You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

769 lines
22KB

  1. /*
  2. * The simplest mpeg audio layer 2 encoder
  3. * Copyright (c) 2000 Gerard Lantau.
  4. *
  5. * This program is free software; you can redistribute it and/or modify
  6. * it under the terms of the GNU General Public License as published by
  7. * the Free Software Foundation; either version 2 of the License, or
  8. * (at your option) any later version.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License
  16. * along with this program; if not, write to the Free Software
  17. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  18. */
  19. #include "avcodec.h"
  20. #include <math.h>
  21. #include "mpegaudio.h"
  22. /* define it to use floats in quantization (I don't like floats !) */
  23. //#define USE_FLOATS
  24. #define MPA_STEREO 0
  25. #define MPA_JSTEREO 1
  26. #define MPA_DUAL 2
  27. #define MPA_MONO 3
  28. #include "mpegaudiotab.h"
  29. int MPA_encode_init(AVCodecContext *avctx)
  30. {
  31. MpegAudioContext *s = avctx->priv_data;
  32. int freq = avctx->sample_rate;
  33. int bitrate = avctx->bit_rate;
  34. int channels = avctx->channels;
  35. int i, v, table, ch_bitrate;
  36. float a;
  37. if (channels > 2)
  38. return -1;
  39. bitrate = bitrate / 1000;
  40. s->nb_channels = channels;
  41. s->freq = freq;
  42. s->bit_rate = bitrate * 1000;
  43. avctx->frame_size = MPA_FRAME_SIZE;
  44. avctx->key_frame = 1; /* always key frame */
  45. /* encoding freq */
  46. s->lsf = 0;
  47. for(i=0;i<3;i++) {
  48. if (freq_tab[i] == freq)
  49. break;
  50. if ((freq_tab[i] / 2) == freq) {
  51. s->lsf = 1;
  52. break;
  53. }
  54. }
  55. if (i == 3)
  56. return -1;
  57. s->freq_index = i;
  58. /* encoding bitrate & frequency */
  59. for(i=0;i<15;i++) {
  60. if (bitrate_tab[1-s->lsf][i] == bitrate)
  61. break;
  62. }
  63. if (i == 15)
  64. return -1;
  65. s->bitrate_index = i;
  66. /* compute total header size & pad bit */
  67. a = (float)(bitrate * 1000 * MPA_FRAME_SIZE) / (freq * 8.0);
  68. s->frame_size = ((int)a) * 8;
  69. /* frame fractional size to compute padding */
  70. s->frame_frac = 0;
  71. s->frame_frac_incr = (int)((a - floor(a)) * 65536.0);
  72. /* select the right allocation table */
  73. ch_bitrate = bitrate / s->nb_channels;
  74. if (!s->lsf) {
  75. if ((freq == 48000 && ch_bitrate >= 56) ||
  76. (ch_bitrate >= 56 && ch_bitrate <= 80))
  77. table = 0;
  78. else if (freq != 48000 && ch_bitrate >= 96)
  79. table = 1;
  80. else if (freq != 32000 && ch_bitrate <= 48)
  81. table = 2;
  82. else
  83. table = 3;
  84. } else {
  85. table = 4;
  86. }
  87. /* number of used subbands */
  88. s->sblimit = sblimit_table[table];
  89. s->alloc_table = alloc_tables[table];
  90. #ifdef DEBUG
  91. printf("%d kb/s, %d Hz, frame_size=%d bits, table=%d, padincr=%x\n",
  92. bitrate, freq, s->frame_size, table, s->frame_frac_incr);
  93. #endif
  94. for(i=0;i<s->nb_channels;i++)
  95. s->samples_offset[i] = 0;
  96. for(i=0;i<512;i++) {
  97. float a = enwindow[i] * 32768.0 * 16.0;
  98. filter_bank[i] = (int)(a);
  99. }
  100. for(i=0;i<64;i++) {
  101. v = (int)(pow(2.0, (3 - i) / 3.0) * (1 << 20));
  102. if (v <= 0)
  103. v = 1;
  104. scale_factor_table[i] = v;
  105. #ifdef USE_FLOATS
  106. scale_factor_inv_table[i] = pow(2.0, -(3 - i) / 3.0) / (float)(1 << 20);
  107. #else
  108. #define P 15
  109. scale_factor_shift[i] = 21 - P - (i / 3);
  110. scale_factor_mult[i] = (1 << P) * pow(2.0, (i % 3) / 3.0);
  111. #endif
  112. }
  113. for(i=0;i<128;i++) {
  114. v = i - 64;
  115. if (v <= -3)
  116. v = 0;
  117. else if (v < 0)
  118. v = 1;
  119. else if (v == 0)
  120. v = 2;
  121. else if (v < 3)
  122. v = 3;
  123. else
  124. v = 4;
  125. scale_diff_table[i] = v;
  126. }
  127. for(i=0;i<17;i++) {
  128. v = quant_bits[i];
  129. if (v < 0)
  130. v = -v;
  131. else
  132. v = v * 3;
  133. total_quant_bits[i] = 12 * v;
  134. }
  135. return 0;
  136. }
  137. /* 32 point floating point IDCT */
  138. static void idct32(int *out, int *tab, int sblimit, int left_shift)
  139. {
  140. int i, j;
  141. int *t, *t1, xr;
  142. const int *xp = costab32;
  143. for(j=31;j>=3;j-=2) tab[j] += tab[j - 2];
  144. t = tab + 30;
  145. t1 = tab + 2;
  146. do {
  147. t[0] += t[-4];
  148. t[1] += t[1 - 4];
  149. t -= 4;
  150. } while (t != t1);
  151. t = tab + 28;
  152. t1 = tab + 4;
  153. do {
  154. t[0] += t[-8];
  155. t[1] += t[1-8];
  156. t[2] += t[2-8];
  157. t[3] += t[3-8];
  158. t -= 8;
  159. } while (t != t1);
  160. t = tab;
  161. t1 = tab + 32;
  162. do {
  163. t[ 3] = -t[ 3];
  164. t[ 6] = -t[ 6];
  165. t[11] = -t[11];
  166. t[12] = -t[12];
  167. t[13] = -t[13];
  168. t[15] = -t[15];
  169. t += 16;
  170. } while (t != t1);
  171. t = tab;
  172. t1 = tab + 8;
  173. do {
  174. int x1, x2, x3, x4;
  175. x3 = MUL(t[16], FIX(SQRT2*0.5));
  176. x4 = t[0] - x3;
  177. x3 = t[0] + x3;
  178. x2 = MUL(-(t[24] + t[8]), FIX(SQRT2*0.5));
  179. x1 = MUL((t[8] - x2), xp[0]);
  180. x2 = MUL((t[8] + x2), xp[1]);
  181. t[ 0] = x3 + x1;
  182. t[ 8] = x4 - x2;
  183. t[16] = x4 + x2;
  184. t[24] = x3 - x1;
  185. t++;
  186. } while (t != t1);
  187. xp += 2;
  188. t = tab;
  189. t1 = tab + 4;
  190. do {
  191. xr = MUL(t[28],xp[0]);
  192. t[28] = (t[0] - xr);
  193. t[0] = (t[0] + xr);
  194. xr = MUL(t[4],xp[1]);
  195. t[ 4] = (t[24] - xr);
  196. t[24] = (t[24] + xr);
  197. xr = MUL(t[20],xp[2]);
  198. t[20] = (t[8] - xr);
  199. t[ 8] = (t[8] + xr);
  200. xr = MUL(t[12],xp[3]);
  201. t[12] = (t[16] - xr);
  202. t[16] = (t[16] + xr);
  203. t++;
  204. } while (t != t1);
  205. xp += 4;
  206. for (i = 0; i < 4; i++) {
  207. xr = MUL(tab[30-i*4],xp[0]);
  208. tab[30-i*4] = (tab[i*4] - xr);
  209. tab[ i*4] = (tab[i*4] + xr);
  210. xr = MUL(tab[ 2+i*4],xp[1]);
  211. tab[ 2+i*4] = (tab[28-i*4] - xr);
  212. tab[28-i*4] = (tab[28-i*4] + xr);
  213. xr = MUL(tab[31-i*4],xp[0]);
  214. tab[31-i*4] = (tab[1+i*4] - xr);
  215. tab[ 1+i*4] = (tab[1+i*4] + xr);
  216. xr = MUL(tab[ 3+i*4],xp[1]);
  217. tab[ 3+i*4] = (tab[29-i*4] - xr);
  218. tab[29-i*4] = (tab[29-i*4] + xr);
  219. xp += 2;
  220. }
  221. t = tab + 30;
  222. t1 = tab + 1;
  223. do {
  224. xr = MUL(t1[0], *xp);
  225. t1[0] = (t[0] - xr);
  226. t[0] = (t[0] + xr);
  227. t -= 2;
  228. t1 += 2;
  229. xp++;
  230. } while (t >= tab);
  231. for(i=0;i<32;i++) {
  232. out[i] = tab[bitinv32[i]] << left_shift;
  233. }
  234. }
  235. static void filter(MpegAudioContext *s, int ch, short *samples, int incr)
  236. {
  237. short *p, *q;
  238. int sum, offset, i, j, norm, n;
  239. short tmp[64];
  240. int tmp1[32];
  241. int *out;
  242. // print_pow1(samples, 1152);
  243. offset = s->samples_offset[ch];
  244. out = &s->sb_samples[ch][0][0][0];
  245. for(j=0;j<36;j++) {
  246. /* 32 samples at once */
  247. for(i=0;i<32;i++) {
  248. s->samples_buf[ch][offset + (31 - i)] = samples[0];
  249. samples += incr;
  250. }
  251. /* filter */
  252. p = s->samples_buf[ch] + offset;
  253. q = filter_bank;
  254. /* maxsum = 23169 */
  255. for(i=0;i<64;i++) {
  256. sum = p[0*64] * q[0*64];
  257. sum += p[1*64] * q[1*64];
  258. sum += p[2*64] * q[2*64];
  259. sum += p[3*64] * q[3*64];
  260. sum += p[4*64] * q[4*64];
  261. sum += p[5*64] * q[5*64];
  262. sum += p[6*64] * q[6*64];
  263. sum += p[7*64] * q[7*64];
  264. tmp[i] = sum >> 14;
  265. p++;
  266. q++;
  267. }
  268. tmp1[0] = tmp[16];
  269. for( i=1; i<=16; i++ ) tmp1[i] = tmp[i+16]+tmp[16-i];
  270. for( i=17; i<=31; i++ ) tmp1[i] = tmp[i+16]-tmp[80-i];
  271. /* integer IDCT 32 with normalization. XXX: There may be some
  272. overflow left */
  273. norm = 0;
  274. for(i=0;i<32;i++) {
  275. norm |= abs(tmp1[i]);
  276. }
  277. n = av_log2(norm) - 12;
  278. if (n > 0) {
  279. for(i=0;i<32;i++)
  280. tmp1[i] >>= n;
  281. } else {
  282. n = 0;
  283. }
  284. idct32(out, tmp1, s->sblimit, n);
  285. /* advance of 32 samples */
  286. offset -= 32;
  287. out += 32;
  288. /* handle the wrap around */
  289. if (offset < 0) {
  290. memmove(s->samples_buf[ch] + SAMPLES_BUF_SIZE - (512 - 32),
  291. s->samples_buf[ch], (512 - 32) * 2);
  292. offset = SAMPLES_BUF_SIZE - 512;
  293. }
  294. }
  295. s->samples_offset[ch] = offset;
  296. // print_pow(s->sb_samples, 1152);
  297. }
  298. static void compute_scale_factors(unsigned char scale_code[SBLIMIT],
  299. unsigned char scale_factors[SBLIMIT][3],
  300. int sb_samples[3][12][SBLIMIT],
  301. int sblimit)
  302. {
  303. int *p, vmax, v, n, i, j, k, code;
  304. int index, d1, d2;
  305. unsigned char *sf = &scale_factors[0][0];
  306. for(j=0;j<sblimit;j++) {
  307. for(i=0;i<3;i++) {
  308. /* find the max absolute value */
  309. p = &sb_samples[i][0][j];
  310. vmax = abs(*p);
  311. for(k=1;k<12;k++) {
  312. p += SBLIMIT;
  313. v = abs(*p);
  314. if (v > vmax)
  315. vmax = v;
  316. }
  317. /* compute the scale factor index using log 2 computations */
  318. if (vmax > 0) {
  319. n = av_log2(vmax);
  320. /* n is the position of the MSB of vmax. now
  321. use at most 2 compares to find the index */
  322. index = (21 - n) * 3 - 3;
  323. if (index >= 0) {
  324. while (vmax <= scale_factor_table[index+1])
  325. index++;
  326. } else {
  327. index = 0; /* very unlikely case of overflow */
  328. }
  329. } else {
  330. index = 63;
  331. }
  332. #if 0
  333. printf("%2d:%d in=%x %x %d\n",
  334. j, i, vmax, scale_factor_table[index], index);
  335. #endif
  336. /* store the scale factor */
  337. assert(index >=0 && index <= 63);
  338. sf[i] = index;
  339. }
  340. /* compute the transmission factor : look if the scale factors
  341. are close enough to each other */
  342. d1 = scale_diff_table[sf[0] - sf[1] + 64];
  343. d2 = scale_diff_table[sf[1] - sf[2] + 64];
  344. /* handle the 25 cases */
  345. switch(d1 * 5 + d2) {
  346. case 0*5+0:
  347. case 0*5+4:
  348. case 3*5+4:
  349. case 4*5+0:
  350. case 4*5+4:
  351. code = 0;
  352. break;
  353. case 0*5+1:
  354. case 0*5+2:
  355. case 4*5+1:
  356. case 4*5+2:
  357. code = 3;
  358. sf[2] = sf[1];
  359. break;
  360. case 0*5+3:
  361. case 4*5+3:
  362. code = 3;
  363. sf[1] = sf[2];
  364. break;
  365. case 1*5+0:
  366. case 1*5+4:
  367. case 2*5+4:
  368. code = 1;
  369. sf[1] = sf[0];
  370. break;
  371. case 1*5+1:
  372. case 1*5+2:
  373. case 2*5+0:
  374. case 2*5+1:
  375. case 2*5+2:
  376. code = 2;
  377. sf[1] = sf[2] = sf[0];
  378. break;
  379. case 2*5+3:
  380. case 3*5+3:
  381. code = 2;
  382. sf[0] = sf[1] = sf[2];
  383. break;
  384. case 3*5+0:
  385. case 3*5+1:
  386. case 3*5+2:
  387. code = 2;
  388. sf[0] = sf[2] = sf[1];
  389. break;
  390. case 1*5+3:
  391. code = 2;
  392. if (sf[0] > sf[2])
  393. sf[0] = sf[2];
  394. sf[1] = sf[2] = sf[0];
  395. break;
  396. default:
  397. abort();
  398. }
  399. #if 0
  400. printf("%d: %2d %2d %2d %d %d -> %d\n", j,
  401. sf[0], sf[1], sf[2], d1, d2, code);
  402. #endif
  403. scale_code[j] = code;
  404. sf += 3;
  405. }
  406. }
  407. /* The most important function : psycho acoustic module. In this
  408. encoder there is basically none, so this is the worst you can do,
  409. but also this is the simpler. */
  410. static void psycho_acoustic_model(MpegAudioContext *s, short smr[SBLIMIT])
  411. {
  412. int i;
  413. for(i=0;i<s->sblimit;i++) {
  414. smr[i] = (int)(fixed_smr[i] * 10);
  415. }
  416. }
  417. #define SB_NOTALLOCATED 0
  418. #define SB_ALLOCATED 1
  419. #define SB_NOMORE 2
  420. /* Try to maximize the smr while using a number of bits inferior to
  421. the frame size. I tried to make the code simpler, faster and
  422. smaller than other encoders :-) */
  423. static void compute_bit_allocation(MpegAudioContext *s,
  424. short smr1[MPA_MAX_CHANNELS][SBLIMIT],
  425. unsigned char bit_alloc[MPA_MAX_CHANNELS][SBLIMIT],
  426. int *padding)
  427. {
  428. int i, ch, b, max_smr, max_ch, max_sb, current_frame_size, max_frame_size;
  429. int incr;
  430. short smr[MPA_MAX_CHANNELS][SBLIMIT];
  431. unsigned char subband_status[MPA_MAX_CHANNELS][SBLIMIT];
  432. const unsigned char *alloc;
  433. memcpy(smr, smr1, s->nb_channels * sizeof(short) * SBLIMIT);
  434. memset(subband_status, SB_NOTALLOCATED, s->nb_channels * SBLIMIT);
  435. memset(bit_alloc, 0, s->nb_channels * SBLIMIT);
  436. /* compute frame size and padding */
  437. max_frame_size = s->frame_size;
  438. s->frame_frac += s->frame_frac_incr;
  439. if (s->frame_frac >= 65536) {
  440. s->frame_frac -= 65536;
  441. s->do_padding = 1;
  442. max_frame_size += 8;
  443. } else {
  444. s->do_padding = 0;
  445. }
  446. /* compute the header + bit alloc size */
  447. current_frame_size = 32;
  448. alloc = s->alloc_table;
  449. for(i=0;i<s->sblimit;i++) {
  450. incr = alloc[0];
  451. current_frame_size += incr * s->nb_channels;
  452. alloc += 1 << incr;
  453. }
  454. for(;;) {
  455. /* look for the subband with the largest signal to mask ratio */
  456. max_sb = -1;
  457. max_ch = -1;
  458. max_smr = 0x80000000;
  459. for(ch=0;ch<s->nb_channels;ch++) {
  460. for(i=0;i<s->sblimit;i++) {
  461. if (smr[ch][i] > max_smr && subband_status[ch][i] != SB_NOMORE) {
  462. max_smr = smr[ch][i];
  463. max_sb = i;
  464. max_ch = ch;
  465. }
  466. }
  467. }
  468. #if 0
  469. printf("current=%d max=%d max_sb=%d alloc=%d\n",
  470. current_frame_size, max_frame_size, max_sb,
  471. bit_alloc[max_sb]);
  472. #endif
  473. if (max_sb < 0)
  474. break;
  475. /* find alloc table entry (XXX: not optimal, should use
  476. pointer table) */
  477. alloc = s->alloc_table;
  478. for(i=0;i<max_sb;i++) {
  479. alloc += 1 << alloc[0];
  480. }
  481. if (subband_status[max_ch][max_sb] == SB_NOTALLOCATED) {
  482. /* nothing was coded for this band: add the necessary bits */
  483. incr = 2 + nb_scale_factors[s->scale_code[max_ch][max_sb]] * 6;
  484. incr += total_quant_bits[alloc[1]];
  485. } else {
  486. /* increments bit allocation */
  487. b = bit_alloc[max_ch][max_sb];
  488. incr = total_quant_bits[alloc[b + 1]] -
  489. total_quant_bits[alloc[b]];
  490. }
  491. if (current_frame_size + incr <= max_frame_size) {
  492. /* can increase size */
  493. b = ++bit_alloc[max_ch][max_sb];
  494. current_frame_size += incr;
  495. /* decrease smr by the resolution we added */
  496. smr[max_ch][max_sb] = smr1[max_ch][max_sb] - quant_snr[alloc[b]];
  497. /* max allocation size reached ? */
  498. if (b == ((1 << alloc[0]) - 1))
  499. subband_status[max_ch][max_sb] = SB_NOMORE;
  500. else
  501. subband_status[max_ch][max_sb] = SB_ALLOCATED;
  502. } else {
  503. /* cannot increase the size of this subband */
  504. subband_status[max_ch][max_sb] = SB_NOMORE;
  505. }
  506. }
  507. *padding = max_frame_size - current_frame_size;
  508. assert(*padding >= 0);
  509. #if 0
  510. for(i=0;i<s->sblimit;i++) {
  511. printf("%d ", bit_alloc[i]);
  512. }
  513. printf("\n");
  514. #endif
  515. }
  516. /*
  517. * Output the mpeg audio layer 2 frame. Note how the code is small
  518. * compared to other encoders :-)
  519. */
  520. static void encode_frame(MpegAudioContext *s,
  521. unsigned char bit_alloc[MPA_MAX_CHANNELS][SBLIMIT],
  522. int padding)
  523. {
  524. int i, j, k, l, bit_alloc_bits, b, ch;
  525. unsigned char *sf;
  526. int q[3];
  527. PutBitContext *p = &s->pb;
  528. /* header */
  529. put_bits(p, 12, 0xfff);
  530. put_bits(p, 1, 1 - s->lsf); /* 1 = mpeg1 ID, 0 = mpeg2 lsf ID */
  531. put_bits(p, 2, 4-2); /* layer 2 */
  532. put_bits(p, 1, 1); /* no error protection */
  533. put_bits(p, 4, s->bitrate_index);
  534. put_bits(p, 2, s->freq_index);
  535. put_bits(p, 1, s->do_padding); /* use padding */
  536. put_bits(p, 1, 0); /* private_bit */
  537. put_bits(p, 2, s->nb_channels == 2 ? MPA_STEREO : MPA_MONO);
  538. put_bits(p, 2, 0); /* mode_ext */
  539. put_bits(p, 1, 0); /* no copyright */
  540. put_bits(p, 1, 1); /* original */
  541. put_bits(p, 2, 0); /* no emphasis */
  542. /* bit allocation */
  543. j = 0;
  544. for(i=0;i<s->sblimit;i++) {
  545. bit_alloc_bits = s->alloc_table[j];
  546. for(ch=0;ch<s->nb_channels;ch++) {
  547. put_bits(p, bit_alloc_bits, bit_alloc[ch][i]);
  548. }
  549. j += 1 << bit_alloc_bits;
  550. }
  551. /* scale codes */
  552. for(i=0;i<s->sblimit;i++) {
  553. for(ch=0;ch<s->nb_channels;ch++) {
  554. if (bit_alloc[ch][i])
  555. put_bits(p, 2, s->scale_code[ch][i]);
  556. }
  557. }
  558. /* scale factors */
  559. for(i=0;i<s->sblimit;i++) {
  560. for(ch=0;ch<s->nb_channels;ch++) {
  561. if (bit_alloc[ch][i]) {
  562. sf = &s->scale_factors[ch][i][0];
  563. switch(s->scale_code[ch][i]) {
  564. case 0:
  565. put_bits(p, 6, sf[0]);
  566. put_bits(p, 6, sf[1]);
  567. put_bits(p, 6, sf[2]);
  568. break;
  569. case 3:
  570. case 1:
  571. put_bits(p, 6, sf[0]);
  572. put_bits(p, 6, sf[2]);
  573. break;
  574. case 2:
  575. put_bits(p, 6, sf[0]);
  576. break;
  577. }
  578. }
  579. }
  580. }
  581. /* quantization & write sub band samples */
  582. for(k=0;k<3;k++) {
  583. for(l=0;l<12;l+=3) {
  584. j = 0;
  585. for(i=0;i<s->sblimit;i++) {
  586. bit_alloc_bits = s->alloc_table[j];
  587. for(ch=0;ch<s->nb_channels;ch++) {
  588. b = bit_alloc[ch][i];
  589. if (b) {
  590. int qindex, steps, m, sample, bits;
  591. /* we encode 3 sub band samples of the same sub band at a time */
  592. qindex = s->alloc_table[j+b];
  593. steps = quant_steps[qindex];
  594. for(m=0;m<3;m++) {
  595. sample = s->sb_samples[ch][k][l + m][i];
  596. /* divide by scale factor */
  597. #ifdef USE_FLOATS
  598. {
  599. float a;
  600. a = (float)sample * scale_factor_inv_table[s->scale_factors[ch][i][k]];
  601. q[m] = (int)((a + 1.0) * steps * 0.5);
  602. }
  603. #else
  604. {
  605. int q1, e, shift, mult;
  606. e = s->scale_factors[ch][i][k];
  607. shift = scale_factor_shift[e];
  608. mult = scale_factor_mult[e];
  609. /* normalize to P bits */
  610. if (shift < 0)
  611. q1 = sample << (-shift);
  612. else
  613. q1 = sample >> shift;
  614. q1 = (q1 * mult) >> P;
  615. q[m] = ((q1 + (1 << P)) * steps) >> (P + 1);
  616. }
  617. #endif
  618. if (q[m] >= steps)
  619. q[m] = steps - 1;
  620. assert(q[m] >= 0 && q[m] < steps);
  621. }
  622. bits = quant_bits[qindex];
  623. if (bits < 0) {
  624. /* group the 3 values to save bits */
  625. put_bits(p, -bits,
  626. q[0] + steps * (q[1] + steps * q[2]));
  627. #if 0
  628. printf("%d: gr1 %d\n",
  629. i, q[0] + steps * (q[1] + steps * q[2]));
  630. #endif
  631. } else {
  632. #if 0
  633. printf("%d: gr3 %d %d %d\n",
  634. i, q[0], q[1], q[2]);
  635. #endif
  636. put_bits(p, bits, q[0]);
  637. put_bits(p, bits, q[1]);
  638. put_bits(p, bits, q[2]);
  639. }
  640. }
  641. }
  642. /* next subband in alloc table */
  643. j += 1 << bit_alloc_bits;
  644. }
  645. }
  646. }
  647. /* padding */
  648. for(i=0;i<padding;i++)
  649. put_bits(p, 1, 0);
  650. /* flush */
  651. flush_put_bits(p);
  652. }
  653. int MPA_encode_frame(AVCodecContext *avctx,
  654. unsigned char *frame, int buf_size, void *data)
  655. {
  656. MpegAudioContext *s = avctx->priv_data;
  657. short *samples = data;
  658. short smr[MPA_MAX_CHANNELS][SBLIMIT];
  659. unsigned char bit_alloc[MPA_MAX_CHANNELS][SBLIMIT];
  660. int padding, i;
  661. for(i=0;i<s->nb_channels;i++) {
  662. filter(s, i, samples + i, s->nb_channels);
  663. }
  664. for(i=0;i<s->nb_channels;i++) {
  665. compute_scale_factors(s->scale_code[i], s->scale_factors[i],
  666. s->sb_samples[i], s->sblimit);
  667. }
  668. for(i=0;i<s->nb_channels;i++) {
  669. psycho_acoustic_model(s, smr[i]);
  670. }
  671. compute_bit_allocation(s, smr, bit_alloc, &padding);
  672. init_put_bits(&s->pb, frame, MPA_MAX_CODED_FRAME_SIZE, NULL, NULL);
  673. encode_frame(s, bit_alloc, padding);
  674. s->nb_samples += MPA_FRAME_SIZE;
  675. return s->pb.buf_ptr - s->pb.buf;
  676. }
  677. AVCodec mp2_encoder = {
  678. "mp2",
  679. CODEC_TYPE_AUDIO,
  680. CODEC_ID_MP2,
  681. sizeof(MpegAudioContext),
  682. MPA_encode_init,
  683. MPA_encode_frame,
  684. NULL,
  685. };