You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

838 lines
30KB

  1. /*
  2. * Chinese AVS video (AVS1-P2, JiZhun profile) decoder.
  3. * Copyright (c) 2006 Stefan Gehrer <stefan.gehrer@gmx.de>
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file
  23. * Chinese AVS video (AVS1-P2, JiZhun profile) decoder
  24. * @author Stefan Gehrer <stefan.gehrer@gmx.de>
  25. */
  26. #include "avcodec.h"
  27. #include "get_bits.h"
  28. #include "golomb.h"
  29. #include "h264chroma.h"
  30. #include "idctdsp.h"
  31. #include "mathops.h"
  32. #include "qpeldsp.h"
  33. #include "cavs.h"
  34. static const uint8_t alpha_tab[64] = {
  35. 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 3, 3,
  36. 4, 4, 5, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16, 18, 20,
  37. 22, 24, 26, 28, 30, 33, 33, 35, 35, 36, 37, 37, 39, 39, 42, 44,
  38. 46, 48, 50, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64
  39. };
  40. static const uint8_t beta_tab[64] = {
  41. 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2,
  42. 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 6, 6,
  43. 6, 7, 7, 7, 8, 8, 8, 9, 9, 10, 10, 11, 11, 12, 13, 14,
  44. 15, 16, 17, 18, 19, 20, 21, 22, 23, 23, 24, 24, 25, 25, 26, 27
  45. };
  46. static const uint8_t tc_tab[64] = {
  47. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  48. 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2,
  49. 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4,
  50. 5, 5, 5, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 9, 9, 9
  51. };
  52. /** mark block as unavailable, i.e. out of picture
  53. * or not yet decoded */
  54. static const cavs_vector un_mv = { 0, 0, 1, NOT_AVAIL };
  55. static const int8_t left_modifier_l[8] = { 0, -1, 6, -1, -1, 7, 6, 7 };
  56. static const int8_t top_modifier_l[8] = { -1, 1, 5, -1, -1, 5, 7, 7 };
  57. static const int8_t left_modifier_c[7] = { 5, -1, 2, -1, 6, 5, 6 };
  58. static const int8_t top_modifier_c[7] = { 4, 1, -1, -1, 4, 6, 6 };
  59. /*****************************************************************************
  60. *
  61. * in-loop deblocking filter
  62. *
  63. ****************************************************************************/
  64. static inline int get_bs(cavs_vector *mvP, cavs_vector *mvQ, int b)
  65. {
  66. if ((mvP->ref == REF_INTRA) || (mvQ->ref == REF_INTRA))
  67. return 2;
  68. if((abs(mvP->x - mvQ->x) >= 4) ||
  69. (abs(mvP->y - mvQ->y) >= 4) ||
  70. (mvP->ref != mvQ->ref))
  71. return 1;
  72. if (b) {
  73. mvP += MV_BWD_OFFS;
  74. mvQ += MV_BWD_OFFS;
  75. if((abs(mvP->x - mvQ->x) >= 4) ||
  76. (abs(mvP->y - mvQ->y) >= 4) ||
  77. (mvP->ref != mvQ->ref))
  78. return 1;
  79. }
  80. return 0;
  81. }
  82. #define SET_PARAMS \
  83. alpha = alpha_tab[av_clip(qp_avg + h->alpha_offset, 0, 63)]; \
  84. beta = beta_tab[av_clip(qp_avg + h->beta_offset, 0, 63)]; \
  85. tc = tc_tab[av_clip(qp_avg + h->alpha_offset, 0, 63)];
  86. /**
  87. * in-loop deblocking filter for a single macroblock
  88. *
  89. * boundary strength (bs) mapping:
  90. *
  91. * --4---5--
  92. * 0 2 |
  93. * | 6 | 7 |
  94. * 1 3 |
  95. * ---------
  96. *
  97. */
  98. void ff_cavs_filter(AVSContext *h, enum cavs_mb mb_type)
  99. {
  100. uint8_t bs[8];
  101. int qp_avg, alpha, beta, tc;
  102. int i;
  103. /* save un-deblocked lines */
  104. h->topleft_border_y = h->top_border_y[h->mbx * 16 + 15];
  105. h->topleft_border_u = h->top_border_u[h->mbx * 10 + 8];
  106. h->topleft_border_v = h->top_border_v[h->mbx * 10 + 8];
  107. memcpy(&h->top_border_y[h->mbx * 16], h->cy + 15 * h->l_stride, 16);
  108. memcpy(&h->top_border_u[h->mbx * 10 + 1], h->cu + 7 * h->c_stride, 8);
  109. memcpy(&h->top_border_v[h->mbx * 10 + 1], h->cv + 7 * h->c_stride, 8);
  110. for (i = 0; i < 8; i++) {
  111. h->left_border_y[i * 2 + 1] = *(h->cy + 15 + (i * 2 + 0) * h->l_stride);
  112. h->left_border_y[i * 2 + 2] = *(h->cy + 15 + (i * 2 + 1) * h->l_stride);
  113. h->left_border_u[i + 1] = *(h->cu + 7 + i * h->c_stride);
  114. h->left_border_v[i + 1] = *(h->cv + 7 + i * h->c_stride);
  115. }
  116. if (!h->loop_filter_disable) {
  117. /* determine bs */
  118. if (mb_type == I_8X8)
  119. memset(bs, 2, 8);
  120. else {
  121. memset(bs, 0, 8);
  122. if (ff_cavs_partition_flags[mb_type] & SPLITV) {
  123. bs[2] = get_bs(&h->mv[MV_FWD_X0], &h->mv[MV_FWD_X1], mb_type > P_8X8);
  124. bs[3] = get_bs(&h->mv[MV_FWD_X2], &h->mv[MV_FWD_X3], mb_type > P_8X8);
  125. }
  126. if (ff_cavs_partition_flags[mb_type] & SPLITH) {
  127. bs[6] = get_bs(&h->mv[MV_FWD_X0], &h->mv[MV_FWD_X2], mb_type > P_8X8);
  128. bs[7] = get_bs(&h->mv[MV_FWD_X1], &h->mv[MV_FWD_X3], mb_type > P_8X8);
  129. }
  130. bs[0] = get_bs(&h->mv[MV_FWD_A1], &h->mv[MV_FWD_X0], mb_type > P_8X8);
  131. bs[1] = get_bs(&h->mv[MV_FWD_A3], &h->mv[MV_FWD_X2], mb_type > P_8X8);
  132. bs[4] = get_bs(&h->mv[MV_FWD_B2], &h->mv[MV_FWD_X0], mb_type > P_8X8);
  133. bs[5] = get_bs(&h->mv[MV_FWD_B3], &h->mv[MV_FWD_X1], mb_type > P_8X8);
  134. }
  135. if (AV_RN64(bs)) {
  136. if (h->flags & A_AVAIL) {
  137. qp_avg = (h->qp + h->left_qp + 1) >> 1;
  138. SET_PARAMS;
  139. h->cdsp.cavs_filter_lv(h->cy, h->l_stride, alpha, beta, tc, bs[0], bs[1]);
  140. qp_avg = (ff_cavs_chroma_qp[h->qp] + ff_cavs_chroma_qp[h->left_qp] + 1) >> 1;
  141. SET_PARAMS;
  142. h->cdsp.cavs_filter_cv(h->cu, h->c_stride, alpha, beta, tc, bs[0], bs[1]);
  143. h->cdsp.cavs_filter_cv(h->cv, h->c_stride, alpha, beta, tc, bs[0], bs[1]);
  144. }
  145. qp_avg = h->qp;
  146. SET_PARAMS;
  147. h->cdsp.cavs_filter_lv(h->cy + 8, h->l_stride, alpha, beta, tc, bs[2], bs[3]);
  148. h->cdsp.cavs_filter_lh(h->cy + 8 * h->l_stride, h->l_stride, alpha, beta, tc, bs[6], bs[7]);
  149. if (h->flags & B_AVAIL) {
  150. qp_avg = (h->qp + h->top_qp[h->mbx] + 1) >> 1;
  151. SET_PARAMS;
  152. h->cdsp.cavs_filter_lh(h->cy, h->l_stride, alpha, beta, tc, bs[4], bs[5]);
  153. qp_avg = (ff_cavs_chroma_qp[h->qp] + ff_cavs_chroma_qp[h->top_qp[h->mbx]] + 1) >> 1;
  154. SET_PARAMS;
  155. h->cdsp.cavs_filter_ch(h->cu, h->c_stride, alpha, beta, tc, bs[4], bs[5]);
  156. h->cdsp.cavs_filter_ch(h->cv, h->c_stride, alpha, beta, tc, bs[4], bs[5]);
  157. }
  158. }
  159. }
  160. h->left_qp = h->qp;
  161. h->top_qp[h->mbx] = h->qp;
  162. }
  163. #undef SET_PARAMS
  164. /*****************************************************************************
  165. *
  166. * spatial intra prediction
  167. *
  168. ****************************************************************************/
  169. void ff_cavs_load_intra_pred_luma(AVSContext *h, uint8_t *top,
  170. uint8_t **left, int block)
  171. {
  172. int i;
  173. switch (block) {
  174. case 0:
  175. *left = h->left_border_y;
  176. h->left_border_y[0] = h->left_border_y[1];
  177. memset(&h->left_border_y[17], h->left_border_y[16], 9);
  178. memcpy(&top[1], &h->top_border_y[h->mbx * 16], 16);
  179. top[17] = top[16];
  180. top[0] = top[1];
  181. if ((h->flags & A_AVAIL) && (h->flags & B_AVAIL))
  182. h->left_border_y[0] = top[0] = h->topleft_border_y;
  183. break;
  184. case 1:
  185. *left = h->intern_border_y;
  186. for (i = 0; i < 8; i++)
  187. h->intern_border_y[i + 1] = *(h->cy + 7 + i * h->l_stride);
  188. memset(&h->intern_border_y[9], h->intern_border_y[8], 9);
  189. h->intern_border_y[0] = h->intern_border_y[1];
  190. memcpy(&top[1], &h->top_border_y[h->mbx * 16 + 8], 8);
  191. if (h->flags & C_AVAIL)
  192. memcpy(&top[9], &h->top_border_y[(h->mbx + 1) * 16], 8);
  193. else
  194. memset(&top[9], top[8], 9);
  195. top[17] = top[16];
  196. top[0] = top[1];
  197. if (h->flags & B_AVAIL)
  198. h->intern_border_y[0] = top[0] = h->top_border_y[h->mbx * 16 + 7];
  199. break;
  200. case 2:
  201. *left = &h->left_border_y[8];
  202. memcpy(&top[1], h->cy + 7 * h->l_stride, 16);
  203. top[17] = top[16];
  204. top[0] = top[1];
  205. if (h->flags & A_AVAIL)
  206. top[0] = h->left_border_y[8];
  207. break;
  208. case 3:
  209. *left = &h->intern_border_y[8];
  210. for (i = 0; i < 8; i++)
  211. h->intern_border_y[i + 9] = *(h->cy + 7 + (i + 8) * h->l_stride);
  212. memset(&h->intern_border_y[17], h->intern_border_y[16], 9);
  213. memcpy(&top[0], h->cy + 7 + 7 * h->l_stride, 9);
  214. memset(&top[9], top[8], 9);
  215. break;
  216. }
  217. }
  218. void ff_cavs_load_intra_pred_chroma(AVSContext *h)
  219. {
  220. /* extend borders by one pixel */
  221. h->left_border_u[9] = h->left_border_u[8];
  222. h->left_border_v[9] = h->left_border_v[8];
  223. if(h->flags & C_AVAIL) {
  224. h->top_border_u[h->mbx*10 + 9] = h->top_border_u[h->mbx*10 + 11];
  225. h->top_border_v[h->mbx*10 + 9] = h->top_border_v[h->mbx*10 + 11];
  226. } else {
  227. h->top_border_u[h->mbx * 10 + 9] = h->top_border_u[h->mbx * 10 + 8];
  228. h->top_border_v[h->mbx * 10 + 9] = h->top_border_v[h->mbx * 10 + 8];
  229. }
  230. if((h->flags & A_AVAIL) && (h->flags & B_AVAIL)) {
  231. h->top_border_u[h->mbx * 10] = h->left_border_u[0] = h->topleft_border_u;
  232. h->top_border_v[h->mbx * 10] = h->left_border_v[0] = h->topleft_border_v;
  233. } else {
  234. h->left_border_u[0] = h->left_border_u[1];
  235. h->left_border_v[0] = h->left_border_v[1];
  236. h->top_border_u[h->mbx * 10] = h->top_border_u[h->mbx * 10 + 1];
  237. h->top_border_v[h->mbx * 10] = h->top_border_v[h->mbx * 10 + 1];
  238. }
  239. }
  240. static void intra_pred_vert(uint8_t *d, uint8_t *top, uint8_t *left, int stride)
  241. {
  242. int y;
  243. uint64_t a = AV_RN64(&top[1]);
  244. for (y = 0; y < 8; y++)
  245. *((uint64_t *)(d + y * stride)) = a;
  246. }
  247. static void intra_pred_horiz(uint8_t *d, uint8_t *top, uint8_t *left, int stride)
  248. {
  249. int y;
  250. uint64_t a;
  251. for (y = 0; y < 8; y++) {
  252. a = left[y + 1] * 0x0101010101010101ULL;
  253. *((uint64_t *)(d + y * stride)) = a;
  254. }
  255. }
  256. static void intra_pred_dc_128(uint8_t *d, uint8_t *top, uint8_t *left, int stride)
  257. {
  258. int y;
  259. uint64_t a = 0x8080808080808080ULL;
  260. for (y = 0; y < 8; y++)
  261. *((uint64_t *)(d + y * stride)) = a;
  262. }
  263. static void intra_pred_plane(uint8_t *d, uint8_t *top, uint8_t *left, int stride)
  264. {
  265. int x, y, ia;
  266. int ih = 0;
  267. int iv = 0;
  268. const uint8_t *cm = ff_crop_tab + MAX_NEG_CROP;
  269. for (x = 0; x < 4; x++) {
  270. ih += (x + 1) * (top[5 + x] - top[3 - x]);
  271. iv += (x + 1) * (left[5 + x] - left[3 - x]);
  272. }
  273. ia = (top[8] + left[8]) << 4;
  274. ih = (17 * ih + 16) >> 5;
  275. iv = (17 * iv + 16) >> 5;
  276. for (y = 0; y < 8; y++)
  277. for (x = 0; x < 8; x++)
  278. d[y * stride + x] = cm[(ia + (x - 3) * ih + (y - 3) * iv + 16) >> 5];
  279. }
  280. #define LOWPASS(ARRAY, INDEX) \
  281. ((ARRAY[(INDEX) - 1] + 2 * ARRAY[(INDEX)] + ARRAY[(INDEX) + 1] + 2) >> 2)
  282. static void intra_pred_lp(uint8_t *d, uint8_t *top, uint8_t *left, int stride)
  283. {
  284. int x, y;
  285. for (y = 0; y < 8; y++)
  286. for (x = 0; x < 8; x++)
  287. d[y * stride + x] = (LOWPASS(top, x + 1) + LOWPASS(left, y + 1)) >> 1;
  288. }
  289. static void intra_pred_down_left(uint8_t *d, uint8_t *top, uint8_t *left, int stride)
  290. {
  291. int x, y;
  292. for (y = 0; y < 8; y++)
  293. for (x = 0; x < 8; x++)
  294. d[y * stride + x] = (LOWPASS(top, x + y + 2) + LOWPASS(left, x + y + 2)) >> 1;
  295. }
  296. static void intra_pred_down_right(uint8_t *d, uint8_t *top, uint8_t *left, int stride)
  297. {
  298. int x, y;
  299. for (y = 0; y < 8; y++)
  300. for (x = 0; x < 8; x++)
  301. if (x == y)
  302. d[y * stride + x] = (left[1] + 2 * top[0] + top[1] + 2) >> 2;
  303. else if (x > y)
  304. d[y * stride + x] = LOWPASS(top, x - y);
  305. else
  306. d[y * stride + x] = LOWPASS(left, y - x);
  307. }
  308. static void intra_pred_lp_left(uint8_t *d, uint8_t *top, uint8_t *left, int stride)
  309. {
  310. int x, y;
  311. for (y = 0; y < 8; y++)
  312. for (x = 0; x < 8; x++)
  313. d[y * stride + x] = LOWPASS(left, y + 1);
  314. }
  315. static void intra_pred_lp_top(uint8_t *d, uint8_t *top, uint8_t *left, int stride)
  316. {
  317. int x, y;
  318. for (y = 0; y < 8; y++)
  319. for (x = 0; x < 8; x++)
  320. d[y * stride + x] = LOWPASS(top, x + 1);
  321. }
  322. #undef LOWPASS
  323. static inline void modify_pred(const int8_t *mod_table, int *mode)
  324. {
  325. *mode = mod_table[*mode];
  326. if (*mode < 0) {
  327. av_log(NULL, AV_LOG_ERROR, "Illegal intra prediction mode\n");
  328. *mode = 0;
  329. }
  330. }
  331. void ff_cavs_modify_mb_i(AVSContext *h, int *pred_mode_uv)
  332. {
  333. /* save pred modes before they get modified */
  334. h->pred_mode_Y[3] = h->pred_mode_Y[5];
  335. h->pred_mode_Y[6] = h->pred_mode_Y[8];
  336. h->top_pred_Y[h->mbx * 2 + 0] = h->pred_mode_Y[7];
  337. h->top_pred_Y[h->mbx * 2 + 1] = h->pred_mode_Y[8];
  338. /* modify pred modes according to availability of neighbour samples */
  339. if (!(h->flags & A_AVAIL)) {
  340. modify_pred(left_modifier_l, &h->pred_mode_Y[4]);
  341. modify_pred(left_modifier_l, &h->pred_mode_Y[7]);
  342. modify_pred(left_modifier_c, pred_mode_uv);
  343. }
  344. if (!(h->flags & B_AVAIL)) {
  345. modify_pred(top_modifier_l, &h->pred_mode_Y[4]);
  346. modify_pred(top_modifier_l, &h->pred_mode_Y[5]);
  347. modify_pred(top_modifier_c, pred_mode_uv);
  348. }
  349. }
  350. /*****************************************************************************
  351. *
  352. * motion compensation
  353. *
  354. ****************************************************************************/
  355. static inline void mc_dir_part(AVSContext *h, AVFrame *pic, int chroma_height,
  356. int delta, int list, uint8_t *dest_y,
  357. uint8_t *dest_cb, uint8_t *dest_cr,
  358. int src_x_offset, int src_y_offset,
  359. qpel_mc_func *qpix_op,
  360. h264_chroma_mc_func chroma_op, cavs_vector *mv)
  361. {
  362. const int mx = mv->x + src_x_offset * 8;
  363. const int my = mv->y + src_y_offset * 8;
  364. const int luma_xy = (mx & 3) + ((my & 3) << 2);
  365. uint8_t *src_y = pic->data[0] + (mx >> 2) + (my >> 2) * h->l_stride;
  366. uint8_t *src_cb = pic->data[1] + (mx >> 3) + (my >> 3) * h->c_stride;
  367. uint8_t *src_cr = pic->data[2] + (mx >> 3) + (my >> 3) * h->c_stride;
  368. int extra_width = 0;
  369. int extra_height = extra_width;
  370. const int full_mx = mx >> 2;
  371. const int full_my = my >> 2;
  372. const int pic_width = 16 * h->mb_width;
  373. const int pic_height = 16 * h->mb_height;
  374. int emu = 0;
  375. if (!pic->data[0])
  376. return;
  377. if (mx & 7)
  378. extra_width -= 3;
  379. if (my & 7)
  380. extra_height -= 3;
  381. if (full_mx < 0 - extra_width ||
  382. full_my < 0 - extra_height ||
  383. full_mx + 16 /* FIXME */ > pic_width + extra_width ||
  384. full_my + 16 /* FIXME */ > pic_height + extra_height) {
  385. h->vdsp.emulated_edge_mc(h->edge_emu_buffer,
  386. src_y - 2 - 2 * h->l_stride,
  387. h->l_stride, h->l_stride,
  388. 16 + 5, 16 + 5 /* FIXME */,
  389. full_mx - 2, full_my - 2,
  390. pic_width, pic_height);
  391. src_y = h->edge_emu_buffer + 2 + 2 * h->l_stride;
  392. emu = 1;
  393. }
  394. // FIXME try variable height perhaps?
  395. qpix_op[luma_xy](dest_y, src_y, h->l_stride);
  396. if (emu) {
  397. h->vdsp.emulated_edge_mc(h->edge_emu_buffer, src_cb,
  398. h->c_stride, h->c_stride,
  399. 9, 9 /* FIXME */,
  400. mx >> 3, my >> 3,
  401. pic_width >> 1, pic_height >> 1);
  402. src_cb = h->edge_emu_buffer;
  403. }
  404. chroma_op(dest_cb, src_cb, h->c_stride, chroma_height, mx & 7, my & 7);
  405. if (emu) {
  406. h->vdsp.emulated_edge_mc(h->edge_emu_buffer, src_cr,
  407. h->c_stride, h->c_stride,
  408. 9, 9 /* FIXME */,
  409. mx >> 3, my >> 3,
  410. pic_width >> 1, pic_height >> 1);
  411. src_cr = h->edge_emu_buffer;
  412. }
  413. chroma_op(dest_cr, src_cr, h->c_stride, chroma_height, mx & 7, my & 7);
  414. }
  415. static inline void mc_part_std(AVSContext *h, int chroma_height, int delta,
  416. uint8_t *dest_y,
  417. uint8_t *dest_cb,
  418. uint8_t *dest_cr,
  419. int x_offset, int y_offset,
  420. qpel_mc_func *qpix_put,
  421. h264_chroma_mc_func chroma_put,
  422. qpel_mc_func *qpix_avg,
  423. h264_chroma_mc_func chroma_avg,
  424. cavs_vector *mv)
  425. {
  426. qpel_mc_func *qpix_op = qpix_put;
  427. h264_chroma_mc_func chroma_op = chroma_put;
  428. dest_y += x_offset * 2 + y_offset * h->l_stride * 2;
  429. dest_cb += x_offset + y_offset * h->c_stride;
  430. dest_cr += x_offset + y_offset * h->c_stride;
  431. x_offset += 8 * h->mbx;
  432. y_offset += 8 * h->mby;
  433. if (mv->ref >= 0) {
  434. AVFrame *ref = h->DPB[mv->ref].f;
  435. mc_dir_part(h, ref, chroma_height, delta, 0,
  436. dest_y, dest_cb, dest_cr, x_offset, y_offset,
  437. qpix_op, chroma_op, mv);
  438. qpix_op = qpix_avg;
  439. chroma_op = chroma_avg;
  440. }
  441. if ((mv + MV_BWD_OFFS)->ref >= 0) {
  442. AVFrame *ref = h->DPB[0].f;
  443. mc_dir_part(h, ref, chroma_height, delta, 1,
  444. dest_y, dest_cb, dest_cr, x_offset, y_offset,
  445. qpix_op, chroma_op, mv + MV_BWD_OFFS);
  446. }
  447. }
  448. void ff_cavs_inter(AVSContext *h, enum cavs_mb mb_type)
  449. {
  450. if (ff_cavs_partition_flags[mb_type] == 0) { // 16x16
  451. mc_part_std(h, 8, 0, h->cy, h->cu, h->cv, 0, 0,
  452. h->cdsp.put_cavs_qpel_pixels_tab[0],
  453. h->h264chroma.put_h264_chroma_pixels_tab[0],
  454. h->cdsp.avg_cavs_qpel_pixels_tab[0],
  455. h->h264chroma.avg_h264_chroma_pixels_tab[0],
  456. &h->mv[MV_FWD_X0]);
  457. } else {
  458. mc_part_std(h, 4, 0, h->cy, h->cu, h->cv, 0, 0,
  459. h->cdsp.put_cavs_qpel_pixels_tab[1],
  460. h->h264chroma.put_h264_chroma_pixels_tab[1],
  461. h->cdsp.avg_cavs_qpel_pixels_tab[1],
  462. h->h264chroma.avg_h264_chroma_pixels_tab[1],
  463. &h->mv[MV_FWD_X0]);
  464. mc_part_std(h, 4, 0, h->cy, h->cu, h->cv, 4, 0,
  465. h->cdsp.put_cavs_qpel_pixels_tab[1],
  466. h->h264chroma.put_h264_chroma_pixels_tab[1],
  467. h->cdsp.avg_cavs_qpel_pixels_tab[1],
  468. h->h264chroma.avg_h264_chroma_pixels_tab[1],
  469. &h->mv[MV_FWD_X1]);
  470. mc_part_std(h, 4, 0, h->cy, h->cu, h->cv, 0, 4,
  471. h->cdsp.put_cavs_qpel_pixels_tab[1],
  472. h->h264chroma.put_h264_chroma_pixels_tab[1],
  473. h->cdsp.avg_cavs_qpel_pixels_tab[1],
  474. h->h264chroma.avg_h264_chroma_pixels_tab[1],
  475. &h->mv[MV_FWD_X2]);
  476. mc_part_std(h, 4, 0, h->cy, h->cu, h->cv, 4, 4,
  477. h->cdsp.put_cavs_qpel_pixels_tab[1],
  478. h->h264chroma.put_h264_chroma_pixels_tab[1],
  479. h->cdsp.avg_cavs_qpel_pixels_tab[1],
  480. h->h264chroma.avg_h264_chroma_pixels_tab[1],
  481. &h->mv[MV_FWD_X3]);
  482. }
  483. }
  484. /*****************************************************************************
  485. *
  486. * motion vector prediction
  487. *
  488. ****************************************************************************/
  489. static inline void scale_mv(AVSContext *h, int *d_x, int *d_y,
  490. cavs_vector *src, int distp)
  491. {
  492. int den = h->scale_den[FFMAX(src->ref, 0)];
  493. *d_x = (src->x * distp * den + 256 + (src->x >> 31)) >> 9;
  494. *d_y = (src->y * distp * den + 256 + (src->y >> 31)) >> 9;
  495. }
  496. static inline void mv_pred_median(AVSContext *h,
  497. cavs_vector *mvP,
  498. cavs_vector *mvA,
  499. cavs_vector *mvB,
  500. cavs_vector *mvC)
  501. {
  502. int ax, ay, bx, by, cx, cy;
  503. int len_ab, len_bc, len_ca, len_mid;
  504. /* scale candidates according to their temporal span */
  505. scale_mv(h, &ax, &ay, mvA, mvP->dist);
  506. scale_mv(h, &bx, &by, mvB, mvP->dist);
  507. scale_mv(h, &cx, &cy, mvC, mvP->dist);
  508. /* find the geometrical median of the three candidates */
  509. len_ab = abs(ax - bx) + abs(ay - by);
  510. len_bc = abs(bx - cx) + abs(by - cy);
  511. len_ca = abs(cx - ax) + abs(cy - ay);
  512. len_mid = mid_pred(len_ab, len_bc, len_ca);
  513. if (len_mid == len_ab) {
  514. mvP->x = cx;
  515. mvP->y = cy;
  516. } else if (len_mid == len_bc) {
  517. mvP->x = ax;
  518. mvP->y = ay;
  519. } else {
  520. mvP->x = bx;
  521. mvP->y = by;
  522. }
  523. }
  524. void ff_cavs_mv(AVSContext *h, enum cavs_mv_loc nP, enum cavs_mv_loc nC,
  525. enum cavs_mv_pred mode, enum cavs_block size, int ref)
  526. {
  527. cavs_vector *mvP = &h->mv[nP];
  528. cavs_vector *mvA = &h->mv[nP-1];
  529. cavs_vector *mvB = &h->mv[nP-4];
  530. cavs_vector *mvC = &h->mv[nC];
  531. const cavs_vector *mvP2 = NULL;
  532. mvP->ref = ref;
  533. mvP->dist = h->dist[mvP->ref];
  534. if (mvC->ref == NOT_AVAIL || (nP == MV_FWD_X3) || (nP == MV_BWD_X3 ))
  535. mvC = &h->mv[nP - 5]; // set to top-left (mvD)
  536. if (mode == MV_PRED_PSKIP &&
  537. (mvA->ref == NOT_AVAIL ||
  538. mvB->ref == NOT_AVAIL ||
  539. (mvA->x | mvA->y | mvA->ref) == 0 ||
  540. (mvB->x | mvB->y | mvB->ref) == 0)) {
  541. mvP2 = &un_mv;
  542. /* if there is only one suitable candidate, take it */
  543. } else if (mvA->ref >= 0 && mvB->ref < 0 && mvC->ref < 0) {
  544. mvP2 = mvA;
  545. } else if (mvA->ref < 0 && mvB->ref >= 0 && mvC->ref < 0) {
  546. mvP2 = mvB;
  547. } else if (mvA->ref < 0 && mvB->ref < 0 && mvC->ref >= 0) {
  548. mvP2 = mvC;
  549. } else if (mode == MV_PRED_LEFT && mvA->ref == ref) {
  550. mvP2 = mvA;
  551. } else if (mode == MV_PRED_TOP && mvB->ref == ref) {
  552. mvP2 = mvB;
  553. } else if (mode == MV_PRED_TOPRIGHT && mvC->ref == ref) {
  554. mvP2 = mvC;
  555. }
  556. if (mvP2) {
  557. mvP->x = mvP2->x;
  558. mvP->y = mvP2->y;
  559. } else
  560. mv_pred_median(h, mvP, mvA, mvB, mvC);
  561. if (mode < MV_PRED_PSKIP) {
  562. mvP->x += get_se_golomb(&h->gb);
  563. mvP->y += get_se_golomb(&h->gb);
  564. }
  565. set_mvs(mvP, size);
  566. }
  567. /*****************************************************************************
  568. *
  569. * macroblock level
  570. *
  571. ****************************************************************************/
  572. /**
  573. * initialise predictors for motion vectors and intra prediction
  574. */
  575. void ff_cavs_init_mb(AVSContext *h)
  576. {
  577. int i;
  578. /* copy predictors from top line (MB B and C) into cache */
  579. for (i = 0; i < 3; i++) {
  580. h->mv[MV_FWD_B2 + i] = h->top_mv[0][h->mbx * 2 + i];
  581. h->mv[MV_BWD_B2 + i] = h->top_mv[1][h->mbx * 2 + i];
  582. }
  583. h->pred_mode_Y[1] = h->top_pred_Y[h->mbx * 2 + 0];
  584. h->pred_mode_Y[2] = h->top_pred_Y[h->mbx * 2 + 1];
  585. /* clear top predictors if MB B is not available */
  586. if (!(h->flags & B_AVAIL)) {
  587. h->mv[MV_FWD_B2] = un_mv;
  588. h->mv[MV_FWD_B3] = un_mv;
  589. h->mv[MV_BWD_B2] = un_mv;
  590. h->mv[MV_BWD_B3] = un_mv;
  591. h->pred_mode_Y[1] = h->pred_mode_Y[2] = NOT_AVAIL;
  592. h->flags &= ~(C_AVAIL | D_AVAIL);
  593. } else if (h->mbx) {
  594. h->flags |= D_AVAIL;
  595. }
  596. if (h->mbx == h->mb_width - 1) // MB C not available
  597. h->flags &= ~C_AVAIL;
  598. /* clear top-right predictors if MB C is not available */
  599. if (!(h->flags & C_AVAIL)) {
  600. h->mv[MV_FWD_C2] = un_mv;
  601. h->mv[MV_BWD_C2] = un_mv;
  602. }
  603. /* clear top-left predictors if MB D is not available */
  604. if (!(h->flags & D_AVAIL)) {
  605. h->mv[MV_FWD_D3] = un_mv;
  606. h->mv[MV_BWD_D3] = un_mv;
  607. }
  608. }
  609. /**
  610. * save predictors for later macroblocks and increase
  611. * macroblock address
  612. * @return 0 if end of frame is reached, 1 otherwise
  613. */
  614. int ff_cavs_next_mb(AVSContext *h)
  615. {
  616. int i;
  617. h->flags |= A_AVAIL;
  618. h->cy += 16;
  619. h->cu += 8;
  620. h->cv += 8;
  621. /* copy mvs as predictors to the left */
  622. for (i = 0; i <= 20; i += 4)
  623. h->mv[i] = h->mv[i + 2];
  624. /* copy bottom mvs from cache to top line */
  625. h->top_mv[0][h->mbx * 2 + 0] = h->mv[MV_FWD_X2];
  626. h->top_mv[0][h->mbx * 2 + 1] = h->mv[MV_FWD_X3];
  627. h->top_mv[1][h->mbx * 2 + 0] = h->mv[MV_BWD_X2];
  628. h->top_mv[1][h->mbx * 2 + 1] = h->mv[MV_BWD_X3];
  629. /* next MB address */
  630. h->mbidx++;
  631. h->mbx++;
  632. if (h->mbx == h->mb_width) { // New mb line
  633. h->flags = B_AVAIL | C_AVAIL;
  634. /* clear left pred_modes */
  635. h->pred_mode_Y[3] = h->pred_mode_Y[6] = NOT_AVAIL;
  636. /* clear left mv predictors */
  637. for (i = 0; i <= 20; i += 4)
  638. h->mv[i] = un_mv;
  639. h->mbx = 0;
  640. h->mby++;
  641. /* re-calculate sample pointers */
  642. h->cy = h->cur.f->data[0] + h->mby * 16 * h->l_stride;
  643. h->cu = h->cur.f->data[1] + h->mby * 8 * h->c_stride;
  644. h->cv = h->cur.f->data[2] + h->mby * 8 * h->c_stride;
  645. if (h->mby == h->mb_height) { // Frame end
  646. return 0;
  647. }
  648. }
  649. return 1;
  650. }
  651. /*****************************************************************************
  652. *
  653. * frame level
  654. *
  655. ****************************************************************************/
  656. int ff_cavs_init_pic(AVSContext *h)
  657. {
  658. int i;
  659. /* clear some predictors */
  660. for (i = 0; i <= 20; i += 4)
  661. h->mv[i] = un_mv;
  662. h->mv[MV_BWD_X0] = ff_cavs_dir_mv;
  663. set_mvs(&h->mv[MV_BWD_X0], BLK_16X16);
  664. h->mv[MV_FWD_X0] = ff_cavs_dir_mv;
  665. set_mvs(&h->mv[MV_FWD_X0], BLK_16X16);
  666. h->pred_mode_Y[3] = h->pred_mode_Y[6] = NOT_AVAIL;
  667. h->cy = h->cur.f->data[0];
  668. h->cu = h->cur.f->data[1];
  669. h->cv = h->cur.f->data[2];
  670. h->l_stride = h->cur.f->linesize[0];
  671. h->c_stride = h->cur.f->linesize[1];
  672. h->luma_scan[2] = 8 * h->l_stride;
  673. h->luma_scan[3] = 8 * h->l_stride + 8;
  674. h->mbx = h->mby = h->mbidx = 0;
  675. h->flags = 0;
  676. return 0;
  677. }
  678. /*****************************************************************************
  679. *
  680. * headers and interface
  681. *
  682. ****************************************************************************/
  683. /**
  684. * some predictions require data from the top-neighbouring macroblock.
  685. * this data has to be stored for one complete row of macroblocks
  686. * and this storage space is allocated here
  687. */
  688. void ff_cavs_init_top_lines(AVSContext *h)
  689. {
  690. /* alloc top line of predictors */
  691. h->top_qp = av_mallocz(h->mb_width);
  692. h->top_mv[0] = av_mallocz_array(h->mb_width * 2 + 1, sizeof(cavs_vector));
  693. h->top_mv[1] = av_mallocz_array(h->mb_width * 2 + 1, sizeof(cavs_vector));
  694. h->top_pred_Y = av_mallocz_array(h->mb_width * 2, sizeof(*h->top_pred_Y));
  695. h->top_border_y = av_mallocz_array(h->mb_width + 1, 16);
  696. h->top_border_u = av_mallocz_array(h->mb_width, 10);
  697. h->top_border_v = av_mallocz_array(h->mb_width, 10);
  698. /* alloc space for co-located MVs and types */
  699. h->col_mv = av_mallocz_array(h->mb_width * h->mb_height,
  700. 4 * sizeof(cavs_vector));
  701. h->col_type_base = av_mallocz(h->mb_width * h->mb_height);
  702. h->block = av_mallocz(64 * sizeof(int16_t));
  703. }
  704. av_cold int ff_cavs_init(AVCodecContext *avctx)
  705. {
  706. AVSContext *h = avctx->priv_data;
  707. ff_blockdsp_init(&h->bdsp, avctx);
  708. ff_h264chroma_init(&h->h264chroma, 8);
  709. ff_idctdsp_init(&h->idsp, avctx);
  710. ff_videodsp_init(&h->vdsp, 8);
  711. ff_cavsdsp_init(&h->cdsp, avctx);
  712. ff_init_scantable_permutation(h->idsp.idct_permutation,
  713. h->cdsp.idct_perm);
  714. ff_init_scantable(h->idsp.idct_permutation, &h->scantable, ff_zigzag_direct);
  715. h->avctx = avctx;
  716. avctx->pix_fmt = AV_PIX_FMT_YUV420P;
  717. h->cur.f = av_frame_alloc();
  718. h->DPB[0].f = av_frame_alloc();
  719. h->DPB[1].f = av_frame_alloc();
  720. if (!h->cur.f || !h->DPB[0].f || !h->DPB[1].f) {
  721. ff_cavs_end(avctx);
  722. return AVERROR(ENOMEM);
  723. }
  724. h->luma_scan[0] = 0;
  725. h->luma_scan[1] = 8;
  726. h->intra_pred_l[INTRA_L_VERT] = intra_pred_vert;
  727. h->intra_pred_l[INTRA_L_HORIZ] = intra_pred_horiz;
  728. h->intra_pred_l[INTRA_L_LP] = intra_pred_lp;
  729. h->intra_pred_l[INTRA_L_DOWN_LEFT] = intra_pred_down_left;
  730. h->intra_pred_l[INTRA_L_DOWN_RIGHT] = intra_pred_down_right;
  731. h->intra_pred_l[INTRA_L_LP_LEFT] = intra_pred_lp_left;
  732. h->intra_pred_l[INTRA_L_LP_TOP] = intra_pred_lp_top;
  733. h->intra_pred_l[INTRA_L_DC_128] = intra_pred_dc_128;
  734. h->intra_pred_c[INTRA_C_LP] = intra_pred_lp;
  735. h->intra_pred_c[INTRA_C_HORIZ] = intra_pred_horiz;
  736. h->intra_pred_c[INTRA_C_VERT] = intra_pred_vert;
  737. h->intra_pred_c[INTRA_C_PLANE] = intra_pred_plane;
  738. h->intra_pred_c[INTRA_C_LP_LEFT] = intra_pred_lp_left;
  739. h->intra_pred_c[INTRA_C_LP_TOP] = intra_pred_lp_top;
  740. h->intra_pred_c[INTRA_C_DC_128] = intra_pred_dc_128;
  741. h->mv[7] = un_mv;
  742. h->mv[19] = un_mv;
  743. return 0;
  744. }
  745. av_cold int ff_cavs_end(AVCodecContext *avctx)
  746. {
  747. AVSContext *h = avctx->priv_data;
  748. av_frame_free(&h->cur.f);
  749. av_frame_free(&h->DPB[0].f);
  750. av_frame_free(&h->DPB[1].f);
  751. av_free(h->top_qp);
  752. av_free(h->top_mv[0]);
  753. av_free(h->top_mv[1]);
  754. av_free(h->top_pred_Y);
  755. av_free(h->top_border_y);
  756. av_free(h->top_border_u);
  757. av_free(h->top_border_v);
  758. av_free(h->col_mv);
  759. av_free(h->col_type_base);
  760. av_free(h->block);
  761. av_freep(&h->edge_emu_buffer);
  762. return 0;
  763. }