You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

752 lines
22KB

  1. /*
  2. * Copyright (c) 2001-2010 Krzysztof Foltman, Markus Schmidt, Thor Harald Johansen and others
  3. * Copyright (c) 2015 Paul B Mahol
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. #include <complex.h>
  22. #include "libavutil/intreadwrite.h"
  23. #include "libavutil/avstring.h"
  24. #include "libavutil/opt.h"
  25. #include "libavutil/parseutils.h"
  26. #include "avfilter.h"
  27. #include "internal.h"
  28. #include "audio.h"
  29. #define FILTER_ORDER 4
  30. enum FilterType {
  31. BUTTERWORTH,
  32. CHEBYSHEV1,
  33. CHEBYSHEV2,
  34. NB_TYPES
  35. };
  36. typedef struct FoSection {
  37. double a0, a1, a2, a3, a4;
  38. double b0, b1, b2, b3, b4;
  39. double num[4];
  40. double denum[4];
  41. } FoSection;
  42. typedef struct EqualizatorFilter {
  43. int ignore;
  44. int channel;
  45. int type;
  46. double freq;
  47. double gain;
  48. double width;
  49. FoSection section[2];
  50. } EqualizatorFilter;
  51. typedef struct AudioNEqualizerContext {
  52. const AVClass *class;
  53. char *args;
  54. char *colors;
  55. int draw_curves;
  56. int w, h;
  57. double mag;
  58. int fscale;
  59. int nb_filters;
  60. int nb_allocated;
  61. EqualizatorFilter *filters;
  62. AVFrame *video;
  63. } AudioNEqualizerContext;
  64. #define OFFSET(x) offsetof(AudioNEqualizerContext, x)
  65. #define A AV_OPT_FLAG_AUDIO_PARAM
  66. #define V AV_OPT_FLAG_VIDEO_PARAM
  67. #define F AV_OPT_FLAG_FILTERING_PARAM
  68. static const AVOption anequalizer_options[] = {
  69. { "params", NULL, OFFSET(args), AV_OPT_TYPE_STRING, {.str=""}, 0, 0, A|F },
  70. { "curves", "draw frequency response curves", OFFSET(draw_curves), AV_OPT_TYPE_BOOL, {.i64=0}, 0, 1, V|F },
  71. { "size", "set video size", OFFSET(w), AV_OPT_TYPE_IMAGE_SIZE, {.str = "hd720"}, 0, 0, V|F },
  72. { "mgain", "set max gain", OFFSET(mag), AV_OPT_TYPE_DOUBLE, {.dbl=60}, -900, 900, V|F },
  73. { "fscale", "set frequency scale", OFFSET(fscale), AV_OPT_TYPE_INT, {.i64=1}, 0, 1, V|F, "fscale" },
  74. { "lin", "linear", 0, AV_OPT_TYPE_CONST, {.i64=0}, 0, 0, V|F, "fscale" },
  75. { "log", "logarithmic", 0, AV_OPT_TYPE_CONST, {.i64=1}, 0, 0, V|F, "fscale" },
  76. { "colors", "set channels curves colors", OFFSET(colors), AV_OPT_TYPE_STRING, {.str = "red|green|blue|yellow|orange|lime|pink|magenta|brown" }, 0, 0, V|F },
  77. { NULL }
  78. };
  79. AVFILTER_DEFINE_CLASS(anequalizer);
  80. static void draw_curves(AVFilterContext *ctx, AVFilterLink *inlink, AVFrame *out)
  81. {
  82. AudioNEqualizerContext *s = ctx->priv;
  83. char *colors, *color, *saveptr = NULL;
  84. int ch, i, n;
  85. colors = av_strdup(s->colors);
  86. if (!colors)
  87. return;
  88. memset(out->data[0], 0, s->h * out->linesize[0]);
  89. for (ch = 0; ch < inlink->channels; ch++) {
  90. uint8_t fg[4] = { 0xff, 0xff, 0xff, 0xff };
  91. int prev_v = -1;
  92. double f;
  93. color = av_strtok(ch == 0 ? colors : NULL, " |", &saveptr);
  94. if (color)
  95. av_parse_color(fg, color, -1, ctx);
  96. for (f = 0; f < s->w; f++) {
  97. double complex z;
  98. double complex H = 1;
  99. double w;
  100. int v, y, x;
  101. w = M_PI * (s->fscale ? pow(s->w - 1, f / s->w) : f) / (s->w - 1);
  102. z = 1. / cexp(I * w);
  103. for (n = 0; n < s->nb_filters; n++) {
  104. if (s->filters[n].channel != ch ||
  105. s->filters[n].ignore)
  106. continue;
  107. for (i = 0; i < FILTER_ORDER / 2; i++) {
  108. FoSection *S = &s->filters[n].section[i];
  109. H *= (((((S->b4 * z + S->b3) * z + S->b2) * z + S->b1) * z + S->b0) /
  110. ((((S->a4 * z + S->a3) * z + S->a2) * z + S->a1) * z + S->a0));
  111. }
  112. }
  113. v = av_clip((1. + -20 * log10(cabs(H)) / s->mag) * s->h / 2, 0, s->h - 1);
  114. x = lrint(f);
  115. if (prev_v == -1)
  116. prev_v = v;
  117. if (v <= prev_v) {
  118. for (y = v; y <= prev_v; y++)
  119. AV_WL32(out->data[0] + y * out->linesize[0] + x * 4, AV_RL32(fg));
  120. } else {
  121. for (y = prev_v; y <= v; y++)
  122. AV_WL32(out->data[0] + y * out->linesize[0] + x * 4, AV_RL32(fg));
  123. }
  124. prev_v = v;
  125. }
  126. }
  127. av_free(colors);
  128. }
  129. static int config_video(AVFilterLink *outlink)
  130. {
  131. AVFilterContext *ctx = outlink->src;
  132. AudioNEqualizerContext *s = ctx->priv;
  133. AVFilterLink *inlink = ctx->inputs[0];
  134. AVFrame *out;
  135. outlink->w = s->w;
  136. outlink->h = s->h;
  137. av_frame_free(&s->video);
  138. s->video = out = ff_get_video_buffer(outlink, outlink->w, outlink->h);
  139. if (!out)
  140. return AVERROR(ENOMEM);
  141. outlink->sample_aspect_ratio = (AVRational){1,1};
  142. draw_curves(ctx, inlink, out);
  143. return 0;
  144. }
  145. static av_cold int init(AVFilterContext *ctx)
  146. {
  147. AudioNEqualizerContext *s = ctx->priv;
  148. AVFilterPad pad, vpad;
  149. pad = (AVFilterPad){
  150. .name = av_strdup("out0"),
  151. .type = AVMEDIA_TYPE_AUDIO,
  152. };
  153. if (!pad.name)
  154. return AVERROR(ENOMEM);
  155. if (s->draw_curves) {
  156. vpad = (AVFilterPad){
  157. .name = av_strdup("out1"),
  158. .type = AVMEDIA_TYPE_VIDEO,
  159. .config_props = config_video,
  160. };
  161. if (!vpad.name)
  162. return AVERROR(ENOMEM);
  163. }
  164. ff_insert_outpad(ctx, 0, &pad);
  165. if (s->draw_curves)
  166. ff_insert_outpad(ctx, 1, &vpad);
  167. return 0;
  168. }
  169. static int query_formats(AVFilterContext *ctx)
  170. {
  171. AVFilterLink *inlink = ctx->inputs[0];
  172. AVFilterLink *outlink = ctx->outputs[0];
  173. AudioNEqualizerContext *s = ctx->priv;
  174. AVFilterFormats *formats;
  175. AVFilterChannelLayouts *layouts;
  176. static const enum AVPixelFormat pix_fmts[] = { AV_PIX_FMT_RGBA, AV_PIX_FMT_NONE };
  177. static const enum AVSampleFormat sample_fmts[] = {
  178. AV_SAMPLE_FMT_DBLP,
  179. AV_SAMPLE_FMT_NONE
  180. };
  181. int ret;
  182. if (s->draw_curves) {
  183. AVFilterLink *videolink = ctx->outputs[1];
  184. formats = ff_make_format_list(pix_fmts);
  185. if ((ret = ff_formats_ref(formats, &videolink->in_formats)) < 0)
  186. return ret;
  187. }
  188. formats = ff_make_format_list(sample_fmts);
  189. if ((ret = ff_formats_ref(formats, &inlink->out_formats)) < 0 ||
  190. (ret = ff_formats_ref(formats, &outlink->in_formats)) < 0)
  191. return ret;
  192. layouts = ff_all_channel_counts();
  193. if ((ret = ff_channel_layouts_ref(layouts, &inlink->out_channel_layouts)) < 0 ||
  194. (ret = ff_channel_layouts_ref(layouts, &outlink->in_channel_layouts)) < 0)
  195. return ret;
  196. formats = ff_all_samplerates();
  197. if ((ret = ff_formats_ref(formats, &inlink->out_samplerates)) < 0 ||
  198. (ret = ff_formats_ref(formats, &outlink->in_samplerates)) < 0)
  199. return ret;
  200. return 0;
  201. }
  202. static av_cold void uninit(AVFilterContext *ctx)
  203. {
  204. AudioNEqualizerContext *s = ctx->priv;
  205. av_freep(&ctx->output_pads[0].name);
  206. if (s->draw_curves)
  207. av_freep(&ctx->output_pads[1].name);
  208. av_frame_free(&s->video);
  209. av_freep(&s->filters);
  210. s->nb_filters = 0;
  211. s->nb_allocated = 0;
  212. }
  213. static void butterworth_fo_section(FoSection *S, double beta,
  214. double si, double g, double g0,
  215. double D, double c0)
  216. {
  217. if (c0 == 1 || c0 == -1) {
  218. S->b0 = (g*g*beta*beta + 2*g*g0*si*beta + g0*g0)/D;
  219. S->b1 = 2*c0*(g*g*beta*beta - g0*g0)/D;
  220. S->b2 = (g*g*beta*beta - 2*g0*g*beta*si + g0*g0)/D;
  221. S->b3 = 0;
  222. S->b4 = 0;
  223. S->a0 = 1;
  224. S->a1 = 2*c0*(beta*beta - 1)/D;
  225. S->a2 = (beta*beta - 2*beta*si + 1)/D;
  226. S->a3 = 0;
  227. S->a4 = 0;
  228. } else {
  229. S->b0 = (g*g*beta*beta + 2*g*g0*si*beta + g0*g0)/D;
  230. S->b1 = -4*c0*(g0*g0 + g*g0*si*beta)/D;
  231. S->b2 = 2*(g0*g0*(1 + 2*c0*c0) - g*g*beta*beta)/D;
  232. S->b3 = -4*c0*(g0*g0 - g*g0*si*beta)/D;
  233. S->b4 = (g*g*beta*beta - 2*g*g0*si*beta + g0*g0)/D;
  234. S->a0 = 1;
  235. S->a1 = -4*c0*(1 + si*beta)/D;
  236. S->a2 = 2*(1 + 2*c0*c0 - beta*beta)/D;
  237. S->a3 = -4*c0*(1 - si*beta)/D;
  238. S->a4 = (beta*beta - 2*si*beta + 1)/D;
  239. }
  240. }
  241. static void butterworth_bp_filter(EqualizatorFilter *f,
  242. int N, double w0, double wb,
  243. double G, double Gb, double G0)
  244. {
  245. double g, c0, g0, beta;
  246. double epsilon;
  247. int r = N % 2;
  248. int L = (N - r) / 2;
  249. int i;
  250. if (G == 0 && G0 == 0) {
  251. f->section[0].a0 = 1;
  252. f->section[0].b0 = 1;
  253. f->section[1].a0 = 1;
  254. f->section[1].b0 = 1;
  255. return;
  256. }
  257. G = exp10( G/20);
  258. Gb = exp10(Gb/20);
  259. G0 = exp10(G0/20);
  260. epsilon = sqrt((G * G - Gb * Gb) / (Gb * Gb - G0 * G0));
  261. g = pow(G, 1.0 / N);
  262. g0 = pow(G0, 1.0 / N);
  263. beta = pow(epsilon, -1.0 / N) * tan(wb/2);
  264. c0 = cos(w0);
  265. for (i = 1; i <= L; i++) {
  266. double ui = (2.0 * i - 1) / N;
  267. double si = sin(M_PI * ui / 2.0);
  268. double Di = beta * beta + 2 * si * beta + 1;
  269. butterworth_fo_section(&f->section[i - 1], beta, si, g, g0, Di, c0);
  270. }
  271. }
  272. static void chebyshev1_fo_section(FoSection *S, double a,
  273. double c, double tetta_b,
  274. double g0, double si, double b,
  275. double D, double c0)
  276. {
  277. if (c0 == 1 || c0 == -1) {
  278. S->b0 = (tetta_b*tetta_b*(b*b+g0*g0*c*c) + 2*g0*b*si*tetta_b*tetta_b + g0*g0)/D;
  279. S->b1 = 2*c0*(tetta_b*tetta_b*(b*b+g0*g0*c*c) - g0*g0)/D;
  280. S->b2 = (tetta_b*tetta_b*(b*b+g0*g0*c*c) - 2*g0*b*si*tetta_b + g0*g0)/D;
  281. S->b3 = 0;
  282. S->b4 = 0;
  283. S->a0 = 1;
  284. S->a1 = 2*c0*(tetta_b*tetta_b*(a*a+c*c) - 1)/D;
  285. S->a2 = (tetta_b*tetta_b*(a*a+c*c) - 2*a*si*tetta_b + 1)/D;
  286. S->a3 = 0;
  287. S->a4 = 0;
  288. } else {
  289. S->b0 = ((b*b + g0*g0*c*c)*tetta_b*tetta_b + 2*g0*b*si*tetta_b + g0*g0)/D;
  290. S->b1 = -4*c0*(g0*g0 + g0*b*si*tetta_b)/D;
  291. S->b2 = 2*(g0*g0*(1 + 2*c0*c0) - (b*b + g0*g0*c*c)*tetta_b*tetta_b)/D;
  292. S->b3 = -4*c0*(g0*g0 - g0*b*si*tetta_b)/D;
  293. S->b4 = ((b*b + g0*g0*c*c)*tetta_b*tetta_b - 2*g0*b*si*tetta_b + g0*g0)/D;
  294. S->a0 = 1;
  295. S->a1 = -4*c0*(1 + a*si*tetta_b)/D;
  296. S->a2 = 2*(1 + 2*c0*c0 - (a*a + c*c)*tetta_b*tetta_b)/D;
  297. S->a3 = -4*c0*(1 - a*si*tetta_b)/D;
  298. S->a4 = ((a*a + c*c)*tetta_b*tetta_b - 2*a*si*tetta_b + 1)/D;
  299. }
  300. }
  301. static void chebyshev1_bp_filter(EqualizatorFilter *f,
  302. int N, double w0, double wb,
  303. double G, double Gb, double G0)
  304. {
  305. double a, b, c0, g0, alfa, beta, tetta_b;
  306. double epsilon;
  307. int r = N % 2;
  308. int L = (N - r) / 2;
  309. int i;
  310. if (G == 0 && G0 == 0) {
  311. f->section[0].a0 = 1;
  312. f->section[0].b0 = 1;
  313. f->section[1].a0 = 1;
  314. f->section[1].b0 = 1;
  315. return;
  316. }
  317. G = exp10( G/20);
  318. Gb = exp10(Gb/20);
  319. G0 = exp10(G0/20);
  320. epsilon = sqrt((G*G - Gb*Gb) / (Gb*Gb - G0*G0));
  321. g0 = pow(G0,1.0/N);
  322. alfa = pow(1.0/epsilon + sqrt(1 + pow(epsilon,-2.0)), 1.0/N);
  323. beta = pow(G/epsilon + Gb * sqrt(1 + pow(epsilon,-2.0)), 1.0/N);
  324. a = 0.5 * (alfa - 1.0/alfa);
  325. b = 0.5 * (beta - g0*g0*(1/beta));
  326. tetta_b = tan(wb/2);
  327. c0 = cos(w0);
  328. for (i = 1; i <= L; i++) {
  329. double ui = (2.0*i-1.0)/N;
  330. double ci = cos(M_PI*ui/2.0);
  331. double si = sin(M_PI*ui/2.0);
  332. double Di = (a*a + ci*ci)*tetta_b*tetta_b + 2.0*a*si*tetta_b + 1;
  333. chebyshev1_fo_section(&f->section[i - 1], a, ci, tetta_b, g0, si, b, Di, c0);
  334. }
  335. }
  336. static void chebyshev2_fo_section(FoSection *S, double a,
  337. double c, double tetta_b,
  338. double g, double si, double b,
  339. double D, double c0)
  340. {
  341. if (c0 == 1 || c0 == -1) {
  342. S->b0 = (g*g*tetta_b*tetta_b + 2*tetta_b*g*b*si + b*b + g*g*c*c)/D;
  343. S->b1 = 2*c0*(g*g*tetta_b*tetta_b - b*b - g*g*c*c)/D;
  344. S->b2 = (g*g*tetta_b*tetta_b - 2*tetta_b*g*b*si + b*b + g*g*c*c)/D;
  345. S->b3 = 0;
  346. S->b4 = 0;
  347. S->a0 = 1;
  348. S->a1 = 2*c0*(tetta_b*tetta_b - a*a - c*c)/D;
  349. S->a2 = (tetta_b*tetta_b - 2*tetta_b*a*si + a*a + c*c)/D;
  350. S->a3 = 0;
  351. S->a4 = 0;
  352. } else {
  353. S->b0 = (g*g*tetta_b*tetta_b + 2*g*b*si*tetta_b + b*b + g*g*c*c)/D;
  354. S->b1 = -4*c0*(b*b + g*g*c*c + g*b*si*tetta_b)/D;
  355. S->b2 = 2*((b*b + g*g*c*c)*(1 + 2*c0*c0) - g*g*tetta_b*tetta_b)/D;
  356. S->b3 = -4*c0*(b*b + g*g*c*c - g*b*si*tetta_b)/D;
  357. S->b4 = (g*g*tetta_b*tetta_b - 2*g*b*si*tetta_b + b*b + g*g*c*c)/D;
  358. S->a0 = 1;
  359. S->a1 = -4*c0*(a*a + c*c + a*si*tetta_b)/D;
  360. S->a2 = 2*((a*a + c*c)*(1 + 2*c0*c0) - tetta_b*tetta_b)/D;
  361. S->a3 = -4*c0*(a*a + c*c - a*si*tetta_b)/D;
  362. S->a4 = (tetta_b*tetta_b - 2*a*si*tetta_b + a*a + c*c)/D;
  363. }
  364. }
  365. static void chebyshev2_bp_filter(EqualizatorFilter *f,
  366. int N, double w0, double wb,
  367. double G, double Gb, double G0)
  368. {
  369. double a, b, c0, tetta_b;
  370. double epsilon, g, eu, ew;
  371. int r = N % 2;
  372. int L = (N - r) / 2;
  373. int i;
  374. if (G == 0 && G0 == 0) {
  375. f->section[0].a0 = 1;
  376. f->section[0].b0 = 1;
  377. f->section[1].a0 = 1;
  378. f->section[1].b0 = 1;
  379. return;
  380. }
  381. G = exp10( G/20);
  382. Gb = exp10(Gb/20);
  383. G0 = exp10(G0/20);
  384. epsilon = sqrt((G*G - Gb*Gb) / (Gb*Gb - G0*G0));
  385. g = pow(G, 1.0 / N);
  386. eu = pow(epsilon + sqrt(1 + epsilon*epsilon), 1.0/N);
  387. ew = pow(G0*epsilon + Gb*sqrt(1 + epsilon*epsilon), 1.0/N);
  388. a = (eu - 1.0/eu)/2.0;
  389. b = (ew - g*g/ew)/2.0;
  390. tetta_b = tan(wb/2);
  391. c0 = cos(w0);
  392. for (i = 1; i <= L; i++) {
  393. double ui = (2.0 * i - 1.0)/N;
  394. double ci = cos(M_PI * ui / 2.0);
  395. double si = sin(M_PI * ui / 2.0);
  396. double Di = tetta_b*tetta_b + 2*a*si*tetta_b + a*a + ci*ci;
  397. chebyshev2_fo_section(&f->section[i - 1], a, ci, tetta_b, g, si, b, Di, c0);
  398. }
  399. }
  400. static double butterworth_compute_bw_gain_db(double gain)
  401. {
  402. double bw_gain = 0;
  403. if (gain <= -6)
  404. bw_gain = gain + 3;
  405. else if(gain > -6 && gain < 6)
  406. bw_gain = gain * 0.5;
  407. else if(gain >= 6)
  408. bw_gain = gain - 3;
  409. return bw_gain;
  410. }
  411. static double chebyshev1_compute_bw_gain_db(double gain)
  412. {
  413. double bw_gain = 0;
  414. if (gain <= -6)
  415. bw_gain = gain + 1;
  416. else if(gain > -6 && gain < 6)
  417. bw_gain = gain * 0.9;
  418. else if(gain >= 6)
  419. bw_gain = gain - 1;
  420. return bw_gain;
  421. }
  422. static double chebyshev2_compute_bw_gain_db(double gain)
  423. {
  424. double bw_gain = 0;
  425. if (gain <= -6)
  426. bw_gain = -3;
  427. else if(gain > -6 && gain < 6)
  428. bw_gain = gain * 0.3;
  429. else if(gain >= 6)
  430. bw_gain = 3;
  431. return bw_gain;
  432. }
  433. static inline double hz_2_rad(double x, double fs)
  434. {
  435. return 2 * M_PI * x / fs;
  436. }
  437. static void equalizer(EqualizatorFilter *f, double sample_rate)
  438. {
  439. double w0 = hz_2_rad(f->freq, sample_rate);
  440. double wb = hz_2_rad(f->width, sample_rate);
  441. double bw_gain;
  442. switch (f->type) {
  443. case BUTTERWORTH:
  444. bw_gain = butterworth_compute_bw_gain_db(f->gain);
  445. butterworth_bp_filter(f, FILTER_ORDER, w0, wb, f->gain, bw_gain, 0);
  446. break;
  447. case CHEBYSHEV1:
  448. bw_gain = chebyshev1_compute_bw_gain_db(f->gain);
  449. chebyshev1_bp_filter(f, FILTER_ORDER, w0, wb, f->gain, bw_gain, 0);
  450. break;
  451. case CHEBYSHEV2:
  452. bw_gain = chebyshev2_compute_bw_gain_db(f->gain);
  453. chebyshev2_bp_filter(f, FILTER_ORDER, w0, wb, f->gain, bw_gain, 0);
  454. break;
  455. }
  456. }
  457. static int add_filter(AudioNEqualizerContext *s, AVFilterLink *inlink)
  458. {
  459. equalizer(&s->filters[s->nb_filters], inlink->sample_rate);
  460. if (s->nb_filters >= s->nb_allocated) {
  461. EqualizatorFilter *filters;
  462. filters = av_calloc(s->nb_allocated, 2 * sizeof(*s->filters));
  463. if (!filters)
  464. return AVERROR(ENOMEM);
  465. memcpy(filters, s->filters, sizeof(*s->filters) * s->nb_allocated);
  466. av_free(s->filters);
  467. s->filters = filters;
  468. s->nb_allocated *= 2;
  469. }
  470. s->nb_filters++;
  471. return 0;
  472. }
  473. static int config_input(AVFilterLink *inlink)
  474. {
  475. AVFilterContext *ctx = inlink->dst;
  476. AudioNEqualizerContext *s = ctx->priv;
  477. char *args = av_strdup(s->args);
  478. char *saveptr = NULL;
  479. int ret = 0;
  480. if (!args)
  481. return AVERROR(ENOMEM);
  482. s->nb_allocated = 32 * inlink->channels;
  483. s->filters = av_calloc(inlink->channels, 32 * sizeof(*s->filters));
  484. if (!s->filters) {
  485. s->nb_allocated = 0;
  486. return AVERROR(ENOMEM);
  487. }
  488. while (1) {
  489. char *arg = av_strtok(s->nb_filters == 0 ? args : NULL, "|", &saveptr);
  490. if (!arg)
  491. break;
  492. s->filters[s->nb_filters].type = 0;
  493. if (sscanf(arg, "c%d f=%lf w=%lf g=%lf t=%d", &s->filters[s->nb_filters].channel,
  494. &s->filters[s->nb_filters].freq,
  495. &s->filters[s->nb_filters].width,
  496. &s->filters[s->nb_filters].gain,
  497. &s->filters[s->nb_filters].type) != 5 &&
  498. sscanf(arg, "c%d f=%lf w=%lf g=%lf", &s->filters[s->nb_filters].channel,
  499. &s->filters[s->nb_filters].freq,
  500. &s->filters[s->nb_filters].width,
  501. &s->filters[s->nb_filters].gain) != 4 ) {
  502. av_free(args);
  503. return AVERROR(EINVAL);
  504. }
  505. if (s->filters[s->nb_filters].freq < 0 ||
  506. s->filters[s->nb_filters].freq > inlink->sample_rate / 2)
  507. s->filters[s->nb_filters].ignore = 1;
  508. if (s->filters[s->nb_filters].channel < 0 ||
  509. s->filters[s->nb_filters].channel >= inlink->channels)
  510. s->filters[s->nb_filters].ignore = 1;
  511. av_clip(s->filters[s->nb_filters].type, 0, NB_TYPES - 1);
  512. ret = add_filter(s, inlink);
  513. if (ret < 0)
  514. break;
  515. }
  516. av_free(args);
  517. return ret;
  518. }
  519. static int process_command(AVFilterContext *ctx, const char *cmd, const char *args,
  520. char *res, int res_len, int flags)
  521. {
  522. AudioNEqualizerContext *s = ctx->priv;
  523. AVFilterLink *inlink = ctx->inputs[0];
  524. int ret = AVERROR(ENOSYS);
  525. if (!strcmp(cmd, "change")) {
  526. double freq, width, gain;
  527. int filter;
  528. if (sscanf(args, "%d|f=%lf|w=%lf|g=%lf", &filter, &freq, &width, &gain) != 4)
  529. return AVERROR(EINVAL);
  530. if (filter < 0 || filter >= s->nb_filters)
  531. return AVERROR(EINVAL);
  532. if (freq < 0 || freq > inlink->sample_rate / 2)
  533. return AVERROR(EINVAL);
  534. s->filters[filter].freq = freq;
  535. s->filters[filter].width = width;
  536. s->filters[filter].gain = gain;
  537. equalizer(&s->filters[filter], inlink->sample_rate);
  538. if (s->draw_curves)
  539. draw_curves(ctx, inlink, s->video);
  540. ret = 0;
  541. }
  542. return ret;
  543. }
  544. static inline double section_process(FoSection *S, double in)
  545. {
  546. double out;
  547. out = S->b0 * in;
  548. out+= S->b1 * S->num[0] - S->denum[0] * S->a1;
  549. out+= S->b2 * S->num[1] - S->denum[1] * S->a2;
  550. out+= S->b3 * S->num[2] - S->denum[2] * S->a3;
  551. out+= S->b4 * S->num[3] - S->denum[3] * S->a4;
  552. S->num[3] = S->num[2];
  553. S->num[2] = S->num[1];
  554. S->num[1] = S->num[0];
  555. S->num[0] = in;
  556. S->denum[3] = S->denum[2];
  557. S->denum[2] = S->denum[1];
  558. S->denum[1] = S->denum[0];
  559. S->denum[0] = out;
  560. return out;
  561. }
  562. static double process_sample(FoSection *s1, double in)
  563. {
  564. double p0 = in, p1;
  565. int i;
  566. for (i = 0; i < FILTER_ORDER / 2; i++) {
  567. p1 = section_process(&s1[i], p0);
  568. p0 = p1;
  569. }
  570. return p1;
  571. }
  572. static int filter_frame(AVFilterLink *inlink, AVFrame *buf)
  573. {
  574. AVFilterContext *ctx = inlink->dst;
  575. AudioNEqualizerContext *s = ctx->priv;
  576. AVFilterLink *outlink = ctx->outputs[0];
  577. double *bptr;
  578. int i, n;
  579. for (i = 0; i < s->nb_filters; i++) {
  580. EqualizatorFilter *f = &s->filters[i];
  581. if (f->gain == 0. || f->ignore)
  582. continue;
  583. bptr = (double *)buf->extended_data[f->channel];
  584. for (n = 0; n < buf->nb_samples; n++) {
  585. double sample = bptr[n];
  586. sample = process_sample(f->section, sample);
  587. bptr[n] = sample;
  588. }
  589. }
  590. if (s->draw_curves) {
  591. const int64_t pts = buf->pts +
  592. av_rescale_q(buf->nb_samples, (AVRational){ 1, inlink->sample_rate },
  593. outlink->time_base);
  594. int ret;
  595. s->video->pts = pts;
  596. ret = ff_filter_frame(ctx->outputs[1], av_frame_clone(s->video));
  597. if (ret < 0)
  598. return ret;
  599. }
  600. return ff_filter_frame(outlink, buf);
  601. }
  602. static const AVFilterPad inputs[] = {
  603. {
  604. .name = "default",
  605. .type = AVMEDIA_TYPE_AUDIO,
  606. .config_props = config_input,
  607. .filter_frame = filter_frame,
  608. .needs_writable = 1,
  609. },
  610. { NULL }
  611. };
  612. AVFilter ff_af_anequalizer = {
  613. .name = "anequalizer",
  614. .description = NULL_IF_CONFIG_SMALL("Apply high-order audio parametric multi band equalizer."),
  615. .priv_size = sizeof(AudioNEqualizerContext),
  616. .priv_class = &anequalizer_class,
  617. .init = init,
  618. .uninit = uninit,
  619. .query_formats = query_formats,
  620. .inputs = inputs,
  621. .outputs = NULL,
  622. .flags = AVFILTER_FLAG_DYNAMIC_OUTPUTS,
  623. .process_command = process_command,
  624. };