You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1157 lines
39KB

  1. /*
  2. * VC3/DNxHD encoder
  3. * Copyright (c) 2007 Baptiste Coudurier <baptiste dot coudurier at smartjog dot com>
  4. * Copyright (c) 2011 MirriAd Ltd
  5. *
  6. * VC-3 encoder funded by the British Broadcasting Corporation
  7. * 10 bit support added by MirriAd Ltd, Joseph Artsimovich <joseph@mirriad.com>
  8. *
  9. * This file is part of FFmpeg.
  10. *
  11. * FFmpeg is free software; you can redistribute it and/or
  12. * modify it under the terms of the GNU Lesser General Public
  13. * License as published by the Free Software Foundation; either
  14. * version 2.1 of the License, or (at your option) any later version.
  15. *
  16. * FFmpeg is distributed in the hope that it will be useful,
  17. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  18. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  19. * Lesser General Public License for more details.
  20. *
  21. * You should have received a copy of the GNU Lesser General Public
  22. * License along with FFmpeg; if not, write to the Free Software
  23. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  24. */
  25. #include "libavutil/attributes.h"
  26. #include "libavutil/internal.h"
  27. #include "libavutil/opt.h"
  28. #include "libavutil/timer.h"
  29. #include "avcodec.h"
  30. #include "blockdsp.h"
  31. #include "dsputil.h"
  32. #include "internal.h"
  33. #include "mpegvideo.h"
  34. #include "dnxhdenc.h"
  35. // The largest value that will not lead to overflow for 10bit samples.
  36. #define DNX10BIT_QMAT_SHIFT 18
  37. #define RC_VARIANCE 1 // use variance or ssd for fast rc
  38. #define LAMBDA_FRAC_BITS 10
  39. #define VE AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_ENCODING_PARAM
  40. static const AVOption options[] = {
  41. { "nitris_compat", "encode with Avid Nitris compatibility",
  42. offsetof(DNXHDEncContext, nitris_compat), AV_OPT_TYPE_INT, { .i64 = 0 }, 0, 1, VE },
  43. { NULL }
  44. };
  45. static const AVClass dnxhd_class = {
  46. .class_name = "dnxhd",
  47. .item_name = av_default_item_name,
  48. .option = options,
  49. .version = LIBAVUTIL_VERSION_INT,
  50. };
  51. static void dnxhd_8bit_get_pixels_8x4_sym(int16_t *av_restrict block,
  52. const uint8_t *pixels,
  53. ptrdiff_t line_size)
  54. {
  55. int i;
  56. for (i = 0; i < 4; i++) {
  57. block[0] = pixels[0];
  58. block[1] = pixels[1];
  59. block[2] = pixels[2];
  60. block[3] = pixels[3];
  61. block[4] = pixels[4];
  62. block[5] = pixels[5];
  63. block[6] = pixels[6];
  64. block[7] = pixels[7];
  65. pixels += line_size;
  66. block += 8;
  67. }
  68. memcpy(block, block - 8, sizeof(*block) * 8);
  69. memcpy(block + 8, block - 16, sizeof(*block) * 8);
  70. memcpy(block + 16, block - 24, sizeof(*block) * 8);
  71. memcpy(block + 24, block - 32, sizeof(*block) * 8);
  72. }
  73. static av_always_inline
  74. void dnxhd_10bit_get_pixels_8x4_sym(int16_t *av_restrict block,
  75. const uint8_t *pixels,
  76. ptrdiff_t line_size)
  77. {
  78. int i;
  79. const uint16_t* pixels16 = (const uint16_t*)pixels;
  80. line_size >>= 1;
  81. for (i = 0; i < 4; i++) {
  82. block[0] = pixels16[0]; block[1] = pixels16[1];
  83. block[2] = pixels16[2]; block[3] = pixels16[3];
  84. block[4] = pixels16[4]; block[5] = pixels16[5];
  85. block[6] = pixels16[6]; block[7] = pixels16[7];
  86. pixels16 += line_size;
  87. block += 8;
  88. }
  89. memcpy(block, block - 8, sizeof(*block) * 8);
  90. memcpy(block + 8, block - 16, sizeof(*block) * 8);
  91. memcpy(block + 16, block - 24, sizeof(*block) * 8);
  92. memcpy(block + 24, block - 32, sizeof(*block) * 8);
  93. }
  94. static int dnxhd_10bit_dct_quantize(MpegEncContext *ctx, int16_t *block,
  95. int n, int qscale, int *overflow)
  96. {
  97. const uint8_t *scantable= ctx->intra_scantable.scantable;
  98. const int *qmat = n<4 ? ctx->q_intra_matrix[qscale] : ctx->q_chroma_intra_matrix[qscale];
  99. int last_non_zero = 0;
  100. int i;
  101. ctx->dsp.fdct(block);
  102. // Divide by 4 with rounding, to compensate scaling of DCT coefficients
  103. block[0] = (block[0] + 2) >> 2;
  104. for (i = 1; i < 64; ++i) {
  105. int j = scantable[i];
  106. int sign = block[j] >> 31;
  107. int level = (block[j] ^ sign) - sign;
  108. level = level * qmat[j] >> DNX10BIT_QMAT_SHIFT;
  109. block[j] = (level ^ sign) - sign;
  110. if (level)
  111. last_non_zero = i;
  112. }
  113. return last_non_zero;
  114. }
  115. static av_cold int dnxhd_init_vlc(DNXHDEncContext *ctx)
  116. {
  117. int i, j, level, run;
  118. int max_level = 1 << (ctx->cid_table->bit_depth + 2);
  119. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->vlc_codes,
  120. max_level * 4 * sizeof(*ctx->vlc_codes), fail);
  121. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->vlc_bits,
  122. max_level * 4 * sizeof(*ctx->vlc_bits), fail);
  123. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->run_codes,
  124. 63 * 2, fail);
  125. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->run_bits,
  126. 63, fail);
  127. ctx->vlc_codes += max_level * 2;
  128. ctx->vlc_bits += max_level * 2;
  129. for (level = -max_level; level < max_level; level++) {
  130. for (run = 0; run < 2; run++) {
  131. int index = (level << 1) | run;
  132. int sign, offset = 0, alevel = level;
  133. MASK_ABS(sign, alevel);
  134. if (alevel > 64) {
  135. offset = (alevel - 1) >> 6;
  136. alevel -= offset << 6;
  137. }
  138. for (j = 0; j < 257; j++) {
  139. if (ctx->cid_table->ac_level[j] >> 1 == alevel &&
  140. (!offset || (ctx->cid_table->ac_flags[j] & 1) && offset) &&
  141. (!run || (ctx->cid_table->ac_flags[j] & 2) && run)) {
  142. av_assert1(!ctx->vlc_codes[index]);
  143. if (alevel) {
  144. ctx->vlc_codes[index] =
  145. (ctx->cid_table->ac_codes[j] << 1) | (sign & 1);
  146. ctx->vlc_bits[index] = ctx->cid_table->ac_bits[j] + 1;
  147. } else {
  148. ctx->vlc_codes[index] = ctx->cid_table->ac_codes[j];
  149. ctx->vlc_bits[index] = ctx->cid_table->ac_bits[j];
  150. }
  151. break;
  152. }
  153. }
  154. av_assert0(!alevel || j < 257);
  155. if (offset) {
  156. ctx->vlc_codes[index] =
  157. (ctx->vlc_codes[index] << ctx->cid_table->index_bits) | offset;
  158. ctx->vlc_bits[index] += ctx->cid_table->index_bits;
  159. }
  160. }
  161. }
  162. for (i = 0; i < 62; i++) {
  163. int run = ctx->cid_table->run[i];
  164. av_assert0(run < 63);
  165. ctx->run_codes[run] = ctx->cid_table->run_codes[i];
  166. ctx->run_bits[run] = ctx->cid_table->run_bits[i];
  167. }
  168. return 0;
  169. fail:
  170. return AVERROR(ENOMEM);
  171. }
  172. static av_cold int dnxhd_init_qmat(DNXHDEncContext *ctx, int lbias, int cbias)
  173. {
  174. // init first elem to 1 to avoid div by 0 in convert_matrix
  175. uint16_t weight_matrix[64] = { 1, }; // convert_matrix needs uint16_t*
  176. int qscale, i;
  177. const uint8_t *luma_weight_table = ctx->cid_table->luma_weight;
  178. const uint8_t *chroma_weight_table = ctx->cid_table->chroma_weight;
  179. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->qmatrix_l,
  180. (ctx->m.avctx->qmax + 1) * 64 * sizeof(int), fail);
  181. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->qmatrix_c,
  182. (ctx->m.avctx->qmax + 1) * 64 * sizeof(int), fail);
  183. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->qmatrix_l16,
  184. (ctx->m.avctx->qmax + 1) * 64 * 2 * sizeof(uint16_t),
  185. fail);
  186. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->qmatrix_c16,
  187. (ctx->m.avctx->qmax + 1) * 64 * 2 * sizeof(uint16_t),
  188. fail);
  189. if (ctx->cid_table->bit_depth == 8) {
  190. for (i = 1; i < 64; i++) {
  191. int j = ctx->m.idsp.idct_permutation[ff_zigzag_direct[i]];
  192. weight_matrix[j] = ctx->cid_table->luma_weight[i];
  193. }
  194. ff_convert_matrix(&ctx->m, ctx->qmatrix_l, ctx->qmatrix_l16,
  195. weight_matrix, ctx->m.intra_quant_bias, 1,
  196. ctx->m.avctx->qmax, 1);
  197. for (i = 1; i < 64; i++) {
  198. int j = ctx->m.idsp.idct_permutation[ff_zigzag_direct[i]];
  199. weight_matrix[j] = ctx->cid_table->chroma_weight[i];
  200. }
  201. ff_convert_matrix(&ctx->m, ctx->qmatrix_c, ctx->qmatrix_c16,
  202. weight_matrix, ctx->m.intra_quant_bias, 1,
  203. ctx->m.avctx->qmax, 1);
  204. for (qscale = 1; qscale <= ctx->m.avctx->qmax; qscale++) {
  205. for (i = 0; i < 64; i++) {
  206. ctx->qmatrix_l[qscale][i] <<= 2;
  207. ctx->qmatrix_c[qscale][i] <<= 2;
  208. ctx->qmatrix_l16[qscale][0][i] <<= 2;
  209. ctx->qmatrix_l16[qscale][1][i] <<= 2;
  210. ctx->qmatrix_c16[qscale][0][i] <<= 2;
  211. ctx->qmatrix_c16[qscale][1][i] <<= 2;
  212. }
  213. }
  214. } else {
  215. // 10-bit
  216. for (qscale = 1; qscale <= ctx->m.avctx->qmax; qscale++) {
  217. for (i = 1; i < 64; i++) {
  218. int j = ctx->m.idsp.idct_permutation[ff_zigzag_direct[i]];
  219. /* The quantization formula from the VC-3 standard is:
  220. * quantized = sign(block[i]) * floor(abs(block[i]/s) * p /
  221. * (qscale * weight_table[i]))
  222. * Where p is 32 for 8-bit samples and 8 for 10-bit ones.
  223. * The s factor compensates scaling of DCT coefficients done by
  224. * the DCT routines, and therefore is not present in standard.
  225. * It's 8 for 8-bit samples and 4 for 10-bit ones.
  226. * We want values of ctx->qtmatrix_l and ctx->qtmatrix_r to be:
  227. * ((1 << DNX10BIT_QMAT_SHIFT) * (p / s)) /
  228. * (qscale * weight_table[i])
  229. * For 10-bit samples, p / s == 2 */
  230. ctx->qmatrix_l[qscale][j] = (1 << (DNX10BIT_QMAT_SHIFT + 1)) /
  231. (qscale * luma_weight_table[i]);
  232. ctx->qmatrix_c[qscale][j] = (1 << (DNX10BIT_QMAT_SHIFT + 1)) /
  233. (qscale * chroma_weight_table[i]);
  234. }
  235. }
  236. }
  237. ctx->m.q_chroma_intra_matrix16 = ctx->qmatrix_c16;
  238. ctx->m.q_chroma_intra_matrix = ctx->qmatrix_c;
  239. ctx->m.q_intra_matrix16 = ctx->qmatrix_l16;
  240. ctx->m.q_intra_matrix = ctx->qmatrix_l;
  241. return 0;
  242. fail:
  243. return AVERROR(ENOMEM);
  244. }
  245. static av_cold int dnxhd_init_rc(DNXHDEncContext *ctx)
  246. {
  247. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->mb_rc, 8160 * (ctx->m.avctx->qmax + 1) * sizeof(RCEntry), fail);
  248. if (ctx->m.avctx->mb_decision != FF_MB_DECISION_RD)
  249. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->mb_cmp,
  250. ctx->m.mb_num * sizeof(RCCMPEntry), fail);
  251. ctx->frame_bits = (ctx->cid_table->coding_unit_size -
  252. 640 - 4 - ctx->min_padding) * 8;
  253. ctx->qscale = 1;
  254. ctx->lambda = 2 << LAMBDA_FRAC_BITS; // qscale 2
  255. return 0;
  256. fail:
  257. return AVERROR(ENOMEM);
  258. }
  259. static av_cold int dnxhd_encode_init(AVCodecContext *avctx)
  260. {
  261. DNXHDEncContext *ctx = avctx->priv_data;
  262. int i, index, bit_depth, ret;
  263. switch (avctx->pix_fmt) {
  264. case AV_PIX_FMT_YUV422P:
  265. bit_depth = 8;
  266. break;
  267. case AV_PIX_FMT_YUV422P10:
  268. bit_depth = 10;
  269. break;
  270. default:
  271. av_log(avctx, AV_LOG_ERROR,
  272. "pixel format is incompatible with DNxHD\n");
  273. return AVERROR(EINVAL);
  274. }
  275. ctx->cid = ff_dnxhd_find_cid(avctx, bit_depth);
  276. if (!ctx->cid) {
  277. av_log(avctx, AV_LOG_ERROR,
  278. "video parameters incompatible with DNxHD. Valid DNxHD profiles:\n");
  279. ff_dnxhd_print_profiles(avctx, AV_LOG_ERROR);
  280. return AVERROR(EINVAL);
  281. }
  282. av_log(avctx, AV_LOG_DEBUG, "cid %d\n", ctx->cid);
  283. index = ff_dnxhd_get_cid_table(ctx->cid);
  284. av_assert0(index >= 0);
  285. ctx->cid_table = &ff_dnxhd_cid_table[index];
  286. ctx->m.avctx = avctx;
  287. ctx->m.mb_intra = 1;
  288. ctx->m.h263_aic = 1;
  289. avctx->bits_per_raw_sample = ctx->cid_table->bit_depth;
  290. ff_blockdsp_init(&ctx->bdsp, avctx);
  291. ff_idctdsp_init(&ctx->m.idsp, avctx);
  292. ff_dct_common_init(&ctx->m);
  293. ff_dct_encode_init(&ctx->m);
  294. if (!ctx->m.dct_quantize)
  295. ctx->m.dct_quantize = ff_dct_quantize_c;
  296. if (ctx->cid_table->bit_depth == 10) {
  297. ctx->m.dct_quantize = dnxhd_10bit_dct_quantize;
  298. ctx->get_pixels_8x4_sym = dnxhd_10bit_get_pixels_8x4_sym;
  299. ctx->block_width_l2 = 4;
  300. } else {
  301. ctx->get_pixels_8x4_sym = dnxhd_8bit_get_pixels_8x4_sym;
  302. ctx->block_width_l2 = 3;
  303. }
  304. if (ARCH_X86)
  305. ff_dnxhdenc_init_x86(ctx);
  306. ctx->m.mb_height = (avctx->height + 15) / 16;
  307. ctx->m.mb_width = (avctx->width + 15) / 16;
  308. if (avctx->flags & CODEC_FLAG_INTERLACED_DCT) {
  309. ctx->interlaced = 1;
  310. ctx->m.mb_height /= 2;
  311. }
  312. ctx->m.mb_num = ctx->m.mb_height * ctx->m.mb_width;
  313. if (avctx->intra_quant_bias != FF_DEFAULT_QUANT_BIAS)
  314. ctx->m.intra_quant_bias = avctx->intra_quant_bias;
  315. // XXX tune lbias/cbias
  316. if ((ret = dnxhd_init_qmat(ctx, ctx->m.intra_quant_bias, 0)) < 0)
  317. return ret;
  318. /* Avid Nitris hardware decoder requires a minimum amount of padding
  319. * in the coding unit payload */
  320. if (ctx->nitris_compat)
  321. ctx->min_padding = 1600;
  322. if ((ret = dnxhd_init_vlc(ctx)) < 0)
  323. return ret;
  324. if ((ret = dnxhd_init_rc(ctx)) < 0)
  325. return ret;
  326. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->slice_size,
  327. ctx->m.mb_height * sizeof(uint32_t), fail);
  328. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->slice_offs,
  329. ctx->m.mb_height * sizeof(uint32_t), fail);
  330. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->mb_bits,
  331. ctx->m.mb_num * sizeof(uint16_t), fail);
  332. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->mb_qscale,
  333. ctx->m.mb_num * sizeof(uint8_t), fail);
  334. avctx->coded_frame = av_frame_alloc();
  335. if (!avctx->coded_frame)
  336. return AVERROR(ENOMEM);
  337. avctx->coded_frame->key_frame = 1;
  338. avctx->coded_frame->pict_type = AV_PICTURE_TYPE_I;
  339. if (avctx->thread_count > MAX_THREADS) {
  340. av_log(avctx, AV_LOG_ERROR, "too many threads\n");
  341. return AVERROR(EINVAL);
  342. }
  343. if (avctx->qmax <= 1) {
  344. av_log(avctx, AV_LOG_ERROR, "qmax must be at least 2\n");
  345. return AVERROR(EINVAL);
  346. }
  347. ctx->thread[0] = ctx;
  348. for (i = 1; i < avctx->thread_count; i++) {
  349. ctx->thread[i] = av_malloc(sizeof(DNXHDEncContext));
  350. memcpy(ctx->thread[i], ctx, sizeof(DNXHDEncContext));
  351. }
  352. return 0;
  353. fail: // for FF_ALLOCZ_OR_GOTO
  354. return AVERROR(ENOMEM);
  355. }
  356. static int dnxhd_write_header(AVCodecContext *avctx, uint8_t *buf)
  357. {
  358. DNXHDEncContext *ctx = avctx->priv_data;
  359. static const uint8_t header_prefix[5] = { 0x00, 0x00, 0x02, 0x80, 0x01 };
  360. memset(buf, 0, 640);
  361. memcpy(buf, header_prefix, 5);
  362. buf[5] = ctx->interlaced ? ctx->cur_field + 2 : 0x01;
  363. buf[6] = 0x80; // crc flag off
  364. buf[7] = 0xa0; // reserved
  365. AV_WB16(buf + 0x18, avctx->height >> ctx->interlaced); // ALPF
  366. AV_WB16(buf + 0x1a, avctx->width); // SPL
  367. AV_WB16(buf + 0x1d, avctx->height >> ctx->interlaced); // NAL
  368. buf[0x21] = ctx->cid_table->bit_depth == 10 ? 0x58 : 0x38;
  369. buf[0x22] = 0x88 + (ctx->interlaced << 2);
  370. AV_WB32(buf + 0x28, ctx->cid); // CID
  371. buf[0x2c] = ctx->interlaced ? 0 : 0x80;
  372. buf[0x5f] = 0x01; // UDL
  373. buf[0x167] = 0x02; // reserved
  374. AV_WB16(buf + 0x16a, ctx->m.mb_height * 4 + 4); // MSIPS
  375. buf[0x16d] = ctx->m.mb_height; // Ns
  376. buf[0x16f] = 0x10; // reserved
  377. ctx->msip = buf + 0x170;
  378. return 0;
  379. }
  380. static av_always_inline void dnxhd_encode_dc(DNXHDEncContext *ctx, int diff)
  381. {
  382. int nbits;
  383. if (diff < 0) {
  384. nbits = av_log2_16bit(-2 * diff);
  385. diff--;
  386. } else {
  387. nbits = av_log2_16bit(2 * diff);
  388. }
  389. put_bits(&ctx->m.pb, ctx->cid_table->dc_bits[nbits] + nbits,
  390. (ctx->cid_table->dc_codes[nbits] << nbits) +
  391. (diff & ((1 << nbits) - 1)));
  392. }
  393. static av_always_inline
  394. void dnxhd_encode_block(DNXHDEncContext *ctx, int16_t *block,
  395. int last_index, int n)
  396. {
  397. int last_non_zero = 0;
  398. int slevel, i, j;
  399. dnxhd_encode_dc(ctx, block[0] - ctx->m.last_dc[n]);
  400. ctx->m.last_dc[n] = block[0];
  401. for (i = 1; i <= last_index; i++) {
  402. j = ctx->m.intra_scantable.permutated[i];
  403. slevel = block[j];
  404. if (slevel) {
  405. int run_level = i - last_non_zero - 1;
  406. int rlevel = (slevel << 1) | !!run_level;
  407. put_bits(&ctx->m.pb, ctx->vlc_bits[rlevel], ctx->vlc_codes[rlevel]);
  408. if (run_level)
  409. put_bits(&ctx->m.pb, ctx->run_bits[run_level],
  410. ctx->run_codes[run_level]);
  411. last_non_zero = i;
  412. }
  413. }
  414. put_bits(&ctx->m.pb, ctx->vlc_bits[0], ctx->vlc_codes[0]); // EOB
  415. }
  416. static av_always_inline
  417. void dnxhd_unquantize_c(DNXHDEncContext *ctx, int16_t *block, int n,
  418. int qscale, int last_index)
  419. {
  420. const uint8_t *weight_matrix;
  421. int level;
  422. int i;
  423. weight_matrix = (n & 2) ? ctx->cid_table->chroma_weight
  424. : ctx->cid_table->luma_weight;
  425. for (i = 1; i <= last_index; i++) {
  426. int j = ctx->m.intra_scantable.permutated[i];
  427. level = block[j];
  428. if (level) {
  429. if (level < 0) {
  430. level = (1 - 2 * level) * qscale * weight_matrix[i];
  431. if (ctx->cid_table->bit_depth == 10) {
  432. if (weight_matrix[i] != 8)
  433. level += 8;
  434. level >>= 4;
  435. } else {
  436. if (weight_matrix[i] != 32)
  437. level += 32;
  438. level >>= 6;
  439. }
  440. level = -level;
  441. } else {
  442. level = (2 * level + 1) * qscale * weight_matrix[i];
  443. if (ctx->cid_table->bit_depth == 10) {
  444. if (weight_matrix[i] != 8)
  445. level += 8;
  446. level >>= 4;
  447. } else {
  448. if (weight_matrix[i] != 32)
  449. level += 32;
  450. level >>= 6;
  451. }
  452. }
  453. block[j] = level;
  454. }
  455. }
  456. }
  457. static av_always_inline int dnxhd_ssd_block(int16_t *qblock, int16_t *block)
  458. {
  459. int score = 0;
  460. int i;
  461. for (i = 0; i < 64; i++)
  462. score += (block[i] - qblock[i]) * (block[i] - qblock[i]);
  463. return score;
  464. }
  465. static av_always_inline
  466. int dnxhd_calc_ac_bits(DNXHDEncContext *ctx, int16_t *block, int last_index)
  467. {
  468. int last_non_zero = 0;
  469. int bits = 0;
  470. int i, j, level;
  471. for (i = 1; i <= last_index; i++) {
  472. j = ctx->m.intra_scantable.permutated[i];
  473. level = block[j];
  474. if (level) {
  475. int run_level = i - last_non_zero - 1;
  476. bits += ctx->vlc_bits[(level << 1) |
  477. !!run_level] + ctx->run_bits[run_level];
  478. last_non_zero = i;
  479. }
  480. }
  481. return bits;
  482. }
  483. static av_always_inline
  484. void dnxhd_get_blocks(DNXHDEncContext *ctx, int mb_x, int mb_y)
  485. {
  486. const int bs = ctx->block_width_l2;
  487. const int bw = 1 << bs;
  488. const uint8_t *ptr_y = ctx->thread[0]->src[0] +
  489. ((mb_y << 4) * ctx->m.linesize) + (mb_x << bs + 1);
  490. const uint8_t *ptr_u = ctx->thread[0]->src[1] +
  491. ((mb_y << 4) * ctx->m.uvlinesize) + (mb_x << bs);
  492. const uint8_t *ptr_v = ctx->thread[0]->src[2] +
  493. ((mb_y << 4) * ctx->m.uvlinesize) + (mb_x << bs);
  494. DSPContext *dsp = &ctx->m.dsp;
  495. dsp->get_pixels(ctx->blocks[0], ptr_y, ctx->m.linesize);
  496. dsp->get_pixels(ctx->blocks[1], ptr_y + bw, ctx->m.linesize);
  497. dsp->get_pixels(ctx->blocks[2], ptr_u, ctx->m.uvlinesize);
  498. dsp->get_pixels(ctx->blocks[3], ptr_v, ctx->m.uvlinesize);
  499. if (mb_y + 1 == ctx->m.mb_height && ctx->m.avctx->height == 1080) {
  500. if (ctx->interlaced) {
  501. ctx->get_pixels_8x4_sym(ctx->blocks[4],
  502. ptr_y + ctx->dct_y_offset,
  503. ctx->m.linesize);
  504. ctx->get_pixels_8x4_sym(ctx->blocks[5],
  505. ptr_y + ctx->dct_y_offset + bw,
  506. ctx->m.linesize);
  507. ctx->get_pixels_8x4_sym(ctx->blocks[6],
  508. ptr_u + ctx->dct_uv_offset,
  509. ctx->m.uvlinesize);
  510. ctx->get_pixels_8x4_sym(ctx->blocks[7],
  511. ptr_v + ctx->dct_uv_offset,
  512. ctx->m.uvlinesize);
  513. } else {
  514. ctx->bdsp.clear_block(ctx->blocks[4]);
  515. ctx->bdsp.clear_block(ctx->blocks[5]);
  516. ctx->bdsp.clear_block(ctx->blocks[6]);
  517. ctx->bdsp.clear_block(ctx->blocks[7]);
  518. }
  519. } else {
  520. dsp->get_pixels(ctx->blocks[4],
  521. ptr_y + ctx->dct_y_offset, ctx->m.linesize);
  522. dsp->get_pixels(ctx->blocks[5],
  523. ptr_y + ctx->dct_y_offset + bw, ctx->m.linesize);
  524. dsp->get_pixels(ctx->blocks[6],
  525. ptr_u + ctx->dct_uv_offset, ctx->m.uvlinesize);
  526. dsp->get_pixels(ctx->blocks[7],
  527. ptr_v + ctx->dct_uv_offset, ctx->m.uvlinesize);
  528. }
  529. }
  530. static av_always_inline
  531. int dnxhd_switch_matrix(DNXHDEncContext *ctx, int i)
  532. {
  533. const static uint8_t component[8]={0,0,1,2,0,0,1,2};
  534. return component[i];
  535. }
  536. static int dnxhd_calc_bits_thread(AVCodecContext *avctx, void *arg,
  537. int jobnr, int threadnr)
  538. {
  539. DNXHDEncContext *ctx = avctx->priv_data;
  540. int mb_y = jobnr, mb_x;
  541. int qscale = ctx->qscale;
  542. LOCAL_ALIGNED_16(int16_t, block, [64]);
  543. ctx = ctx->thread[threadnr];
  544. ctx->m.last_dc[0] =
  545. ctx->m.last_dc[1] =
  546. ctx->m.last_dc[2] = 1 << (ctx->cid_table->bit_depth + 2);
  547. for (mb_x = 0; mb_x < ctx->m.mb_width; mb_x++) {
  548. unsigned mb = mb_y * ctx->m.mb_width + mb_x;
  549. int ssd = 0;
  550. int ac_bits = 0;
  551. int dc_bits = 0;
  552. int i;
  553. dnxhd_get_blocks(ctx, mb_x, mb_y);
  554. for (i = 0; i < 8; i++) {
  555. int16_t *src_block = ctx->blocks[i];
  556. int overflow, nbits, diff, last_index;
  557. int n = dnxhd_switch_matrix(ctx, i);
  558. memcpy(block, src_block, 64 * sizeof(*block));
  559. last_index = ctx->m.dct_quantize(&ctx->m, block, 4 & (2*i),
  560. qscale, &overflow);
  561. ac_bits += dnxhd_calc_ac_bits(ctx, block, last_index);
  562. diff = block[0] - ctx->m.last_dc[n];
  563. if (diff < 0)
  564. nbits = av_log2_16bit(-2 * diff);
  565. else
  566. nbits = av_log2_16bit(2 * diff);
  567. av_assert1(nbits < ctx->cid_table->bit_depth + 4);
  568. dc_bits += ctx->cid_table->dc_bits[nbits] + nbits;
  569. ctx->m.last_dc[n] = block[0];
  570. if (avctx->mb_decision == FF_MB_DECISION_RD || !RC_VARIANCE) {
  571. dnxhd_unquantize_c(ctx, block, i, qscale, last_index);
  572. ctx->m.idsp.idct(block);
  573. ssd += dnxhd_ssd_block(block, src_block);
  574. }
  575. }
  576. ctx->mb_rc[qscale][mb].ssd = ssd;
  577. ctx->mb_rc[qscale][mb].bits = ac_bits + dc_bits + 12 +
  578. 8 * ctx->vlc_bits[0];
  579. }
  580. return 0;
  581. }
  582. static int dnxhd_encode_thread(AVCodecContext *avctx, void *arg,
  583. int jobnr, int threadnr)
  584. {
  585. DNXHDEncContext *ctx = avctx->priv_data;
  586. int mb_y = jobnr, mb_x;
  587. ctx = ctx->thread[threadnr];
  588. init_put_bits(&ctx->m.pb, (uint8_t *)arg + 640 + ctx->slice_offs[jobnr],
  589. ctx->slice_size[jobnr]);
  590. ctx->m.last_dc[0] =
  591. ctx->m.last_dc[1] =
  592. ctx->m.last_dc[2] = 1 << (ctx->cid_table->bit_depth + 2);
  593. for (mb_x = 0; mb_x < ctx->m.mb_width; mb_x++) {
  594. unsigned mb = mb_y * ctx->m.mb_width + mb_x;
  595. int qscale = ctx->mb_qscale[mb];
  596. int i;
  597. put_bits(&ctx->m.pb, 12, qscale << 1);
  598. dnxhd_get_blocks(ctx, mb_x, mb_y);
  599. for (i = 0; i < 8; i++) {
  600. int16_t *block = ctx->blocks[i];
  601. int overflow, n = dnxhd_switch_matrix(ctx, i);
  602. int last_index = ctx->m.dct_quantize(&ctx->m, block, 4 & (2*i),
  603. qscale, &overflow);
  604. // START_TIMER;
  605. dnxhd_encode_block(ctx, block, last_index, n);
  606. // STOP_TIMER("encode_block");
  607. }
  608. }
  609. if (put_bits_count(&ctx->m.pb) & 31)
  610. put_bits(&ctx->m.pb, 32 - (put_bits_count(&ctx->m.pb) & 31), 0);
  611. flush_put_bits(&ctx->m.pb);
  612. return 0;
  613. }
  614. static void dnxhd_setup_threads_slices(DNXHDEncContext *ctx)
  615. {
  616. int mb_y, mb_x;
  617. int offset = 0;
  618. for (mb_y = 0; mb_y < ctx->m.mb_height; mb_y++) {
  619. int thread_size;
  620. ctx->slice_offs[mb_y] = offset;
  621. ctx->slice_size[mb_y] = 0;
  622. for (mb_x = 0; mb_x < ctx->m.mb_width; mb_x++) {
  623. unsigned mb = mb_y * ctx->m.mb_width + mb_x;
  624. ctx->slice_size[mb_y] += ctx->mb_bits[mb];
  625. }
  626. ctx->slice_size[mb_y] = (ctx->slice_size[mb_y] + 31) & ~31;
  627. ctx->slice_size[mb_y] >>= 3;
  628. thread_size = ctx->slice_size[mb_y];
  629. offset += thread_size;
  630. }
  631. }
  632. static int dnxhd_mb_var_thread(AVCodecContext *avctx, void *arg,
  633. int jobnr, int threadnr)
  634. {
  635. DNXHDEncContext *ctx = avctx->priv_data;
  636. int mb_y = jobnr, mb_x, x, y;
  637. int partial_last_row = (mb_y == ctx->m.mb_height - 1) &&
  638. ((avctx->height >> ctx->interlaced) & 0xF);
  639. ctx = ctx->thread[threadnr];
  640. if (ctx->cid_table->bit_depth == 8) {
  641. uint8_t *pix = ctx->thread[0]->src[0] + ((mb_y << 4) * ctx->m.linesize);
  642. for (mb_x = 0; mb_x < ctx->m.mb_width; ++mb_x, pix += 16) {
  643. unsigned mb = mb_y * ctx->m.mb_width + mb_x;
  644. int sum;
  645. int varc;
  646. if (!partial_last_row && mb_x * 16 <= avctx->width - 16) {
  647. sum = ctx->m.dsp.pix_sum(pix, ctx->m.linesize);
  648. varc = ctx->m.dsp.pix_norm1(pix, ctx->m.linesize);
  649. } else {
  650. int bw = FFMIN(avctx->width - 16 * mb_x, 16);
  651. int bh = FFMIN((avctx->height >> ctx->interlaced) - 16 * mb_y, 16);
  652. sum = varc = 0;
  653. for (y = 0; y < bh; y++) {
  654. for (x = 0; x < bw; x++) {
  655. uint8_t val = pix[x + y * ctx->m.linesize];
  656. sum += val;
  657. varc += val * val;
  658. }
  659. }
  660. }
  661. varc = (varc - (((unsigned) sum * sum) >> 8) + 128) >> 8;
  662. ctx->mb_cmp[mb].value = varc;
  663. ctx->mb_cmp[mb].mb = mb;
  664. }
  665. } else { // 10-bit
  666. int const linesize = ctx->m.linesize >> 1;
  667. for (mb_x = 0; mb_x < ctx->m.mb_width; ++mb_x) {
  668. uint16_t *pix = (uint16_t *)ctx->thread[0]->src[0] +
  669. ((mb_y << 4) * linesize) + (mb_x << 4);
  670. unsigned mb = mb_y * ctx->m.mb_width + mb_x;
  671. int sum = 0;
  672. int sqsum = 0;
  673. int mean, sqmean;
  674. int i, j;
  675. // Macroblocks are 16x16 pixels, unlike DCT blocks which are 8x8.
  676. for (i = 0; i < 16; ++i) {
  677. for (j = 0; j < 16; ++j) {
  678. // Turn 16-bit pixels into 10-bit ones.
  679. int const sample = (unsigned) pix[j] >> 6;
  680. sum += sample;
  681. sqsum += sample * sample;
  682. // 2^10 * 2^10 * 16 * 16 = 2^28, which is less than INT_MAX
  683. }
  684. pix += linesize;
  685. }
  686. mean = sum >> 8; // 16*16 == 2^8
  687. sqmean = sqsum >> 8;
  688. ctx->mb_cmp[mb].value = sqmean - mean * mean;
  689. ctx->mb_cmp[mb].mb = mb;
  690. }
  691. }
  692. return 0;
  693. }
  694. static int dnxhd_encode_rdo(AVCodecContext *avctx, DNXHDEncContext *ctx)
  695. {
  696. int lambda, up_step, down_step;
  697. int last_lower = INT_MAX, last_higher = 0;
  698. int x, y, q;
  699. for (q = 1; q < avctx->qmax; q++) {
  700. ctx->qscale = q;
  701. avctx->execute2(avctx, dnxhd_calc_bits_thread,
  702. NULL, NULL, ctx->m.mb_height);
  703. }
  704. up_step = down_step = 2 << LAMBDA_FRAC_BITS;
  705. lambda = ctx->lambda;
  706. for (;;) {
  707. int bits = 0;
  708. int end = 0;
  709. if (lambda == last_higher) {
  710. lambda++;
  711. end = 1; // need to set final qscales/bits
  712. }
  713. for (y = 0; y < ctx->m.mb_height; y++) {
  714. for (x = 0; x < ctx->m.mb_width; x++) {
  715. unsigned min = UINT_MAX;
  716. int qscale = 1;
  717. int mb = y * ctx->m.mb_width + x;
  718. for (q = 1; q < avctx->qmax; q++) {
  719. unsigned score = ctx->mb_rc[q][mb].bits * lambda +
  720. ((unsigned) ctx->mb_rc[q][mb].ssd << LAMBDA_FRAC_BITS);
  721. if (score < min) {
  722. min = score;
  723. qscale = q;
  724. }
  725. }
  726. bits += ctx->mb_rc[qscale][mb].bits;
  727. ctx->mb_qscale[mb] = qscale;
  728. ctx->mb_bits[mb] = ctx->mb_rc[qscale][mb].bits;
  729. }
  730. bits = (bits + 31) & ~31; // padding
  731. if (bits > ctx->frame_bits)
  732. break;
  733. }
  734. // av_dlog(ctx->m.avctx,
  735. // "lambda %d, up %u, down %u, bits %d, frame %d\n",
  736. // lambda, last_higher, last_lower, bits, ctx->frame_bits);
  737. if (end) {
  738. if (bits > ctx->frame_bits)
  739. return AVERROR(EINVAL);
  740. break;
  741. }
  742. if (bits < ctx->frame_bits) {
  743. last_lower = FFMIN(lambda, last_lower);
  744. if (last_higher != 0)
  745. lambda = (lambda+last_higher)>>1;
  746. else
  747. lambda -= down_step;
  748. down_step = FFMIN((int64_t)down_step*5, INT_MAX);
  749. up_step = 1<<LAMBDA_FRAC_BITS;
  750. lambda = FFMAX(1, lambda);
  751. if (lambda == last_lower)
  752. break;
  753. } else {
  754. last_higher = FFMAX(lambda, last_higher);
  755. if (last_lower != INT_MAX)
  756. lambda = (lambda+last_lower)>>1;
  757. else if ((int64_t)lambda + up_step > INT_MAX)
  758. return AVERROR(EINVAL);
  759. else
  760. lambda += up_step;
  761. up_step = FFMIN((int64_t)up_step*5, INT_MAX);
  762. down_step = 1<<LAMBDA_FRAC_BITS;
  763. }
  764. }
  765. //av_dlog(ctx->m.avctx, "out lambda %d\n", lambda);
  766. ctx->lambda = lambda;
  767. return 0;
  768. }
  769. static int dnxhd_find_qscale(DNXHDEncContext *ctx)
  770. {
  771. int bits = 0;
  772. int up_step = 1;
  773. int down_step = 1;
  774. int last_higher = 0;
  775. int last_lower = INT_MAX;
  776. int qscale;
  777. int x, y;
  778. qscale = ctx->qscale;
  779. for (;;) {
  780. bits = 0;
  781. ctx->qscale = qscale;
  782. // XXX avoid recalculating bits
  783. ctx->m.avctx->execute2(ctx->m.avctx, dnxhd_calc_bits_thread,
  784. NULL, NULL, ctx->m.mb_height);
  785. for (y = 0; y < ctx->m.mb_height; y++) {
  786. for (x = 0; x < ctx->m.mb_width; x++)
  787. bits += ctx->mb_rc[qscale][y*ctx->m.mb_width+x].bits;
  788. bits = (bits+31)&~31; // padding
  789. if (bits > ctx->frame_bits)
  790. break;
  791. }
  792. // av_dlog(ctx->m.avctx,
  793. // "%d, qscale %d, bits %d, frame %d, higher %d, lower %d\n",
  794. // ctx->m.avctx->frame_number, qscale, bits, ctx->frame_bits,
  795. // last_higher, last_lower);
  796. if (bits < ctx->frame_bits) {
  797. if (qscale == 1)
  798. return 1;
  799. if (last_higher == qscale - 1) {
  800. qscale = last_higher;
  801. break;
  802. }
  803. last_lower = FFMIN(qscale, last_lower);
  804. if (last_higher != 0)
  805. qscale = (qscale + last_higher) >> 1;
  806. else
  807. qscale -= down_step++;
  808. if (qscale < 1)
  809. qscale = 1;
  810. up_step = 1;
  811. } else {
  812. if (last_lower == qscale + 1)
  813. break;
  814. last_higher = FFMAX(qscale, last_higher);
  815. if (last_lower != INT_MAX)
  816. qscale = (qscale + last_lower) >> 1;
  817. else
  818. qscale += up_step++;
  819. down_step = 1;
  820. if (qscale >= ctx->m.avctx->qmax)
  821. return AVERROR(EINVAL);
  822. }
  823. }
  824. //av_dlog(ctx->m.avctx, "out qscale %d\n", qscale);
  825. ctx->qscale = qscale;
  826. return 0;
  827. }
  828. #define BUCKET_BITS 8
  829. #define RADIX_PASSES 4
  830. #define NBUCKETS (1 << BUCKET_BITS)
  831. static inline int get_bucket(int value, int shift)
  832. {
  833. value >>= shift;
  834. value &= NBUCKETS - 1;
  835. return NBUCKETS - 1 - value;
  836. }
  837. static void radix_count(const RCCMPEntry *data, int size,
  838. int buckets[RADIX_PASSES][NBUCKETS])
  839. {
  840. int i, j;
  841. memset(buckets, 0, sizeof(buckets[0][0]) * RADIX_PASSES * NBUCKETS);
  842. for (i = 0; i < size; i++) {
  843. int v = data[i].value;
  844. for (j = 0; j < RADIX_PASSES; j++) {
  845. buckets[j][get_bucket(v, 0)]++;
  846. v >>= BUCKET_BITS;
  847. }
  848. av_assert1(!v);
  849. }
  850. for (j = 0; j < RADIX_PASSES; j++) {
  851. int offset = size;
  852. for (i = NBUCKETS - 1; i >= 0; i--)
  853. buckets[j][i] = offset -= buckets[j][i];
  854. av_assert1(!buckets[j][0]);
  855. }
  856. }
  857. static void radix_sort_pass(RCCMPEntry *dst, const RCCMPEntry *data,
  858. int size, int buckets[NBUCKETS], int pass)
  859. {
  860. int shift = pass * BUCKET_BITS;
  861. int i;
  862. for (i = 0; i < size; i++) {
  863. int v = get_bucket(data[i].value, shift);
  864. int pos = buckets[v]++;
  865. dst[pos] = data[i];
  866. }
  867. }
  868. static void radix_sort(RCCMPEntry *data, int size)
  869. {
  870. int buckets[RADIX_PASSES][NBUCKETS];
  871. RCCMPEntry *tmp = av_malloc_array(size, sizeof(*tmp));
  872. radix_count(data, size, buckets);
  873. radix_sort_pass(tmp, data, size, buckets[0], 0);
  874. radix_sort_pass(data, tmp, size, buckets[1], 1);
  875. if (buckets[2][NBUCKETS - 1] || buckets[3][NBUCKETS - 1]) {
  876. radix_sort_pass(tmp, data, size, buckets[2], 2);
  877. radix_sort_pass(data, tmp, size, buckets[3], 3);
  878. }
  879. av_free(tmp);
  880. }
  881. static int dnxhd_encode_fast(AVCodecContext *avctx, DNXHDEncContext *ctx)
  882. {
  883. int max_bits = 0;
  884. int ret, x, y;
  885. if ((ret = dnxhd_find_qscale(ctx)) < 0)
  886. return ret;
  887. for (y = 0; y < ctx->m.mb_height; y++) {
  888. for (x = 0; x < ctx->m.mb_width; x++) {
  889. int mb = y * ctx->m.mb_width + x;
  890. int delta_bits;
  891. ctx->mb_qscale[mb] = ctx->qscale;
  892. ctx->mb_bits[mb] = ctx->mb_rc[ctx->qscale][mb].bits;
  893. max_bits += ctx->mb_rc[ctx->qscale][mb].bits;
  894. if (!RC_VARIANCE) {
  895. delta_bits = ctx->mb_rc[ctx->qscale][mb].bits -
  896. ctx->mb_rc[ctx->qscale + 1][mb].bits;
  897. ctx->mb_cmp[mb].mb = mb;
  898. ctx->mb_cmp[mb].value =
  899. delta_bits ? ((ctx->mb_rc[ctx->qscale][mb].ssd -
  900. ctx->mb_rc[ctx->qscale + 1][mb].ssd) * 100) /
  901. delta_bits
  902. : INT_MIN; // avoid increasing qscale
  903. }
  904. }
  905. max_bits += 31; // worst padding
  906. }
  907. if (!ret) {
  908. if (RC_VARIANCE)
  909. avctx->execute2(avctx, dnxhd_mb_var_thread,
  910. NULL, NULL, ctx->m.mb_height);
  911. radix_sort(ctx->mb_cmp, ctx->m.mb_num);
  912. for (x = 0; x < ctx->m.mb_num && max_bits > ctx->frame_bits; x++) {
  913. int mb = ctx->mb_cmp[x].mb;
  914. max_bits -= ctx->mb_rc[ctx->qscale][mb].bits -
  915. ctx->mb_rc[ctx->qscale + 1][mb].bits;
  916. ctx->mb_qscale[mb] = ctx->qscale + 1;
  917. ctx->mb_bits[mb] = ctx->mb_rc[ctx->qscale + 1][mb].bits;
  918. }
  919. }
  920. return 0;
  921. }
  922. static void dnxhd_load_picture(DNXHDEncContext *ctx, const AVFrame *frame)
  923. {
  924. int i;
  925. for (i = 0; i < ctx->m.avctx->thread_count; i++) {
  926. ctx->thread[i]->m.linesize = frame->linesize[0] << ctx->interlaced;
  927. ctx->thread[i]->m.uvlinesize = frame->linesize[1] << ctx->interlaced;
  928. ctx->thread[i]->dct_y_offset = ctx->m.linesize *8;
  929. ctx->thread[i]->dct_uv_offset = ctx->m.uvlinesize*8;
  930. }
  931. ctx->m.avctx->coded_frame->interlaced_frame = frame->interlaced_frame;
  932. ctx->cur_field = frame->interlaced_frame && !frame->top_field_first;
  933. }
  934. static int dnxhd_encode_picture(AVCodecContext *avctx, AVPacket *pkt,
  935. const AVFrame *frame, int *got_packet)
  936. {
  937. DNXHDEncContext *ctx = avctx->priv_data;
  938. int first_field = 1;
  939. int offset, i, ret;
  940. uint8_t *buf;
  941. if ((ret = ff_alloc_packet2(avctx, pkt, ctx->cid_table->frame_size)) < 0)
  942. return ret;
  943. buf = pkt->data;
  944. dnxhd_load_picture(ctx, frame);
  945. encode_coding_unit:
  946. for (i = 0; i < 3; i++) {
  947. ctx->src[i] = frame->data[i];
  948. if (ctx->interlaced && ctx->cur_field)
  949. ctx->src[i] += frame->linesize[i];
  950. }
  951. dnxhd_write_header(avctx, buf);
  952. if (avctx->mb_decision == FF_MB_DECISION_RD)
  953. ret = dnxhd_encode_rdo(avctx, ctx);
  954. else
  955. ret = dnxhd_encode_fast(avctx, ctx);
  956. if (ret < 0) {
  957. av_log(avctx, AV_LOG_ERROR,
  958. "picture could not fit ratecontrol constraints, increase qmax\n");
  959. return ret;
  960. }
  961. dnxhd_setup_threads_slices(ctx);
  962. offset = 0;
  963. for (i = 0; i < ctx->m.mb_height; i++) {
  964. AV_WB32(ctx->msip + i * 4, offset);
  965. offset += ctx->slice_size[i];
  966. av_assert1(!(ctx->slice_size[i] & 3));
  967. }
  968. avctx->execute2(avctx, dnxhd_encode_thread, buf, NULL, ctx->m.mb_height);
  969. av_assert1(640 + offset + 4 <= ctx->cid_table->coding_unit_size);
  970. memset(buf + 640 + offset, 0,
  971. ctx->cid_table->coding_unit_size - 4 - offset - 640);
  972. AV_WB32(buf + ctx->cid_table->coding_unit_size - 4, 0x600DC0DE); // EOF
  973. if (ctx->interlaced && first_field) {
  974. first_field = 0;
  975. ctx->cur_field ^= 1;
  976. buf += ctx->cid_table->coding_unit_size;
  977. goto encode_coding_unit;
  978. }
  979. avctx->coded_frame->quality = ctx->qscale * FF_QP2LAMBDA;
  980. pkt->flags |= AV_PKT_FLAG_KEY;
  981. *got_packet = 1;
  982. return 0;
  983. }
  984. static av_cold int dnxhd_encode_end(AVCodecContext *avctx)
  985. {
  986. DNXHDEncContext *ctx = avctx->priv_data;
  987. int max_level = 1 << (ctx->cid_table->bit_depth + 2);
  988. int i;
  989. av_free(ctx->vlc_codes - max_level * 2);
  990. av_free(ctx->vlc_bits - max_level * 2);
  991. av_freep(&ctx->run_codes);
  992. av_freep(&ctx->run_bits);
  993. av_freep(&ctx->mb_bits);
  994. av_freep(&ctx->mb_qscale);
  995. av_freep(&ctx->mb_rc);
  996. av_freep(&ctx->mb_cmp);
  997. av_freep(&ctx->slice_size);
  998. av_freep(&ctx->slice_offs);
  999. av_freep(&ctx->qmatrix_c);
  1000. av_freep(&ctx->qmatrix_l);
  1001. av_freep(&ctx->qmatrix_c16);
  1002. av_freep(&ctx->qmatrix_l16);
  1003. for (i = 1; i < avctx->thread_count; i++)
  1004. av_freep(&ctx->thread[i]);
  1005. av_frame_free(&avctx->coded_frame);
  1006. return 0;
  1007. }
  1008. static const AVCodecDefault dnxhd_defaults[] = {
  1009. { "qmax", "1024" }, /* Maximum quantization scale factor allowed for VC-3 */
  1010. { NULL },
  1011. };
  1012. AVCodec ff_dnxhd_encoder = {
  1013. .name = "dnxhd",
  1014. .long_name = NULL_IF_CONFIG_SMALL("VC3/DNxHD"),
  1015. .type = AVMEDIA_TYPE_VIDEO,
  1016. .id = AV_CODEC_ID_DNXHD,
  1017. .priv_data_size = sizeof(DNXHDEncContext),
  1018. .init = dnxhd_encode_init,
  1019. .encode2 = dnxhd_encode_picture,
  1020. .close = dnxhd_encode_end,
  1021. .capabilities = CODEC_CAP_SLICE_THREADS,
  1022. .pix_fmts = (const enum AVPixelFormat[]) {
  1023. AV_PIX_FMT_YUV422P,
  1024. AV_PIX_FMT_YUV422P10,
  1025. AV_PIX_FMT_NONE
  1026. },
  1027. .priv_class = &dnxhd_class,
  1028. .defaults = dnxhd_defaults,
  1029. };