You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

323 lines
8.1KB

  1. /*
  2. * Sample rate convertion for both audio and video
  3. * Copyright (c) 2000 Fabrice Bellard.
  4. *
  5. * This library is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU Lesser General Public
  7. * License as published by the Free Software Foundation; either
  8. * version 2 of the License, or (at your option) any later version.
  9. *
  10. * This library is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  13. * Lesser General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU Lesser General Public
  16. * License along with this library; if not, write to the Free Software
  17. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  18. */
  19. /**
  20. * @file resample.c
  21. * Sample rate convertion for both audio and video.
  22. */
  23. #include "avcodec.h"
  24. #if defined (CONFIG_OS2)
  25. #define floorf(n) floor(n)
  26. #endif
  27. typedef struct {
  28. /* fractional resampling */
  29. uint32_t incr; /* fractional increment */
  30. uint32_t frac;
  31. int last_sample;
  32. /* integer down sample */
  33. int iratio; /* integer divison ratio */
  34. int icount, isum;
  35. int inv;
  36. } ReSampleChannelContext;
  37. struct ReSampleContext {
  38. ReSampleChannelContext channel_ctx[2];
  39. float ratio;
  40. /* channel convert */
  41. int input_channels, output_channels, filter_channels;
  42. };
  43. #define FRAC_BITS 16
  44. #define FRAC (1 << FRAC_BITS)
  45. static void init_mono_resample(ReSampleChannelContext *s, float ratio)
  46. {
  47. ratio = 1.0 / ratio;
  48. s->iratio = (int)floorf(ratio);
  49. if (s->iratio == 0)
  50. s->iratio = 1;
  51. s->incr = (int)((ratio / s->iratio) * FRAC);
  52. s->frac = FRAC;
  53. s->last_sample = 0;
  54. s->icount = s->iratio;
  55. s->isum = 0;
  56. s->inv = (FRAC / s->iratio);
  57. }
  58. /* fractional audio resampling */
  59. static int fractional_resample(ReSampleChannelContext *s, short *output, short *input, int nb_samples)
  60. {
  61. unsigned int frac, incr;
  62. int l0, l1;
  63. short *q, *p, *pend;
  64. l0 = s->last_sample;
  65. incr = s->incr;
  66. frac = s->frac;
  67. p = input;
  68. pend = input + nb_samples;
  69. q = output;
  70. l1 = *p++;
  71. for(;;) {
  72. /* interpolate */
  73. *q++ = (l0 * (FRAC - frac) + l1 * frac) >> FRAC_BITS;
  74. frac = frac + s->incr;
  75. while (frac >= FRAC) {
  76. frac -= FRAC;
  77. if (p >= pend)
  78. goto the_end;
  79. l0 = l1;
  80. l1 = *p++;
  81. }
  82. }
  83. the_end:
  84. s->last_sample = l1;
  85. s->frac = frac;
  86. return q - output;
  87. }
  88. static int integer_downsample(ReSampleChannelContext *s, short *output, short *input, int nb_samples)
  89. {
  90. short *q, *p, *pend;
  91. int c, sum;
  92. p = input;
  93. pend = input + nb_samples;
  94. q = output;
  95. c = s->icount;
  96. sum = s->isum;
  97. for(;;) {
  98. sum += *p++;
  99. if (--c == 0) {
  100. *q++ = (sum * s->inv) >> FRAC_BITS;
  101. c = s->iratio;
  102. sum = 0;
  103. }
  104. if (p >= pend)
  105. break;
  106. }
  107. s->isum = sum;
  108. s->icount = c;
  109. return q - output;
  110. }
  111. /* n1: number of samples */
  112. static void stereo_to_mono(short *output, short *input, int n1)
  113. {
  114. short *p, *q;
  115. int n = n1;
  116. p = input;
  117. q = output;
  118. while (n >= 4) {
  119. q[0] = (p[0] + p[1]) >> 1;
  120. q[1] = (p[2] + p[3]) >> 1;
  121. q[2] = (p[4] + p[5]) >> 1;
  122. q[3] = (p[6] + p[7]) >> 1;
  123. q += 4;
  124. p += 8;
  125. n -= 4;
  126. }
  127. while (n > 0) {
  128. q[0] = (p[0] + p[1]) >> 1;
  129. q++;
  130. p += 2;
  131. n--;
  132. }
  133. }
  134. /* n1: number of samples */
  135. static void mono_to_stereo(short *output, short *input, int n1)
  136. {
  137. short *p, *q;
  138. int n = n1;
  139. int v;
  140. p = input;
  141. q = output;
  142. while (n >= 4) {
  143. v = p[0]; q[0] = v; q[1] = v;
  144. v = p[1]; q[2] = v; q[3] = v;
  145. v = p[2]; q[4] = v; q[5] = v;
  146. v = p[3]; q[6] = v; q[7] = v;
  147. q += 8;
  148. p += 4;
  149. n -= 4;
  150. }
  151. while (n > 0) {
  152. v = p[0]; q[0] = v; q[1] = v;
  153. q += 2;
  154. p += 1;
  155. n--;
  156. }
  157. }
  158. /* XXX: should use more abstract 'N' channels system */
  159. static void stereo_split(short *output1, short *output2, short *input, int n)
  160. {
  161. int i;
  162. for(i=0;i<n;i++) {
  163. *output1++ = *input++;
  164. *output2++ = *input++;
  165. }
  166. }
  167. static void stereo_mux(short *output, short *input1, short *input2, int n)
  168. {
  169. int i;
  170. for(i=0;i<n;i++) {
  171. *output++ = *input1++;
  172. *output++ = *input2++;
  173. }
  174. }
  175. static int mono_resample(ReSampleChannelContext *s, short *output, short *input, int nb_samples)
  176. {
  177. short *buf1;
  178. short *buftmp;
  179. buf1= (short*)av_malloc( nb_samples * sizeof(short) );
  180. /* first downsample by an integer factor with averaging filter */
  181. if (s->iratio > 1) {
  182. buftmp = buf1;
  183. nb_samples = integer_downsample(s, buftmp, input, nb_samples);
  184. } else {
  185. buftmp = input;
  186. }
  187. /* then do a fractional resampling with linear interpolation */
  188. if (s->incr != FRAC) {
  189. nb_samples = fractional_resample(s, output, buftmp, nb_samples);
  190. } else {
  191. memcpy(output, buftmp, nb_samples * sizeof(short));
  192. }
  193. av_free(buf1);
  194. return nb_samples;
  195. }
  196. ReSampleContext *audio_resample_init(int output_channels, int input_channels,
  197. int output_rate, int input_rate)
  198. {
  199. ReSampleContext *s;
  200. int i;
  201. if (output_channels > 2 || input_channels > 2)
  202. return NULL;
  203. s = av_mallocz(sizeof(ReSampleContext));
  204. if (!s)
  205. return NULL;
  206. s->ratio = (float)output_rate / (float)input_rate;
  207. s->input_channels = input_channels;
  208. s->output_channels = output_channels;
  209. s->filter_channels = s->input_channels;
  210. if (s->output_channels < s->filter_channels)
  211. s->filter_channels = s->output_channels;
  212. for(i=0;i<s->filter_channels;i++) {
  213. init_mono_resample(&s->channel_ctx[i], s->ratio);
  214. }
  215. return s;
  216. }
  217. /* resample audio. 'nb_samples' is the number of input samples */
  218. /* XXX: optimize it ! */
  219. /* XXX: do it with polyphase filters, since the quality here is
  220. HORRIBLE. Return the number of samples available in output */
  221. int audio_resample(ReSampleContext *s, short *output, short *input, int nb_samples)
  222. {
  223. int i, nb_samples1;
  224. short *bufin[2];
  225. short *bufout[2];
  226. short *buftmp2[2], *buftmp3[2];
  227. int lenout;
  228. if (s->input_channels == s->output_channels && s->ratio == 1.0) {
  229. /* nothing to do */
  230. memcpy(output, input, nb_samples * s->input_channels * sizeof(short));
  231. return nb_samples;
  232. }
  233. /* XXX: move those malloc to resample init code */
  234. bufin[0]= (short*) av_malloc( nb_samples * sizeof(short) );
  235. bufin[1]= (short*) av_malloc( nb_samples * sizeof(short) );
  236. /* make some zoom to avoid round pb */
  237. lenout= (int)(nb_samples * s->ratio) + 16;
  238. bufout[0]= (short*) av_malloc( lenout * sizeof(short) );
  239. bufout[1]= (short*) av_malloc( lenout * sizeof(short) );
  240. if (s->input_channels == 2 &&
  241. s->output_channels == 1) {
  242. buftmp2[0] = bufin[0];
  243. buftmp3[0] = output;
  244. stereo_to_mono(buftmp2[0], input, nb_samples);
  245. } else if (s->output_channels == 2 && s->input_channels == 1) {
  246. buftmp2[0] = input;
  247. buftmp3[0] = bufout[0];
  248. } else if (s->output_channels == 2) {
  249. buftmp2[0] = bufin[0];
  250. buftmp2[1] = bufin[1];
  251. buftmp3[0] = bufout[0];
  252. buftmp3[1] = bufout[1];
  253. stereo_split(buftmp2[0], buftmp2[1], input, nb_samples);
  254. } else {
  255. buftmp2[0] = input;
  256. buftmp3[0] = output;
  257. }
  258. /* resample each channel */
  259. nb_samples1 = 0; /* avoid warning */
  260. for(i=0;i<s->filter_channels;i++) {
  261. nb_samples1 = mono_resample(&s->channel_ctx[i], buftmp3[i], buftmp2[i], nb_samples);
  262. }
  263. if (s->output_channels == 2 && s->input_channels == 1) {
  264. mono_to_stereo(output, buftmp3[0], nb_samples1);
  265. } else if (s->output_channels == 2) {
  266. stereo_mux(output, buftmp3[0], buftmp3[1], nb_samples1);
  267. }
  268. av_free(bufin[0]);
  269. av_free(bufin[1]);
  270. av_free(bufout[0]);
  271. av_free(bufout[1]);
  272. return nb_samples1;
  273. }
  274. void audio_resample_close(ReSampleContext *s)
  275. {
  276. av_free(s);
  277. }