You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

2587 lines
77KB

  1. /*
  2. * MPEG Audio decoder
  3. * Copyright (c) 2001, 2002 Fabrice Bellard
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file
  23. * MPEG Audio decoder.
  24. */
  25. #include "avcodec.h"
  26. #include "get_bits.h"
  27. #include "dsputil.h"
  28. /*
  29. * TODO:
  30. * - in low precision mode, use more 16 bit multiplies in synth filter
  31. * - test lsf / mpeg25 extensively.
  32. */
  33. #include "mpegaudio.h"
  34. #include "mpegaudiodecheader.h"
  35. #include "mathops.h"
  36. #if CONFIG_FLOAT
  37. # define SHR(a,b) ((a)*(1.0/(1<<(b))))
  38. # define compute_antialias compute_antialias_float
  39. # define FIXR_OLD(a) ((int)((a) * FRAC_ONE + 0.5))
  40. # define FIXR(x) (x)
  41. # define FIXHR(x) (x)
  42. # define MULH3(x, y, s) ((s)*(y)*(x))
  43. # define MULLx(x, y, s) ((y)*(x))
  44. # define RENAME(a) a ## _float
  45. #else
  46. # define SHR(a,b) ((a)>>(b))
  47. # define compute_antialias compute_antialias_integer
  48. /* WARNING: only correct for posititive numbers */
  49. # define FIXR_OLD(a) ((int)((a) * FRAC_ONE + 0.5))
  50. # define FIXR(a) ((int)((a) * FRAC_ONE + 0.5))
  51. # define FIXHR(a) ((int)((a) * (1LL<<32) + 0.5))
  52. # define MULH3(x, y, s) MULH((s)*(x), y)
  53. # define MULLx(x, y, s) MULL(x,y,s)
  54. # define RENAME(a) a
  55. #endif
  56. /****************/
  57. #define HEADER_SIZE 4
  58. #include "mpegaudiodata.h"
  59. #include "mpegaudiodectab.h"
  60. static void compute_antialias_integer(MPADecodeContext *s, GranuleDef *g);
  61. static void compute_antialias_float(MPADecodeContext *s, GranuleDef *g);
  62. /* vlc structure for decoding layer 3 huffman tables */
  63. static VLC huff_vlc[16];
  64. static VLC_TYPE huff_vlc_tables[
  65. 0+128+128+128+130+128+154+166+
  66. 142+204+190+170+542+460+662+414
  67. ][2];
  68. static const int huff_vlc_tables_sizes[16] = {
  69. 0, 128, 128, 128, 130, 128, 154, 166,
  70. 142, 204, 190, 170, 542, 460, 662, 414
  71. };
  72. static VLC huff_quad_vlc[2];
  73. static VLC_TYPE huff_quad_vlc_tables[128+16][2];
  74. static const int huff_quad_vlc_tables_sizes[2] = {
  75. 128, 16
  76. };
  77. /* computed from band_size_long */
  78. static uint16_t band_index_long[9][23];
  79. #include "mpegaudio_tablegen.h"
  80. /* intensity stereo coef table */
  81. static INTFLOAT is_table[2][16];
  82. static INTFLOAT is_table_lsf[2][2][16];
  83. static int32_t csa_table[8][4];
  84. static float csa_table_float[8][4];
  85. static INTFLOAT mdct_win[8][36];
  86. /* lower 2 bits: modulo 3, higher bits: shift */
  87. static uint16_t scale_factor_modshift[64];
  88. /* [i][j]: 2^(-j/3) * FRAC_ONE * 2^(i+2) / (2^(i+2) - 1) */
  89. static int32_t scale_factor_mult[15][3];
  90. /* mult table for layer 2 group quantization */
  91. #define SCALE_GEN(v) \
  92. { FIXR_OLD(1.0 * (v)), FIXR_OLD(0.7937005259 * (v)), FIXR_OLD(0.6299605249 * (v)) }
  93. static const int32_t scale_factor_mult2[3][3] = {
  94. SCALE_GEN(4.0 / 3.0), /* 3 steps */
  95. SCALE_GEN(4.0 / 5.0), /* 5 steps */
  96. SCALE_GEN(4.0 / 9.0), /* 9 steps */
  97. };
  98. DECLARE_ALIGNED(16, MPA_INT, RENAME(ff_mpa_synth_window))[512];
  99. /**
  100. * Convert region offsets to region sizes and truncate
  101. * size to big_values.
  102. */
  103. static void ff_region_offset2size(GranuleDef *g){
  104. int i, k, j=0;
  105. g->region_size[2] = (576 / 2);
  106. for(i=0;i<3;i++) {
  107. k = FFMIN(g->region_size[i], g->big_values);
  108. g->region_size[i] = k - j;
  109. j = k;
  110. }
  111. }
  112. static void ff_init_short_region(MPADecodeContext *s, GranuleDef *g){
  113. if (g->block_type == 2)
  114. g->region_size[0] = (36 / 2);
  115. else {
  116. if (s->sample_rate_index <= 2)
  117. g->region_size[0] = (36 / 2);
  118. else if (s->sample_rate_index != 8)
  119. g->region_size[0] = (54 / 2);
  120. else
  121. g->region_size[0] = (108 / 2);
  122. }
  123. g->region_size[1] = (576 / 2);
  124. }
  125. static void ff_init_long_region(MPADecodeContext *s, GranuleDef *g, int ra1, int ra2){
  126. int l;
  127. g->region_size[0] =
  128. band_index_long[s->sample_rate_index][ra1 + 1] >> 1;
  129. /* should not overflow */
  130. l = FFMIN(ra1 + ra2 + 2, 22);
  131. g->region_size[1] =
  132. band_index_long[s->sample_rate_index][l] >> 1;
  133. }
  134. static void ff_compute_band_indexes(MPADecodeContext *s, GranuleDef *g){
  135. if (g->block_type == 2) {
  136. if (g->switch_point) {
  137. /* if switched mode, we handle the 36 first samples as
  138. long blocks. For 8000Hz, we handle the 48 first
  139. exponents as long blocks (XXX: check this!) */
  140. if (s->sample_rate_index <= 2)
  141. g->long_end = 8;
  142. else if (s->sample_rate_index != 8)
  143. g->long_end = 6;
  144. else
  145. g->long_end = 4; /* 8000 Hz */
  146. g->short_start = 2 + (s->sample_rate_index != 8);
  147. } else {
  148. g->long_end = 0;
  149. g->short_start = 0;
  150. }
  151. } else {
  152. g->short_start = 13;
  153. g->long_end = 22;
  154. }
  155. }
  156. /* layer 1 unscaling */
  157. /* n = number of bits of the mantissa minus 1 */
  158. static inline int l1_unscale(int n, int mant, int scale_factor)
  159. {
  160. int shift, mod;
  161. int64_t val;
  162. shift = scale_factor_modshift[scale_factor];
  163. mod = shift & 3;
  164. shift >>= 2;
  165. val = MUL64(mant + (-1 << n) + 1, scale_factor_mult[n-1][mod]);
  166. shift += n;
  167. /* NOTE: at this point, 1 <= shift >= 21 + 15 */
  168. return (int)((val + (1LL << (shift - 1))) >> shift);
  169. }
  170. static inline int l2_unscale_group(int steps, int mant, int scale_factor)
  171. {
  172. int shift, mod, val;
  173. shift = scale_factor_modshift[scale_factor];
  174. mod = shift & 3;
  175. shift >>= 2;
  176. val = (mant - (steps >> 1)) * scale_factor_mult2[steps >> 2][mod];
  177. /* NOTE: at this point, 0 <= shift <= 21 */
  178. if (shift > 0)
  179. val = (val + (1 << (shift - 1))) >> shift;
  180. return val;
  181. }
  182. /* compute value^(4/3) * 2^(exponent/4). It normalized to FRAC_BITS */
  183. static inline int l3_unscale(int value, int exponent)
  184. {
  185. unsigned int m;
  186. int e;
  187. e = table_4_3_exp [4*value + (exponent&3)];
  188. m = table_4_3_value[4*value + (exponent&3)];
  189. e -= (exponent >> 2);
  190. assert(e>=1);
  191. if (e > 31)
  192. return 0;
  193. m = (m + (1 << (e-1))) >> e;
  194. return m;
  195. }
  196. /* all integer n^(4/3) computation code */
  197. #define DEV_ORDER 13
  198. #define POW_FRAC_BITS 24
  199. #define POW_FRAC_ONE (1 << POW_FRAC_BITS)
  200. #define POW_FIX(a) ((int)((a) * POW_FRAC_ONE))
  201. #define POW_MULL(a,b) (((int64_t)(a) * (int64_t)(b)) >> POW_FRAC_BITS)
  202. static int dev_4_3_coefs[DEV_ORDER];
  203. #if 0 /* unused */
  204. static int pow_mult3[3] = {
  205. POW_FIX(1.0),
  206. POW_FIX(1.25992104989487316476),
  207. POW_FIX(1.58740105196819947474),
  208. };
  209. #endif
  210. static av_cold void int_pow_init(void)
  211. {
  212. int i, a;
  213. a = POW_FIX(1.0);
  214. for(i=0;i<DEV_ORDER;i++) {
  215. a = POW_MULL(a, POW_FIX(4.0 / 3.0) - i * POW_FIX(1.0)) / (i + 1);
  216. dev_4_3_coefs[i] = a;
  217. }
  218. }
  219. #if 0 /* unused, remove? */
  220. /* return the mantissa and the binary exponent */
  221. static int int_pow(int i, int *exp_ptr)
  222. {
  223. int e, er, eq, j;
  224. int a, a1;
  225. /* renormalize */
  226. a = i;
  227. e = POW_FRAC_BITS;
  228. while (a < (1 << (POW_FRAC_BITS - 1))) {
  229. a = a << 1;
  230. e--;
  231. }
  232. a -= (1 << POW_FRAC_BITS);
  233. a1 = 0;
  234. for(j = DEV_ORDER - 1; j >= 0; j--)
  235. a1 = POW_MULL(a, dev_4_3_coefs[j] + a1);
  236. a = (1 << POW_FRAC_BITS) + a1;
  237. /* exponent compute (exact) */
  238. e = e * 4;
  239. er = e % 3;
  240. eq = e / 3;
  241. a = POW_MULL(a, pow_mult3[er]);
  242. while (a >= 2 * POW_FRAC_ONE) {
  243. a = a >> 1;
  244. eq++;
  245. }
  246. /* convert to float */
  247. while (a < POW_FRAC_ONE) {
  248. a = a << 1;
  249. eq--;
  250. }
  251. /* now POW_FRAC_ONE <= a < 2 * POW_FRAC_ONE */
  252. #if POW_FRAC_BITS > FRAC_BITS
  253. a = (a + (1 << (POW_FRAC_BITS - FRAC_BITS - 1))) >> (POW_FRAC_BITS - FRAC_BITS);
  254. /* correct overflow */
  255. if (a >= 2 * (1 << FRAC_BITS)) {
  256. a = a >> 1;
  257. eq++;
  258. }
  259. #endif
  260. *exp_ptr = eq;
  261. return a;
  262. }
  263. #endif
  264. static av_cold int decode_init(AVCodecContext * avctx)
  265. {
  266. MPADecodeContext *s = avctx->priv_data;
  267. static int init=0;
  268. int i, j, k;
  269. s->avctx = avctx;
  270. avctx->sample_fmt= OUT_FMT;
  271. s->error_recognition= avctx->error_recognition;
  272. if (!init && !avctx->parse_only) {
  273. int offset;
  274. /* scale factors table for layer 1/2 */
  275. for(i=0;i<64;i++) {
  276. int shift, mod;
  277. /* 1.0 (i = 3) is normalized to 2 ^ FRAC_BITS */
  278. shift = (i / 3);
  279. mod = i % 3;
  280. scale_factor_modshift[i] = mod | (shift << 2);
  281. }
  282. /* scale factor multiply for layer 1 */
  283. for(i=0;i<15;i++) {
  284. int n, norm;
  285. n = i + 2;
  286. norm = ((INT64_C(1) << n) * FRAC_ONE) / ((1 << n) - 1);
  287. scale_factor_mult[i][0] = MULLx(norm, FIXR(1.0 * 2.0), FRAC_BITS);
  288. scale_factor_mult[i][1] = MULLx(norm, FIXR(0.7937005259 * 2.0), FRAC_BITS);
  289. scale_factor_mult[i][2] = MULLx(norm, FIXR(0.6299605249 * 2.0), FRAC_BITS);
  290. dprintf(avctx, "%d: norm=%x s=%x %x %x\n",
  291. i, norm,
  292. scale_factor_mult[i][0],
  293. scale_factor_mult[i][1],
  294. scale_factor_mult[i][2]);
  295. }
  296. RENAME(ff_mpa_synth_init)(RENAME(ff_mpa_synth_window));
  297. /* huffman decode tables */
  298. offset = 0;
  299. for(i=1;i<16;i++) {
  300. const HuffTable *h = &mpa_huff_tables[i];
  301. int xsize, x, y;
  302. uint8_t tmp_bits [512];
  303. uint16_t tmp_codes[512];
  304. memset(tmp_bits , 0, sizeof(tmp_bits ));
  305. memset(tmp_codes, 0, sizeof(tmp_codes));
  306. xsize = h->xsize;
  307. j = 0;
  308. for(x=0;x<xsize;x++) {
  309. for(y=0;y<xsize;y++){
  310. tmp_bits [(x << 5) | y | ((x&&y)<<4)]= h->bits [j ];
  311. tmp_codes[(x << 5) | y | ((x&&y)<<4)]= h->codes[j++];
  312. }
  313. }
  314. /* XXX: fail test */
  315. huff_vlc[i].table = huff_vlc_tables+offset;
  316. huff_vlc[i].table_allocated = huff_vlc_tables_sizes[i];
  317. init_vlc(&huff_vlc[i], 7, 512,
  318. tmp_bits, 1, 1, tmp_codes, 2, 2,
  319. INIT_VLC_USE_NEW_STATIC);
  320. offset += huff_vlc_tables_sizes[i];
  321. }
  322. assert(offset == FF_ARRAY_ELEMS(huff_vlc_tables));
  323. offset = 0;
  324. for(i=0;i<2;i++) {
  325. huff_quad_vlc[i].table = huff_quad_vlc_tables+offset;
  326. huff_quad_vlc[i].table_allocated = huff_quad_vlc_tables_sizes[i];
  327. init_vlc(&huff_quad_vlc[i], i == 0 ? 7 : 4, 16,
  328. mpa_quad_bits[i], 1, 1, mpa_quad_codes[i], 1, 1,
  329. INIT_VLC_USE_NEW_STATIC);
  330. offset += huff_quad_vlc_tables_sizes[i];
  331. }
  332. assert(offset == FF_ARRAY_ELEMS(huff_quad_vlc_tables));
  333. for(i=0;i<9;i++) {
  334. k = 0;
  335. for(j=0;j<22;j++) {
  336. band_index_long[i][j] = k;
  337. k += band_size_long[i][j];
  338. }
  339. band_index_long[i][22] = k;
  340. }
  341. /* compute n ^ (4/3) and store it in mantissa/exp format */
  342. int_pow_init();
  343. mpegaudio_tableinit();
  344. for(i=0;i<7;i++) {
  345. float f;
  346. INTFLOAT v;
  347. if (i != 6) {
  348. f = tan((double)i * M_PI / 12.0);
  349. v = FIXR(f / (1.0 + f));
  350. } else {
  351. v = FIXR(1.0);
  352. }
  353. is_table[0][i] = v;
  354. is_table[1][6 - i] = v;
  355. }
  356. /* invalid values */
  357. for(i=7;i<16;i++)
  358. is_table[0][i] = is_table[1][i] = 0.0;
  359. for(i=0;i<16;i++) {
  360. double f;
  361. int e, k;
  362. for(j=0;j<2;j++) {
  363. e = -(j + 1) * ((i + 1) >> 1);
  364. f = pow(2.0, e / 4.0);
  365. k = i & 1;
  366. is_table_lsf[j][k ^ 1][i] = FIXR(f);
  367. is_table_lsf[j][k][i] = FIXR(1.0);
  368. dprintf(avctx, "is_table_lsf %d %d: %x %x\n",
  369. i, j, is_table_lsf[j][0][i], is_table_lsf[j][1][i]);
  370. }
  371. }
  372. for(i=0;i<8;i++) {
  373. float ci, cs, ca;
  374. ci = ci_table[i];
  375. cs = 1.0 / sqrt(1.0 + ci * ci);
  376. ca = cs * ci;
  377. csa_table[i][0] = FIXHR(cs/4);
  378. csa_table[i][1] = FIXHR(ca/4);
  379. csa_table[i][2] = FIXHR(ca/4) + FIXHR(cs/4);
  380. csa_table[i][3] = FIXHR(ca/4) - FIXHR(cs/4);
  381. csa_table_float[i][0] = cs;
  382. csa_table_float[i][1] = ca;
  383. csa_table_float[i][2] = ca + cs;
  384. csa_table_float[i][3] = ca - cs;
  385. }
  386. /* compute mdct windows */
  387. for(i=0;i<36;i++) {
  388. for(j=0; j<4; j++){
  389. double d;
  390. if(j==2 && i%3 != 1)
  391. continue;
  392. d= sin(M_PI * (i + 0.5) / 36.0);
  393. if(j==1){
  394. if (i>=30) d= 0;
  395. else if(i>=24) d= sin(M_PI * (i - 18 + 0.5) / 12.0);
  396. else if(i>=18) d= 1;
  397. }else if(j==3){
  398. if (i< 6) d= 0;
  399. else if(i< 12) d= sin(M_PI * (i - 6 + 0.5) / 12.0);
  400. else if(i< 18) d= 1;
  401. }
  402. //merge last stage of imdct into the window coefficients
  403. d*= 0.5 / cos(M_PI*(2*i + 19)/72);
  404. if(j==2)
  405. mdct_win[j][i/3] = FIXHR((d / (1<<5)));
  406. else
  407. mdct_win[j][i ] = FIXHR((d / (1<<5)));
  408. }
  409. }
  410. /* NOTE: we do frequency inversion adter the MDCT by changing
  411. the sign of the right window coefs */
  412. for(j=0;j<4;j++) {
  413. for(i=0;i<36;i+=2) {
  414. mdct_win[j + 4][i] = mdct_win[j][i];
  415. mdct_win[j + 4][i + 1] = -mdct_win[j][i + 1];
  416. }
  417. }
  418. init = 1;
  419. }
  420. if (avctx->codec_id == CODEC_ID_MP3ADU)
  421. s->adu_mode = 1;
  422. return 0;
  423. }
  424. /* tab[i][j] = 1.0 / (2.0 * cos(pi*(2*k+1) / 2^(6 - j))) */
  425. /* cos(i*pi/64) */
  426. #define COS0_0 FIXHR(0.50060299823519630134/2)
  427. #define COS0_1 FIXHR(0.50547095989754365998/2)
  428. #define COS0_2 FIXHR(0.51544730992262454697/2)
  429. #define COS0_3 FIXHR(0.53104259108978417447/2)
  430. #define COS0_4 FIXHR(0.55310389603444452782/2)
  431. #define COS0_5 FIXHR(0.58293496820613387367/2)
  432. #define COS0_6 FIXHR(0.62250412303566481615/2)
  433. #define COS0_7 FIXHR(0.67480834145500574602/2)
  434. #define COS0_8 FIXHR(0.74453627100229844977/2)
  435. #define COS0_9 FIXHR(0.83934964541552703873/2)
  436. #define COS0_10 FIXHR(0.97256823786196069369/2)
  437. #define COS0_11 FIXHR(1.16943993343288495515/4)
  438. #define COS0_12 FIXHR(1.48416461631416627724/4)
  439. #define COS0_13 FIXHR(2.05778100995341155085/8)
  440. #define COS0_14 FIXHR(3.40760841846871878570/8)
  441. #define COS0_15 FIXHR(10.19000812354805681150/32)
  442. #define COS1_0 FIXHR(0.50241928618815570551/2)
  443. #define COS1_1 FIXHR(0.52249861493968888062/2)
  444. #define COS1_2 FIXHR(0.56694403481635770368/2)
  445. #define COS1_3 FIXHR(0.64682178335999012954/2)
  446. #define COS1_4 FIXHR(0.78815462345125022473/2)
  447. #define COS1_5 FIXHR(1.06067768599034747134/4)
  448. #define COS1_6 FIXHR(1.72244709823833392782/4)
  449. #define COS1_7 FIXHR(5.10114861868916385802/16)
  450. #define COS2_0 FIXHR(0.50979557910415916894/2)
  451. #define COS2_1 FIXHR(0.60134488693504528054/2)
  452. #define COS2_2 FIXHR(0.89997622313641570463/2)
  453. #define COS2_3 FIXHR(2.56291544774150617881/8)
  454. #define COS3_0 FIXHR(0.54119610014619698439/2)
  455. #define COS3_1 FIXHR(1.30656296487637652785/4)
  456. #define COS4_0 FIXHR(0.70710678118654752439/2)
  457. /* butterfly operator */
  458. #define BF(a, b, c, s)\
  459. {\
  460. tmp0 = tab[a] + tab[b];\
  461. tmp1 = tab[a] - tab[b];\
  462. tab[a] = tmp0;\
  463. tab[b] = MULH3(tmp1, c, 1<<(s));\
  464. }
  465. #define BF1(a, b, c, d)\
  466. {\
  467. BF(a, b, COS4_0, 1);\
  468. BF(c, d,-COS4_0, 1);\
  469. tab[c] += tab[d];\
  470. }
  471. #define BF2(a, b, c, d)\
  472. {\
  473. BF(a, b, COS4_0, 1);\
  474. BF(c, d,-COS4_0, 1);\
  475. tab[c] += tab[d];\
  476. tab[a] += tab[c];\
  477. tab[c] += tab[b];\
  478. tab[b] += tab[d];\
  479. }
  480. #define ADD(a, b) tab[a] += tab[b]
  481. /* DCT32 without 1/sqrt(2) coef zero scaling. */
  482. static void dct32(INTFLOAT *out, INTFLOAT *tab)
  483. {
  484. INTFLOAT tmp0, tmp1;
  485. /* pass 1 */
  486. BF( 0, 31, COS0_0 , 1);
  487. BF(15, 16, COS0_15, 5);
  488. /* pass 2 */
  489. BF( 0, 15, COS1_0 , 1);
  490. BF(16, 31,-COS1_0 , 1);
  491. /* pass 1 */
  492. BF( 7, 24, COS0_7 , 1);
  493. BF( 8, 23, COS0_8 , 1);
  494. /* pass 2 */
  495. BF( 7, 8, COS1_7 , 4);
  496. BF(23, 24,-COS1_7 , 4);
  497. /* pass 3 */
  498. BF( 0, 7, COS2_0 , 1);
  499. BF( 8, 15,-COS2_0 , 1);
  500. BF(16, 23, COS2_0 , 1);
  501. BF(24, 31,-COS2_0 , 1);
  502. /* pass 1 */
  503. BF( 3, 28, COS0_3 , 1);
  504. BF(12, 19, COS0_12, 2);
  505. /* pass 2 */
  506. BF( 3, 12, COS1_3 , 1);
  507. BF(19, 28,-COS1_3 , 1);
  508. /* pass 1 */
  509. BF( 4, 27, COS0_4 , 1);
  510. BF(11, 20, COS0_11, 2);
  511. /* pass 2 */
  512. BF( 4, 11, COS1_4 , 1);
  513. BF(20, 27,-COS1_4 , 1);
  514. /* pass 3 */
  515. BF( 3, 4, COS2_3 , 3);
  516. BF(11, 12,-COS2_3 , 3);
  517. BF(19, 20, COS2_3 , 3);
  518. BF(27, 28,-COS2_3 , 3);
  519. /* pass 4 */
  520. BF( 0, 3, COS3_0 , 1);
  521. BF( 4, 7,-COS3_0 , 1);
  522. BF( 8, 11, COS3_0 , 1);
  523. BF(12, 15,-COS3_0 , 1);
  524. BF(16, 19, COS3_0 , 1);
  525. BF(20, 23,-COS3_0 , 1);
  526. BF(24, 27, COS3_0 , 1);
  527. BF(28, 31,-COS3_0 , 1);
  528. /* pass 1 */
  529. BF( 1, 30, COS0_1 , 1);
  530. BF(14, 17, COS0_14, 3);
  531. /* pass 2 */
  532. BF( 1, 14, COS1_1 , 1);
  533. BF(17, 30,-COS1_1 , 1);
  534. /* pass 1 */
  535. BF( 6, 25, COS0_6 , 1);
  536. BF( 9, 22, COS0_9 , 1);
  537. /* pass 2 */
  538. BF( 6, 9, COS1_6 , 2);
  539. BF(22, 25,-COS1_6 , 2);
  540. /* pass 3 */
  541. BF( 1, 6, COS2_1 , 1);
  542. BF( 9, 14,-COS2_1 , 1);
  543. BF(17, 22, COS2_1 , 1);
  544. BF(25, 30,-COS2_1 , 1);
  545. /* pass 1 */
  546. BF( 2, 29, COS0_2 , 1);
  547. BF(13, 18, COS0_13, 3);
  548. /* pass 2 */
  549. BF( 2, 13, COS1_2 , 1);
  550. BF(18, 29,-COS1_2 , 1);
  551. /* pass 1 */
  552. BF( 5, 26, COS0_5 , 1);
  553. BF(10, 21, COS0_10, 1);
  554. /* pass 2 */
  555. BF( 5, 10, COS1_5 , 2);
  556. BF(21, 26,-COS1_5 , 2);
  557. /* pass 3 */
  558. BF( 2, 5, COS2_2 , 1);
  559. BF(10, 13,-COS2_2 , 1);
  560. BF(18, 21, COS2_2 , 1);
  561. BF(26, 29,-COS2_2 , 1);
  562. /* pass 4 */
  563. BF( 1, 2, COS3_1 , 2);
  564. BF( 5, 6,-COS3_1 , 2);
  565. BF( 9, 10, COS3_1 , 2);
  566. BF(13, 14,-COS3_1 , 2);
  567. BF(17, 18, COS3_1 , 2);
  568. BF(21, 22,-COS3_1 , 2);
  569. BF(25, 26, COS3_1 , 2);
  570. BF(29, 30,-COS3_1 , 2);
  571. /* pass 5 */
  572. BF1( 0, 1, 2, 3);
  573. BF2( 4, 5, 6, 7);
  574. BF1( 8, 9, 10, 11);
  575. BF2(12, 13, 14, 15);
  576. BF1(16, 17, 18, 19);
  577. BF2(20, 21, 22, 23);
  578. BF1(24, 25, 26, 27);
  579. BF2(28, 29, 30, 31);
  580. /* pass 6 */
  581. ADD( 8, 12);
  582. ADD(12, 10);
  583. ADD(10, 14);
  584. ADD(14, 9);
  585. ADD( 9, 13);
  586. ADD(13, 11);
  587. ADD(11, 15);
  588. out[ 0] = tab[0];
  589. out[16] = tab[1];
  590. out[ 8] = tab[2];
  591. out[24] = tab[3];
  592. out[ 4] = tab[4];
  593. out[20] = tab[5];
  594. out[12] = tab[6];
  595. out[28] = tab[7];
  596. out[ 2] = tab[8];
  597. out[18] = tab[9];
  598. out[10] = tab[10];
  599. out[26] = tab[11];
  600. out[ 6] = tab[12];
  601. out[22] = tab[13];
  602. out[14] = tab[14];
  603. out[30] = tab[15];
  604. ADD(24, 28);
  605. ADD(28, 26);
  606. ADD(26, 30);
  607. ADD(30, 25);
  608. ADD(25, 29);
  609. ADD(29, 27);
  610. ADD(27, 31);
  611. out[ 1] = tab[16] + tab[24];
  612. out[17] = tab[17] + tab[25];
  613. out[ 9] = tab[18] + tab[26];
  614. out[25] = tab[19] + tab[27];
  615. out[ 5] = tab[20] + tab[28];
  616. out[21] = tab[21] + tab[29];
  617. out[13] = tab[22] + tab[30];
  618. out[29] = tab[23] + tab[31];
  619. out[ 3] = tab[24] + tab[20];
  620. out[19] = tab[25] + tab[21];
  621. out[11] = tab[26] + tab[22];
  622. out[27] = tab[27] + tab[23];
  623. out[ 7] = tab[28] + tab[18];
  624. out[23] = tab[29] + tab[19];
  625. out[15] = tab[30] + tab[17];
  626. out[31] = tab[31];
  627. }
  628. #if CONFIG_FLOAT
  629. static inline float round_sample(float *sum)
  630. {
  631. float sum1=*sum;
  632. *sum = 0;
  633. return sum1;
  634. }
  635. /* signed 16x16 -> 32 multiply add accumulate */
  636. #define MACS(rt, ra, rb) rt+=(ra)*(rb)
  637. /* signed 16x16 -> 32 multiply */
  638. #define MULS(ra, rb) ((ra)*(rb))
  639. #define MLSS(rt, ra, rb) rt-=(ra)*(rb)
  640. #elif FRAC_BITS <= 15
  641. static inline int round_sample(int *sum)
  642. {
  643. int sum1;
  644. sum1 = (*sum) >> OUT_SHIFT;
  645. *sum &= (1<<OUT_SHIFT)-1;
  646. return av_clip(sum1, OUT_MIN, OUT_MAX);
  647. }
  648. /* signed 16x16 -> 32 multiply add accumulate */
  649. #define MACS(rt, ra, rb) MAC16(rt, ra, rb)
  650. /* signed 16x16 -> 32 multiply */
  651. #define MULS(ra, rb) MUL16(ra, rb)
  652. #define MLSS(rt, ra, rb) MLS16(rt, ra, rb)
  653. #else
  654. static inline int round_sample(int64_t *sum)
  655. {
  656. int sum1;
  657. sum1 = (int)((*sum) >> OUT_SHIFT);
  658. *sum &= (1<<OUT_SHIFT)-1;
  659. return av_clip(sum1, OUT_MIN, OUT_MAX);
  660. }
  661. # define MULS(ra, rb) MUL64(ra, rb)
  662. # define MACS(rt, ra, rb) MAC64(rt, ra, rb)
  663. # define MLSS(rt, ra, rb) MLS64(rt, ra, rb)
  664. #endif
  665. #define SUM8(op, sum, w, p) \
  666. { \
  667. op(sum, (w)[0 * 64], (p)[0 * 64]); \
  668. op(sum, (w)[1 * 64], (p)[1 * 64]); \
  669. op(sum, (w)[2 * 64], (p)[2 * 64]); \
  670. op(sum, (w)[3 * 64], (p)[3 * 64]); \
  671. op(sum, (w)[4 * 64], (p)[4 * 64]); \
  672. op(sum, (w)[5 * 64], (p)[5 * 64]); \
  673. op(sum, (w)[6 * 64], (p)[6 * 64]); \
  674. op(sum, (w)[7 * 64], (p)[7 * 64]); \
  675. }
  676. #define SUM8P2(sum1, op1, sum2, op2, w1, w2, p) \
  677. { \
  678. INTFLOAT tmp;\
  679. tmp = p[0 * 64];\
  680. op1(sum1, (w1)[0 * 64], tmp);\
  681. op2(sum2, (w2)[0 * 64], tmp);\
  682. tmp = p[1 * 64];\
  683. op1(sum1, (w1)[1 * 64], tmp);\
  684. op2(sum2, (w2)[1 * 64], tmp);\
  685. tmp = p[2 * 64];\
  686. op1(sum1, (w1)[2 * 64], tmp);\
  687. op2(sum2, (w2)[2 * 64], tmp);\
  688. tmp = p[3 * 64];\
  689. op1(sum1, (w1)[3 * 64], tmp);\
  690. op2(sum2, (w2)[3 * 64], tmp);\
  691. tmp = p[4 * 64];\
  692. op1(sum1, (w1)[4 * 64], tmp);\
  693. op2(sum2, (w2)[4 * 64], tmp);\
  694. tmp = p[5 * 64];\
  695. op1(sum1, (w1)[5 * 64], tmp);\
  696. op2(sum2, (w2)[5 * 64], tmp);\
  697. tmp = p[6 * 64];\
  698. op1(sum1, (w1)[6 * 64], tmp);\
  699. op2(sum2, (w2)[6 * 64], tmp);\
  700. tmp = p[7 * 64];\
  701. op1(sum1, (w1)[7 * 64], tmp);\
  702. op2(sum2, (w2)[7 * 64], tmp);\
  703. }
  704. void av_cold RENAME(ff_mpa_synth_init)(MPA_INT *window)
  705. {
  706. int i;
  707. /* max = 18760, max sum over all 16 coefs : 44736 */
  708. for(i=0;i<257;i++) {
  709. INTFLOAT v;
  710. v = ff_mpa_enwindow[i];
  711. #if CONFIG_FLOAT
  712. v *= 1.0 / (1LL<<(16 + FRAC_BITS));
  713. #elif WFRAC_BITS < 16
  714. v = (v + (1 << (16 - WFRAC_BITS - 1))) >> (16 - WFRAC_BITS);
  715. #endif
  716. window[i] = v;
  717. if ((i & 63) != 0)
  718. v = -v;
  719. if (i != 0)
  720. window[512 - i] = v;
  721. }
  722. }
  723. /* 32 sub band synthesis filter. Input: 32 sub band samples, Output:
  724. 32 samples. */
  725. /* XXX: optimize by avoiding ring buffer usage */
  726. void RENAME(ff_mpa_synth_filter)(MPA_INT *synth_buf_ptr, int *synth_buf_offset,
  727. MPA_INT *window, int *dither_state,
  728. OUT_INT *samples, int incr,
  729. INTFLOAT sb_samples[SBLIMIT])
  730. {
  731. register MPA_INT *synth_buf;
  732. register const MPA_INT *w, *w2, *p;
  733. int j, offset;
  734. OUT_INT *samples2;
  735. #if CONFIG_FLOAT
  736. float sum, sum2;
  737. #elif FRAC_BITS <= 15
  738. int32_t tmp[32];
  739. int sum, sum2;
  740. #else
  741. int64_t sum, sum2;
  742. #endif
  743. offset = *synth_buf_offset;
  744. synth_buf = synth_buf_ptr + offset;
  745. #if FRAC_BITS <= 15
  746. assert(!CONFIG_FLOAT);
  747. dct32(tmp, sb_samples);
  748. for(j=0;j<32;j++) {
  749. /* NOTE: can cause a loss in precision if very high amplitude
  750. sound */
  751. synth_buf[j] = av_clip_int16(tmp[j]);
  752. }
  753. #else
  754. dct32(synth_buf, sb_samples);
  755. #endif
  756. /* copy to avoid wrap */
  757. memcpy(synth_buf + 512, synth_buf, 32 * sizeof(*synth_buf));
  758. samples2 = samples + 31 * incr;
  759. w = window;
  760. w2 = window + 31;
  761. sum = *dither_state;
  762. p = synth_buf + 16;
  763. SUM8(MACS, sum, w, p);
  764. p = synth_buf + 48;
  765. SUM8(MLSS, sum, w + 32, p);
  766. *samples = round_sample(&sum);
  767. samples += incr;
  768. w++;
  769. /* we calculate two samples at the same time to avoid one memory
  770. access per two sample */
  771. for(j=1;j<16;j++) {
  772. sum2 = 0;
  773. p = synth_buf + 16 + j;
  774. SUM8P2(sum, MACS, sum2, MLSS, w, w2, p);
  775. p = synth_buf + 48 - j;
  776. SUM8P2(sum, MLSS, sum2, MLSS, w + 32, w2 + 32, p);
  777. *samples = round_sample(&sum);
  778. samples += incr;
  779. sum += sum2;
  780. *samples2 = round_sample(&sum);
  781. samples2 -= incr;
  782. w++;
  783. w2--;
  784. }
  785. p = synth_buf + 32;
  786. SUM8(MLSS, sum, w + 32, p);
  787. *samples = round_sample(&sum);
  788. *dither_state= sum;
  789. offset = (offset - 32) & 511;
  790. *synth_buf_offset = offset;
  791. }
  792. #define C3 FIXHR(0.86602540378443864676/2)
  793. /* 0.5 / cos(pi*(2*i+1)/36) */
  794. static const INTFLOAT icos36[9] = {
  795. FIXR(0.50190991877167369479),
  796. FIXR(0.51763809020504152469), //0
  797. FIXR(0.55168895948124587824),
  798. FIXR(0.61038729438072803416),
  799. FIXR(0.70710678118654752439), //1
  800. FIXR(0.87172339781054900991),
  801. FIXR(1.18310079157624925896),
  802. FIXR(1.93185165257813657349), //2
  803. FIXR(5.73685662283492756461),
  804. };
  805. /* 0.5 / cos(pi*(2*i+1)/36) */
  806. static const INTFLOAT icos36h[9] = {
  807. FIXHR(0.50190991877167369479/2),
  808. FIXHR(0.51763809020504152469/2), //0
  809. FIXHR(0.55168895948124587824/2),
  810. FIXHR(0.61038729438072803416/2),
  811. FIXHR(0.70710678118654752439/2), //1
  812. FIXHR(0.87172339781054900991/2),
  813. FIXHR(1.18310079157624925896/4),
  814. FIXHR(1.93185165257813657349/4), //2
  815. // FIXHR(5.73685662283492756461),
  816. };
  817. /* 12 points IMDCT. We compute it "by hand" by factorizing obvious
  818. cases. */
  819. static void imdct12(INTFLOAT *out, INTFLOAT *in)
  820. {
  821. INTFLOAT in0, in1, in2, in3, in4, in5, t1, t2;
  822. in0= in[0*3];
  823. in1= in[1*3] + in[0*3];
  824. in2= in[2*3] + in[1*3];
  825. in3= in[3*3] + in[2*3];
  826. in4= in[4*3] + in[3*3];
  827. in5= in[5*3] + in[4*3];
  828. in5 += in3;
  829. in3 += in1;
  830. in2= MULH3(in2, C3, 2);
  831. in3= MULH3(in3, C3, 4);
  832. t1 = in0 - in4;
  833. t2 = MULH3(in1 - in5, icos36h[4], 2);
  834. out[ 7]=
  835. out[10]= t1 + t2;
  836. out[ 1]=
  837. out[ 4]= t1 - t2;
  838. in0 += SHR(in4, 1);
  839. in4 = in0 + in2;
  840. in5 += 2*in1;
  841. in1 = MULH3(in5 + in3, icos36h[1], 1);
  842. out[ 8]=
  843. out[ 9]= in4 + in1;
  844. out[ 2]=
  845. out[ 3]= in4 - in1;
  846. in0 -= in2;
  847. in5 = MULH3(in5 - in3, icos36h[7], 2);
  848. out[ 0]=
  849. out[ 5]= in0 - in5;
  850. out[ 6]=
  851. out[11]= in0 + in5;
  852. }
  853. /* cos(pi*i/18) */
  854. #define C1 FIXHR(0.98480775301220805936/2)
  855. #define C2 FIXHR(0.93969262078590838405/2)
  856. #define C3 FIXHR(0.86602540378443864676/2)
  857. #define C4 FIXHR(0.76604444311897803520/2)
  858. #define C5 FIXHR(0.64278760968653932632/2)
  859. #define C6 FIXHR(0.5/2)
  860. #define C7 FIXHR(0.34202014332566873304/2)
  861. #define C8 FIXHR(0.17364817766693034885/2)
  862. /* using Lee like decomposition followed by hand coded 9 points DCT */
  863. static void imdct36(INTFLOAT *out, INTFLOAT *buf, INTFLOAT *in, INTFLOAT *win)
  864. {
  865. int i, j;
  866. INTFLOAT t0, t1, t2, t3, s0, s1, s2, s3;
  867. INTFLOAT tmp[18], *tmp1, *in1;
  868. for(i=17;i>=1;i--)
  869. in[i] += in[i-1];
  870. for(i=17;i>=3;i-=2)
  871. in[i] += in[i-2];
  872. for(j=0;j<2;j++) {
  873. tmp1 = tmp + j;
  874. in1 = in + j;
  875. t2 = in1[2*4] + in1[2*8] - in1[2*2];
  876. t3 = in1[2*0] + SHR(in1[2*6],1);
  877. t1 = in1[2*0] - in1[2*6];
  878. tmp1[ 6] = t1 - SHR(t2,1);
  879. tmp1[16] = t1 + t2;
  880. t0 = MULH3(in1[2*2] + in1[2*4] , C2, 2);
  881. t1 = MULH3(in1[2*4] - in1[2*8] , -2*C8, 1);
  882. t2 = MULH3(in1[2*2] + in1[2*8] , -C4, 2);
  883. tmp1[10] = t3 - t0 - t2;
  884. tmp1[ 2] = t3 + t0 + t1;
  885. tmp1[14] = t3 + t2 - t1;
  886. tmp1[ 4] = MULH3(in1[2*5] + in1[2*7] - in1[2*1], -C3, 2);
  887. t2 = MULH3(in1[2*1] + in1[2*5], C1, 2);
  888. t3 = MULH3(in1[2*5] - in1[2*7], -2*C7, 1);
  889. t0 = MULH3(in1[2*3], C3, 2);
  890. t1 = MULH3(in1[2*1] + in1[2*7], -C5, 2);
  891. tmp1[ 0] = t2 + t3 + t0;
  892. tmp1[12] = t2 + t1 - t0;
  893. tmp1[ 8] = t3 - t1 - t0;
  894. }
  895. i = 0;
  896. for(j=0;j<4;j++) {
  897. t0 = tmp[i];
  898. t1 = tmp[i + 2];
  899. s0 = t1 + t0;
  900. s2 = t1 - t0;
  901. t2 = tmp[i + 1];
  902. t3 = tmp[i + 3];
  903. s1 = MULH3(t3 + t2, icos36h[j], 2);
  904. s3 = MULLx(t3 - t2, icos36[8 - j], FRAC_BITS);
  905. t0 = s0 + s1;
  906. t1 = s0 - s1;
  907. out[(9 + j)*SBLIMIT] = MULH3(t1, win[9 + j], 1) + buf[9 + j];
  908. out[(8 - j)*SBLIMIT] = MULH3(t1, win[8 - j], 1) + buf[8 - j];
  909. buf[9 + j] = MULH3(t0, win[18 + 9 + j], 1);
  910. buf[8 - j] = MULH3(t0, win[18 + 8 - j], 1);
  911. t0 = s2 + s3;
  912. t1 = s2 - s3;
  913. out[(9 + 8 - j)*SBLIMIT] = MULH3(t1, win[9 + 8 - j], 1) + buf[9 + 8 - j];
  914. out[( j)*SBLIMIT] = MULH3(t1, win[ j], 1) + buf[ j];
  915. buf[9 + 8 - j] = MULH3(t0, win[18 + 9 + 8 - j], 1);
  916. buf[ + j] = MULH3(t0, win[18 + j], 1);
  917. i += 4;
  918. }
  919. s0 = tmp[16];
  920. s1 = MULH3(tmp[17], icos36h[4], 2);
  921. t0 = s0 + s1;
  922. t1 = s0 - s1;
  923. out[(9 + 4)*SBLIMIT] = MULH3(t1, win[9 + 4], 1) + buf[9 + 4];
  924. out[(8 - 4)*SBLIMIT] = MULH3(t1, win[8 - 4], 1) + buf[8 - 4];
  925. buf[9 + 4] = MULH3(t0, win[18 + 9 + 4], 1);
  926. buf[8 - 4] = MULH3(t0, win[18 + 8 - 4], 1);
  927. }
  928. /* return the number of decoded frames */
  929. static int mp_decode_layer1(MPADecodeContext *s)
  930. {
  931. int bound, i, v, n, ch, j, mant;
  932. uint8_t allocation[MPA_MAX_CHANNELS][SBLIMIT];
  933. uint8_t scale_factors[MPA_MAX_CHANNELS][SBLIMIT];
  934. if (s->mode == MPA_JSTEREO)
  935. bound = (s->mode_ext + 1) * 4;
  936. else
  937. bound = SBLIMIT;
  938. /* allocation bits */
  939. for(i=0;i<bound;i++) {
  940. for(ch=0;ch<s->nb_channels;ch++) {
  941. allocation[ch][i] = get_bits(&s->gb, 4);
  942. }
  943. }
  944. for(i=bound;i<SBLIMIT;i++) {
  945. allocation[0][i] = get_bits(&s->gb, 4);
  946. }
  947. /* scale factors */
  948. for(i=0;i<bound;i++) {
  949. for(ch=0;ch<s->nb_channels;ch++) {
  950. if (allocation[ch][i])
  951. scale_factors[ch][i] = get_bits(&s->gb, 6);
  952. }
  953. }
  954. for(i=bound;i<SBLIMIT;i++) {
  955. if (allocation[0][i]) {
  956. scale_factors[0][i] = get_bits(&s->gb, 6);
  957. scale_factors[1][i] = get_bits(&s->gb, 6);
  958. }
  959. }
  960. /* compute samples */
  961. for(j=0;j<12;j++) {
  962. for(i=0;i<bound;i++) {
  963. for(ch=0;ch<s->nb_channels;ch++) {
  964. n = allocation[ch][i];
  965. if (n) {
  966. mant = get_bits(&s->gb, n + 1);
  967. v = l1_unscale(n, mant, scale_factors[ch][i]);
  968. } else {
  969. v = 0;
  970. }
  971. s->sb_samples[ch][j][i] = v;
  972. }
  973. }
  974. for(i=bound;i<SBLIMIT;i++) {
  975. n = allocation[0][i];
  976. if (n) {
  977. mant = get_bits(&s->gb, n + 1);
  978. v = l1_unscale(n, mant, scale_factors[0][i]);
  979. s->sb_samples[0][j][i] = v;
  980. v = l1_unscale(n, mant, scale_factors[1][i]);
  981. s->sb_samples[1][j][i] = v;
  982. } else {
  983. s->sb_samples[0][j][i] = 0;
  984. s->sb_samples[1][j][i] = 0;
  985. }
  986. }
  987. }
  988. return 12;
  989. }
  990. static int mp_decode_layer2(MPADecodeContext *s)
  991. {
  992. int sblimit; /* number of used subbands */
  993. const unsigned char *alloc_table;
  994. int table, bit_alloc_bits, i, j, ch, bound, v;
  995. unsigned char bit_alloc[MPA_MAX_CHANNELS][SBLIMIT];
  996. unsigned char scale_code[MPA_MAX_CHANNELS][SBLIMIT];
  997. unsigned char scale_factors[MPA_MAX_CHANNELS][SBLIMIT][3], *sf;
  998. int scale, qindex, bits, steps, k, l, m, b;
  999. /* select decoding table */
  1000. table = ff_mpa_l2_select_table(s->bit_rate / 1000, s->nb_channels,
  1001. s->sample_rate, s->lsf);
  1002. sblimit = ff_mpa_sblimit_table[table];
  1003. alloc_table = ff_mpa_alloc_tables[table];
  1004. if (s->mode == MPA_JSTEREO)
  1005. bound = (s->mode_ext + 1) * 4;
  1006. else
  1007. bound = sblimit;
  1008. dprintf(s->avctx, "bound=%d sblimit=%d\n", bound, sblimit);
  1009. /* sanity check */
  1010. if( bound > sblimit ) bound = sblimit;
  1011. /* parse bit allocation */
  1012. j = 0;
  1013. for(i=0;i<bound;i++) {
  1014. bit_alloc_bits = alloc_table[j];
  1015. for(ch=0;ch<s->nb_channels;ch++) {
  1016. bit_alloc[ch][i] = get_bits(&s->gb, bit_alloc_bits);
  1017. }
  1018. j += 1 << bit_alloc_bits;
  1019. }
  1020. for(i=bound;i<sblimit;i++) {
  1021. bit_alloc_bits = alloc_table[j];
  1022. v = get_bits(&s->gb, bit_alloc_bits);
  1023. bit_alloc[0][i] = v;
  1024. bit_alloc[1][i] = v;
  1025. j += 1 << bit_alloc_bits;
  1026. }
  1027. /* scale codes */
  1028. for(i=0;i<sblimit;i++) {
  1029. for(ch=0;ch<s->nb_channels;ch++) {
  1030. if (bit_alloc[ch][i])
  1031. scale_code[ch][i] = get_bits(&s->gb, 2);
  1032. }
  1033. }
  1034. /* scale factors */
  1035. for(i=0;i<sblimit;i++) {
  1036. for(ch=0;ch<s->nb_channels;ch++) {
  1037. if (bit_alloc[ch][i]) {
  1038. sf = scale_factors[ch][i];
  1039. switch(scale_code[ch][i]) {
  1040. default:
  1041. case 0:
  1042. sf[0] = get_bits(&s->gb, 6);
  1043. sf[1] = get_bits(&s->gb, 6);
  1044. sf[2] = get_bits(&s->gb, 6);
  1045. break;
  1046. case 2:
  1047. sf[0] = get_bits(&s->gb, 6);
  1048. sf[1] = sf[0];
  1049. sf[2] = sf[0];
  1050. break;
  1051. case 1:
  1052. sf[0] = get_bits(&s->gb, 6);
  1053. sf[2] = get_bits(&s->gb, 6);
  1054. sf[1] = sf[0];
  1055. break;
  1056. case 3:
  1057. sf[0] = get_bits(&s->gb, 6);
  1058. sf[2] = get_bits(&s->gb, 6);
  1059. sf[1] = sf[2];
  1060. break;
  1061. }
  1062. }
  1063. }
  1064. }
  1065. /* samples */
  1066. for(k=0;k<3;k++) {
  1067. for(l=0;l<12;l+=3) {
  1068. j = 0;
  1069. for(i=0;i<bound;i++) {
  1070. bit_alloc_bits = alloc_table[j];
  1071. for(ch=0;ch<s->nb_channels;ch++) {
  1072. b = bit_alloc[ch][i];
  1073. if (b) {
  1074. scale = scale_factors[ch][i][k];
  1075. qindex = alloc_table[j+b];
  1076. bits = ff_mpa_quant_bits[qindex];
  1077. if (bits < 0) {
  1078. /* 3 values at the same time */
  1079. v = get_bits(&s->gb, -bits);
  1080. steps = ff_mpa_quant_steps[qindex];
  1081. s->sb_samples[ch][k * 12 + l + 0][i] =
  1082. l2_unscale_group(steps, v % steps, scale);
  1083. v = v / steps;
  1084. s->sb_samples[ch][k * 12 + l + 1][i] =
  1085. l2_unscale_group(steps, v % steps, scale);
  1086. v = v / steps;
  1087. s->sb_samples[ch][k * 12 + l + 2][i] =
  1088. l2_unscale_group(steps, v, scale);
  1089. } else {
  1090. for(m=0;m<3;m++) {
  1091. v = get_bits(&s->gb, bits);
  1092. v = l1_unscale(bits - 1, v, scale);
  1093. s->sb_samples[ch][k * 12 + l + m][i] = v;
  1094. }
  1095. }
  1096. } else {
  1097. s->sb_samples[ch][k * 12 + l + 0][i] = 0;
  1098. s->sb_samples[ch][k * 12 + l + 1][i] = 0;
  1099. s->sb_samples[ch][k * 12 + l + 2][i] = 0;
  1100. }
  1101. }
  1102. /* next subband in alloc table */
  1103. j += 1 << bit_alloc_bits;
  1104. }
  1105. /* XXX: find a way to avoid this duplication of code */
  1106. for(i=bound;i<sblimit;i++) {
  1107. bit_alloc_bits = alloc_table[j];
  1108. b = bit_alloc[0][i];
  1109. if (b) {
  1110. int mant, scale0, scale1;
  1111. scale0 = scale_factors[0][i][k];
  1112. scale1 = scale_factors[1][i][k];
  1113. qindex = alloc_table[j+b];
  1114. bits = ff_mpa_quant_bits[qindex];
  1115. if (bits < 0) {
  1116. /* 3 values at the same time */
  1117. v = get_bits(&s->gb, -bits);
  1118. steps = ff_mpa_quant_steps[qindex];
  1119. mant = v % steps;
  1120. v = v / steps;
  1121. s->sb_samples[0][k * 12 + l + 0][i] =
  1122. l2_unscale_group(steps, mant, scale0);
  1123. s->sb_samples[1][k * 12 + l + 0][i] =
  1124. l2_unscale_group(steps, mant, scale1);
  1125. mant = v % steps;
  1126. v = v / steps;
  1127. s->sb_samples[0][k * 12 + l + 1][i] =
  1128. l2_unscale_group(steps, mant, scale0);
  1129. s->sb_samples[1][k * 12 + l + 1][i] =
  1130. l2_unscale_group(steps, mant, scale1);
  1131. s->sb_samples[0][k * 12 + l + 2][i] =
  1132. l2_unscale_group(steps, v, scale0);
  1133. s->sb_samples[1][k * 12 + l + 2][i] =
  1134. l2_unscale_group(steps, v, scale1);
  1135. } else {
  1136. for(m=0;m<3;m++) {
  1137. mant = get_bits(&s->gb, bits);
  1138. s->sb_samples[0][k * 12 + l + m][i] =
  1139. l1_unscale(bits - 1, mant, scale0);
  1140. s->sb_samples[1][k * 12 + l + m][i] =
  1141. l1_unscale(bits - 1, mant, scale1);
  1142. }
  1143. }
  1144. } else {
  1145. s->sb_samples[0][k * 12 + l + 0][i] = 0;
  1146. s->sb_samples[0][k * 12 + l + 1][i] = 0;
  1147. s->sb_samples[0][k * 12 + l + 2][i] = 0;
  1148. s->sb_samples[1][k * 12 + l + 0][i] = 0;
  1149. s->sb_samples[1][k * 12 + l + 1][i] = 0;
  1150. s->sb_samples[1][k * 12 + l + 2][i] = 0;
  1151. }
  1152. /* next subband in alloc table */
  1153. j += 1 << bit_alloc_bits;
  1154. }
  1155. /* fill remaining samples to zero */
  1156. for(i=sblimit;i<SBLIMIT;i++) {
  1157. for(ch=0;ch<s->nb_channels;ch++) {
  1158. s->sb_samples[ch][k * 12 + l + 0][i] = 0;
  1159. s->sb_samples[ch][k * 12 + l + 1][i] = 0;
  1160. s->sb_samples[ch][k * 12 + l + 2][i] = 0;
  1161. }
  1162. }
  1163. }
  1164. }
  1165. return 3 * 12;
  1166. }
  1167. #define SPLIT(dst,sf,n)\
  1168. if(n==3){\
  1169. int m= (sf*171)>>9;\
  1170. dst= sf - 3*m;\
  1171. sf=m;\
  1172. }else if(n==4){\
  1173. dst= sf&3;\
  1174. sf>>=2;\
  1175. }else if(n==5){\
  1176. int m= (sf*205)>>10;\
  1177. dst= sf - 5*m;\
  1178. sf=m;\
  1179. }else if(n==6){\
  1180. int m= (sf*171)>>10;\
  1181. dst= sf - 6*m;\
  1182. sf=m;\
  1183. }else{\
  1184. dst=0;\
  1185. }
  1186. static av_always_inline void lsf_sf_expand(int *slen,
  1187. int sf, int n1, int n2, int n3)
  1188. {
  1189. SPLIT(slen[3], sf, n3)
  1190. SPLIT(slen[2], sf, n2)
  1191. SPLIT(slen[1], sf, n1)
  1192. slen[0] = sf;
  1193. }
  1194. static void exponents_from_scale_factors(MPADecodeContext *s,
  1195. GranuleDef *g,
  1196. int16_t *exponents)
  1197. {
  1198. const uint8_t *bstab, *pretab;
  1199. int len, i, j, k, l, v0, shift, gain, gains[3];
  1200. int16_t *exp_ptr;
  1201. exp_ptr = exponents;
  1202. gain = g->global_gain - 210;
  1203. shift = g->scalefac_scale + 1;
  1204. bstab = band_size_long[s->sample_rate_index];
  1205. pretab = mpa_pretab[g->preflag];
  1206. for(i=0;i<g->long_end;i++) {
  1207. v0 = gain - ((g->scale_factors[i] + pretab[i]) << shift) + 400;
  1208. len = bstab[i];
  1209. for(j=len;j>0;j--)
  1210. *exp_ptr++ = v0;
  1211. }
  1212. if (g->short_start < 13) {
  1213. bstab = band_size_short[s->sample_rate_index];
  1214. gains[0] = gain - (g->subblock_gain[0] << 3);
  1215. gains[1] = gain - (g->subblock_gain[1] << 3);
  1216. gains[2] = gain - (g->subblock_gain[2] << 3);
  1217. k = g->long_end;
  1218. for(i=g->short_start;i<13;i++) {
  1219. len = bstab[i];
  1220. for(l=0;l<3;l++) {
  1221. v0 = gains[l] - (g->scale_factors[k++] << shift) + 400;
  1222. for(j=len;j>0;j--)
  1223. *exp_ptr++ = v0;
  1224. }
  1225. }
  1226. }
  1227. }
  1228. /* handle n = 0 too */
  1229. static inline int get_bitsz(GetBitContext *s, int n)
  1230. {
  1231. if (n == 0)
  1232. return 0;
  1233. else
  1234. return get_bits(s, n);
  1235. }
  1236. static void switch_buffer(MPADecodeContext *s, int *pos, int *end_pos, int *end_pos2){
  1237. if(s->in_gb.buffer && *pos >= s->gb.size_in_bits){
  1238. s->gb= s->in_gb;
  1239. s->in_gb.buffer=NULL;
  1240. assert((get_bits_count(&s->gb) & 7) == 0);
  1241. skip_bits_long(&s->gb, *pos - *end_pos);
  1242. *end_pos2=
  1243. *end_pos= *end_pos2 + get_bits_count(&s->gb) - *pos;
  1244. *pos= get_bits_count(&s->gb);
  1245. }
  1246. }
  1247. /* Following is a optimized code for
  1248. INTFLOAT v = *src
  1249. if(get_bits1(&s->gb))
  1250. v = -v;
  1251. *dst = v;
  1252. */
  1253. #if CONFIG_FLOAT
  1254. #define READ_FLIP_SIGN(dst,src)\
  1255. v = AV_RN32A(src) ^ (get_bits1(&s->gb)<<31);\
  1256. AV_WN32A(dst, v);
  1257. #else
  1258. #define READ_FLIP_SIGN(dst,src)\
  1259. v= -get_bits1(&s->gb);\
  1260. *(dst) = (*(src) ^ v) - v;
  1261. #endif
  1262. static int huffman_decode(MPADecodeContext *s, GranuleDef *g,
  1263. int16_t *exponents, int end_pos2)
  1264. {
  1265. int s_index;
  1266. int i;
  1267. int last_pos, bits_left;
  1268. VLC *vlc;
  1269. int end_pos= FFMIN(end_pos2, s->gb.size_in_bits);
  1270. /* low frequencies (called big values) */
  1271. s_index = 0;
  1272. for(i=0;i<3;i++) {
  1273. int j, k, l, linbits;
  1274. j = g->region_size[i];
  1275. if (j == 0)
  1276. continue;
  1277. /* select vlc table */
  1278. k = g->table_select[i];
  1279. l = mpa_huff_data[k][0];
  1280. linbits = mpa_huff_data[k][1];
  1281. vlc = &huff_vlc[l];
  1282. if(!l){
  1283. memset(&g->sb_hybrid[s_index], 0, sizeof(*g->sb_hybrid)*2*j);
  1284. s_index += 2*j;
  1285. continue;
  1286. }
  1287. /* read huffcode and compute each couple */
  1288. for(;j>0;j--) {
  1289. int exponent, x, y;
  1290. int v;
  1291. int pos= get_bits_count(&s->gb);
  1292. if (pos >= end_pos){
  1293. // av_log(NULL, AV_LOG_ERROR, "pos: %d %d %d %d\n", pos, end_pos, end_pos2, s_index);
  1294. switch_buffer(s, &pos, &end_pos, &end_pos2);
  1295. // av_log(NULL, AV_LOG_ERROR, "new pos: %d %d\n", pos, end_pos);
  1296. if(pos >= end_pos)
  1297. break;
  1298. }
  1299. y = get_vlc2(&s->gb, vlc->table, 7, 3);
  1300. if(!y){
  1301. g->sb_hybrid[s_index ] =
  1302. g->sb_hybrid[s_index+1] = 0;
  1303. s_index += 2;
  1304. continue;
  1305. }
  1306. exponent= exponents[s_index];
  1307. dprintf(s->avctx, "region=%d n=%d x=%d y=%d exp=%d\n",
  1308. i, g->region_size[i] - j, x, y, exponent);
  1309. if(y&16){
  1310. x = y >> 5;
  1311. y = y & 0x0f;
  1312. if (x < 15){
  1313. READ_FLIP_SIGN(g->sb_hybrid+s_index, RENAME(expval_table)[ exponent ]+x)
  1314. }else{
  1315. x += get_bitsz(&s->gb, linbits);
  1316. v = l3_unscale(x, exponent);
  1317. if (get_bits1(&s->gb))
  1318. v = -v;
  1319. g->sb_hybrid[s_index] = v;
  1320. }
  1321. if (y < 15){
  1322. READ_FLIP_SIGN(g->sb_hybrid+s_index+1, RENAME(expval_table)[ exponent ]+y)
  1323. }else{
  1324. y += get_bitsz(&s->gb, linbits);
  1325. v = l3_unscale(y, exponent);
  1326. if (get_bits1(&s->gb))
  1327. v = -v;
  1328. g->sb_hybrid[s_index+1] = v;
  1329. }
  1330. }else{
  1331. x = y >> 5;
  1332. y = y & 0x0f;
  1333. x += y;
  1334. if (x < 15){
  1335. READ_FLIP_SIGN(g->sb_hybrid+s_index+!!y, RENAME(expval_table)[ exponent ]+x)
  1336. }else{
  1337. x += get_bitsz(&s->gb, linbits);
  1338. v = l3_unscale(x, exponent);
  1339. if (get_bits1(&s->gb))
  1340. v = -v;
  1341. g->sb_hybrid[s_index+!!y] = v;
  1342. }
  1343. g->sb_hybrid[s_index+ !y] = 0;
  1344. }
  1345. s_index+=2;
  1346. }
  1347. }
  1348. /* high frequencies */
  1349. vlc = &huff_quad_vlc[g->count1table_select];
  1350. last_pos=0;
  1351. while (s_index <= 572) {
  1352. int pos, code;
  1353. pos = get_bits_count(&s->gb);
  1354. if (pos >= end_pos) {
  1355. if (pos > end_pos2 && last_pos){
  1356. /* some encoders generate an incorrect size for this
  1357. part. We must go back into the data */
  1358. s_index -= 4;
  1359. skip_bits_long(&s->gb, last_pos - pos);
  1360. av_log(s->avctx, AV_LOG_INFO, "overread, skip %d enddists: %d %d\n", last_pos - pos, end_pos-pos, end_pos2-pos);
  1361. if(s->error_recognition >= FF_ER_COMPLIANT)
  1362. s_index=0;
  1363. break;
  1364. }
  1365. // av_log(NULL, AV_LOG_ERROR, "pos2: %d %d %d %d\n", pos, end_pos, end_pos2, s_index);
  1366. switch_buffer(s, &pos, &end_pos, &end_pos2);
  1367. // av_log(NULL, AV_LOG_ERROR, "new pos2: %d %d %d\n", pos, end_pos, s_index);
  1368. if(pos >= end_pos)
  1369. break;
  1370. }
  1371. last_pos= pos;
  1372. code = get_vlc2(&s->gb, vlc->table, vlc->bits, 1);
  1373. dprintf(s->avctx, "t=%d code=%d\n", g->count1table_select, code);
  1374. g->sb_hybrid[s_index+0]=
  1375. g->sb_hybrid[s_index+1]=
  1376. g->sb_hybrid[s_index+2]=
  1377. g->sb_hybrid[s_index+3]= 0;
  1378. while(code){
  1379. static const int idxtab[16]={3,3,2,2,1,1,1,1,0,0,0,0,0,0,0,0};
  1380. int v;
  1381. int pos= s_index+idxtab[code];
  1382. code ^= 8>>idxtab[code];
  1383. READ_FLIP_SIGN(g->sb_hybrid+pos, RENAME(exp_table)+exponents[pos])
  1384. }
  1385. s_index+=4;
  1386. }
  1387. /* skip extension bits */
  1388. bits_left = end_pos2 - get_bits_count(&s->gb);
  1389. //av_log(NULL, AV_LOG_ERROR, "left:%d buf:%p\n", bits_left, s->in_gb.buffer);
  1390. if (bits_left < 0 && s->error_recognition >= FF_ER_COMPLIANT) {
  1391. av_log(s->avctx, AV_LOG_ERROR, "bits_left=%d\n", bits_left);
  1392. s_index=0;
  1393. }else if(bits_left > 0 && s->error_recognition >= FF_ER_AGGRESSIVE){
  1394. av_log(s->avctx, AV_LOG_ERROR, "bits_left=%d\n", bits_left);
  1395. s_index=0;
  1396. }
  1397. memset(&g->sb_hybrid[s_index], 0, sizeof(*g->sb_hybrid)*(576 - s_index));
  1398. skip_bits_long(&s->gb, bits_left);
  1399. i= get_bits_count(&s->gb);
  1400. switch_buffer(s, &i, &end_pos, &end_pos2);
  1401. return 0;
  1402. }
  1403. /* Reorder short blocks from bitstream order to interleaved order. It
  1404. would be faster to do it in parsing, but the code would be far more
  1405. complicated */
  1406. static void reorder_block(MPADecodeContext *s, GranuleDef *g)
  1407. {
  1408. int i, j, len;
  1409. INTFLOAT *ptr, *dst, *ptr1;
  1410. INTFLOAT tmp[576];
  1411. if (g->block_type != 2)
  1412. return;
  1413. if (g->switch_point) {
  1414. if (s->sample_rate_index != 8) {
  1415. ptr = g->sb_hybrid + 36;
  1416. } else {
  1417. ptr = g->sb_hybrid + 48;
  1418. }
  1419. } else {
  1420. ptr = g->sb_hybrid;
  1421. }
  1422. for(i=g->short_start;i<13;i++) {
  1423. len = band_size_short[s->sample_rate_index][i];
  1424. ptr1 = ptr;
  1425. dst = tmp;
  1426. for(j=len;j>0;j--) {
  1427. *dst++ = ptr[0*len];
  1428. *dst++ = ptr[1*len];
  1429. *dst++ = ptr[2*len];
  1430. ptr++;
  1431. }
  1432. ptr+=2*len;
  1433. memcpy(ptr1, tmp, len * 3 * sizeof(*ptr1));
  1434. }
  1435. }
  1436. #define ISQRT2 FIXR(0.70710678118654752440)
  1437. static void compute_stereo(MPADecodeContext *s,
  1438. GranuleDef *g0, GranuleDef *g1)
  1439. {
  1440. int i, j, k, l;
  1441. int sf_max, sf, len, non_zero_found;
  1442. INTFLOAT (*is_tab)[16], *tab0, *tab1, tmp0, tmp1, v1, v2;
  1443. int non_zero_found_short[3];
  1444. /* intensity stereo */
  1445. if (s->mode_ext & MODE_EXT_I_STEREO) {
  1446. if (!s->lsf) {
  1447. is_tab = is_table;
  1448. sf_max = 7;
  1449. } else {
  1450. is_tab = is_table_lsf[g1->scalefac_compress & 1];
  1451. sf_max = 16;
  1452. }
  1453. tab0 = g0->sb_hybrid + 576;
  1454. tab1 = g1->sb_hybrid + 576;
  1455. non_zero_found_short[0] = 0;
  1456. non_zero_found_short[1] = 0;
  1457. non_zero_found_short[2] = 0;
  1458. k = (13 - g1->short_start) * 3 + g1->long_end - 3;
  1459. for(i = 12;i >= g1->short_start;i--) {
  1460. /* for last band, use previous scale factor */
  1461. if (i != 11)
  1462. k -= 3;
  1463. len = band_size_short[s->sample_rate_index][i];
  1464. for(l=2;l>=0;l--) {
  1465. tab0 -= len;
  1466. tab1 -= len;
  1467. if (!non_zero_found_short[l]) {
  1468. /* test if non zero band. if so, stop doing i-stereo */
  1469. for(j=0;j<len;j++) {
  1470. if (tab1[j] != 0) {
  1471. non_zero_found_short[l] = 1;
  1472. goto found1;
  1473. }
  1474. }
  1475. sf = g1->scale_factors[k + l];
  1476. if (sf >= sf_max)
  1477. goto found1;
  1478. v1 = is_tab[0][sf];
  1479. v2 = is_tab[1][sf];
  1480. for(j=0;j<len;j++) {
  1481. tmp0 = tab0[j];
  1482. tab0[j] = MULLx(tmp0, v1, FRAC_BITS);
  1483. tab1[j] = MULLx(tmp0, v2, FRAC_BITS);
  1484. }
  1485. } else {
  1486. found1:
  1487. if (s->mode_ext & MODE_EXT_MS_STEREO) {
  1488. /* lower part of the spectrum : do ms stereo
  1489. if enabled */
  1490. for(j=0;j<len;j++) {
  1491. tmp0 = tab0[j];
  1492. tmp1 = tab1[j];
  1493. tab0[j] = MULLx(tmp0 + tmp1, ISQRT2, FRAC_BITS);
  1494. tab1[j] = MULLx(tmp0 - tmp1, ISQRT2, FRAC_BITS);
  1495. }
  1496. }
  1497. }
  1498. }
  1499. }
  1500. non_zero_found = non_zero_found_short[0] |
  1501. non_zero_found_short[1] |
  1502. non_zero_found_short[2];
  1503. for(i = g1->long_end - 1;i >= 0;i--) {
  1504. len = band_size_long[s->sample_rate_index][i];
  1505. tab0 -= len;
  1506. tab1 -= len;
  1507. /* test if non zero band. if so, stop doing i-stereo */
  1508. if (!non_zero_found) {
  1509. for(j=0;j<len;j++) {
  1510. if (tab1[j] != 0) {
  1511. non_zero_found = 1;
  1512. goto found2;
  1513. }
  1514. }
  1515. /* for last band, use previous scale factor */
  1516. k = (i == 21) ? 20 : i;
  1517. sf = g1->scale_factors[k];
  1518. if (sf >= sf_max)
  1519. goto found2;
  1520. v1 = is_tab[0][sf];
  1521. v2 = is_tab[1][sf];
  1522. for(j=0;j<len;j++) {
  1523. tmp0 = tab0[j];
  1524. tab0[j] = MULLx(tmp0, v1, FRAC_BITS);
  1525. tab1[j] = MULLx(tmp0, v2, FRAC_BITS);
  1526. }
  1527. } else {
  1528. found2:
  1529. if (s->mode_ext & MODE_EXT_MS_STEREO) {
  1530. /* lower part of the spectrum : do ms stereo
  1531. if enabled */
  1532. for(j=0;j<len;j++) {
  1533. tmp0 = tab0[j];
  1534. tmp1 = tab1[j];
  1535. tab0[j] = MULLx(tmp0 + tmp1, ISQRT2, FRAC_BITS);
  1536. tab1[j] = MULLx(tmp0 - tmp1, ISQRT2, FRAC_BITS);
  1537. }
  1538. }
  1539. }
  1540. }
  1541. } else if (s->mode_ext & MODE_EXT_MS_STEREO) {
  1542. /* ms stereo ONLY */
  1543. /* NOTE: the 1/sqrt(2) normalization factor is included in the
  1544. global gain */
  1545. tab0 = g0->sb_hybrid;
  1546. tab1 = g1->sb_hybrid;
  1547. for(i=0;i<576;i++) {
  1548. tmp0 = tab0[i];
  1549. tmp1 = tab1[i];
  1550. tab0[i] = tmp0 + tmp1;
  1551. tab1[i] = tmp0 - tmp1;
  1552. }
  1553. }
  1554. }
  1555. static void compute_antialias_integer(MPADecodeContext *s,
  1556. GranuleDef *g)
  1557. {
  1558. int32_t *ptr, *csa;
  1559. int n, i;
  1560. /* we antialias only "long" bands */
  1561. if (g->block_type == 2) {
  1562. if (!g->switch_point)
  1563. return;
  1564. /* XXX: check this for 8000Hz case */
  1565. n = 1;
  1566. } else {
  1567. n = SBLIMIT - 1;
  1568. }
  1569. ptr = g->sb_hybrid + 18;
  1570. for(i = n;i > 0;i--) {
  1571. int tmp0, tmp1, tmp2;
  1572. csa = &csa_table[0][0];
  1573. #define INT_AA(j) \
  1574. tmp0 = ptr[-1-j];\
  1575. tmp1 = ptr[ j];\
  1576. tmp2= MULH(tmp0 + tmp1, csa[0+4*j]);\
  1577. ptr[-1-j] = 4*(tmp2 - MULH(tmp1, csa[2+4*j]));\
  1578. ptr[ j] = 4*(tmp2 + MULH(tmp0, csa[3+4*j]));
  1579. INT_AA(0)
  1580. INT_AA(1)
  1581. INT_AA(2)
  1582. INT_AA(3)
  1583. INT_AA(4)
  1584. INT_AA(5)
  1585. INT_AA(6)
  1586. INT_AA(7)
  1587. ptr += 18;
  1588. }
  1589. }
  1590. static void compute_antialias_float(MPADecodeContext *s,
  1591. GranuleDef *g)
  1592. {
  1593. float *ptr;
  1594. int n, i;
  1595. /* we antialias only "long" bands */
  1596. if (g->block_type == 2) {
  1597. if (!g->switch_point)
  1598. return;
  1599. /* XXX: check this for 8000Hz case */
  1600. n = 1;
  1601. } else {
  1602. n = SBLIMIT - 1;
  1603. }
  1604. ptr = g->sb_hybrid + 18;
  1605. for(i = n;i > 0;i--) {
  1606. float tmp0, tmp1;
  1607. float *csa = &csa_table_float[0][0];
  1608. #define FLOAT_AA(j)\
  1609. tmp0= ptr[-1-j];\
  1610. tmp1= ptr[ j];\
  1611. ptr[-1-j] = tmp0 * csa[0+4*j] - tmp1 * csa[1+4*j];\
  1612. ptr[ j] = tmp0 * csa[1+4*j] + tmp1 * csa[0+4*j];
  1613. FLOAT_AA(0)
  1614. FLOAT_AA(1)
  1615. FLOAT_AA(2)
  1616. FLOAT_AA(3)
  1617. FLOAT_AA(4)
  1618. FLOAT_AA(5)
  1619. FLOAT_AA(6)
  1620. FLOAT_AA(7)
  1621. ptr += 18;
  1622. }
  1623. }
  1624. static void compute_imdct(MPADecodeContext *s,
  1625. GranuleDef *g,
  1626. INTFLOAT *sb_samples,
  1627. INTFLOAT *mdct_buf)
  1628. {
  1629. INTFLOAT *win, *win1, *out_ptr, *ptr, *buf, *ptr1;
  1630. INTFLOAT out2[12];
  1631. int i, j, mdct_long_end, sblimit;
  1632. /* find last non zero block */
  1633. ptr = g->sb_hybrid + 576;
  1634. ptr1 = g->sb_hybrid + 2 * 18;
  1635. while (ptr >= ptr1) {
  1636. int32_t *p;
  1637. ptr -= 6;
  1638. p= (int32_t*)ptr;
  1639. if(p[0] | p[1] | p[2] | p[3] | p[4] | p[5])
  1640. break;
  1641. }
  1642. sblimit = ((ptr - g->sb_hybrid) / 18) + 1;
  1643. if (g->block_type == 2) {
  1644. /* XXX: check for 8000 Hz */
  1645. if (g->switch_point)
  1646. mdct_long_end = 2;
  1647. else
  1648. mdct_long_end = 0;
  1649. } else {
  1650. mdct_long_end = sblimit;
  1651. }
  1652. buf = mdct_buf;
  1653. ptr = g->sb_hybrid;
  1654. for(j=0;j<mdct_long_end;j++) {
  1655. /* apply window & overlap with previous buffer */
  1656. out_ptr = sb_samples + j;
  1657. /* select window */
  1658. if (g->switch_point && j < 2)
  1659. win1 = mdct_win[0];
  1660. else
  1661. win1 = mdct_win[g->block_type];
  1662. /* select frequency inversion */
  1663. win = win1 + ((4 * 36) & -(j & 1));
  1664. imdct36(out_ptr, buf, ptr, win);
  1665. out_ptr += 18*SBLIMIT;
  1666. ptr += 18;
  1667. buf += 18;
  1668. }
  1669. for(j=mdct_long_end;j<sblimit;j++) {
  1670. /* select frequency inversion */
  1671. win = mdct_win[2] + ((4 * 36) & -(j & 1));
  1672. out_ptr = sb_samples + j;
  1673. for(i=0; i<6; i++){
  1674. *out_ptr = buf[i];
  1675. out_ptr += SBLIMIT;
  1676. }
  1677. imdct12(out2, ptr + 0);
  1678. for(i=0;i<6;i++) {
  1679. *out_ptr = MULH3(out2[i ], win[i ], 1) + buf[i + 6*1];
  1680. buf[i + 6*2] = MULH3(out2[i + 6], win[i + 6], 1);
  1681. out_ptr += SBLIMIT;
  1682. }
  1683. imdct12(out2, ptr + 1);
  1684. for(i=0;i<6;i++) {
  1685. *out_ptr = MULH3(out2[i ], win[i ], 1) + buf[i + 6*2];
  1686. buf[i + 6*0] = MULH3(out2[i + 6], win[i + 6], 1);
  1687. out_ptr += SBLIMIT;
  1688. }
  1689. imdct12(out2, ptr + 2);
  1690. for(i=0;i<6;i++) {
  1691. buf[i + 6*0] = MULH3(out2[i ], win[i ], 1) + buf[i + 6*0];
  1692. buf[i + 6*1] = MULH3(out2[i + 6], win[i + 6], 1);
  1693. buf[i + 6*2] = 0;
  1694. }
  1695. ptr += 18;
  1696. buf += 18;
  1697. }
  1698. /* zero bands */
  1699. for(j=sblimit;j<SBLIMIT;j++) {
  1700. /* overlap */
  1701. out_ptr = sb_samples + j;
  1702. for(i=0;i<18;i++) {
  1703. *out_ptr = buf[i];
  1704. buf[i] = 0;
  1705. out_ptr += SBLIMIT;
  1706. }
  1707. buf += 18;
  1708. }
  1709. }
  1710. /* main layer3 decoding function */
  1711. static int mp_decode_layer3(MPADecodeContext *s)
  1712. {
  1713. int nb_granules, main_data_begin, private_bits;
  1714. int gr, ch, blocksplit_flag, i, j, k, n, bits_pos;
  1715. GranuleDef *g;
  1716. int16_t exponents[576]; //FIXME try INTFLOAT
  1717. /* read side info */
  1718. if (s->lsf) {
  1719. main_data_begin = get_bits(&s->gb, 8);
  1720. private_bits = get_bits(&s->gb, s->nb_channels);
  1721. nb_granules = 1;
  1722. } else {
  1723. main_data_begin = get_bits(&s->gb, 9);
  1724. if (s->nb_channels == 2)
  1725. private_bits = get_bits(&s->gb, 3);
  1726. else
  1727. private_bits = get_bits(&s->gb, 5);
  1728. nb_granules = 2;
  1729. for(ch=0;ch<s->nb_channels;ch++) {
  1730. s->granules[ch][0].scfsi = 0;/* all scale factors are transmitted */
  1731. s->granules[ch][1].scfsi = get_bits(&s->gb, 4);
  1732. }
  1733. }
  1734. for(gr=0;gr<nb_granules;gr++) {
  1735. for(ch=0;ch<s->nb_channels;ch++) {
  1736. dprintf(s->avctx, "gr=%d ch=%d: side_info\n", gr, ch);
  1737. g = &s->granules[ch][gr];
  1738. g->part2_3_length = get_bits(&s->gb, 12);
  1739. g->big_values = get_bits(&s->gb, 9);
  1740. if(g->big_values > 288){
  1741. av_log(s->avctx, AV_LOG_ERROR, "big_values too big\n");
  1742. return -1;
  1743. }
  1744. g->global_gain = get_bits(&s->gb, 8);
  1745. /* if MS stereo only is selected, we precompute the
  1746. 1/sqrt(2) renormalization factor */
  1747. if ((s->mode_ext & (MODE_EXT_MS_STEREO | MODE_EXT_I_STEREO)) ==
  1748. MODE_EXT_MS_STEREO)
  1749. g->global_gain -= 2;
  1750. if (s->lsf)
  1751. g->scalefac_compress = get_bits(&s->gb, 9);
  1752. else
  1753. g->scalefac_compress = get_bits(&s->gb, 4);
  1754. blocksplit_flag = get_bits1(&s->gb);
  1755. if (blocksplit_flag) {
  1756. g->block_type = get_bits(&s->gb, 2);
  1757. if (g->block_type == 0){
  1758. av_log(s->avctx, AV_LOG_ERROR, "invalid block type\n");
  1759. return -1;
  1760. }
  1761. g->switch_point = get_bits1(&s->gb);
  1762. for(i=0;i<2;i++)
  1763. g->table_select[i] = get_bits(&s->gb, 5);
  1764. for(i=0;i<3;i++)
  1765. g->subblock_gain[i] = get_bits(&s->gb, 3);
  1766. ff_init_short_region(s, g);
  1767. } else {
  1768. int region_address1, region_address2;
  1769. g->block_type = 0;
  1770. g->switch_point = 0;
  1771. for(i=0;i<3;i++)
  1772. g->table_select[i] = get_bits(&s->gb, 5);
  1773. /* compute huffman coded region sizes */
  1774. region_address1 = get_bits(&s->gb, 4);
  1775. region_address2 = get_bits(&s->gb, 3);
  1776. dprintf(s->avctx, "region1=%d region2=%d\n",
  1777. region_address1, region_address2);
  1778. ff_init_long_region(s, g, region_address1, region_address2);
  1779. }
  1780. ff_region_offset2size(g);
  1781. ff_compute_band_indexes(s, g);
  1782. g->preflag = 0;
  1783. if (!s->lsf)
  1784. g->preflag = get_bits1(&s->gb);
  1785. g->scalefac_scale = get_bits1(&s->gb);
  1786. g->count1table_select = get_bits1(&s->gb);
  1787. dprintf(s->avctx, "block_type=%d switch_point=%d\n",
  1788. g->block_type, g->switch_point);
  1789. }
  1790. }
  1791. if (!s->adu_mode) {
  1792. const uint8_t *ptr = s->gb.buffer + (get_bits_count(&s->gb)>>3);
  1793. assert((get_bits_count(&s->gb) & 7) == 0);
  1794. /* now we get bits from the main_data_begin offset */
  1795. dprintf(s->avctx, "seekback: %d\n", main_data_begin);
  1796. //av_log(NULL, AV_LOG_ERROR, "backstep:%d, lastbuf:%d\n", main_data_begin, s->last_buf_size);
  1797. memcpy(s->last_buf + s->last_buf_size, ptr, EXTRABYTES);
  1798. s->in_gb= s->gb;
  1799. init_get_bits(&s->gb, s->last_buf, s->last_buf_size*8);
  1800. skip_bits_long(&s->gb, 8*(s->last_buf_size - main_data_begin));
  1801. }
  1802. for(gr=0;gr<nb_granules;gr++) {
  1803. for(ch=0;ch<s->nb_channels;ch++) {
  1804. g = &s->granules[ch][gr];
  1805. if(get_bits_count(&s->gb)<0){
  1806. av_log(s->avctx, AV_LOG_DEBUG, "mdb:%d, lastbuf:%d skipping granule %d\n",
  1807. main_data_begin, s->last_buf_size, gr);
  1808. skip_bits_long(&s->gb, g->part2_3_length);
  1809. memset(g->sb_hybrid, 0, sizeof(g->sb_hybrid));
  1810. if(get_bits_count(&s->gb) >= s->gb.size_in_bits && s->in_gb.buffer){
  1811. skip_bits_long(&s->in_gb, get_bits_count(&s->gb) - s->gb.size_in_bits);
  1812. s->gb= s->in_gb;
  1813. s->in_gb.buffer=NULL;
  1814. }
  1815. continue;
  1816. }
  1817. bits_pos = get_bits_count(&s->gb);
  1818. if (!s->lsf) {
  1819. uint8_t *sc;
  1820. int slen, slen1, slen2;
  1821. /* MPEG1 scale factors */
  1822. slen1 = slen_table[0][g->scalefac_compress];
  1823. slen2 = slen_table[1][g->scalefac_compress];
  1824. dprintf(s->avctx, "slen1=%d slen2=%d\n", slen1, slen2);
  1825. if (g->block_type == 2) {
  1826. n = g->switch_point ? 17 : 18;
  1827. j = 0;
  1828. if(slen1){
  1829. for(i=0;i<n;i++)
  1830. g->scale_factors[j++] = get_bits(&s->gb, slen1);
  1831. }else{
  1832. for(i=0;i<n;i++)
  1833. g->scale_factors[j++] = 0;
  1834. }
  1835. if(slen2){
  1836. for(i=0;i<18;i++)
  1837. g->scale_factors[j++] = get_bits(&s->gb, slen2);
  1838. for(i=0;i<3;i++)
  1839. g->scale_factors[j++] = 0;
  1840. }else{
  1841. for(i=0;i<21;i++)
  1842. g->scale_factors[j++] = 0;
  1843. }
  1844. } else {
  1845. sc = s->granules[ch][0].scale_factors;
  1846. j = 0;
  1847. for(k=0;k<4;k++) {
  1848. n = (k == 0 ? 6 : 5);
  1849. if ((g->scfsi & (0x8 >> k)) == 0) {
  1850. slen = (k < 2) ? slen1 : slen2;
  1851. if(slen){
  1852. for(i=0;i<n;i++)
  1853. g->scale_factors[j++] = get_bits(&s->gb, slen);
  1854. }else{
  1855. for(i=0;i<n;i++)
  1856. g->scale_factors[j++] = 0;
  1857. }
  1858. } else {
  1859. /* simply copy from last granule */
  1860. for(i=0;i<n;i++) {
  1861. g->scale_factors[j] = sc[j];
  1862. j++;
  1863. }
  1864. }
  1865. }
  1866. g->scale_factors[j++] = 0;
  1867. }
  1868. } else {
  1869. int tindex, tindex2, slen[4], sl, sf;
  1870. /* LSF scale factors */
  1871. if (g->block_type == 2) {
  1872. tindex = g->switch_point ? 2 : 1;
  1873. } else {
  1874. tindex = 0;
  1875. }
  1876. sf = g->scalefac_compress;
  1877. if ((s->mode_ext & MODE_EXT_I_STEREO) && ch == 1) {
  1878. /* intensity stereo case */
  1879. sf >>= 1;
  1880. if (sf < 180) {
  1881. lsf_sf_expand(slen, sf, 6, 6, 0);
  1882. tindex2 = 3;
  1883. } else if (sf < 244) {
  1884. lsf_sf_expand(slen, sf - 180, 4, 4, 0);
  1885. tindex2 = 4;
  1886. } else {
  1887. lsf_sf_expand(slen, sf - 244, 3, 0, 0);
  1888. tindex2 = 5;
  1889. }
  1890. } else {
  1891. /* normal case */
  1892. if (sf < 400) {
  1893. lsf_sf_expand(slen, sf, 5, 4, 4);
  1894. tindex2 = 0;
  1895. } else if (sf < 500) {
  1896. lsf_sf_expand(slen, sf - 400, 5, 4, 0);
  1897. tindex2 = 1;
  1898. } else {
  1899. lsf_sf_expand(slen, sf - 500, 3, 0, 0);
  1900. tindex2 = 2;
  1901. g->preflag = 1;
  1902. }
  1903. }
  1904. j = 0;
  1905. for(k=0;k<4;k++) {
  1906. n = lsf_nsf_table[tindex2][tindex][k];
  1907. sl = slen[k];
  1908. if(sl){
  1909. for(i=0;i<n;i++)
  1910. g->scale_factors[j++] = get_bits(&s->gb, sl);
  1911. }else{
  1912. for(i=0;i<n;i++)
  1913. g->scale_factors[j++] = 0;
  1914. }
  1915. }
  1916. /* XXX: should compute exact size */
  1917. for(;j<40;j++)
  1918. g->scale_factors[j] = 0;
  1919. }
  1920. exponents_from_scale_factors(s, g, exponents);
  1921. /* read Huffman coded residue */
  1922. huffman_decode(s, g, exponents, bits_pos + g->part2_3_length);
  1923. } /* ch */
  1924. if (s->nb_channels == 2)
  1925. compute_stereo(s, &s->granules[0][gr], &s->granules[1][gr]);
  1926. for(ch=0;ch<s->nb_channels;ch++) {
  1927. g = &s->granules[ch][gr];
  1928. reorder_block(s, g);
  1929. compute_antialias(s, g);
  1930. compute_imdct(s, g, &s->sb_samples[ch][18 * gr][0], s->mdct_buf[ch]);
  1931. }
  1932. } /* gr */
  1933. if(get_bits_count(&s->gb)<0)
  1934. skip_bits_long(&s->gb, -get_bits_count(&s->gb));
  1935. return nb_granules * 18;
  1936. }
  1937. static int mp_decode_frame(MPADecodeContext *s,
  1938. OUT_INT *samples, const uint8_t *buf, int buf_size)
  1939. {
  1940. int i, nb_frames, ch;
  1941. OUT_INT *samples_ptr;
  1942. init_get_bits(&s->gb, buf + HEADER_SIZE, (buf_size - HEADER_SIZE)*8);
  1943. /* skip error protection field */
  1944. if (s->error_protection)
  1945. skip_bits(&s->gb, 16);
  1946. dprintf(s->avctx, "frame %d:\n", s->frame_count);
  1947. switch(s->layer) {
  1948. case 1:
  1949. s->avctx->frame_size = 384;
  1950. nb_frames = mp_decode_layer1(s);
  1951. break;
  1952. case 2:
  1953. s->avctx->frame_size = 1152;
  1954. nb_frames = mp_decode_layer2(s);
  1955. break;
  1956. case 3:
  1957. s->avctx->frame_size = s->lsf ? 576 : 1152;
  1958. default:
  1959. nb_frames = mp_decode_layer3(s);
  1960. s->last_buf_size=0;
  1961. if(s->in_gb.buffer){
  1962. align_get_bits(&s->gb);
  1963. i= get_bits_left(&s->gb)>>3;
  1964. if(i >= 0 && i <= BACKSTEP_SIZE){
  1965. memmove(s->last_buf, s->gb.buffer + (get_bits_count(&s->gb)>>3), i);
  1966. s->last_buf_size=i;
  1967. }else
  1968. av_log(s->avctx, AV_LOG_ERROR, "invalid old backstep %d\n", i);
  1969. s->gb= s->in_gb;
  1970. s->in_gb.buffer= NULL;
  1971. }
  1972. align_get_bits(&s->gb);
  1973. assert((get_bits_count(&s->gb) & 7) == 0);
  1974. i= get_bits_left(&s->gb)>>3;
  1975. if(i<0 || i > BACKSTEP_SIZE || nb_frames<0){
  1976. if(i<0)
  1977. av_log(s->avctx, AV_LOG_ERROR, "invalid new backstep %d\n", i);
  1978. i= FFMIN(BACKSTEP_SIZE, buf_size - HEADER_SIZE);
  1979. }
  1980. assert(i <= buf_size - HEADER_SIZE && i>= 0);
  1981. memcpy(s->last_buf + s->last_buf_size, s->gb.buffer + buf_size - HEADER_SIZE - i, i);
  1982. s->last_buf_size += i;
  1983. break;
  1984. }
  1985. /* apply the synthesis filter */
  1986. for(ch=0;ch<s->nb_channels;ch++) {
  1987. samples_ptr = samples + ch;
  1988. for(i=0;i<nb_frames;i++) {
  1989. RENAME(ff_mpa_synth_filter)(s->synth_buf[ch], &(s->synth_buf_offset[ch]),
  1990. RENAME(ff_mpa_synth_window), &s->dither_state,
  1991. samples_ptr, s->nb_channels,
  1992. s->sb_samples[ch][i]);
  1993. samples_ptr += 32 * s->nb_channels;
  1994. }
  1995. }
  1996. return nb_frames * 32 * sizeof(OUT_INT) * s->nb_channels;
  1997. }
  1998. static int decode_frame(AVCodecContext * avctx,
  1999. void *data, int *data_size,
  2000. AVPacket *avpkt)
  2001. {
  2002. const uint8_t *buf = avpkt->data;
  2003. int buf_size = avpkt->size;
  2004. MPADecodeContext *s = avctx->priv_data;
  2005. uint32_t header;
  2006. int out_size;
  2007. OUT_INT *out_samples = data;
  2008. if(buf_size < HEADER_SIZE)
  2009. return -1;
  2010. header = AV_RB32(buf);
  2011. if(ff_mpa_check_header(header) < 0){
  2012. av_log(avctx, AV_LOG_ERROR, "Header missing\n");
  2013. return -1;
  2014. }
  2015. if (ff_mpegaudio_decode_header((MPADecodeHeader *)s, header) == 1) {
  2016. /* free format: prepare to compute frame size */
  2017. s->frame_size = -1;
  2018. return -1;
  2019. }
  2020. /* update codec info */
  2021. avctx->channels = s->nb_channels;
  2022. avctx->bit_rate = s->bit_rate;
  2023. avctx->sub_id = s->layer;
  2024. if(*data_size < 1152*avctx->channels*sizeof(OUT_INT))
  2025. return -1;
  2026. *data_size = 0;
  2027. if(s->frame_size<=0 || s->frame_size > buf_size){
  2028. av_log(avctx, AV_LOG_ERROR, "incomplete frame\n");
  2029. return -1;
  2030. }else if(s->frame_size < buf_size){
  2031. av_log(avctx, AV_LOG_ERROR, "incorrect frame size\n");
  2032. buf_size= s->frame_size;
  2033. }
  2034. out_size = mp_decode_frame(s, out_samples, buf, buf_size);
  2035. if(out_size>=0){
  2036. *data_size = out_size;
  2037. avctx->sample_rate = s->sample_rate;
  2038. //FIXME maybe move the other codec info stuff from above here too
  2039. }else
  2040. av_log(avctx, AV_LOG_DEBUG, "Error while decoding MPEG audio frame.\n"); //FIXME return -1 / but also return the number of bytes consumed
  2041. s->frame_size = 0;
  2042. return buf_size;
  2043. }
  2044. static void flush(AVCodecContext *avctx){
  2045. MPADecodeContext *s = avctx->priv_data;
  2046. memset(s->synth_buf, 0, sizeof(s->synth_buf));
  2047. s->last_buf_size= 0;
  2048. }
  2049. #if CONFIG_MP3ADU_DECODER
  2050. static int decode_frame_adu(AVCodecContext * avctx,
  2051. void *data, int *data_size,
  2052. AVPacket *avpkt)
  2053. {
  2054. const uint8_t *buf = avpkt->data;
  2055. int buf_size = avpkt->size;
  2056. MPADecodeContext *s = avctx->priv_data;
  2057. uint32_t header;
  2058. int len, out_size;
  2059. OUT_INT *out_samples = data;
  2060. len = buf_size;
  2061. // Discard too short frames
  2062. if (buf_size < HEADER_SIZE) {
  2063. *data_size = 0;
  2064. return buf_size;
  2065. }
  2066. if (len > MPA_MAX_CODED_FRAME_SIZE)
  2067. len = MPA_MAX_CODED_FRAME_SIZE;
  2068. // Get header and restore sync word
  2069. header = AV_RB32(buf) | 0xffe00000;
  2070. if (ff_mpa_check_header(header) < 0) { // Bad header, discard frame
  2071. *data_size = 0;
  2072. return buf_size;
  2073. }
  2074. ff_mpegaudio_decode_header((MPADecodeHeader *)s, header);
  2075. /* update codec info */
  2076. avctx->sample_rate = s->sample_rate;
  2077. avctx->channels = s->nb_channels;
  2078. avctx->bit_rate = s->bit_rate;
  2079. avctx->sub_id = s->layer;
  2080. s->frame_size = len;
  2081. if (avctx->parse_only) {
  2082. out_size = buf_size;
  2083. } else {
  2084. out_size = mp_decode_frame(s, out_samples, buf, buf_size);
  2085. }
  2086. *data_size = out_size;
  2087. return buf_size;
  2088. }
  2089. #endif /* CONFIG_MP3ADU_DECODER */
  2090. #if CONFIG_MP3ON4_DECODER
  2091. /**
  2092. * Context for MP3On4 decoder
  2093. */
  2094. typedef struct MP3On4DecodeContext {
  2095. int frames; ///< number of mp3 frames per block (number of mp3 decoder instances)
  2096. int syncword; ///< syncword patch
  2097. const uint8_t *coff; ///< channels offsets in output buffer
  2098. MPADecodeContext *mp3decctx[5]; ///< MPADecodeContext for every decoder instance
  2099. } MP3On4DecodeContext;
  2100. #include "mpeg4audio.h"
  2101. /* Next 3 arrays are indexed by channel config number (passed via codecdata) */
  2102. static const uint8_t mp3Frames[8] = {0,1,1,2,3,3,4,5}; /* number of mp3 decoder instances */
  2103. /* offsets into output buffer, assume output order is FL FR BL BR C LFE */
  2104. static const uint8_t chan_offset[8][5] = {
  2105. {0},
  2106. {0}, // C
  2107. {0}, // FLR
  2108. {2,0}, // C FLR
  2109. {2,0,3}, // C FLR BS
  2110. {4,0,2}, // C FLR BLRS
  2111. {4,0,2,5}, // C FLR BLRS LFE
  2112. {4,0,2,6,5}, // C FLR BLRS BLR LFE
  2113. };
  2114. static int decode_init_mp3on4(AVCodecContext * avctx)
  2115. {
  2116. MP3On4DecodeContext *s = avctx->priv_data;
  2117. MPEG4AudioConfig cfg;
  2118. int i;
  2119. if ((avctx->extradata_size < 2) || (avctx->extradata == NULL)) {
  2120. av_log(avctx, AV_LOG_ERROR, "Codec extradata missing or too short.\n");
  2121. return -1;
  2122. }
  2123. ff_mpeg4audio_get_config(&cfg, avctx->extradata, avctx->extradata_size);
  2124. if (!cfg.chan_config || cfg.chan_config > 7) {
  2125. av_log(avctx, AV_LOG_ERROR, "Invalid channel config number.\n");
  2126. return -1;
  2127. }
  2128. s->frames = mp3Frames[cfg.chan_config];
  2129. s->coff = chan_offset[cfg.chan_config];
  2130. avctx->channels = ff_mpeg4audio_channels[cfg.chan_config];
  2131. if (cfg.sample_rate < 16000)
  2132. s->syncword = 0xffe00000;
  2133. else
  2134. s->syncword = 0xfff00000;
  2135. /* Init the first mp3 decoder in standard way, so that all tables get builded
  2136. * We replace avctx->priv_data with the context of the first decoder so that
  2137. * decode_init() does not have to be changed.
  2138. * Other decoders will be initialized here copying data from the first context
  2139. */
  2140. // Allocate zeroed memory for the first decoder context
  2141. s->mp3decctx[0] = av_mallocz(sizeof(MPADecodeContext));
  2142. // Put decoder context in place to make init_decode() happy
  2143. avctx->priv_data = s->mp3decctx[0];
  2144. decode_init(avctx);
  2145. // Restore mp3on4 context pointer
  2146. avctx->priv_data = s;
  2147. s->mp3decctx[0]->adu_mode = 1; // Set adu mode
  2148. /* Create a separate codec/context for each frame (first is already ok).
  2149. * Each frame is 1 or 2 channels - up to 5 frames allowed
  2150. */
  2151. for (i = 1; i < s->frames; i++) {
  2152. s->mp3decctx[i] = av_mallocz(sizeof(MPADecodeContext));
  2153. s->mp3decctx[i]->adu_mode = 1;
  2154. s->mp3decctx[i]->avctx = avctx;
  2155. }
  2156. return 0;
  2157. }
  2158. static av_cold int decode_close_mp3on4(AVCodecContext * avctx)
  2159. {
  2160. MP3On4DecodeContext *s = avctx->priv_data;
  2161. int i;
  2162. for (i = 0; i < s->frames; i++)
  2163. if (s->mp3decctx[i])
  2164. av_free(s->mp3decctx[i]);
  2165. return 0;
  2166. }
  2167. static int decode_frame_mp3on4(AVCodecContext * avctx,
  2168. void *data, int *data_size,
  2169. AVPacket *avpkt)
  2170. {
  2171. const uint8_t *buf = avpkt->data;
  2172. int buf_size = avpkt->size;
  2173. MP3On4DecodeContext *s = avctx->priv_data;
  2174. MPADecodeContext *m;
  2175. int fsize, len = buf_size, out_size = 0;
  2176. uint32_t header;
  2177. OUT_INT *out_samples = data;
  2178. OUT_INT decoded_buf[MPA_FRAME_SIZE * MPA_MAX_CHANNELS];
  2179. OUT_INT *outptr, *bp;
  2180. int fr, j, n;
  2181. if(*data_size < MPA_FRAME_SIZE * MPA_MAX_CHANNELS * s->frames * sizeof(OUT_INT))
  2182. return -1;
  2183. *data_size = 0;
  2184. // Discard too short frames
  2185. if (buf_size < HEADER_SIZE)
  2186. return -1;
  2187. // If only one decoder interleave is not needed
  2188. outptr = s->frames == 1 ? out_samples : decoded_buf;
  2189. avctx->bit_rate = 0;
  2190. for (fr = 0; fr < s->frames; fr++) {
  2191. fsize = AV_RB16(buf) >> 4;
  2192. fsize = FFMIN3(fsize, len, MPA_MAX_CODED_FRAME_SIZE);
  2193. m = s->mp3decctx[fr];
  2194. assert (m != NULL);
  2195. header = (AV_RB32(buf) & 0x000fffff) | s->syncword; // patch header
  2196. if (ff_mpa_check_header(header) < 0) // Bad header, discard block
  2197. break;
  2198. ff_mpegaudio_decode_header((MPADecodeHeader *)m, header);
  2199. out_size += mp_decode_frame(m, outptr, buf, fsize);
  2200. buf += fsize;
  2201. len -= fsize;
  2202. if(s->frames > 1) {
  2203. n = m->avctx->frame_size*m->nb_channels;
  2204. /* interleave output data */
  2205. bp = out_samples + s->coff[fr];
  2206. if(m->nb_channels == 1) {
  2207. for(j = 0; j < n; j++) {
  2208. *bp = decoded_buf[j];
  2209. bp += avctx->channels;
  2210. }
  2211. } else {
  2212. for(j = 0; j < n; j++) {
  2213. bp[0] = decoded_buf[j++];
  2214. bp[1] = decoded_buf[j];
  2215. bp += avctx->channels;
  2216. }
  2217. }
  2218. }
  2219. avctx->bit_rate += m->bit_rate;
  2220. }
  2221. /* update codec info */
  2222. avctx->sample_rate = s->mp3decctx[0]->sample_rate;
  2223. *data_size = out_size;
  2224. return buf_size;
  2225. }
  2226. #endif /* CONFIG_MP3ON4_DECODER */
  2227. #if !CONFIG_FLOAT
  2228. #if CONFIG_MP1_DECODER
  2229. AVCodec mp1_decoder =
  2230. {
  2231. "mp1",
  2232. AVMEDIA_TYPE_AUDIO,
  2233. CODEC_ID_MP1,
  2234. sizeof(MPADecodeContext),
  2235. decode_init,
  2236. NULL,
  2237. NULL,
  2238. decode_frame,
  2239. CODEC_CAP_PARSE_ONLY,
  2240. .flush= flush,
  2241. .long_name= NULL_IF_CONFIG_SMALL("MP1 (MPEG audio layer 1)"),
  2242. };
  2243. #endif
  2244. #if CONFIG_MP2_DECODER
  2245. AVCodec mp2_decoder =
  2246. {
  2247. "mp2",
  2248. AVMEDIA_TYPE_AUDIO,
  2249. CODEC_ID_MP2,
  2250. sizeof(MPADecodeContext),
  2251. decode_init,
  2252. NULL,
  2253. NULL,
  2254. decode_frame,
  2255. CODEC_CAP_PARSE_ONLY,
  2256. .flush= flush,
  2257. .long_name= NULL_IF_CONFIG_SMALL("MP2 (MPEG audio layer 2)"),
  2258. };
  2259. #endif
  2260. #if CONFIG_MP3_DECODER
  2261. AVCodec mp3_decoder =
  2262. {
  2263. "mp3",
  2264. AVMEDIA_TYPE_AUDIO,
  2265. CODEC_ID_MP3,
  2266. sizeof(MPADecodeContext),
  2267. decode_init,
  2268. NULL,
  2269. NULL,
  2270. decode_frame,
  2271. CODEC_CAP_PARSE_ONLY,
  2272. .flush= flush,
  2273. .long_name= NULL_IF_CONFIG_SMALL("MP3 (MPEG audio layer 3)"),
  2274. };
  2275. #endif
  2276. #if CONFIG_MP3ADU_DECODER
  2277. AVCodec mp3adu_decoder =
  2278. {
  2279. "mp3adu",
  2280. AVMEDIA_TYPE_AUDIO,
  2281. CODEC_ID_MP3ADU,
  2282. sizeof(MPADecodeContext),
  2283. decode_init,
  2284. NULL,
  2285. NULL,
  2286. decode_frame_adu,
  2287. CODEC_CAP_PARSE_ONLY,
  2288. .flush= flush,
  2289. .long_name= NULL_IF_CONFIG_SMALL("ADU (Application Data Unit) MP3 (MPEG audio layer 3)"),
  2290. };
  2291. #endif
  2292. #if CONFIG_MP3ON4_DECODER
  2293. AVCodec mp3on4_decoder =
  2294. {
  2295. "mp3on4",
  2296. AVMEDIA_TYPE_AUDIO,
  2297. CODEC_ID_MP3ON4,
  2298. sizeof(MP3On4DecodeContext),
  2299. decode_init_mp3on4,
  2300. NULL,
  2301. decode_close_mp3on4,
  2302. decode_frame_mp3on4,
  2303. .flush= flush,
  2304. .long_name= NULL_IF_CONFIG_SMALL("MP3onMP4"),
  2305. };
  2306. #endif
  2307. #endif