You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

324 lines
9.7KB

  1. /*
  2. * copyright (c) 2007 Michael Niedermayer <michaelni@gmx.at>
  3. *
  4. * some optimization ideas from aes128.c by Reimar Doeffinger
  5. *
  6. * This file is part of Libav.
  7. *
  8. * Libav is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU Lesser General Public
  10. * License as published by the Free Software Foundation; either
  11. * version 2.1 of the License, or (at your option) any later version.
  12. *
  13. * Libav is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * Lesser General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU Lesser General Public
  19. * License along with Libav; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  21. */
  22. #include "common.h"
  23. #include "aes.h"
  24. typedef union {
  25. uint64_t u64[2];
  26. uint32_t u32[4];
  27. uint8_t u8x4[4][4];
  28. uint8_t u8[16];
  29. } av_aes_block;
  30. typedef struct AVAES {
  31. // Note: round_key[16] is accessed in the init code, but this only
  32. // overwrites state, which does not matter (see also r7471).
  33. av_aes_block round_key[15];
  34. av_aes_block state[2];
  35. int rounds;
  36. } AVAES;
  37. const int av_aes_size= sizeof(AVAES);
  38. static const uint8_t rcon[10] = {
  39. 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36
  40. };
  41. static uint8_t sbox[256];
  42. static uint8_t inv_sbox[256];
  43. #if CONFIG_SMALL
  44. static uint32_t enc_multbl[1][256];
  45. static uint32_t dec_multbl[1][256];
  46. #else
  47. static uint32_t enc_multbl[4][256];
  48. static uint32_t dec_multbl[4][256];
  49. #endif
  50. #if HAVE_BIGENDIAN
  51. # define ROT(x, s) ((x >> s) | (x << (32-s)))
  52. #else
  53. # define ROT(x, s) ((x << s) | (x >> (32-s)))
  54. #endif
  55. static inline void addkey(av_aes_block *dst, const av_aes_block *src,
  56. const av_aes_block *round_key)
  57. {
  58. dst->u64[0] = src->u64[0] ^ round_key->u64[0];
  59. dst->u64[1] = src->u64[1] ^ round_key->u64[1];
  60. }
  61. static void subshift(av_aes_block s0[2], int s, const uint8_t *box)
  62. {
  63. av_aes_block *s1 = (av_aes_block *) (s0[0].u8 - s);
  64. av_aes_block *s3 = (av_aes_block *) (s0[0].u8 + s);
  65. s0[0].u8[ 0] = box[s0[1].u8[ 0]];
  66. s0[0].u8[ 4] = box[s0[1].u8[ 4]];
  67. s0[0].u8[ 8] = box[s0[1].u8[ 8]];
  68. s0[0].u8[12] = box[s0[1].u8[12]];
  69. s1[0].u8[ 3] = box[s1[1].u8[ 7]];
  70. s1[0].u8[ 7] = box[s1[1].u8[11]];
  71. s1[0].u8[11] = box[s1[1].u8[15]];
  72. s1[0].u8[15] = box[s1[1].u8[ 3]];
  73. s0[0].u8[ 2] = box[s0[1].u8[10]];
  74. s0[0].u8[10] = box[s0[1].u8[ 2]];
  75. s0[0].u8[ 6] = box[s0[1].u8[14]];
  76. s0[0].u8[14] = box[s0[1].u8[ 6]];
  77. s3[0].u8[ 1] = box[s3[1].u8[13]];
  78. s3[0].u8[13] = box[s3[1].u8[ 9]];
  79. s3[0].u8[ 9] = box[s3[1].u8[ 5]];
  80. s3[0].u8[ 5] = box[s3[1].u8[ 1]];
  81. }
  82. static inline int mix_core(uint32_t multbl[][256], int a, int b, int c, int d){
  83. #if CONFIG_SMALL
  84. return multbl[0][a] ^ ROT(multbl[0][b], 8) ^ ROT(multbl[0][c], 16) ^ ROT(multbl[0][d], 24);
  85. #else
  86. return multbl[0][a] ^ multbl[1][b] ^ multbl[2][c] ^ multbl[3][d];
  87. #endif
  88. }
  89. static inline void mix(av_aes_block state[2], uint32_t multbl[][256], int s1, int s3){
  90. uint8_t (*src)[4] = state[1].u8x4;
  91. state[0].u32[0] = mix_core(multbl, src[0][0], src[s1 ][1], src[2][2], src[s3 ][3]);
  92. state[0].u32[1] = mix_core(multbl, src[1][0], src[s3-1][1], src[3][2], src[s1-1][3]);
  93. state[0].u32[2] = mix_core(multbl, src[2][0], src[s3 ][1], src[0][2], src[s1 ][3]);
  94. state[0].u32[3] = mix_core(multbl, src[3][0], src[s1-1][1], src[1][2], src[s3-1][3]);
  95. }
  96. static inline void crypt(AVAES *a, int s, const uint8_t *sbox,
  97. uint32_t multbl[][256])
  98. {
  99. int r;
  100. for (r = a->rounds - 1; r > 0; r--) {
  101. mix(a->state, multbl, 3 - s, 1 + s);
  102. addkey(&a->state[1], &a->state[0], &a->round_key[r]);
  103. }
  104. subshift(&a->state[0], s, sbox);
  105. }
  106. void av_aes_crypt(AVAES *a, uint8_t *dst_, const uint8_t *src_,
  107. int count, uint8_t *iv_, int decrypt)
  108. {
  109. av_aes_block *dst = (av_aes_block *) dst_;
  110. const av_aes_block *src = (const av_aes_block *) src_;
  111. av_aes_block *iv = (av_aes_block *) iv_;
  112. while (count--) {
  113. addkey(&a->state[1], src, &a->round_key[a->rounds]);
  114. if (decrypt) {
  115. crypt(a, 0, inv_sbox, dec_multbl);
  116. if (iv) {
  117. addkey(&a->state[0], &a->state[0], iv);
  118. *iv = *src;
  119. }
  120. addkey(dst, &a->state[0], &a->round_key[0]);
  121. } else {
  122. if (iv)
  123. addkey(&a->state[1], &a->state[1], iv);
  124. crypt(a, 2, sbox, enc_multbl);
  125. addkey(dst, &a->state[0], &a->round_key[0]);
  126. if (iv)
  127. *iv = *dst;
  128. }
  129. src++;
  130. dst++;
  131. }
  132. }
  133. static void init_multbl2(uint32_t tbl[][256], const int c[4],
  134. const uint8_t *log8, const uint8_t *alog8,
  135. const uint8_t *sbox)
  136. {
  137. int i;
  138. for (i = 0; i < 256; i++) {
  139. int x = sbox[i];
  140. if (x) {
  141. int k, l, m, n;
  142. x = log8[x];
  143. k = alog8[x + log8[c[0]]];
  144. l = alog8[x + log8[c[1]]];
  145. m = alog8[x + log8[c[2]]];
  146. n = alog8[x + log8[c[3]]];
  147. tbl[0][i] = AV_NE(MKBETAG(k,l,m,n), MKTAG(k,l,m,n));
  148. #if !CONFIG_SMALL
  149. tbl[1][i] = ROT(tbl[0][i], 8);
  150. tbl[2][i] = ROT(tbl[0][i], 16);
  151. tbl[3][i] = ROT(tbl[0][i], 24);
  152. #endif
  153. }
  154. }
  155. }
  156. // this is based on the reference AES code by Paulo Barreto and Vincent Rijmen
  157. int av_aes_init(AVAES *a, const uint8_t *key, int key_bits, int decrypt)
  158. {
  159. int i, j, t, rconpointer = 0;
  160. uint8_t tk[8][4];
  161. int KC = key_bits >> 5;
  162. int rounds = KC + 6;
  163. uint8_t log8[256];
  164. uint8_t alog8[512];
  165. if (!enc_multbl[FF_ARRAY_ELEMS(enc_multbl)-1][FF_ARRAY_ELEMS(enc_multbl[0])-1]) {
  166. j = 1;
  167. for (i = 0; i < 255; i++) {
  168. alog8[i] = alog8[i + 255] = j;
  169. log8[j] = i;
  170. j ^= j + j;
  171. if (j > 255)
  172. j ^= 0x11B;
  173. }
  174. for (i = 0; i < 256; i++) {
  175. j = i ? alog8[255 - log8[i]] : 0;
  176. j ^= (j << 1) ^ (j << 2) ^ (j << 3) ^ (j << 4);
  177. j = (j ^ (j >> 8) ^ 99) & 255;
  178. inv_sbox[j] = i;
  179. sbox[i] = j;
  180. }
  181. init_multbl2(dec_multbl, (const int[4]) { 0xe, 0x9, 0xd, 0xb },
  182. log8, alog8, inv_sbox);
  183. init_multbl2(enc_multbl, (const int[4]) { 0x2, 0x1, 0x1, 0x3 },
  184. log8, alog8, sbox);
  185. }
  186. if (key_bits != 128 && key_bits != 192 && key_bits != 256)
  187. return -1;
  188. a->rounds = rounds;
  189. memcpy(tk, key, KC * 4);
  190. for (t = 0; t < (rounds + 1) * 16;) {
  191. memcpy(a->round_key[0].u8 + t, tk, KC * 4);
  192. t += KC * 4;
  193. for (i = 0; i < 4; i++)
  194. tk[0][i] ^= sbox[tk[KC - 1][(i + 1) & 3]];
  195. tk[0][0] ^= rcon[rconpointer++];
  196. for (j = 1; j < KC; j++) {
  197. if (KC != 8 || j != KC >> 1)
  198. for (i = 0; i < 4; i++)
  199. tk[j][i] ^= tk[j - 1][i];
  200. else
  201. for (i = 0; i < 4; i++)
  202. tk[j][i] ^= sbox[tk[j - 1][i]];
  203. }
  204. }
  205. if (decrypt) {
  206. for (i = 1; i < rounds; i++) {
  207. av_aes_block tmp[3];
  208. tmp[2] = a->round_key[i];
  209. subshift(&tmp[1], 0, sbox);
  210. mix(tmp, dec_multbl, 1, 3);
  211. a->round_key[i] = tmp[0];
  212. }
  213. } else {
  214. for (i = 0; i < (rounds + 1) >> 1; i++) {
  215. FFSWAP(av_aes_block, a->round_key[i], a->round_key[rounds-i]);
  216. }
  217. }
  218. return 0;
  219. }
  220. #ifdef TEST
  221. #include <string.h>
  222. #include "lfg.h"
  223. #include "log.h"
  224. int main(int argc, char **argv)
  225. {
  226. int i, j;
  227. AVAES b;
  228. uint8_t rkey[2][16] = {
  229. { 0 },
  230. { 0x10, 0xa5, 0x88, 0x69, 0xd7, 0x4b, 0xe5, 0xa3,
  231. 0x74, 0xcf, 0x86, 0x7c, 0xfb, 0x47, 0x38, 0x59 }
  232. };
  233. uint8_t pt[16], rpt[2][16]= {
  234. { 0x6a, 0x84, 0x86, 0x7c, 0xd7, 0x7e, 0x12, 0xad,
  235. 0x07, 0xea, 0x1b, 0xe8, 0x95, 0xc5, 0x3f, 0xa3 },
  236. { 0 }
  237. };
  238. uint8_t rct[2][16]= {
  239. { 0x73, 0x22, 0x81, 0xc0, 0xa0, 0xaa, 0xb8, 0xf7,
  240. 0xa5, 0x4a, 0x0c, 0x67, 0xa0, 0xc4, 0x5e, 0xcf },
  241. { 0x6d, 0x25, 0x1e, 0x69, 0x44, 0xb0, 0x51, 0xe0,
  242. 0x4e, 0xaa, 0x6f, 0xb4, 0xdb, 0xf7, 0x84, 0x65 }
  243. };
  244. uint8_t temp[16];
  245. int err = 0;
  246. av_log_set_level(AV_LOG_DEBUG);
  247. for (i = 0; i < 2; i++) {
  248. av_aes_init(&b, rkey[i], 128, 1);
  249. av_aes_crypt(&b, temp, rct[i], 1, NULL, 1);
  250. for (j = 0; j < 16; j++) {
  251. if (rpt[i][j] != temp[j]) {
  252. av_log(NULL, AV_LOG_ERROR, "%d %02X %02X\n",
  253. j, rpt[i][j], temp[j]);
  254. err = 1;
  255. }
  256. }
  257. }
  258. if (argc > 1 && !strcmp(argv[1], "-t")) {
  259. AVAES ae, ad;
  260. AVLFG prng;
  261. av_aes_init(&ae, "PI=3.141592654..", 128, 0);
  262. av_aes_init(&ad, "PI=3.141592654..", 128, 1);
  263. av_lfg_init(&prng, 1);
  264. for (i = 0; i < 10000; i++) {
  265. for (j = 0; j < 16; j++) {
  266. pt[j] = av_lfg_get(&prng);
  267. }
  268. {
  269. START_TIMER;
  270. av_aes_crypt(&ae, temp, pt, 1, NULL, 0);
  271. if (!(i & (i - 1)))
  272. av_log(NULL, AV_LOG_ERROR, "%02X %02X %02X %02X\n",
  273. temp[0], temp[5], temp[10], temp[15]);
  274. av_aes_crypt(&ad, temp, temp, 1, NULL, 1);
  275. STOP_TIMER("aes");
  276. }
  277. for (j = 0; j < 16; j++) {
  278. if (pt[j] != temp[j]) {
  279. av_log(NULL, AV_LOG_ERROR, "%d %d %02X %02X\n",
  280. i, j, pt[j], temp[j]);
  281. }
  282. }
  283. }
  284. }
  285. return err;
  286. }
  287. #endif