You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1878 lines
60KB

  1. /*
  2. * FFV1 codec for libavcodec
  3. *
  4. * Copyright (c) 2003 Michael Niedermayer <michaelni@gmx.at>
  5. *
  6. * This file is part of FFmpeg.
  7. *
  8. * FFmpeg is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU Lesser General Public
  10. * License as published by the Free Software Foundation; either
  11. * version 2.1 of the License, or (at your option) any later version.
  12. *
  13. * FFmpeg is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * Lesser General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU Lesser General Public
  19. * License along with FFmpeg; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  21. */
  22. /**
  23. * @file
  24. * FF Video Codec 1 (a lossless codec)
  25. */
  26. #include "avcodec.h"
  27. #include "internal.h"
  28. #include "get_bits.h"
  29. #include "put_bits.h"
  30. #include "dsputil.h"
  31. #include "rangecoder.h"
  32. #include "golomb.h"
  33. #include "mathops.h"
  34. #include "libavutil/pixdesc.h"
  35. #include "libavutil/avassert.h"
  36. #define MAX_PLANES 4
  37. #define CONTEXT_SIZE 32
  38. #define MAX_QUANT_TABLES 8
  39. #define MAX_CONTEXT_INPUTS 5
  40. extern const uint8_t ff_log2_run[41];
  41. static const int8_t quant5_10bit[256]={
  42. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1,
  43. 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
  44. 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
  45. 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  46. 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  47. 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  48. 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  49. 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  50. -2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,
  51. -2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,
  52. -2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,
  53. -2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,
  54. -2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-1,
  55. -1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
  56. -1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
  57. -1,-1,-1,-1,-1,-1,-0,-0,-0,-0,-0,-0,-0,-0,-0,-0,
  58. };
  59. static const int8_t quant5[256]={
  60. 0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  61. 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  62. 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  63. 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  64. 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  65. 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  66. 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  67. 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  68. -2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,
  69. -2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,
  70. -2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,
  71. -2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,
  72. -2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,
  73. -2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,
  74. -2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,
  75. -2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-1,-1,-1,
  76. };
  77. static const int8_t quant9_10bit[256]={
  78. 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2,
  79. 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3,
  80. 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
  81. 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4,
  82. 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
  83. 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
  84. 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
  85. 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
  86. -4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,
  87. -4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,
  88. -4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,
  89. -4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,
  90. -4,-4,-4,-4,-4,-4,-4,-4,-4,-3,-3,-3,-3,-3,-3,-3,
  91. -3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,
  92. -3,-3,-3,-3,-3,-3,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,
  93. -2,-2,-2,-2,-1,-1,-1,-1,-1,-1,-1,-1,-0,-0,-0,-0,
  94. };
  95. static const int8_t quant11[256]={
  96. 0, 1, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4,
  97. 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
  98. 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
  99. 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
  100. 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
  101. 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
  102. 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
  103. 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
  104. -5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,
  105. -5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,
  106. -5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,
  107. -5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,
  108. -5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,
  109. -5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-4,-4,
  110. -4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,
  111. -4,-4,-4,-4,-4,-3,-3,-3,-3,-3,-3,-3,-2,-2,-2,-1,
  112. };
  113. static const uint8_t ver2_state[256]= {
  114. 0, 10, 10, 10, 10, 16, 16, 16, 28, 16, 16, 29, 42, 49, 20, 49,
  115. 59, 25, 26, 26, 27, 31, 33, 33, 33, 34, 34, 37, 67, 38, 39, 39,
  116. 40, 40, 41, 79, 43, 44, 45, 45, 48, 48, 64, 50, 51, 52, 88, 52,
  117. 53, 74, 55, 57, 58, 58, 74, 60, 101, 61, 62, 84, 66, 66, 68, 69,
  118. 87, 82, 71, 97, 73, 73, 82, 75, 111, 77, 94, 78, 87, 81, 83, 97,
  119. 85, 83, 94, 86, 99, 89, 90, 99, 111, 92, 93, 134, 95, 98, 105, 98,
  120. 105, 110, 102, 108, 102, 118, 103, 106, 106, 113, 109, 112, 114, 112, 116, 125,
  121. 115, 116, 117, 117, 126, 119, 125, 121, 121, 123, 145, 124, 126, 131, 127, 129,
  122. 165, 130, 132, 138, 133, 135, 145, 136, 137, 139, 146, 141, 143, 142, 144, 148,
  123. 147, 155, 151, 149, 151, 150, 152, 157, 153, 154, 156, 168, 158, 162, 161, 160,
  124. 172, 163, 169, 164, 166, 184, 167, 170, 177, 174, 171, 173, 182, 176, 180, 178,
  125. 175, 189, 179, 181, 186, 183, 192, 185, 200, 187, 191, 188, 190, 197, 193, 196,
  126. 197, 194, 195, 196, 198, 202, 199, 201, 210, 203, 207, 204, 205, 206, 208, 214,
  127. 209, 211, 221, 212, 213, 215, 224, 216, 217, 218, 219, 220, 222, 228, 223, 225,
  128. 226, 224, 227, 229, 240, 230, 231, 232, 233, 234, 235, 236, 238, 239, 237, 242,
  129. 241, 243, 242, 244, 245, 246, 247, 248, 249, 250, 251, 252, 252, 253, 254, 255,
  130. };
  131. typedef struct VlcState{
  132. int16_t drift;
  133. uint16_t error_sum;
  134. int8_t bias;
  135. uint8_t count;
  136. } VlcState;
  137. typedef struct PlaneContext{
  138. int16_t quant_table[MAX_CONTEXT_INPUTS][256];
  139. int quant_table_index;
  140. int context_count;
  141. uint8_t (*state)[CONTEXT_SIZE];
  142. VlcState *vlc_state;
  143. uint8_t interlace_bit_state[2];
  144. } PlaneContext;
  145. #define MAX_SLICES 256
  146. typedef struct FFV1Context{
  147. AVCodecContext *avctx;
  148. RangeCoder c;
  149. GetBitContext gb;
  150. PutBitContext pb;
  151. uint64_t rc_stat[256][2];
  152. uint64_t (*rc_stat2[MAX_QUANT_TABLES])[32][2];
  153. int version;
  154. int minor_version;
  155. int width, height;
  156. int chroma_h_shift, chroma_v_shift;
  157. int chroma_planes;
  158. int transparency;
  159. int flags;
  160. int picture_number;
  161. AVFrame picture;
  162. int plane_count;
  163. int ac; ///< 1=range coder <-> 0=golomb rice
  164. PlaneContext plane[MAX_PLANES];
  165. int16_t quant_table[MAX_CONTEXT_INPUTS][256];
  166. int16_t quant_tables[MAX_QUANT_TABLES][MAX_CONTEXT_INPUTS][256];
  167. int context_count[MAX_QUANT_TABLES];
  168. uint8_t state_transition[256];
  169. uint8_t (*initial_states[MAX_QUANT_TABLES])[32];
  170. int run_index;
  171. int colorspace;
  172. int16_t *sample_buffer;
  173. int gob_count;
  174. int packed_at_lsb;
  175. int quant_table_count;
  176. DSPContext dsp;
  177. struct FFV1Context *slice_context[MAX_SLICES];
  178. int slice_count;
  179. int num_v_slices;
  180. int num_h_slices;
  181. int slice_width;
  182. int slice_height;
  183. int slice_x;
  184. int slice_y;
  185. int bits_per_raw_sample;
  186. }FFV1Context;
  187. static av_always_inline int fold(int diff, int bits){
  188. if(bits==8)
  189. diff= (int8_t)diff;
  190. else{
  191. diff+= 1<<(bits-1);
  192. diff&=(1<<bits)-1;
  193. diff-= 1<<(bits-1);
  194. }
  195. return diff;
  196. }
  197. static inline int predict(int16_t *src, int16_t *last)
  198. {
  199. const int LT= last[-1];
  200. const int T= last[ 0];
  201. const int L = src[-1];
  202. return mid_pred(L, L + T - LT, T);
  203. }
  204. static inline int get_context(PlaneContext *p, int16_t *src,
  205. int16_t *last, int16_t *last2)
  206. {
  207. const int LT= last[-1];
  208. const int T= last[ 0];
  209. const int RT= last[ 1];
  210. const int L = src[-1];
  211. if(p->quant_table[3][127]){
  212. const int TT= last2[0];
  213. const int LL= src[-2];
  214. return p->quant_table[0][(L-LT) & 0xFF] + p->quant_table[1][(LT-T) & 0xFF] + p->quant_table[2][(T-RT) & 0xFF]
  215. +p->quant_table[3][(LL-L) & 0xFF] + p->quant_table[4][(TT-T) & 0xFF];
  216. }else
  217. return p->quant_table[0][(L-LT) & 0xFF] + p->quant_table[1][(LT-T) & 0xFF] + p->quant_table[2][(T-RT) & 0xFF];
  218. }
  219. static void find_best_state(uint8_t best_state[256][256], const uint8_t one_state[256]){
  220. int i,j,k,m;
  221. double l2tab[256];
  222. for(i=1; i<256; i++)
  223. l2tab[i]= log2(i/256.0);
  224. for(i=0; i<256; i++){
  225. double best_len[256];
  226. double p= i/256.0;
  227. for(j=0; j<256; j++)
  228. best_len[j]= 1<<30;
  229. for(j=FFMAX(i-10,1); j<FFMIN(i+11,256); j++){
  230. double occ[256]={0};
  231. double len=0;
  232. occ[j]=1.0;
  233. for(k=0; k<256; k++){
  234. double newocc[256]={0};
  235. for(m=0; m<256; m++){
  236. if(occ[m]){
  237. len -=occ[m]*( p *l2tab[ m]
  238. + (1-p)*l2tab[256-m]);
  239. }
  240. }
  241. if(len < best_len[k]){
  242. best_len[k]= len;
  243. best_state[i][k]= j;
  244. }
  245. for(m=0; m<256; m++){
  246. if(occ[m]){
  247. newocc[ one_state[ m]] += occ[m]* p ;
  248. newocc[256-one_state[256-m]] += occ[m]*(1-p);
  249. }
  250. }
  251. memcpy(occ, newocc, sizeof(occ));
  252. }
  253. }
  254. }
  255. }
  256. static av_always_inline av_flatten void put_symbol_inline(RangeCoder *c, uint8_t *state, int v, int is_signed, uint64_t rc_stat[256][2], uint64_t rc_stat2[32][2]){
  257. int i;
  258. #define put_rac(C,S,B) \
  259. do{\
  260. if(rc_stat){\
  261. rc_stat[*(S)][B]++;\
  262. rc_stat2[(S)-state][B]++;\
  263. }\
  264. put_rac(C,S,B);\
  265. }while(0)
  266. if(v){
  267. const int a= FFABS(v);
  268. const int e= av_log2(a);
  269. put_rac(c, state+0, 0);
  270. if(e<=9){
  271. for(i=0; i<e; i++){
  272. put_rac(c, state+1+i, 1); //1..10
  273. }
  274. put_rac(c, state+1+i, 0);
  275. for(i=e-1; i>=0; i--){
  276. put_rac(c, state+22+i, (a>>i)&1); //22..31
  277. }
  278. if(is_signed)
  279. put_rac(c, state+11 + e, v < 0); //11..21
  280. }else{
  281. for(i=0; i<e; i++){
  282. put_rac(c, state+1+FFMIN(i,9), 1); //1..10
  283. }
  284. put_rac(c, state+1+9, 0);
  285. for(i=e-1; i>=0; i--){
  286. put_rac(c, state+22+FFMIN(i,9), (a>>i)&1); //22..31
  287. }
  288. if(is_signed)
  289. put_rac(c, state+11 + 10, v < 0); //11..21
  290. }
  291. }else{
  292. put_rac(c, state+0, 1);
  293. }
  294. #undef put_rac
  295. }
  296. static av_noinline void put_symbol(RangeCoder *c, uint8_t *state, int v, int is_signed){
  297. put_symbol_inline(c, state, v, is_signed, NULL, NULL);
  298. }
  299. static inline av_flatten int get_symbol_inline(RangeCoder *c, uint8_t *state, int is_signed){
  300. if(get_rac(c, state+0))
  301. return 0;
  302. else{
  303. int i, e, a;
  304. e= 0;
  305. while(get_rac(c, state+1 + FFMIN(e,9))){ //1..10
  306. e++;
  307. }
  308. a= 1;
  309. for(i=e-1; i>=0; i--){
  310. a += a + get_rac(c, state+22 + FFMIN(i,9)); //22..31
  311. }
  312. e= -(is_signed && get_rac(c, state+11 + FFMIN(e, 10))); //11..21
  313. return (a^e)-e;
  314. }
  315. }
  316. static av_noinline int get_symbol(RangeCoder *c, uint8_t *state, int is_signed){
  317. return get_symbol_inline(c, state, is_signed);
  318. }
  319. static inline void update_vlc_state(VlcState * const state, const int v){
  320. int drift= state->drift;
  321. int count= state->count;
  322. state->error_sum += FFABS(v);
  323. drift += v;
  324. if(count == 128){ //FIXME variable
  325. count >>= 1;
  326. drift >>= 1;
  327. state->error_sum >>= 1;
  328. }
  329. count++;
  330. if(drift <= -count){
  331. if(state->bias > -128) state->bias--;
  332. drift += count;
  333. if(drift <= -count)
  334. drift= -count + 1;
  335. }else if(drift > 0){
  336. if(state->bias < 127) state->bias++;
  337. drift -= count;
  338. if(drift > 0)
  339. drift= 0;
  340. }
  341. state->drift= drift;
  342. state->count= count;
  343. }
  344. static inline void put_vlc_symbol(PutBitContext *pb, VlcState * const state, int v, int bits){
  345. int i, k, code;
  346. //printf("final: %d ", v);
  347. v = fold(v - state->bias, bits);
  348. i= state->count;
  349. k=0;
  350. while(i < state->error_sum){ //FIXME optimize
  351. k++;
  352. i += i;
  353. }
  354. assert(k<=8);
  355. #if 0 // JPEG LS
  356. if(k==0 && 2*state->drift <= - state->count) code= v ^ (-1);
  357. else code= v;
  358. #else
  359. code= v ^ ((2*state->drift + state->count)>>31);
  360. #endif
  361. //printf("v:%d/%d bias:%d error:%d drift:%d count:%d k:%d\n", v, code, state->bias, state->error_sum, state->drift, state->count, k);
  362. set_sr_golomb(pb, code, k, 12, bits);
  363. update_vlc_state(state, v);
  364. }
  365. static inline int get_vlc_symbol(GetBitContext *gb, VlcState * const state, int bits){
  366. int k, i, v, ret;
  367. i= state->count;
  368. k=0;
  369. while(i < state->error_sum){ //FIXME optimize
  370. k++;
  371. i += i;
  372. }
  373. assert(k<=8);
  374. v= get_sr_golomb(gb, k, 12, bits);
  375. //printf("v:%d bias:%d error:%d drift:%d count:%d k:%d", v, state->bias, state->error_sum, state->drift, state->count, k);
  376. #if 0 // JPEG LS
  377. if(k==0 && 2*state->drift <= - state->count) v ^= (-1);
  378. #else
  379. v ^= ((2*state->drift + state->count)>>31);
  380. #endif
  381. ret= fold(v + state->bias, bits);
  382. update_vlc_state(state, v);
  383. //printf("final: %d\n", ret);
  384. return ret;
  385. }
  386. #if CONFIG_FFV1_ENCODER
  387. static av_always_inline int encode_line(FFV1Context *s, int w,
  388. int16_t *sample[2],
  389. int plane_index, int bits)
  390. {
  391. PlaneContext * const p= &s->plane[plane_index];
  392. RangeCoder * const c= &s->c;
  393. int x;
  394. int run_index= s->run_index;
  395. int run_count=0;
  396. int run_mode=0;
  397. if(s->ac){
  398. if(c->bytestream_end - c->bytestream < w*20){
  399. av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
  400. return -1;
  401. }
  402. }else{
  403. if(s->pb.buf_end - s->pb.buf - (put_bits_count(&s->pb)>>3) < w*4){
  404. av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
  405. return -1;
  406. }
  407. }
  408. for(x=0; x<w; x++){
  409. int diff, context;
  410. context= get_context(p, sample[0]+x, sample[1]+x, sample[2]+x);
  411. diff= sample[0][x] - predict(sample[0]+x, sample[1]+x);
  412. if(context < 0){
  413. context = -context;
  414. diff= -diff;
  415. }
  416. diff= fold(diff, bits);
  417. if(s->ac){
  418. if(s->flags & CODEC_FLAG_PASS1){
  419. put_symbol_inline(c, p->state[context], diff, 1, s->rc_stat, s->rc_stat2[p->quant_table_index][context]);
  420. }else{
  421. put_symbol_inline(c, p->state[context], diff, 1, NULL, NULL);
  422. }
  423. }else{
  424. if(context == 0) run_mode=1;
  425. if(run_mode){
  426. if(diff){
  427. while(run_count >= 1<<ff_log2_run[run_index]){
  428. run_count -= 1<<ff_log2_run[run_index];
  429. run_index++;
  430. put_bits(&s->pb, 1, 1);
  431. }
  432. put_bits(&s->pb, 1 + ff_log2_run[run_index], run_count);
  433. if(run_index) run_index--;
  434. run_count=0;
  435. run_mode=0;
  436. if(diff>0) diff--;
  437. }else{
  438. run_count++;
  439. }
  440. }
  441. // printf("count:%d index:%d, mode:%d, x:%d y:%d pos:%d\n", run_count, run_index, run_mode, x, y, (int)put_bits_count(&s->pb));
  442. if(run_mode == 0)
  443. put_vlc_symbol(&s->pb, &p->vlc_state[context], diff, bits);
  444. }
  445. }
  446. if(run_mode){
  447. while(run_count >= 1<<ff_log2_run[run_index]){
  448. run_count -= 1<<ff_log2_run[run_index];
  449. run_index++;
  450. put_bits(&s->pb, 1, 1);
  451. }
  452. if(run_count)
  453. put_bits(&s->pb, 1, 1);
  454. }
  455. s->run_index= run_index;
  456. return 0;
  457. }
  458. static void encode_plane(FFV1Context *s, uint8_t *src, int w, int h, int stride, int plane_index){
  459. int x,y,i;
  460. const int ring_size= s->avctx->context_model ? 3 : 2;
  461. int16_t *sample[3];
  462. s->run_index=0;
  463. memset(s->sample_buffer, 0, ring_size*(w+6)*sizeof(*s->sample_buffer));
  464. for(y=0; y<h; y++){
  465. for(i=0; i<ring_size; i++)
  466. sample[i]= s->sample_buffer + (w+6)*((h+i-y)%ring_size) + 3;
  467. sample[0][-1]= sample[1][0 ];
  468. sample[1][ w]= sample[1][w-1];
  469. //{START_TIMER
  470. if(s->bits_per_raw_sample<=8){
  471. for(x=0; x<w; x++){
  472. sample[0][x]= src[x + stride*y];
  473. }
  474. encode_line(s, w, sample, plane_index, 8);
  475. }else{
  476. if(s->packed_at_lsb){
  477. for(x=0; x<w; x++){
  478. sample[0][x]= ((uint16_t*)(src + stride*y))[x];
  479. }
  480. }else{
  481. for(x=0; x<w; x++){
  482. sample[0][x]= ((uint16_t*)(src + stride*y))[x] >> (16 - s->bits_per_raw_sample);
  483. }
  484. }
  485. encode_line(s, w, sample, plane_index, s->bits_per_raw_sample);
  486. }
  487. //STOP_TIMER("encode line")}
  488. }
  489. }
  490. static void encode_rgb_frame(FFV1Context *s, uint32_t *src, int w, int h, int stride){
  491. int x, y, p, i;
  492. const int ring_size= s->avctx->context_model ? 3 : 2;
  493. int16_t *sample[4][3];
  494. s->run_index=0;
  495. memset(s->sample_buffer, 0, ring_size*4*(w+6)*sizeof(*s->sample_buffer));
  496. for(y=0; y<h; y++){
  497. for(i=0; i<ring_size; i++)
  498. for(p=0; p<4; p++)
  499. sample[p][i]= s->sample_buffer + p*ring_size*(w+6) + ((h+i-y)%ring_size)*(w+6) + 3;
  500. for(x=0; x<w; x++){
  501. unsigned v= src[x + stride*y];
  502. int b= v&0xFF;
  503. int g= (v>>8)&0xFF;
  504. int r= (v>>16)&0xFF;
  505. int a= v>>24;
  506. b -= g;
  507. r -= g;
  508. g += (b + r)>>2;
  509. b += 0x100;
  510. r += 0x100;
  511. // assert(g>=0 && b>=0 && r>=0);
  512. // assert(g<256 && b<512 && r<512);
  513. sample[0][0][x]= g;
  514. sample[1][0][x]= b;
  515. sample[2][0][x]= r;
  516. sample[3][0][x]= a;
  517. }
  518. for(p=0; p<3 + s->transparency; p++){
  519. sample[p][0][-1]= sample[p][1][0 ];
  520. sample[p][1][ w]= sample[p][1][w-1];
  521. encode_line(s, w, sample[p], (p+1)/2, 9);
  522. }
  523. }
  524. }
  525. static void write_quant_table(RangeCoder *c, int16_t *quant_table){
  526. int last=0;
  527. int i;
  528. uint8_t state[CONTEXT_SIZE];
  529. memset(state, 128, sizeof(state));
  530. for(i=1; i<128 ; i++){
  531. if(quant_table[i] != quant_table[i-1]){
  532. put_symbol(c, state, i-last-1, 0);
  533. last= i;
  534. }
  535. }
  536. put_symbol(c, state, i-last-1, 0);
  537. }
  538. static void write_quant_tables(RangeCoder *c, int16_t quant_table[MAX_CONTEXT_INPUTS][256]){
  539. int i;
  540. for(i=0; i<5; i++)
  541. write_quant_table(c, quant_table[i]);
  542. }
  543. static void write_header(FFV1Context *f){
  544. uint8_t state[CONTEXT_SIZE];
  545. int i, j;
  546. RangeCoder * const c= &f->slice_context[0]->c;
  547. memset(state, 128, sizeof(state));
  548. if(f->version < 2){
  549. put_symbol(c, state, f->version, 0);
  550. put_symbol(c, state, f->ac, 0);
  551. if(f->ac>1){
  552. for(i=1; i<256; i++){
  553. put_symbol(c, state, f->state_transition[i] - c->one_state[i], 1);
  554. }
  555. }
  556. put_symbol(c, state, f->colorspace, 0); //YUV cs type
  557. if(f->version>0)
  558. put_symbol(c, state, f->bits_per_raw_sample, 0);
  559. put_rac(c, state, f->chroma_planes);
  560. put_symbol(c, state, f->chroma_h_shift, 0);
  561. put_symbol(c, state, f->chroma_v_shift, 0);
  562. put_rac(c, state, f->transparency);
  563. write_quant_tables(c, f->quant_table);
  564. }else{
  565. put_symbol(c, state, f->slice_count, 0);
  566. for(i=0; i<f->slice_count; i++){
  567. FFV1Context *fs= f->slice_context[i];
  568. put_symbol(c, state, (fs->slice_x +1)*f->num_h_slices / f->width , 0);
  569. put_symbol(c, state, (fs->slice_y +1)*f->num_v_slices / f->height , 0);
  570. put_symbol(c, state, (fs->slice_width +1)*f->num_h_slices / f->width -1, 0);
  571. put_symbol(c, state, (fs->slice_height+1)*f->num_v_slices / f->height-1, 0);
  572. for(j=0; j<f->plane_count; j++){
  573. put_symbol(c, state, f->plane[j].quant_table_index, 0);
  574. av_assert0(f->plane[j].quant_table_index == f->avctx->context_model);
  575. }
  576. }
  577. }
  578. }
  579. #endif /* CONFIG_FFV1_ENCODER */
  580. static av_cold int common_init(AVCodecContext *avctx){
  581. FFV1Context *s = avctx->priv_data;
  582. s->avctx= avctx;
  583. s->flags= avctx->flags;
  584. avcodec_get_frame_defaults(&s->picture);
  585. ff_dsputil_init(&s->dsp, avctx);
  586. s->width = avctx->width;
  587. s->height= avctx->height;
  588. assert(s->width && s->height);
  589. //defaults
  590. s->num_h_slices=1;
  591. s->num_v_slices=1;
  592. return 0;
  593. }
  594. static int init_slice_state(FFV1Context *f){
  595. int i, j;
  596. for(i=0; i<f->slice_count; i++){
  597. FFV1Context *fs= f->slice_context[i];
  598. fs->plane_count= f->plane_count;
  599. fs->transparency= f->transparency;
  600. for(j=0; j<f->plane_count; j++){
  601. PlaneContext * const p= &fs->plane[j];
  602. if(fs->ac){
  603. if(!p-> state) p-> state= av_malloc(CONTEXT_SIZE*p->context_count*sizeof(uint8_t));
  604. if(!p-> state)
  605. return AVERROR(ENOMEM);
  606. }else{
  607. if(!p->vlc_state) p->vlc_state= av_malloc(p->context_count*sizeof(VlcState));
  608. if(!p->vlc_state)
  609. return AVERROR(ENOMEM);
  610. }
  611. }
  612. if (fs->ac>1){
  613. //FIXME only redo if state_transition changed
  614. for(j=1; j<256; j++){
  615. fs->c.one_state [ j]= fs->state_transition[j];
  616. fs->c.zero_state[256-j]= 256-fs->c.one_state [j];
  617. }
  618. }
  619. }
  620. return 0;
  621. }
  622. static av_cold int init_slice_contexts(FFV1Context *f){
  623. int i;
  624. f->slice_count= f->num_h_slices * f->num_v_slices;
  625. for(i=0; i<f->slice_count; i++){
  626. FFV1Context *fs= av_mallocz(sizeof(*fs));
  627. int sx= i % f->num_h_slices;
  628. int sy= i / f->num_h_slices;
  629. int sxs= f->avctx->width * sx / f->num_h_slices;
  630. int sxe= f->avctx->width *(sx+1) / f->num_h_slices;
  631. int sys= f->avctx->height* sy / f->num_v_slices;
  632. int sye= f->avctx->height*(sy+1) / f->num_v_slices;
  633. f->slice_context[i]= fs;
  634. memcpy(fs, f, sizeof(*fs));
  635. memset(fs->rc_stat2, 0, sizeof(fs->rc_stat2));
  636. fs->slice_width = sxe - sxs;
  637. fs->slice_height= sye - sys;
  638. fs->slice_x = sxs;
  639. fs->slice_y = sys;
  640. fs->sample_buffer = av_malloc(3*4 * (fs->width+6) * sizeof(*fs->sample_buffer));
  641. if (!fs->sample_buffer)
  642. return AVERROR(ENOMEM);
  643. }
  644. return 0;
  645. }
  646. static int allocate_initial_states(FFV1Context *f){
  647. int i;
  648. for(i=0; i<f->quant_table_count; i++){
  649. f->initial_states[i]= av_malloc(f->context_count[i]*sizeof(*f->initial_states[i]));
  650. if(!f->initial_states[i])
  651. return AVERROR(ENOMEM);
  652. memset(f->initial_states[i], 128, f->context_count[i]*sizeof(*f->initial_states[i]));
  653. }
  654. return 0;
  655. }
  656. #if CONFIG_FFV1_ENCODER
  657. static int write_extra_header(FFV1Context *f){
  658. RangeCoder * const c= &f->c;
  659. uint8_t state[CONTEXT_SIZE];
  660. int i, j, k;
  661. uint8_t state2[32][CONTEXT_SIZE];
  662. memset(state2, 128, sizeof(state2));
  663. memset(state, 128, sizeof(state));
  664. f->avctx->extradata= av_malloc(f->avctx->extradata_size= 10000 + (11*11*5*5*5+11*11*11)*32);
  665. ff_init_range_encoder(c, f->avctx->extradata, f->avctx->extradata_size);
  666. ff_build_rac_states(c, 0.05*(1LL<<32), 256-8);
  667. put_symbol(c, state, f->version, 0);
  668. if(f->version > 2)
  669. put_symbol(c, state, f->minor_version, 0);
  670. put_symbol(c, state, f->ac, 0);
  671. if(f->ac>1){
  672. for(i=1; i<256; i++){
  673. put_symbol(c, state, f->state_transition[i] - c->one_state[i], 1);
  674. }
  675. }
  676. put_symbol(c, state, f->colorspace, 0); //YUV cs type
  677. put_symbol(c, state, f->bits_per_raw_sample, 0);
  678. put_rac(c, state, f->chroma_planes);
  679. put_symbol(c, state, f->chroma_h_shift, 0);
  680. put_symbol(c, state, f->chroma_v_shift, 0);
  681. put_rac(c, state, f->transparency);
  682. put_symbol(c, state, f->num_h_slices-1, 0);
  683. put_symbol(c, state, f->num_v_slices-1, 0);
  684. put_symbol(c, state, f->quant_table_count, 0);
  685. for(i=0; i<f->quant_table_count; i++)
  686. write_quant_tables(c, f->quant_tables[i]);
  687. for(i=0; i<f->quant_table_count; i++){
  688. for(j=0; j<f->context_count[i]*CONTEXT_SIZE; j++)
  689. if(f->initial_states[i] && f->initial_states[i][0][j] != 128)
  690. break;
  691. if(j<f->context_count[i]*CONTEXT_SIZE){
  692. put_rac(c, state, 1);
  693. for(j=0; j<f->context_count[i]; j++){
  694. for(k=0; k<CONTEXT_SIZE; k++){
  695. int pred= j ? f->initial_states[i][j-1][k] : 128;
  696. put_symbol(c, state2[k], (int8_t)(f->initial_states[i][j][k]-pred), 1);
  697. }
  698. }
  699. }else{
  700. put_rac(c, state, 0);
  701. }
  702. }
  703. f->avctx->extradata_size= ff_rac_terminate(c);
  704. return 0;
  705. }
  706. static int sort_stt(FFV1Context *s, uint8_t stt[256]){
  707. int i,i2,changed,print=0;
  708. do{
  709. changed=0;
  710. for(i=12; i<244; i++){
  711. for(i2=i+1; i2<245 && i2<i+4; i2++){
  712. #define COST(old, new) \
  713. s->rc_stat[old][0]*-log2((256-(new))/256.0)\
  714. +s->rc_stat[old][1]*-log2( (new) /256.0)
  715. #define COST2(old, new) \
  716. COST(old, new)\
  717. +COST(256-(old), 256-(new))
  718. double size0= COST2(i, i ) + COST2(i2, i2);
  719. double sizeX= COST2(i, i2) + COST2(i2, i );
  720. if(sizeX < size0 && i!=128 && i2!=128){
  721. int j;
  722. FFSWAP(int, stt[ i], stt[ i2]);
  723. FFSWAP(int, s->rc_stat[i ][0],s->rc_stat[ i2][0]);
  724. FFSWAP(int, s->rc_stat[i ][1],s->rc_stat[ i2][1]);
  725. if(i != 256-i2){
  726. FFSWAP(int, stt[256-i], stt[256-i2]);
  727. FFSWAP(int, s->rc_stat[256-i][0],s->rc_stat[256-i2][0]);
  728. FFSWAP(int, s->rc_stat[256-i][1],s->rc_stat[256-i2][1]);
  729. }
  730. for(j=1; j<256; j++){
  731. if (stt[j] == i ) stt[j] = i2;
  732. else if(stt[j] == i2) stt[j] = i ;
  733. if(i != 256-i2){
  734. if (stt[256-j] == 256-i ) stt[256-j] = 256-i2;
  735. else if(stt[256-j] == 256-i2) stt[256-j] = 256-i ;
  736. }
  737. }
  738. print=changed=1;
  739. }
  740. }
  741. }
  742. }while(changed);
  743. return print;
  744. }
  745. static av_cold int encode_init(AVCodecContext *avctx)
  746. {
  747. FFV1Context *s = avctx->priv_data;
  748. int i, j, k, m;
  749. common_init(avctx);
  750. s->version=0;
  751. s->ac= avctx->coder_type ? 2:0;
  752. if(s->ac>1)
  753. for(i=1; i<256; i++)
  754. s->state_transition[i]=ver2_state[i];
  755. s->plane_count=3;
  756. switch(avctx->pix_fmt){
  757. case PIX_FMT_YUV444P9:
  758. case PIX_FMT_YUV422P9:
  759. case PIX_FMT_YUV420P9:
  760. if (!avctx->bits_per_raw_sample)
  761. s->bits_per_raw_sample = 9;
  762. case PIX_FMT_YUV444P10:
  763. case PIX_FMT_YUV420P10:
  764. case PIX_FMT_YUV422P10:
  765. s->packed_at_lsb = 1;
  766. if (!avctx->bits_per_raw_sample && !s->bits_per_raw_sample)
  767. s->bits_per_raw_sample = 10;
  768. case PIX_FMT_GRAY16:
  769. case PIX_FMT_YUV444P16:
  770. case PIX_FMT_YUV422P16:
  771. case PIX_FMT_YUV420P16:
  772. if (!avctx->bits_per_raw_sample && !s->bits_per_raw_sample) {
  773. s->bits_per_raw_sample = 16;
  774. } else if (!s->bits_per_raw_sample){
  775. s->bits_per_raw_sample = avctx->bits_per_raw_sample;
  776. }
  777. if(s->bits_per_raw_sample <=8){
  778. av_log(avctx, AV_LOG_ERROR, "bits_per_raw_sample invalid\n");
  779. return -1;
  780. }
  781. if(!s->ac){
  782. av_log(avctx, AV_LOG_ERROR, "bits_per_raw_sample of more than 8 needs -coder 1 currently\n");
  783. return -1;
  784. }
  785. s->version= FFMAX(s->version, 1);
  786. case PIX_FMT_GRAY8:
  787. case PIX_FMT_YUV444P:
  788. case PIX_FMT_YUV440P:
  789. case PIX_FMT_YUV422P:
  790. case PIX_FMT_YUV420P:
  791. case PIX_FMT_YUV411P:
  792. case PIX_FMT_YUV410P:
  793. s->chroma_planes= av_pix_fmt_descriptors[avctx->pix_fmt].nb_components < 3 ? 0 : 1;
  794. s->colorspace= 0;
  795. break;
  796. case PIX_FMT_YUVA444P:
  797. case PIX_FMT_YUVA420P:
  798. s->chroma_planes= 1;
  799. s->colorspace= 0;
  800. s->transparency= 1;
  801. break;
  802. case PIX_FMT_RGB32:
  803. s->colorspace= 1;
  804. s->transparency= 1;
  805. break;
  806. case PIX_FMT_0RGB32:
  807. s->colorspace= 1;
  808. break;
  809. default:
  810. av_log(avctx, AV_LOG_ERROR, "format not supported\n");
  811. return -1;
  812. }
  813. if (s->transparency) {
  814. av_log(avctx, AV_LOG_WARNING, "Storing alpha plane, this will require a recent FFV1 decoder to playback!\n");
  815. }
  816. if (avctx->context_model > 1U) {
  817. av_log(avctx, AV_LOG_ERROR, "Invalid context model %d, valid values are 0 and 1\n", avctx->context_model);
  818. return AVERROR(EINVAL);
  819. }
  820. for(i=0; i<256; i++){
  821. s->quant_table_count=2;
  822. if(s->bits_per_raw_sample <=8){
  823. s->quant_tables[0][0][i]= quant11[i];
  824. s->quant_tables[0][1][i]= 11*quant11[i];
  825. s->quant_tables[0][2][i]= 11*11*quant11[i];
  826. s->quant_tables[1][0][i]= quant11[i];
  827. s->quant_tables[1][1][i]= 11*quant11[i];
  828. s->quant_tables[1][2][i]= 11*11*quant5 [i];
  829. s->quant_tables[1][3][i]= 5*11*11*quant5 [i];
  830. s->quant_tables[1][4][i]= 5*5*11*11*quant5 [i];
  831. }else{
  832. s->quant_tables[0][0][i]= quant9_10bit[i];
  833. s->quant_tables[0][1][i]= 11*quant9_10bit[i];
  834. s->quant_tables[0][2][i]= 11*11*quant9_10bit[i];
  835. s->quant_tables[1][0][i]= quant9_10bit[i];
  836. s->quant_tables[1][1][i]= 11*quant9_10bit[i];
  837. s->quant_tables[1][2][i]= 11*11*quant5_10bit[i];
  838. s->quant_tables[1][3][i]= 5*11*11*quant5_10bit[i];
  839. s->quant_tables[1][4][i]= 5*5*11*11*quant5_10bit[i];
  840. }
  841. }
  842. s->context_count[0]= (11*11*11+1)/2;
  843. s->context_count[1]= (11*11*5*5*5+1)/2;
  844. memcpy(s->quant_table, s->quant_tables[avctx->context_model], sizeof(s->quant_table));
  845. for(i=0; i<s->plane_count; i++){
  846. PlaneContext * const p= &s->plane[i];
  847. memcpy(p->quant_table, s->quant_table, sizeof(p->quant_table));
  848. p->quant_table_index= avctx->context_model;
  849. p->context_count= s->context_count[p->quant_table_index];
  850. }
  851. if(allocate_initial_states(s) < 0)
  852. return AVERROR(ENOMEM);
  853. avctx->coded_frame= &s->picture;
  854. if(!s->transparency)
  855. s->plane_count= 2;
  856. avcodec_get_chroma_sub_sample(avctx->pix_fmt, &s->chroma_h_shift, &s->chroma_v_shift);
  857. s->picture_number=0;
  858. if(avctx->flags & (CODEC_FLAG_PASS1|CODEC_FLAG_PASS2)){
  859. for(i=0; i<s->quant_table_count; i++){
  860. s->rc_stat2[i]= av_mallocz(s->context_count[i]*sizeof(*s->rc_stat2[i]));
  861. if(!s->rc_stat2[i])
  862. return AVERROR(ENOMEM);
  863. }
  864. }
  865. if(avctx->stats_in){
  866. char *p= avctx->stats_in;
  867. uint8_t best_state[256][256];
  868. int gob_count=0;
  869. char *next;
  870. av_assert0(s->version>=2);
  871. for(;;){
  872. for(j=0; j<256; j++){
  873. for(i=0; i<2; i++){
  874. s->rc_stat[j][i]= strtol(p, &next, 0);
  875. if(next==p){
  876. av_log(avctx, AV_LOG_ERROR, "2Pass file invalid at %d %d [%s]\n", j,i,p);
  877. return -1;
  878. }
  879. p=next;
  880. }
  881. }
  882. for(i=0; i<s->quant_table_count; i++){
  883. for(j=0; j<s->context_count[i]; j++){
  884. for(k=0; k<32; k++){
  885. for(m=0; m<2; m++){
  886. s->rc_stat2[i][j][k][m]= strtol(p, &next, 0);
  887. if(next==p){
  888. av_log(avctx, AV_LOG_ERROR, "2Pass file invalid at %d %d %d %d [%s]\n", i,j,k,m,p);
  889. return -1;
  890. }
  891. p=next;
  892. }
  893. }
  894. }
  895. }
  896. gob_count= strtol(p, &next, 0);
  897. if(next==p || gob_count <0){
  898. av_log(avctx, AV_LOG_ERROR, "2Pass file invalid\n");
  899. return -1;
  900. }
  901. p=next;
  902. while(*p=='\n' || *p==' ') p++;
  903. if(p[0]==0) break;
  904. }
  905. sort_stt(s, s->state_transition);
  906. find_best_state(best_state, s->state_transition);
  907. for(i=0; i<s->quant_table_count; i++){
  908. for(j=0; j<s->context_count[i]; j++){
  909. for(k=0; k<32; k++){
  910. double p= 128;
  911. if(s->rc_stat2[i][j][k][0]+s->rc_stat2[i][j][k][1]){
  912. p=256.0*s->rc_stat2[i][j][k][1] / (s->rc_stat2[i][j][k][0]+s->rc_stat2[i][j][k][1]);
  913. }
  914. s->initial_states[i][j][k]= best_state[av_clip(round(p), 1, 255)][av_clip((s->rc_stat2[i][j][k][0]+s->rc_stat2[i][j][k][1])/gob_count, 0, 255)];
  915. }
  916. }
  917. }
  918. }
  919. if(s->version>1){
  920. s->num_h_slices=2;
  921. s->num_v_slices=2;
  922. write_extra_header(s);
  923. }
  924. if(init_slice_contexts(s) < 0)
  925. return -1;
  926. if(init_slice_state(s) < 0)
  927. return -1;
  928. #define STATS_OUT_SIZE 1024*1024*6
  929. if(avctx->flags & CODEC_FLAG_PASS1){
  930. avctx->stats_out= av_mallocz(STATS_OUT_SIZE);
  931. for(i=0; i<s->quant_table_count; i++){
  932. for(j=0; j<s->slice_count; j++){
  933. FFV1Context *sf= s->slice_context[j];
  934. av_assert0(!sf->rc_stat2[i]);
  935. sf->rc_stat2[i]= av_mallocz(s->context_count[i]*sizeof(*sf->rc_stat2[i]));
  936. if(!sf->rc_stat2[i])
  937. return AVERROR(ENOMEM);
  938. }
  939. }
  940. }
  941. return 0;
  942. }
  943. #endif /* CONFIG_FFV1_ENCODER */
  944. static void clear_state(FFV1Context *f){
  945. int i, si, j;
  946. for(si=0; si<f->slice_count; si++){
  947. FFV1Context *fs= f->slice_context[si];
  948. for(i=0; i<f->plane_count; i++){
  949. PlaneContext *p= &fs->plane[i];
  950. p->interlace_bit_state[0]= 128;
  951. p->interlace_bit_state[1]= 128;
  952. if(fs->ac){
  953. if(f->initial_states[p->quant_table_index]){
  954. memcpy(p->state, f->initial_states[p->quant_table_index], CONTEXT_SIZE*p->context_count);
  955. }else
  956. memset(p->state, 128, CONTEXT_SIZE*p->context_count);
  957. }else{
  958. for(j=0; j<p->context_count; j++){
  959. p->vlc_state[j].drift= 0;
  960. p->vlc_state[j].error_sum= 4; //FFMAX((RANGE + 32)/64, 2);
  961. p->vlc_state[j].bias= 0;
  962. p->vlc_state[j].count= 1;
  963. }
  964. }
  965. }
  966. }
  967. }
  968. #if CONFIG_FFV1_ENCODER
  969. static int encode_slice(AVCodecContext *c, void *arg){
  970. FFV1Context *fs= *(void**)arg;
  971. FFV1Context *f= fs->avctx->priv_data;
  972. int width = fs->slice_width;
  973. int height= fs->slice_height;
  974. int x= fs->slice_x;
  975. int y= fs->slice_y;
  976. AVFrame * const p= &f->picture;
  977. const int ps= (f->bits_per_raw_sample>8)+1;
  978. if(f->colorspace==0){
  979. const int chroma_width = -((-width )>>f->chroma_h_shift);
  980. const int chroma_height= -((-height)>>f->chroma_v_shift);
  981. const int cx= x>>f->chroma_h_shift;
  982. const int cy= y>>f->chroma_v_shift;
  983. encode_plane(fs, p->data[0] + ps*x + y*p->linesize[0], width, height, p->linesize[0], 0);
  984. if (f->chroma_planes){
  985. encode_plane(fs, p->data[1] + ps*cx+cy*p->linesize[1], chroma_width, chroma_height, p->linesize[1], 1);
  986. encode_plane(fs, p->data[2] + ps*cx+cy*p->linesize[2], chroma_width, chroma_height, p->linesize[2], 1);
  987. }
  988. if (fs->transparency)
  989. encode_plane(fs, p->data[3] + ps*x + y*p->linesize[3], width, height, p->linesize[3], 2);
  990. }else{
  991. encode_rgb_frame(fs, (uint32_t*)(p->data[0]) + ps*x + y*(p->linesize[0]/4), width, height, p->linesize[0]/4);
  992. }
  993. emms_c();
  994. return 0;
  995. }
  996. static int encode_frame(AVCodecContext *avctx, AVPacket *pkt,
  997. const AVFrame *pict, int *got_packet)
  998. {
  999. FFV1Context *f = avctx->priv_data;
  1000. RangeCoder * const c= &f->slice_context[0]->c;
  1001. AVFrame * const p= &f->picture;
  1002. int used_count= 0;
  1003. uint8_t keystate=128;
  1004. uint8_t *buf_p;
  1005. int i, ret;
  1006. if ((ret = ff_alloc_packet2(avctx, pkt, avctx->width*avctx->height*((8*2+1+1)*4)/8
  1007. + FF_MIN_BUFFER_SIZE)) < 0)
  1008. return ret;
  1009. ff_init_range_encoder(c, pkt->data, pkt->size);
  1010. ff_build_rac_states(c, 0.05*(1LL<<32), 256-8);
  1011. *p = *pict;
  1012. p->pict_type= AV_PICTURE_TYPE_I;
  1013. if(avctx->gop_size==0 || f->picture_number % avctx->gop_size == 0){
  1014. put_rac(c, &keystate, 1);
  1015. p->key_frame= 1;
  1016. f->gob_count++;
  1017. write_header(f);
  1018. clear_state(f);
  1019. }else{
  1020. put_rac(c, &keystate, 0);
  1021. p->key_frame= 0;
  1022. }
  1023. if(!f->ac){
  1024. used_count += ff_rac_terminate(c);
  1025. //printf("pos=%d\n", used_count);
  1026. init_put_bits(&f->slice_context[0]->pb, pkt->data + used_count, pkt->size - used_count);
  1027. }else if (f->ac>1){
  1028. int i;
  1029. for(i=1; i<256; i++){
  1030. c->one_state[i]= f->state_transition[i];
  1031. c->zero_state[256-i]= 256-c->one_state[i];
  1032. }
  1033. }
  1034. for(i=1; i<f->slice_count; i++){
  1035. FFV1Context *fs= f->slice_context[i];
  1036. uint8_t *start = pkt->data + (pkt->size-used_count)*i/f->slice_count;
  1037. int len = pkt->size/f->slice_count;
  1038. if(fs->ac){
  1039. ff_init_range_encoder(&fs->c, start, len);
  1040. }else{
  1041. init_put_bits(&fs->pb, start, len);
  1042. }
  1043. }
  1044. avctx->execute(avctx, encode_slice, &f->slice_context[0], NULL, f->slice_count, sizeof(void*));
  1045. buf_p = pkt->data;
  1046. for(i=0; i<f->slice_count; i++){
  1047. FFV1Context *fs= f->slice_context[i];
  1048. int bytes;
  1049. if(fs->ac){
  1050. uint8_t state=128;
  1051. put_rac(&fs->c, &state, 0);
  1052. bytes= ff_rac_terminate(&fs->c);
  1053. }else{
  1054. flush_put_bits(&fs->pb); //nicer padding FIXME
  1055. bytes= used_count + (put_bits_count(&fs->pb)+7)/8;
  1056. used_count= 0;
  1057. }
  1058. if(i>0){
  1059. av_assert0(bytes < pkt->size/f->slice_count);
  1060. memmove(buf_p, fs->ac ? fs->c.bytestream_start : fs->pb.buf, bytes);
  1061. av_assert0(bytes < (1<<24));
  1062. AV_WB24(buf_p+bytes, bytes);
  1063. bytes+=3;
  1064. }
  1065. buf_p += bytes;
  1066. }
  1067. if((avctx->flags&CODEC_FLAG_PASS1) && (f->picture_number&31)==0){
  1068. int j, k, m;
  1069. char *p= avctx->stats_out;
  1070. char *end= p + STATS_OUT_SIZE;
  1071. memset(f->rc_stat, 0, sizeof(f->rc_stat));
  1072. for(i=0; i<f->quant_table_count; i++)
  1073. memset(f->rc_stat2[i], 0, f->context_count[i]*sizeof(*f->rc_stat2[i]));
  1074. for(j=0; j<f->slice_count; j++){
  1075. FFV1Context *fs= f->slice_context[j];
  1076. for(i=0; i<256; i++){
  1077. f->rc_stat[i][0] += fs->rc_stat[i][0];
  1078. f->rc_stat[i][1] += fs->rc_stat[i][1];
  1079. }
  1080. for(i=0; i<f->quant_table_count; i++){
  1081. for(k=0; k<f->context_count[i]; k++){
  1082. for(m=0; m<32; m++){
  1083. f->rc_stat2[i][k][m][0] += fs->rc_stat2[i][k][m][0];
  1084. f->rc_stat2[i][k][m][1] += fs->rc_stat2[i][k][m][1];
  1085. }
  1086. }
  1087. }
  1088. }
  1089. for(j=0; j<256; j++){
  1090. snprintf(p, end-p, "%"PRIu64" %"PRIu64" ", f->rc_stat[j][0], f->rc_stat[j][1]);
  1091. p+= strlen(p);
  1092. }
  1093. snprintf(p, end-p, "\n");
  1094. for(i=0; i<f->quant_table_count; i++){
  1095. for(j=0; j<f->context_count[i]; j++){
  1096. for(m=0; m<32; m++){
  1097. snprintf(p, end-p, "%"PRIu64" %"PRIu64" ", f->rc_stat2[i][j][m][0], f->rc_stat2[i][j][m][1]);
  1098. p+= strlen(p);
  1099. }
  1100. }
  1101. }
  1102. snprintf(p, end-p, "%d\n", f->gob_count);
  1103. } else if(avctx->flags&CODEC_FLAG_PASS1)
  1104. avctx->stats_out[0] = '\0';
  1105. f->picture_number++;
  1106. pkt->size = buf_p - pkt->data;
  1107. pkt->flags |= AV_PKT_FLAG_KEY*p->key_frame;
  1108. *got_packet = 1;
  1109. return 0;
  1110. }
  1111. #endif /* CONFIG_FFV1_ENCODER */
  1112. static av_cold int common_end(AVCodecContext *avctx){
  1113. FFV1Context *s = avctx->priv_data;
  1114. int i, j;
  1115. if (avctx->codec->decode && s->picture.data[0])
  1116. avctx->release_buffer(avctx, &s->picture);
  1117. for(j=0; j<s->slice_count; j++){
  1118. FFV1Context *fs= s->slice_context[j];
  1119. for(i=0; i<s->plane_count; i++){
  1120. PlaneContext *p= &fs->plane[i];
  1121. av_freep(&p->state);
  1122. av_freep(&p->vlc_state);
  1123. }
  1124. av_freep(&fs->sample_buffer);
  1125. }
  1126. av_freep(&avctx->stats_out);
  1127. for(j=0; j<s->quant_table_count; j++){
  1128. av_freep(&s->initial_states[j]);
  1129. for(i=0; i<s->slice_count; i++){
  1130. FFV1Context *sf= s->slice_context[i];
  1131. av_freep(&sf->rc_stat2[j]);
  1132. }
  1133. av_freep(&s->rc_stat2[j]);
  1134. }
  1135. for(i=0; i<s->slice_count; i++){
  1136. av_freep(&s->slice_context[i]);
  1137. }
  1138. return 0;
  1139. }
  1140. static av_always_inline void decode_line(FFV1Context *s, int w,
  1141. int16_t *sample[2],
  1142. int plane_index, int bits)
  1143. {
  1144. PlaneContext * const p= &s->plane[plane_index];
  1145. RangeCoder * const c= &s->c;
  1146. int x;
  1147. int run_count=0;
  1148. int run_mode=0;
  1149. int run_index= s->run_index;
  1150. for(x=0; x<w; x++){
  1151. int diff, context, sign;
  1152. context= get_context(p, sample[1] + x, sample[0] + x, sample[1] + x);
  1153. if(context < 0){
  1154. context= -context;
  1155. sign=1;
  1156. }else
  1157. sign=0;
  1158. av_assert2(context < p->context_count);
  1159. if(s->ac){
  1160. diff= get_symbol_inline(c, p->state[context], 1);
  1161. }else{
  1162. if(context == 0 && run_mode==0) run_mode=1;
  1163. if(run_mode){
  1164. if(run_count==0 && run_mode==1){
  1165. if(get_bits1(&s->gb)){
  1166. run_count = 1<<ff_log2_run[run_index];
  1167. if(x + run_count <= w) run_index++;
  1168. }else{
  1169. if(ff_log2_run[run_index]) run_count = get_bits(&s->gb, ff_log2_run[run_index]);
  1170. else run_count=0;
  1171. if(run_index) run_index--;
  1172. run_mode=2;
  1173. }
  1174. }
  1175. run_count--;
  1176. if(run_count < 0){
  1177. run_mode=0;
  1178. run_count=0;
  1179. diff= get_vlc_symbol(&s->gb, &p->vlc_state[context], bits);
  1180. if(diff>=0) diff++;
  1181. }else
  1182. diff=0;
  1183. }else
  1184. diff= get_vlc_symbol(&s->gb, &p->vlc_state[context], bits);
  1185. // printf("count:%d index:%d, mode:%d, x:%d y:%d pos:%d\n", run_count, run_index, run_mode, x, y, get_bits_count(&s->gb));
  1186. }
  1187. if(sign) diff= -diff;
  1188. sample[1][x]= (predict(sample[1] + x, sample[0] + x) + diff) & ((1<<bits)-1);
  1189. }
  1190. s->run_index= run_index;
  1191. }
  1192. static void decode_plane(FFV1Context *s, uint8_t *src, int w, int h, int stride, int plane_index){
  1193. int x, y;
  1194. int16_t *sample[2];
  1195. sample[0]=s->sample_buffer +3;
  1196. sample[1]=s->sample_buffer+w+6+3;
  1197. s->run_index=0;
  1198. memset(s->sample_buffer, 0, 2*(w+6)*sizeof(*s->sample_buffer));
  1199. for(y=0; y<h; y++){
  1200. int16_t *temp = sample[0]; //FIXME try a normal buffer
  1201. sample[0]= sample[1];
  1202. sample[1]= temp;
  1203. sample[1][-1]= sample[0][0 ];
  1204. sample[0][ w]= sample[0][w-1];
  1205. //{START_TIMER
  1206. if(s->avctx->bits_per_raw_sample <= 8){
  1207. decode_line(s, w, sample, plane_index, 8);
  1208. for(x=0; x<w; x++){
  1209. src[x + stride*y]= sample[1][x];
  1210. }
  1211. }else{
  1212. decode_line(s, w, sample, plane_index, s->avctx->bits_per_raw_sample);
  1213. if(s->packed_at_lsb){
  1214. for(x=0; x<w; x++){
  1215. ((uint16_t*)(src + stride*y))[x]= sample[1][x];
  1216. }
  1217. }else{
  1218. for(x=0; x<w; x++){
  1219. ((uint16_t*)(src + stride*y))[x]= sample[1][x] << (16 - s->avctx->bits_per_raw_sample);
  1220. }
  1221. }
  1222. }
  1223. //STOP_TIMER("decode-line")}
  1224. }
  1225. }
  1226. static void decode_rgb_frame(FFV1Context *s, uint32_t *src, int w, int h, int stride){
  1227. int x, y, p;
  1228. int16_t *sample[4][2];
  1229. for(x=0; x<4; x++){
  1230. sample[x][0] = s->sample_buffer + x*2 *(w+6) + 3;
  1231. sample[x][1] = s->sample_buffer + (x*2+1)*(w+6) + 3;
  1232. }
  1233. s->run_index=0;
  1234. memset(s->sample_buffer, 0, 8*(w+6)*sizeof(*s->sample_buffer));
  1235. for(y=0; y<h; y++){
  1236. for(p=0; p<3 + s->transparency; p++){
  1237. int16_t *temp = sample[p][0]; //FIXME try a normal buffer
  1238. sample[p][0]= sample[p][1];
  1239. sample[p][1]= temp;
  1240. sample[p][1][-1]= sample[p][0][0 ];
  1241. sample[p][0][ w]= sample[p][0][w-1];
  1242. decode_line(s, w, sample[p], (p+1)/2, 9);
  1243. }
  1244. for(x=0; x<w; x++){
  1245. int g= sample[0][1][x];
  1246. int b= sample[1][1][x];
  1247. int r= sample[2][1][x];
  1248. int a= sample[3][1][x];
  1249. // assert(g>=0 && b>=0 && r>=0);
  1250. // assert(g<256 && b<512 && r<512);
  1251. b -= 0x100;
  1252. r -= 0x100;
  1253. g -= (b + r)>>2;
  1254. b += g;
  1255. r += g;
  1256. src[x + stride*y]= b + (g<<8) + (r<<16) + (a<<24);
  1257. }
  1258. }
  1259. }
  1260. static int decode_slice(AVCodecContext *c, void *arg){
  1261. FFV1Context *fs= *(void**)arg;
  1262. FFV1Context *f= fs->avctx->priv_data;
  1263. int width = fs->slice_width;
  1264. int height= fs->slice_height;
  1265. int x= fs->slice_x;
  1266. int y= fs->slice_y;
  1267. const int ps= (c->bits_per_raw_sample>8)+1;
  1268. AVFrame * const p= &f->picture;
  1269. av_assert1(width && height);
  1270. if(f->colorspace==0){
  1271. const int chroma_width = -((-width )>>f->chroma_h_shift);
  1272. const int chroma_height= -((-height)>>f->chroma_v_shift);
  1273. const int cx= x>>f->chroma_h_shift;
  1274. const int cy= y>>f->chroma_v_shift;
  1275. decode_plane(fs, p->data[0] + ps*x + y*p->linesize[0], width, height, p->linesize[0], 0);
  1276. if (f->chroma_planes){
  1277. decode_plane(fs, p->data[1] + ps*cx+cy*p->linesize[1], chroma_width, chroma_height, p->linesize[1], 1);
  1278. decode_plane(fs, p->data[2] + ps*cx+cy*p->linesize[2], chroma_width, chroma_height, p->linesize[2], 1);
  1279. }
  1280. if (fs->transparency)
  1281. decode_plane(fs, p->data[3] + ps*x + y*p->linesize[3], width, height, p->linesize[3], 2);
  1282. }else{
  1283. decode_rgb_frame(fs, (uint32_t*)p->data[0] + ps*x + y*(p->linesize[0]/4), width, height, p->linesize[0]/4);
  1284. }
  1285. emms_c();
  1286. return 0;
  1287. }
  1288. static int read_quant_table(RangeCoder *c, int16_t *quant_table, int scale){
  1289. int v;
  1290. int i=0;
  1291. uint8_t state[CONTEXT_SIZE];
  1292. memset(state, 128, sizeof(state));
  1293. for(v=0; i<128 ; v++){
  1294. int len= get_symbol(c, state, 0) + 1;
  1295. if(len + i > 128) return -1;
  1296. while(len--){
  1297. quant_table[i] = scale*v;
  1298. i++;
  1299. //printf("%2d ",v);
  1300. //if(i%16==0) printf("\n");
  1301. }
  1302. }
  1303. for(i=1; i<128; i++){
  1304. quant_table[256-i]= -quant_table[i];
  1305. }
  1306. quant_table[128]= -quant_table[127];
  1307. return 2*v - 1;
  1308. }
  1309. static int read_quant_tables(RangeCoder *c, int16_t quant_table[MAX_CONTEXT_INPUTS][256]){
  1310. int i;
  1311. int context_count=1;
  1312. for(i=0; i<5; i++){
  1313. context_count*= read_quant_table(c, quant_table[i], context_count);
  1314. if(context_count > 32768U){
  1315. return -1;
  1316. }
  1317. }
  1318. return (context_count+1)/2;
  1319. }
  1320. static int read_extra_header(FFV1Context *f){
  1321. RangeCoder * const c= &f->c;
  1322. uint8_t state[CONTEXT_SIZE];
  1323. int i, j, k;
  1324. uint8_t state2[32][CONTEXT_SIZE];
  1325. memset(state2, 128, sizeof(state2));
  1326. memset(state, 128, sizeof(state));
  1327. ff_init_range_decoder(c, f->avctx->extradata, f->avctx->extradata_size);
  1328. ff_build_rac_states(c, 0.05*(1LL<<32), 256-8);
  1329. f->version= get_symbol(c, state, 0);
  1330. if(f->version > 2)
  1331. f->minor_version= get_symbol(c, state, 0);
  1332. f->ac= f->avctx->coder_type= get_symbol(c, state, 0);
  1333. if(f->ac>1){
  1334. for(i=1; i<256; i++){
  1335. f->state_transition[i]= get_symbol(c, state, 1) + c->one_state[i];
  1336. }
  1337. }
  1338. f->colorspace= get_symbol(c, state, 0); //YUV cs type
  1339. f->avctx->bits_per_raw_sample= get_symbol(c, state, 0);
  1340. get_rac(c, state); //no chroma = false
  1341. f->chroma_h_shift= get_symbol(c, state, 0);
  1342. f->chroma_v_shift= get_symbol(c, state, 0);
  1343. f->transparency= get_rac(c, state);
  1344. f->plane_count= 2 + f->transparency;
  1345. f->num_h_slices= 1 + get_symbol(c, state, 0);
  1346. f->num_v_slices= 1 + get_symbol(c, state, 0);
  1347. if(f->num_h_slices > (unsigned)f->width || f->num_v_slices > (unsigned)f->height){
  1348. av_log(f->avctx, AV_LOG_ERROR, "too many slices\n");
  1349. return -1;
  1350. }
  1351. f->quant_table_count= get_symbol(c, state, 0);
  1352. if(f->quant_table_count > (unsigned)MAX_QUANT_TABLES)
  1353. return -1;
  1354. for(i=0; i<f->quant_table_count; i++){
  1355. if((f->context_count[i]= read_quant_tables(c, f->quant_tables[i])) < 0){
  1356. av_log(f->avctx, AV_LOG_ERROR, "read_quant_table error\n");
  1357. return -1;
  1358. }
  1359. }
  1360. if(allocate_initial_states(f) < 0)
  1361. return AVERROR(ENOMEM);
  1362. for(i=0; i<f->quant_table_count; i++){
  1363. if(get_rac(c, state)){
  1364. for(j=0; j<f->context_count[i]; j++){
  1365. for(k=0; k<CONTEXT_SIZE; k++){
  1366. int pred= j ? f->initial_states[i][j-1][k] : 128;
  1367. f->initial_states[i][j][k]= (pred+get_symbol(c, state2[k], 1))&0xFF;
  1368. }
  1369. }
  1370. }
  1371. }
  1372. return 0;
  1373. }
  1374. static int read_header(FFV1Context *f){
  1375. uint8_t state[CONTEXT_SIZE];
  1376. int i, j, context_count;
  1377. RangeCoder * const c= &f->slice_context[0]->c;
  1378. memset(state, 128, sizeof(state));
  1379. if(f->version < 2){
  1380. f->version= get_symbol(c, state, 0);
  1381. f->ac= f->avctx->coder_type= get_symbol(c, state, 0);
  1382. if(f->ac>1){
  1383. for(i=1; i<256; i++){
  1384. f->state_transition[i]= get_symbol(c, state, 1) + c->one_state[i];
  1385. }
  1386. }
  1387. f->colorspace= get_symbol(c, state, 0); //YUV cs type
  1388. if(f->version>0)
  1389. f->avctx->bits_per_raw_sample= get_symbol(c, state, 0);
  1390. f->chroma_planes= get_rac(c, state);
  1391. f->chroma_h_shift= get_symbol(c, state, 0);
  1392. f->chroma_v_shift= get_symbol(c, state, 0);
  1393. f->transparency= get_rac(c, state);
  1394. f->plane_count= 2 + f->transparency;
  1395. }
  1396. if(f->colorspace==0){
  1397. if(!f->transparency && !f->chroma_planes){
  1398. if (f->avctx->bits_per_raw_sample<=8)
  1399. f->avctx->pix_fmt= PIX_FMT_GRAY8;
  1400. else
  1401. f->avctx->pix_fmt= PIX_FMT_GRAY16;
  1402. }else if(f->avctx->bits_per_raw_sample<=8 && !f->transparency){
  1403. switch(16*f->chroma_h_shift + f->chroma_v_shift){
  1404. case 0x00: f->avctx->pix_fmt= PIX_FMT_YUV444P; break;
  1405. case 0x01: f->avctx->pix_fmt= PIX_FMT_YUV440P; break;
  1406. case 0x10: f->avctx->pix_fmt= PIX_FMT_YUV422P; break;
  1407. case 0x11: f->avctx->pix_fmt= PIX_FMT_YUV420P; break;
  1408. case 0x20: f->avctx->pix_fmt= PIX_FMT_YUV411P; break;
  1409. case 0x22: f->avctx->pix_fmt= PIX_FMT_YUV410P; break;
  1410. default:
  1411. av_log(f->avctx, AV_LOG_ERROR, "format not supported\n");
  1412. return -1;
  1413. }
  1414. }else if(f->avctx->bits_per_raw_sample<=8 && f->transparency){
  1415. switch(16*f->chroma_h_shift + f->chroma_v_shift){
  1416. case 0x00: f->avctx->pix_fmt= PIX_FMT_YUVA444P; break;
  1417. case 0x11: f->avctx->pix_fmt= PIX_FMT_YUVA420P; break;
  1418. default:
  1419. av_log(f->avctx, AV_LOG_ERROR, "format not supported\n");
  1420. return -1;
  1421. }
  1422. }else if(f->avctx->bits_per_raw_sample==9) {
  1423. f->packed_at_lsb=1;
  1424. switch(16*f->chroma_h_shift + f->chroma_v_shift){
  1425. case 0x00: f->avctx->pix_fmt= PIX_FMT_YUV444P9; break;
  1426. case 0x10: f->avctx->pix_fmt= PIX_FMT_YUV422P9; break;
  1427. case 0x11: f->avctx->pix_fmt= PIX_FMT_YUV420P9; break;
  1428. default:
  1429. av_log(f->avctx, AV_LOG_ERROR, "format not supported\n");
  1430. return -1;
  1431. }
  1432. }else if(f->avctx->bits_per_raw_sample==10) {
  1433. f->packed_at_lsb=1;
  1434. switch(16*f->chroma_h_shift + f->chroma_v_shift){
  1435. case 0x00: f->avctx->pix_fmt= PIX_FMT_YUV444P10; break;
  1436. case 0x10: f->avctx->pix_fmt= PIX_FMT_YUV422P10; break;
  1437. case 0x11: f->avctx->pix_fmt= PIX_FMT_YUV420P10; break;
  1438. default:
  1439. av_log(f->avctx, AV_LOG_ERROR, "format not supported\n");
  1440. return -1;
  1441. }
  1442. }else {
  1443. switch(16*f->chroma_h_shift + f->chroma_v_shift){
  1444. case 0x00: f->avctx->pix_fmt= PIX_FMT_YUV444P16; break;
  1445. case 0x10: f->avctx->pix_fmt= PIX_FMT_YUV422P16; break;
  1446. case 0x11: f->avctx->pix_fmt= PIX_FMT_YUV420P16; break;
  1447. default:
  1448. av_log(f->avctx, AV_LOG_ERROR, "format not supported\n");
  1449. return -1;
  1450. }
  1451. }
  1452. }else if(f->colorspace==1){
  1453. if(f->chroma_h_shift || f->chroma_v_shift){
  1454. av_log(f->avctx, AV_LOG_ERROR, "chroma subsampling not supported in this colorspace\n");
  1455. return -1;
  1456. }
  1457. if(f->transparency) f->avctx->pix_fmt= PIX_FMT_RGB32;
  1458. else f->avctx->pix_fmt= PIX_FMT_0RGB32;
  1459. }else{
  1460. av_log(f->avctx, AV_LOG_ERROR, "colorspace not supported\n");
  1461. return -1;
  1462. }
  1463. //printf("%d %d %d\n", f->chroma_h_shift, f->chroma_v_shift,f->avctx->pix_fmt);
  1464. if(f->version < 2){
  1465. context_count= read_quant_tables(c, f->quant_table);
  1466. if(context_count < 0){
  1467. av_log(f->avctx, AV_LOG_ERROR, "read_quant_table error\n");
  1468. return -1;
  1469. }
  1470. }else{
  1471. f->slice_count= get_symbol(c, state, 0);
  1472. if(f->slice_count > (unsigned)MAX_SLICES)
  1473. return -1;
  1474. }
  1475. for(j=0; j<f->slice_count; j++){
  1476. FFV1Context *fs= f->slice_context[j];
  1477. fs->ac= f->ac;
  1478. fs->packed_at_lsb= f->packed_at_lsb;
  1479. if(f->version >= 2){
  1480. fs->slice_x = get_symbol(c, state, 0) *f->width ;
  1481. fs->slice_y = get_symbol(c, state, 0) *f->height;
  1482. fs->slice_width =(get_symbol(c, state, 0)+1)*f->width + fs->slice_x;
  1483. fs->slice_height=(get_symbol(c, state, 0)+1)*f->height + fs->slice_y;
  1484. fs->slice_x /= f->num_h_slices;
  1485. fs->slice_y /= f->num_v_slices;
  1486. fs->slice_width = fs->slice_width /f->num_h_slices - fs->slice_x;
  1487. fs->slice_height = fs->slice_height/f->num_v_slices - fs->slice_y;
  1488. if((unsigned)fs->slice_width > f->width || (unsigned)fs->slice_height > f->height)
  1489. return -1;
  1490. if( (unsigned)fs->slice_x + (uint64_t)fs->slice_width > f->width
  1491. || (unsigned)fs->slice_y + (uint64_t)fs->slice_height > f->height)
  1492. return -1;
  1493. }
  1494. for(i=0; i<f->plane_count; i++){
  1495. PlaneContext * const p= &fs->plane[i];
  1496. if(f->version >= 2){
  1497. int idx=get_symbol(c, state, 0);
  1498. if(idx > (unsigned)f->quant_table_count){
  1499. av_log(f->avctx, AV_LOG_ERROR, "quant_table_index out of range\n");
  1500. return -1;
  1501. }
  1502. p->quant_table_index= idx;
  1503. memcpy(p->quant_table, f->quant_tables[idx], sizeof(p->quant_table));
  1504. context_count= f->context_count[idx];
  1505. }else{
  1506. memcpy(p->quant_table, f->quant_table, sizeof(p->quant_table));
  1507. }
  1508. if(p->context_count < context_count){
  1509. av_freep(&p->state);
  1510. av_freep(&p->vlc_state);
  1511. }
  1512. p->context_count= context_count;
  1513. }
  1514. }
  1515. return 0;
  1516. }
  1517. static av_cold int decode_init(AVCodecContext *avctx)
  1518. {
  1519. FFV1Context *f = avctx->priv_data;
  1520. common_init(avctx);
  1521. if(avctx->extradata && read_extra_header(f) < 0)
  1522. return -1;
  1523. if(init_slice_contexts(f) < 0)
  1524. return -1;
  1525. return 0;
  1526. }
  1527. static int decode_frame(AVCodecContext *avctx, void *data, int *data_size, AVPacket *avpkt){
  1528. const uint8_t *buf = avpkt->data;
  1529. int buf_size = avpkt->size;
  1530. FFV1Context *f = avctx->priv_data;
  1531. RangeCoder * const c= &f->slice_context[0]->c;
  1532. AVFrame * const p= &f->picture;
  1533. int bytes_read, i;
  1534. uint8_t keystate= 128;
  1535. const uint8_t *buf_p;
  1536. AVFrame *picture = data;
  1537. /* release previously stored data */
  1538. if (p->data[0])
  1539. avctx->release_buffer(avctx, p);
  1540. ff_init_range_decoder(c, buf, buf_size);
  1541. ff_build_rac_states(c, 0.05*(1LL<<32), 256-8);
  1542. p->pict_type= AV_PICTURE_TYPE_I; //FIXME I vs. P
  1543. if(get_rac(c, &keystate)){
  1544. p->key_frame= 1;
  1545. if(read_header(f) < 0)
  1546. return -1;
  1547. if(init_slice_state(f) < 0)
  1548. return -1;
  1549. clear_state(f);
  1550. }else{
  1551. p->key_frame= 0;
  1552. }
  1553. if(f->ac>1){
  1554. int i;
  1555. for(i=1; i<256; i++){
  1556. c->one_state[i]= f->state_transition[i];
  1557. c->zero_state[256-i]= 256-c->one_state[i];
  1558. }
  1559. }
  1560. p->reference= 0;
  1561. if(avctx->get_buffer(avctx, p) < 0){
  1562. av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
  1563. return -1;
  1564. }
  1565. if(avctx->debug&FF_DEBUG_PICT_INFO)
  1566. av_log(avctx, AV_LOG_ERROR, "keyframe:%d coder:%d\n", p->key_frame, f->ac);
  1567. if(!f->ac){
  1568. bytes_read = c->bytestream - c->bytestream_start - 1;
  1569. if(bytes_read ==0) av_log(avctx, AV_LOG_ERROR, "error at end of AC stream\n"); //FIXME
  1570. //printf("pos=%d\n", bytes_read);
  1571. init_get_bits(&f->slice_context[0]->gb, buf + bytes_read, (buf_size - bytes_read) * 8);
  1572. } else {
  1573. bytes_read = 0; /* avoid warning */
  1574. }
  1575. buf_p= buf + buf_size;
  1576. for(i=f->slice_count-1; i>0; i--){
  1577. FFV1Context *fs= f->slice_context[i];
  1578. int v= AV_RB24(buf_p-3)+3;
  1579. if(buf_p - buf <= v){
  1580. av_log(avctx, AV_LOG_ERROR, "Slice pointer chain broken\n");
  1581. return -1;
  1582. }
  1583. buf_p -= v;
  1584. if(fs->ac){
  1585. ff_init_range_decoder(&fs->c, buf_p, v);
  1586. }else{
  1587. init_get_bits(&fs->gb, buf_p, v * 8);
  1588. }
  1589. }
  1590. avctx->execute(avctx, decode_slice, &f->slice_context[0], NULL, f->slice_count, sizeof(void*));
  1591. f->picture_number++;
  1592. *picture= *p;
  1593. *data_size = sizeof(AVFrame);
  1594. return buf_size;
  1595. }
  1596. AVCodec ff_ffv1_decoder = {
  1597. .name = "ffv1",
  1598. .type = AVMEDIA_TYPE_VIDEO,
  1599. .id = CODEC_ID_FFV1,
  1600. .priv_data_size = sizeof(FFV1Context),
  1601. .init = decode_init,
  1602. .close = common_end,
  1603. .decode = decode_frame,
  1604. .capabilities = CODEC_CAP_DR1 /*| CODEC_CAP_DRAW_HORIZ_BAND*/ |
  1605. CODEC_CAP_SLICE_THREADS,
  1606. .long_name = NULL_IF_CONFIG_SMALL("FFmpeg video codec #1"),
  1607. };
  1608. #if CONFIG_FFV1_ENCODER
  1609. AVCodec ff_ffv1_encoder = {
  1610. .name = "ffv1",
  1611. .type = AVMEDIA_TYPE_VIDEO,
  1612. .id = CODEC_ID_FFV1,
  1613. .priv_data_size = sizeof(FFV1Context),
  1614. .init = encode_init,
  1615. .encode2 = encode_frame,
  1616. .close = common_end,
  1617. .capabilities = CODEC_CAP_SLICE_THREADS,
  1618. .pix_fmts= (const enum PixelFormat[]){PIX_FMT_YUV420P, PIX_FMT_YUVA420P, PIX_FMT_YUV444P, PIX_FMT_YUVA444P, PIX_FMT_YUV440P, PIX_FMT_YUV422P, PIX_FMT_YUV411P, PIX_FMT_YUV410P, PIX_FMT_0RGB32, PIX_FMT_RGB32, PIX_FMT_YUV420P16, PIX_FMT_YUV422P16, PIX_FMT_YUV444P16, PIX_FMT_YUV444P9, PIX_FMT_YUV422P9, PIX_FMT_YUV420P9, PIX_FMT_YUV420P10, PIX_FMT_YUV422P10, PIX_FMT_YUV444P10, PIX_FMT_GRAY16, PIX_FMT_GRAY8, PIX_FMT_NONE},
  1619. .long_name = NULL_IF_CONFIG_SMALL("FFmpeg video codec #1"),
  1620. };
  1621. #endif