h->qp;
  154. h->top_qp[h->mbx] = h->qp;
  155. }
  156. #undef SET_PARAMS
  157. /*****************************************************************************
  158. *
  159. * spatial intra prediction
  160. *
  161. ****************************************************************************/
  162. void ff_cavs_load_intra_pred_luma(AVSContext *h, uint8_t *top,
  163. uint8_t **left, int block)
  164. {
  165. int i;
  166. switch (block) {
  167. case 0:
  168. *left = h->left_border_y;
  169. h->left_border_y[0] = h->left_border_y[1];
  170. memset(&h->left_border_y[17], h->left_border_y[16], 9);
  171. memcpy(&top[1], &h->top_border_y[h->mbx * 16], 16);
  172. top[17] = top[16];
  173. top[0] = top[1];
  174. if ((h->flags & A_AVAIL) && (h->flags & B_AVAIL))
  175. h->left_border_y[0] = top[0] = h->topleft_border_y;
  176. break;
  177. case 1:
  178. *left = h->intern_border_y;
  179. for (i = 0; i < 8; i++)
  180. h->intern_border_y[i + 1] = *(h->cy + 7 + i * h->l_stride);
  181. memset(&h->intern_border_y[9], h->intern_border_y[8], 9);
  182. h->intern_border_y[0] = h->intern_border_y[1];
  183. memcpy(&top[1], &h->top_border_y[h->mbx * 16 + 8], 8);
  184. if (h->flags & C_AVAIL)
  185. memcpy(&top[9], &h->top_border_y[(h->mbx + 1) * 16], 8);
  186. else
  187. memset(&top[9], top[8], 9);
  188. top[17] = top[16];
  189. top[0] = top[1];
  190. if (h->flags & B_AVAIL)
  191. h->intern_border_y[0] = top[0] = h->top_border_y[h->mbx * 16 + 7];
  192. break;
  193. case 2:
  194. *left = &h->left_border_y[8];
  195. memcpy(&top[1], h->cy + 7 * h->l_stride, 16);
  196. top[17] = top[16];
  197. top[0] = top[1];
  198. if (h->flags & A_AVAIL)
  199. top[0] = h->left_border_y[8];
  200. break;
  201. case 3:
  202. *left = &h->intern_border_y[8];
  203. for (i = 0; i < 8; i++)
  204. h->intern_border_y[i + 9] = *(h->cy + 7 + (i + 8) * h->l_stride);
  205. memset(&h->intern_border_y[17], h->intern_border_y[16], 9);
  206. memcpy(&top[0], h->cy + 7 + 7 * h->l_stride, 9);
  207. memset(&top[9], top[8], 9);
  208. break;
  209. }
  210. }
  211. void ff_cavs_load_intra_pred_chroma(AVSContext *h)
  212. {
  213. /* extend borders by one pixel */
  214. h->left_border_u[9] = h->left_border_u[8];
  215. h->left_border_v[9] = h->left_border_v[8];
  216. h->top_border_u[h->mbx * 10 + 9] = h->top_border_u[h->mbx * 10 + 8];
  217. h->top_border_v[h->mbx * 10 + 9] = h->top_border_v[h->mbx * 10 + 8];
  218. if (h->mbx && h->mby) {
  219. h->top_border_u[h->mbx * 10] = h->left_border_u[0] = h->topleft_border_u;
  220. h->top_border_v[h->mbx * 10] = h->left_border_v[0] = h->topleft_border_v;
  221. } else {
  222. h->left_border_u[0] = h->left_border_u[1];
  223. h->left_border_v[0] = h->left_border_v[1];
  224. h->top_border_u[h->mbx * 10] = h->top_border_u[h->mbx * 10 + 1];
  225. h->top_border_v[h->mbx * 10] = h->top_border_v[h->mbx * 10 + 1];
  226. }
  227. }
  228. static void intra_pred_vert(uint8_t *d, uint8_t *top, uint8_t *left, int stride)
  229. {
  230. int y;
  231. uint64_t a = AV_RN64(&top[1]);
  232. for (y = 0; y < 8; y++)
  233. *((uint64_t *)(d + y * stride)) = a;
  234. }
  235. static void intra_pred_horiz(uint8_t *d, uint8_t *top, uint8_t *left, int stride)
  236. {
  237. int y;
  238. uint64_t a;
  239. for (y = 0; y < 8; y++) {
  240. a = left[y + 1] * 0x0101010101010101ULL;
  241. *((uint64_t *)(d + y * stride)) = a;
  242. }
  243. }
  244. static void intra_pred_dc_128(uint8_t *d, uint8_t *top, uint8_t *left, int stride)
  245. {
  246. int y;
  247. uint64_t a = 0x8080808080808080ULL;
  248. for (y = 0; y < 8; y++)
  249. *((uint64_t *)(d + y * stride)) = a;
  250. }
  251. static void intra_pred_plane(uint8_t *d, uint8_t *top, uint8_t *left, int stride)
  252. {
  253. int x, y, ia;
  254. int ih = 0;
  255. int iv = 0;
  256. const uint8_t *cm = ff_crop_tab + MAX_NEG_CROP;
  257. for (x = 0; x < 4; x++) {
  258. ih += (x + 1) * (top[5 + x] - top[3 - x]);
  259. iv += (x + 1) * (left[5 + x] - left[3 - x]);
  260. }
  261. ia = (top[8] + left[8]) << 4;
  262. ih = (17 * ih + 16) >> 5;
  263. iv = (17 * iv + 16) >> 5;
  264. for (y = 0; y < 8; y++)
  265. for (x = 0; x < 8; x++)
  266. d[y * stride + x] = cm[(ia + (x - 3) * ih + (y - 3) * iv + 16) >> 5];
  267. }
  268. #define LOWPASS(ARRAY, INDEX) \
  269. ((ARRAY[(INDEX) - 1] + 2 * ARRAY[(INDEX)] + ARRAY[(INDEX) + 1] + 2) >> 2)
  270. static void intra_pred_lp(uint8_t *d, uint8_t *top, uint8_t *left, int stride)
  271. {
  272. int x, y;
  273. for (y = 0; y < 8; y++)
  274. for (x = 0; x < 8; x++)
  275. d[y * stride + x] = (LOWPASS(top, x + 1) + LOWPASS(left, y + 1)) >> 1;
  276. }
  277. static void intra_pred_down_left(uint8_t *d, uint8_t *top, uint8_t *left, int stride)
  278. {
  279. int x, y;
  280. for (y = 0; y < 8; y++)
  281. for (x = 0; x < 8; x++)
  282. d[y * stride + x] = (LOWPASS(top, x + y + 2) + LOWPASS(left, x + y + 2)) >> 1;
  283. }
  284. static void intra_pred_down_right(uint8_t *d, uint8_t *top, uint8_t *left, int stride)
  285. {
  286. int x, y;
  287. for (y = 0; y < 8; y++)
  288. for (x = 0; x < 8; x++)
  289. if (x == y)
  290. d[y * stride + x] = (left[1] + 2 * top[0] + top[1] + 2) >> 2;
  291. else if (x > y)
  292. d[y * stride + x] = LOWPASS(top, x - y);
  293. else
  294. d[y * stride + x] = LOWPASS(left, y - x);
  295. }
  296. static void intra_pred_lp_left(uint8_t *d, uint8_t *top, uint8_t *left, int stride)
  297. {
  298. int x, y;
  299. for (y = 0; y < 8; y++)
  300. for (x = 0; x < 8; x++)
  301. d[y * stride + x] = LOWPASS(left, y + 1);
  302. }
  303. static void intra_pred_lp_top(uint8_t *d, uint8_t *top, uint8_t *left, int stride)
  304. {
  305. int x, y;
  306. for (y = 0; y < 8; y++)
  307. for (x = 0; x < 8; x++)
  308. d[y * stride + x] = LOWPASS(top, x + 1);
  309. }
  310. #undef LOWPASS
  311. static inline void modify_pred(const int8_t *mod_table, int *mode)
  312. {
  313. *mode = mod_table[*mode];
  314. if (*mode < 0) {
  315. av_log(NULL, AV_LOG_ERROR, "Illegal intra prediction mode\n");
  316. *mode = 0;
  317. }
  318. }
  319. void ff_cavs_modify_mb_i(AVSContext *h, int *pred_mode_uv)
  320. {
  321. /* save pred modes before they get modified */
  322. h->pred_mode_Y[3] = h->pred_mode_Y[5];
  323. h->pred_mode_Y[6] = h->pred_mode_Y[8];
  324. h->top_pred_Y[h->mbx * 2 + 0] = h->pred_mode_Y[7];
  325. h->top_pred_Y[h->mbx * 2 + 1] = h->pred_mode_Y[8];
  326. /* modify pred modes according to availability of neighbour samples */
  327. if (!(h->flags & A_AVAIL)) {
  328. modify_pred(left_modifier_l, &h->pred_mode_Y[4]);
  329. modify_pred(left_modifier_l, &h->pred_mode_Y[7]);
  330. modify_pred(left_modifier_c, pred_mode_uv);
  331. }
  332. if (!(h->flags & B_AVAIL)) {
  333. modify_pred(top_modifier_l, &h->pred_mode_Y[4]);
  334. modify_pred(top_modifier_l, &h->pred_mode_Y[5]);
  335. modify_pred(top_modifier_c, pred_mode_uv);
  336. }
  337. }
  338. /*****************************************************************************
  339. *
  340. * motion compensation
  341. *
  342. ****************************************************************************/
  343. static inline void mc_dir_part(AVSContext *h, AVFrame *pic, int chroma_height,
  344. int delta, int list, uint8_t *dest_y,
  345. uint8_t *dest_cb, uint8_t *dest_cr,
  346. int src_x_offset, int src_y_offset,
  347. qpel_mc_func *qpix_op,
  348. h264_chroma_mc_func chroma_op, cavs_vector *mv)
  349. {
  350. const int mx = mv->x + src_x_offset * 8;
  351. const int my = mv->y + src_y_offset * 8;
  352. const int luma_xy = (mx & 3) + ((my & 3) << 2);
  353. uint8_t *src_y = pic->data[0] + (mx >> 2) + (my >> 2) * h->l_stride;
  354. uint8_t *src_cb = pic->data[1] + (mx >> 3) + (my >> 3) * h->c_stride;
  355. uint8_t *src_cr = pic->data[2] + (mx >> 3) + (my >> 3) * h->c_stride;
  356. int extra_width = 0;
  357. int extra_height = extra_width;
  358. const int full_mx = mx >> 2;
  359. const int full_my = my >> 2;
  360. const int pic_width = 16 * h->mb_width;
  361. const int pic_height = 16 * h->mb_height;
  362. int emu = 0;
  363. if (!pic->data[0])
  364. return;
  365. if (mx & 7)
  366. extra_width -= 3;
  367. if (my & 7)
  368. extra_height -= 3;
  369. if (full_mx < 0 - extra_width ||
  370. full_my < 0 - extra_height ||
  371. full_mx + 16 /* FIXME */ > pic_width + extra_width ||
  372. full_my + 16 /* FIXME */ > pic_height + extra_height) {
  373. h->vdsp.emulated_edge_mc(h->edge_emu_buffer,
  374. src_y - 2 - 2 * h->l_stride,
  375. h->l_stride, h->l_stride,
  376. 16 + 5, 16 + 5 /* FIXME */,
  377. full_mx - 2, full_my - 2,
  378. pic_width, pic_height);
  379. src_y = h->edge_emu_buffer + 2 + 2 * h->l_stride;
  380. emu = 1;
  381. }
  382. // FIXME try variable height perhaps?
  383. qpix_op[luma_xy](dest_y, src_y, h->l_stride);
  384. if (emu) {
  385. h->vdsp.emulated_edge_mc(h->edge_emu_buffer, src_cb,
  386. h->c_stride, h->c_stride,
  387. 9, 9 /* FIXME */,
  388. mx >> 3, my >> 3,
  389. pic_width >> 1, pic_height >> 1);
  390. src_cb = h->edge_emu_buffer;
  391. }
  392. chroma_op(dest_cb, src_cb, h->c_stride, chroma_height, mx & 7, my & 7);
  393. if (emu) {
  394. h->vdsp.emulated_edge_mc(h->edge_emu_buffer, src_cr,
  395. h->c_stride, h->c_stride,
  396. 9, 9 /* FIXME */,
  397. mx >> 3, my >> 3,
  398. pic_width >> 1, pic_height >> 1);
  399. src_cr = h->edge_emu_buffer;
  400. }
  401. chroma_op(dest_cr, src_cr, h->c_stride, chroma_height, mx & 7, my & 7);
  402. }
  403. static inline void mc_part_std(AVSContext *h, int chroma_height, int delta,
  404. uint8_t *dest_y,
  405. uint8_t *dest_cb,
  406. uint8_t *dest_cr,
  407. int x_offset, int y_offset,
  408. qpel_mc_func *qpix_put,
  409. h264_chroma_mc_func chroma_put,
  410. qpel_mc_func *qpix_avg,
  411. h264_chroma_mc_func chroma_avg,
  412. cavs_vector *mv)
  413. {
  414. qpel_mc_func *qpix_op = qpix_put;
  415. h264_chroma_mc_func chroma_op = chroma_put;
  416. dest_y += x_offset * 2 + y_offset * h->l_stride * 2;
  417. dest_cb += x_offset + y_offset * h->c_stride;
  418. dest_cr += x_offset + y_offset * h->c_stride;
  419. x_offset += 8 * h->mbx;
  420. y_offset += 8 * h->mby;
  421. if (mv->ref >= 0) {
  422. AVFrame *ref = h->DPB[mv->ref].f;
  423. mc_dir_part(h, ref, chroma_height, delta, 0,
  424. dest_y, dest_cb, dest_cr, x_offset, y_offset,
  425. qpix_op, chroma_op, mv);
  426. qpix_op = qpix_avg;
  427. chroma_op = chroma_avg;
  428. }
  429. if ((mv + MV_BWD_OFFS)->ref >= 0) {
  430. AVFrame *ref = h->DPB[0].f;
  431. mc_dir_part(h, ref, chroma_height, delta, 1,
  432. dest_y, dest_cb, dest_cr, x_offset, y_offset,
  433. qpix_op, chroma_op, mv + MV_BWD_OFFS);
  434. }
  435. }
  436. void ff_cavs_inter(AVSContext *h, enum cavs_mb mb_type)
  437. {
  438. if (ff_cavs_partition_flags[mb_type] == 0) { // 16x16
  439. mc_part_std(h, 8, 0, h->cy, h->cu, h->cv, 0, 0,
  440. h->cdsp.put_cavs_qpel_pixels_tab[0],
  441. h->h264chroma.put_h264_chroma_pixels_tab[0],
  442. h->cdsp.avg_cavs_qpel_pixels_tab[0],
  443. h->h264chroma.avg_h264_chroma_pixels_tab[0],
  444. &h->mv[MV_FWD_X0]);
  445. } else {
  446. mc_part_std(h, 4, 0, h->cy, h->cu, h->cv, 0, 0,
  447. h->cdsp.put_cavs_qpel_pixels_tab[1],
  448. h->h264chroma.put_h264_chroma_pixels_tab[1],
  449. h->cdsp.avg_cavs_qpel_pixels_tab[1],
  450. h->h264chroma.avg_h264_chroma_pixels_tab[1],
  451. &h->mv[MV_FWD_X0]);
  452. mc_part_std(h, 4, 0, h->cy, h->cu, h->cv, 4, 0,
  453. h->cdsp.put_cavs_qpel_pixels_tab[1],
  454. h->h264chroma.put_h264_chroma_pixels_tab[1],
  455. h->cdsp.avg_cavs_qpel_pixels_tab[1],
  456. h->h264chroma.avg_h264_chroma_pixels_tab[1],
  457. &h->mv[MV_FWD_X1]);
  458. mc_part_std(h, 4, 0, h->cy, h->cu, h->cv, 0, 4,
  459. h->cdsp.put_cavs_qpel_pixels_tab[1],
  460. h->h264chroma.put_h264_chroma_pixels_tab[1],
  461. h->cdsp.avg_cavs_qpel_pixels_tab[1],
  462. h->h264chroma.avg_h264_chroma_pixels_tab[1],
  463. &h->mv[MV_FWD_X2]);
  464. mc_part_std(h, 4, 0, h->cy, h->cu, h->cv, 4, 4,
  465. h->cdsp.put_cavs_qpel_pixels_tab[1],
  466. h->h264chroma.put_h264_chroma_pixels_tab[1],
  467. h->cdsp.avg_cavs_qpel_pixels_tab[1],
  468. h->h264chroma.avg_h264_chroma_pixels_tab[1],
  469. &h->mv[MV_FWD_X3]);
  470. }
  471. }
  472. /*****************************************************************************
  473. *
  474. * motion vector prediction
  475. *
  476. ****************************************************************************/
  477. static inline void scale_mv(AVSContext *h, int *d_x, int *d_y,
  478. cavs_vector *src, int distp)
  479. {
  480. int den = h->scale_den[src->ref];
  481. *d_x = (src->x * distp * den + 256 + (src->x >> 31)) >> 9;
  482. *d_y = (src->y * distp * den + 256 + (src->y >> 31)) >> 9;
  483. }
  484. static inline void mv_pred_median(AVSContext *h,
  485. cavs_vector *mvP,
  486. cavs_vector *mvA,
  487. cavs_vector *mvB,
  488. cavs_vector *mvC)
  489. {
  490. int ax, ay, bx, by, cx, cy;
  491. int len_ab, len_bc, len_ca, len_mid;
  492. /* scale candidates according to their temporal span */
  493. scale_mv(h, &ax, &ay, mvA, mvP->dist);
  494. scale_mv(h, &bx, &by, mvB, mvP->dist);
  495. scale_mv(h, &cx, &cy, mvC, mvP->dist);
  496. /* find the geometrical median of the three candidates */
  497. len_ab = abs(ax - bx) + abs(ay - by);
  498. len_bc = abs(bx - cx) + abs(by - cy);
  499. len_ca = abs(cx - ax) + abs(cy - ay);
  500. len_mid = mid_pred(len_ab, len_bc, len_ca);
  501. if (len_mid == len_ab) {
  502. mvP->x = cx;
  503. mvP->y = cy;
  504. } else if (len_mid == len_bc) {
  505. mvP->x = ax;
  506. mvP->y = ay;
  507. } else {
  508. mvP->x = bx;
  509. mvP->y = by;
  510. }
  511. }
  512. void ff_cavs_mv(AVSContext *h, enum cavs_mv_loc nP, enum cavs_mv_loc nC,
  513. enum cavs_mv_pred mode, enum cavs_block size, int ref)
  514. {
  515. cavs_vector *mvP = &h->mv[nP];
  516. cavs_vector *mvA = &h->mv[nP-1];
  517. cavs_vector *mvB = &h->mv[nP-4];
  518. cavs_vector *mvC = &h->mv[nC];
  519. const cavs_vector *mvP2 = NULL;
  520. mvP->ref = ref;
  521. mvP->dist = h->dist[mvP->ref];
  522. if (mvC->ref == NOT_AVAIL)
  523. mvC = &h->mv[nP - 5]; // set to top-left (mvD)
  524. if (mode == MV_PRED_PSKIP &&
  525. (mvA->ref == NOT_AVAIL ||
  526. mvB->ref == NOT_AVAIL ||
  527. (mvA->x | mvA->y | mvA->ref) == 0 ||
  528. (mvB->x | mvB->y | mvB->ref) == 0)) {
  529. mvP2 = &un_mv;
  530. /* if there is only one suitable candidate, take it */
  531. } else if (mvA->ref >= 0 && mvB->ref < 0 && mvC->ref < 0) {
  532. mvP2 = mvA;
  533. } else if (mvA->ref < 0 && mvB->ref >= 0 && mvC->ref < 0) {
  534. mvP2 = mvB;
  535. } else if (mvA->ref < 0 && mvB->ref < 0 && mvC->ref >= 0) {
  536. mvP2 = mvC;
  537. } else if (mode == MV_PRED_LEFT && mvA->ref == ref) {
  538. mvP2 = mvA;
  539. } else if (mode == MV_PRED_TOP && mvB->ref == ref) {
  540. mvP2 = mvB;
  541. } else if (mode == MV_PRED_TOPRIGHT && mvC->ref == ref) {
  542. mvP2 = mvC;
  543. }
  544. if (mvP2) {
  545. mvP->x = mvP2->x;
  546. mvP->y = mvP2->y;
  547. } else
  548. mv_pred_median(h, mvP, mvA, mvB, mvC);
  549. if (mode < MV_PRED_PSKIP) {
  550. mvP->x += get_se_golomb(&h->gb);
  551. mvP->y += get_se_golomb(&h->gb);
  552. }
  553. set_mvs(mvP, size);
  554. }
  555. /*****************************************************************************
  556. *
  557. * macroblock level
  558. *
  559. ****************************************************************************/
  560. /**
  561. * initialise predictors for motion vectors and intra prediction
  562. */
  563. void ff_cavs_init_mb(AVSContext *h)
  564. {
  565. int i;
  566. /* copy predictors from top line (MB B and C) into cache */
  567. for (i = 0; i < 3; i++) {
  568. h->mv[MV_FWD_B2 + i] = h->top_mv[0][h->mbx * 2 + i];
  569. h->mv[MV_BWD_B2 + i] = h->top_mv[1][h->mbx * 2 + i];
  570. }
  571. h->pred_mode_Y[1] = h->top_pred_Y[h->mbx * 2 + 0];
  572. h->pred_mode_Y[2] = h->top_pred_Y[h->mbx * 2 + 1];
  573. /* clear top predictors if MB B is not available */
  574. if (!(h->flags & B_AVAIL)) {
  575. h->mv[MV_FWD_B2] = un_mv;
  576. h->mv[MV_FWD_B3] = un_mv;
  577. h->mv[MV_BWD_B2] = un_mv;
  578. h->mv[MV_BWD_B3] = un_mv;
  579. h->pred_mode_Y[1] = h->pred_mode_Y[2] = NOT_AVAIL;
  580. h->flags &= ~(C_AVAIL | D_AVAIL);
  581. } else if (h->mbx) {
  582. h->flags |= D_AVAIL;
  583. }
  584. if (h->mbx == h->mb_width - 1) // MB C not available
  585. h->flags &= ~C_AVAIL;
  586. /* clear top-right predictors if MB C is not available */
  587. if (!(h->flags & C_AVAIL)) {
  588. h->mv[MV_FWD_C2] = un_mv;
  589. h->mv[MV_BWD_C2] = un_mv;
  590. }
  591. /* clear top-left predictors if MB D is not available */
  592. if (!(h->flags & D_AVAIL)) {
  593. h->mv[MV_FWD_D3] = un_mv;
  594. h->mv[MV_BWD_D3] = un_mv;
  595. }
  596. }
  597. /**
  598. * save predictors for later macroblocks and increase
  599. * macroblock address
  600. * @return 0 if end of frame is reached, 1 otherwise
  601. */
  602. int ff_cavs_next_mb(AVSContext *h)
  603. {
  604. int i;
  605. h->flags |= A_AVAIL;
  606. h->cy += 16;
  607. h->cu += 8;
  608. h->cv += 8;
  609. /* copy mvs as predictors to the left */
  610. for (i = 0; i <= 20; i += 4)
  611. h->mv[i] = h->mv[i + 2];
  612. /* copy bottom mvs from cache to top line */
  613. h->top_mv[0][h->mbx * 2 + 0] = h->mv[MV_FWD_X2];
  614. h->top_mv[0][h->mbx * 2 + 1] = h->mv[MV_FWD_X3];
  615. h->top_mv[1][h->mbx * 2 + 0] = h->mv[MV_BWD_X2];
  616. h->top_mv[1][h->mbx * 2 + 1] = h->mv[MV_BWD_X3];
  617. /* next MB address */
  618. h->mbidx++;
  619. h->mbx++;
  620. if (h->mbx == h->mb_width) { // New mb line
  621. h->flags = B_AVAIL | C_AVAIL;
  622. /* clear left pred_modes */
  623. h->pred_mode_Y[3] = h->pred_mode_Y[6] = NOT_AVAIL;
  624. /* clear left mv predictors */
  625. for (i = 0; i <= 20; i += 4)
  626. h->mv[i] = un_mv;
  627. h->mbx = 0;
  628. h->mby++;
  629. /* re-calculate sample pointers */
  630. h->cy = h->cur.f->data[0] + h->mby * 16 * h->l_stride;
  631. h->cu = h->cur.f->data[1] + h->mby * 8 * h->c_stride;
  632. h->cv = h->cur.f->data[2] + h->mby * 8 * h->c_stride;
  633. if (h->mby == h->mb_height) { // Frame end
  634. return 0;
  635. }
  636. }
  637. return 1;
  638. }
  639. /*****************************************************************************
  640. *
  641. * frame level
  642. *
  643. ****************************************************************************/
  644. void ff_cavs_init_pic(AVSContext *h)
  645. {
  646. int i;
  647. /* clear some predictors */
  648. for (i = 0; i <= 20; i += 4)
  649. h->mv[i] = un_mv;
  650. h->mv[MV_BWD_X0] = ff_cavs_dir_mv;
  651. set_mvs(&h->mv[MV_BWD_X0], BLK_16X16);
  652. h->mv[MV_FWD_X0] = ff_cavs_dir_mv;
  653. set_mvs(&h->mv[MV_FWD_X0], BLK_16X16);
  654. h->pred_mode_Y[3] = h->pred_mode_Y[6] = NOT_AVAIL;
  655. h->cy = h->cur.f->data[0];
  656. h->cu = h->cur.f->data[1];
  657. h->cv = h->cur.f->data[2];
  658. h->l_stride = h->cur.f->linesize[0];
  659. h->c_stride = h->cur.f->linesize[1];
  660. h->luma_scan[2] = 8 * h->l_stride;
  661. h->luma_scan[3] = 8 * h->l_stride + 8;
  662. h->mbx = h->mby = h->mbidx = 0;
  663. h->flags = 0;
  664. }
  665. /*****************************************************************************
  666. *
  667. * headers and interface
  668. *
  669. ****************************************************************************/
  670. /**
  671. * some predictions require data from the top-neighbouring macroblock.
  672. * this data has to be stored for one complete row of macroblocks
  673. * and this storage space is allocated here
  674. */
  675. void ff_cavs_init_top_lines(AVSContext *h)
  676. {
  677. /* alloc top line of predictors */
  678. h->top_qp = av_mallocz(h->mb_width);
  679. h->top_mv[0] = av_mallocz((h->mb_width * 2 + 1) * sizeof(cavs_vector));
  680. h->top_mv[1] = av_mallocz((h->mb_width * 2 + 1) * sizeof(cavs_vector));
  681. h->top_pred_Y = av_mallocz(h->mb_width * 2 * sizeof(*h->top_pred_Y));
  682. h->top_border_y = av_mallocz((h->mb_width + 1) * 16);
  683. h->top_border_u = av_mallocz(h->mb_width * 10);
  684. h->top_border_v = av_mallocz(h->mb_width * 10);
  685. /* alloc space for co-located MVs and types */
  686. h->col_mv = av_mallocz(h->mb_width * h->mb_height * 4 *
  687. sizeof(cavs_vector));
  688. h->col_type_base = av_mallocz(h->mb_width * h->mb_height);
  689. h->block = av_mallocz(64 * sizeof(int16_t));
  690. }
  691. av_cold int ff_cavs_init(AVCodecContext *avctx)
  692. {
  693. AVSContext *h = avctx->priv_data;
  694. ff_dsputil_init(&h->dsp, avctx);
  695. ff_h264chroma_init(&h->h264chroma, 8);
  696. ff_videodsp_init(&h->vdsp, 8);
  697. ff_cavsdsp_init(&h->cdsp, avctx);
  698. ff_init_scantable_permutation(h->dsp.idct_permutation,
  699. h->cdsp.idct_perm);
  700. ff_init_scantable(h->dsp.idct_permutation, &h->scantable, ff_zigzag_direct);
  701. h->avctx = avctx;
  702. avctx->pix_fmt = AV_PIX_FMT_YUV420P;
  703. h->cur.f = av_frame_alloc();
  704. h->DPB[0].f = av_frame_alloc();
  705. h->DPB[1].f = av_frame_alloc();
  706. if (!h->cur.f || !h->DPB[0].f || !h->DPB[1].f) {
  707. ff_cavs_end(avctx);
  708. return AVERROR(ENOMEM);
  709. }
  710. h->luma_scan[0] = 0;
  711. h->luma_scan[1] = 8;
  712. h->intra_pred_l[INTRA_L_VERT] = intra_pred_vert;
  713. h->intra_pred_l[INTRA_L_HORIZ] = intra_pred_horiz;
  714. h->intra_pred_l[INTRA_L_LP] = intra_pred_lp;
  715. h->intra_pred_l[INTRA_L_DOWN_LEFT] = intra_pred_down_left;
  716. h->intra_pred_l[INTRA_L_DOWN_RIGHT] = intra_pred_down_right;
  717. h->intra_pred_l[INTRA_L_LP_LEFT] = intra_pred_lp_left;
  718. h->intra_pred_l[INTRA_L_LP_TOP] = intra_pred_lp_top;
  719. h->intra_pred_l[INTRA_L_DC_128] = intra_pred_dc_128;
  720. h->intra_pred_c[INTRA_C_LP] = intra_pred_lp;
  721. h->intra_pred_c[INTRA_C_HORIZ] = intra_pred_horiz;
  722. h->intra_pred_c[INTRA_C_VERT] = intra_pred_vert;
  723. h->intra_pred_c[INTRA_C_PLANE] = intra_pred_plane;
  724. h->intra_pred_c[INTRA_C_LP_LEFT] = intra_pred_lp_left;
  725. h->intra_pred_c[INTRA_C_LP_TOP] = intra_pred_lp_top;
  726. h->intra_pred_c[INTRA_C_DC_128] = intra_pred_dc_128;
  727. h->mv[7] = un_mv;
  728. h->mv[19] = un_mv;
  729. return 0;
  730. }
  731. av_cold int ff_cavs_end(AVCodecContext *avctx)
  732. {
  733. AVSContext *h = avctx->priv_data;
  734. av_frame_free(&h->cur.f);
  735. av_frame_free(&h->DPB[0].f);
  736. av_frame_free(&h->DPB[1].f);
  737. av_free(h->top_qp);
  738. av_free(h->top_mv[0]);
  739. av_free(h->top_mv[1]);
  740. av_free(h->top_pred_Y);
  741. av_free(h->top_border_y);
  742. av_free(h->top_border_u);
  743. av_free(h->top_border_v);
  744. av_free(h->col_mv);
  745. av_free(h->col_type_base);
  746. av_free(h->block);
  747. av_freep(&h->edge_emu_buffer);
  748. return 0;
  749. }