You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

2975 lines
89KB

  1. /*
  2. * MPEG Audio decoder
  3. * Copyright (c) 2001, 2002 Fabrice Bellard.
  4. *
  5. * This library is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU Lesser General Public
  7. * License as published by the Free Software Foundation; either
  8. * version 2 of the License, or (at your option) any later version.
  9. *
  10. * This library is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  13. * Lesser General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU Lesser General Public
  16. * License along with this library; if not, write to the Free Software
  17. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  18. */
  19. /**
  20. * @file mpegaudiodec.c
  21. * MPEG Audio decoder.
  22. */
  23. //#define DEBUG
  24. #include "avcodec.h"
  25. #include "bitstream.h"
  26. #include "dsputil.h"
  27. /*
  28. * TODO:
  29. * - in low precision mode, use more 16 bit multiplies in synth filter
  30. * - test lsf / mpeg25 extensively.
  31. */
  32. /* define USE_HIGHPRECISION to have a bit exact (but slower) mpeg
  33. audio decoder */
  34. #ifdef CONFIG_MPEGAUDIO_HP
  35. # define USE_HIGHPRECISION
  36. #endif
  37. #include "mpegaudio.h"
  38. #define FRAC_ONE (1 << FRAC_BITS)
  39. #ifdef ARCH_X86
  40. # define MULL(ra, rb) \
  41. ({ int rt, dummy; asm (\
  42. "imull %3 \n\t"\
  43. "shrdl %4, %%edx, %%eax \n\t"\
  44. : "=a"(rt), "=d"(dummy)\
  45. : "a" (ra), "rm" (rb), "i"(FRAC_BITS));\
  46. rt; })
  47. # define MUL64(ra, rb) \
  48. ({ int64_t rt; asm ("imull %2\n\t" : "=A"(rt) : "a" (ra), "g" (rb)); rt; })
  49. # define MULH(ra, rb) \
  50. ({ int rt, dummy; asm ("imull %3\n\t" : "=d"(rt), "=a"(dummy): "a" (ra), "rm" (rb)); rt; })
  51. #elif defined(ARCH_ARMV4L)
  52. # define MULL(a, b) \
  53. ({ int lo, hi;\
  54. asm("smull %0, %1, %2, %3 \n\t"\
  55. "mov %0, %0, lsr %4\n\t"\
  56. "add %1, %0, %1, lsl %5\n\t"\
  57. : "=&r"(lo), "=&r"(hi)\
  58. : "r"(b), "r"(a), "i"(FRAC_BITS), "i"(32-FRAC_BITS));\
  59. hi; })
  60. # define MUL64(a,b) ((int64_t)(a) * (int64_t)(b))
  61. # define MULH(a, b) ({ int lo, hi; asm ("smull %0, %1, %2, %3" : "=&r"(lo), "=&r"(hi) : "r"(b), "r"(a)); hi; })
  62. #else
  63. # define MULL(a,b) (((int64_t)(a) * (int64_t)(b)) >> FRAC_BITS)
  64. # define MUL64(a,b) ((int64_t)(a) * (int64_t)(b))
  65. //#define MULH(a,b) (((int64_t)(a) * (int64_t)(b))>>32) //gcc 3.4 creates an incredibly bloated mess out of this
  66. static always_inline int MULH(int a, int b){
  67. return ((int64_t)(a) * (int64_t)(b))>>32;
  68. }
  69. #endif
  70. #define FIX(a) ((int)((a) * FRAC_ONE))
  71. /* WARNING: only correct for posititive numbers */
  72. #define FIXR(a) ((int)((a) * FRAC_ONE + 0.5))
  73. #define FRAC_RND(a) (((a) + (FRAC_ONE/2)) >> FRAC_BITS)
  74. #define FIXHR(a) ((int)((a) * (1LL<<32) + 0.5))
  75. /****************/
  76. #define HEADER_SIZE 4
  77. #define BACKSTEP_SIZE 512
  78. struct GranuleDef;
  79. typedef struct MPADecodeContext {
  80. uint8_t inbuf1[2][MPA_MAX_CODED_FRAME_SIZE + BACKSTEP_SIZE]; /* input buffer */
  81. int inbuf_index;
  82. uint8_t *inbuf_ptr, *inbuf;
  83. int frame_size;
  84. int free_format_frame_size; /* frame size in case of free format
  85. (zero if currently unknown) */
  86. /* next header (used in free format parsing) */
  87. uint32_t free_format_next_header;
  88. int error_protection;
  89. int layer;
  90. int sample_rate;
  91. int sample_rate_index; /* between 0 and 8 */
  92. int bit_rate;
  93. int old_frame_size;
  94. GetBitContext gb;
  95. int nb_channels;
  96. int mode;
  97. int mode_ext;
  98. int lsf;
  99. MPA_INT synth_buf[MPA_MAX_CHANNELS][512 * 2] __attribute__((aligned(16)));
  100. int synth_buf_offset[MPA_MAX_CHANNELS];
  101. int32_t sb_samples[MPA_MAX_CHANNELS][36][SBLIMIT] __attribute__((aligned(16)));
  102. int32_t mdct_buf[MPA_MAX_CHANNELS][SBLIMIT * 18]; /* previous samples, for layer 3 MDCT */
  103. #ifdef DEBUG
  104. int frame_count;
  105. #endif
  106. void (*compute_antialias)(struct MPADecodeContext *s, struct GranuleDef *g);
  107. int adu_mode; ///< 0 for standard mp3, 1 for adu formatted mp3
  108. unsigned int dither_state;
  109. } MPADecodeContext;
  110. /**
  111. * Context for MP3On4 decoder
  112. */
  113. typedef struct MP3On4DecodeContext {
  114. int frames; ///< number of mp3 frames per block (number of mp3 decoder instances)
  115. int chan_cfg; ///< channel config number
  116. MPADecodeContext *mp3decctx[5]; ///< MPADecodeContext for every decoder instance
  117. } MP3On4DecodeContext;
  118. /* layer 3 "granule" */
  119. typedef struct GranuleDef {
  120. uint8_t scfsi;
  121. int part2_3_length;
  122. int big_values;
  123. int global_gain;
  124. int scalefac_compress;
  125. uint8_t block_type;
  126. uint8_t switch_point;
  127. int table_select[3];
  128. int subblock_gain[3];
  129. uint8_t scalefac_scale;
  130. uint8_t count1table_select;
  131. int region_size[3]; /* number of huffman codes in each region */
  132. int preflag;
  133. int short_start, long_end; /* long/short band indexes */
  134. uint8_t scale_factors[40];
  135. int32_t sb_hybrid[SBLIMIT * 18]; /* 576 samples */
  136. } GranuleDef;
  137. #define MODE_EXT_MS_STEREO 2
  138. #define MODE_EXT_I_STEREO 1
  139. /* layer 3 huffman tables */
  140. typedef struct HuffTable {
  141. int xsize;
  142. const uint8_t *bits;
  143. const uint16_t *codes;
  144. } HuffTable;
  145. #include "mpegaudiodectab.h"
  146. static void compute_antialias_integer(MPADecodeContext *s, GranuleDef *g);
  147. static void compute_antialias_float(MPADecodeContext *s, GranuleDef *g);
  148. /* vlc structure for decoding layer 3 huffman tables */
  149. static VLC huff_vlc[16];
  150. static VLC huff_quad_vlc[2];
  151. /* computed from band_size_long */
  152. static uint16_t band_index_long[9][23];
  153. /* XXX: free when all decoders are closed */
  154. #define TABLE_4_3_SIZE (8191 + 16)*4
  155. static int8_t *table_4_3_exp;
  156. static uint32_t *table_4_3_value;
  157. static uint32_t exp_table[512];
  158. static uint32_t expval_table[512][16];
  159. /* intensity stereo coef table */
  160. static int32_t is_table[2][16];
  161. static int32_t is_table_lsf[2][2][16];
  162. static int32_t csa_table[8][4];
  163. static float csa_table_float[8][4];
  164. static int32_t mdct_win[8][36];
  165. /* lower 2 bits: modulo 3, higher bits: shift */
  166. static uint16_t scale_factor_modshift[64];
  167. /* [i][j]: 2^(-j/3) * FRAC_ONE * 2^(i+2) / (2^(i+2) - 1) */
  168. static int32_t scale_factor_mult[15][3];
  169. /* mult table for layer 2 group quantization */
  170. #define SCALE_GEN(v) \
  171. { FIXR(1.0 * (v)), FIXR(0.7937005259 * (v)), FIXR(0.6299605249 * (v)) }
  172. static const int32_t scale_factor_mult2[3][3] = {
  173. SCALE_GEN(4.0 / 3.0), /* 3 steps */
  174. SCALE_GEN(4.0 / 5.0), /* 5 steps */
  175. SCALE_GEN(4.0 / 9.0), /* 9 steps */
  176. };
  177. void ff_mpa_synth_init(MPA_INT *window);
  178. static MPA_INT window[512] __attribute__((aligned(16)));
  179. /* layer 1 unscaling */
  180. /* n = number of bits of the mantissa minus 1 */
  181. static inline int l1_unscale(int n, int mant, int scale_factor)
  182. {
  183. int shift, mod;
  184. int64_t val;
  185. shift = scale_factor_modshift[scale_factor];
  186. mod = shift & 3;
  187. shift >>= 2;
  188. val = MUL64(mant + (-1 << n) + 1, scale_factor_mult[n-1][mod]);
  189. shift += n;
  190. /* NOTE: at this point, 1 <= shift >= 21 + 15 */
  191. return (int)((val + (1LL << (shift - 1))) >> shift);
  192. }
  193. static inline int l2_unscale_group(int steps, int mant, int scale_factor)
  194. {
  195. int shift, mod, val;
  196. shift = scale_factor_modshift[scale_factor];
  197. mod = shift & 3;
  198. shift >>= 2;
  199. val = (mant - (steps >> 1)) * scale_factor_mult2[steps >> 2][mod];
  200. /* NOTE: at this point, 0 <= shift <= 21 */
  201. if (shift > 0)
  202. val = (val + (1 << (shift - 1))) >> shift;
  203. return val;
  204. }
  205. /* compute value^(4/3) * 2^(exponent/4). It normalized to FRAC_BITS */
  206. static inline int l3_unscale(int value, int exponent)
  207. {
  208. unsigned int m;
  209. int e;
  210. e = table_4_3_exp [4*value + (exponent&3)];
  211. m = table_4_3_value[4*value + (exponent&3)];
  212. e -= (exponent >> 2);
  213. assert(e>=1);
  214. if (e > 31)
  215. return 0;
  216. m = (m + (1 << (e-1))) >> e;
  217. return m;
  218. }
  219. /* all integer n^(4/3) computation code */
  220. #define DEV_ORDER 13
  221. #define POW_FRAC_BITS 24
  222. #define POW_FRAC_ONE (1 << POW_FRAC_BITS)
  223. #define POW_FIX(a) ((int)((a) * POW_FRAC_ONE))
  224. #define POW_MULL(a,b) (((int64_t)(a) * (int64_t)(b)) >> POW_FRAC_BITS)
  225. static int dev_4_3_coefs[DEV_ORDER];
  226. #if 0 /* unused */
  227. static int pow_mult3[3] = {
  228. POW_FIX(1.0),
  229. POW_FIX(1.25992104989487316476),
  230. POW_FIX(1.58740105196819947474),
  231. };
  232. #endif
  233. static void int_pow_init(void)
  234. {
  235. int i, a;
  236. a = POW_FIX(1.0);
  237. for(i=0;i<DEV_ORDER;i++) {
  238. a = POW_MULL(a, POW_FIX(4.0 / 3.0) - i * POW_FIX(1.0)) / (i + 1);
  239. dev_4_3_coefs[i] = a;
  240. }
  241. }
  242. #if 0 /* unused, remove? */
  243. /* return the mantissa and the binary exponent */
  244. static int int_pow(int i, int *exp_ptr)
  245. {
  246. int e, er, eq, j;
  247. int a, a1;
  248. /* renormalize */
  249. a = i;
  250. e = POW_FRAC_BITS;
  251. while (a < (1 << (POW_FRAC_BITS - 1))) {
  252. a = a << 1;
  253. e--;
  254. }
  255. a -= (1 << POW_FRAC_BITS);
  256. a1 = 0;
  257. for(j = DEV_ORDER - 1; j >= 0; j--)
  258. a1 = POW_MULL(a, dev_4_3_coefs[j] + a1);
  259. a = (1 << POW_FRAC_BITS) + a1;
  260. /* exponent compute (exact) */
  261. e = e * 4;
  262. er = e % 3;
  263. eq = e / 3;
  264. a = POW_MULL(a, pow_mult3[er]);
  265. while (a >= 2 * POW_FRAC_ONE) {
  266. a = a >> 1;
  267. eq++;
  268. }
  269. /* convert to float */
  270. while (a < POW_FRAC_ONE) {
  271. a = a << 1;
  272. eq--;
  273. }
  274. /* now POW_FRAC_ONE <= a < 2 * POW_FRAC_ONE */
  275. #if POW_FRAC_BITS > FRAC_BITS
  276. a = (a + (1 << (POW_FRAC_BITS - FRAC_BITS - 1))) >> (POW_FRAC_BITS - FRAC_BITS);
  277. /* correct overflow */
  278. if (a >= 2 * (1 << FRAC_BITS)) {
  279. a = a >> 1;
  280. eq++;
  281. }
  282. #endif
  283. *exp_ptr = eq;
  284. return a;
  285. }
  286. #endif
  287. static int decode_init(AVCodecContext * avctx)
  288. {
  289. MPADecodeContext *s = avctx->priv_data;
  290. static int init=0;
  291. int i, j, k;
  292. #if defined(USE_HIGHPRECISION) && defined(CONFIG_AUDIO_NONSHORT)
  293. avctx->sample_fmt= SAMPLE_FMT_S32;
  294. #else
  295. avctx->sample_fmt= SAMPLE_FMT_S16;
  296. #endif
  297. if(avctx->antialias_algo != FF_AA_FLOAT)
  298. s->compute_antialias= compute_antialias_integer;
  299. else
  300. s->compute_antialias= compute_antialias_float;
  301. if (!init && !avctx->parse_only) {
  302. /* scale factors table for layer 1/2 */
  303. for(i=0;i<64;i++) {
  304. int shift, mod;
  305. /* 1.0 (i = 3) is normalized to 2 ^ FRAC_BITS */
  306. shift = (i / 3);
  307. mod = i % 3;
  308. scale_factor_modshift[i] = mod | (shift << 2);
  309. }
  310. /* scale factor multiply for layer 1 */
  311. for(i=0;i<15;i++) {
  312. int n, norm;
  313. n = i + 2;
  314. norm = ((int64_t_C(1) << n) * FRAC_ONE) / ((1 << n) - 1);
  315. scale_factor_mult[i][0] = MULL(FIXR(1.0 * 2.0), norm);
  316. scale_factor_mult[i][1] = MULL(FIXR(0.7937005259 * 2.0), norm);
  317. scale_factor_mult[i][2] = MULL(FIXR(0.6299605249 * 2.0), norm);
  318. dprintf("%d: norm=%x s=%x %x %x\n",
  319. i, norm,
  320. scale_factor_mult[i][0],
  321. scale_factor_mult[i][1],
  322. scale_factor_mult[i][2]);
  323. }
  324. ff_mpa_synth_init(window);
  325. /* huffman decode tables */
  326. for(i=1;i<16;i++) {
  327. const HuffTable *h = &mpa_huff_tables[i];
  328. int xsize, x, y;
  329. unsigned int n;
  330. uint8_t tmp_bits [256];
  331. uint16_t tmp_codes[256];
  332. memset(tmp_bits , 0, sizeof(tmp_bits ));
  333. memset(tmp_codes, 0, sizeof(tmp_codes));
  334. xsize = h->xsize;
  335. n = xsize * xsize;
  336. j = 0;
  337. for(x=0;x<xsize;x++) {
  338. for(y=0;y<xsize;y++){
  339. tmp_bits [(x << 4) | y]= h->bits [j ];
  340. tmp_codes[(x << 4) | y]= h->codes[j++];
  341. }
  342. }
  343. /* XXX: fail test */
  344. init_vlc(&huff_vlc[i], 8, 256,
  345. tmp_bits, 1, 1, tmp_codes, 2, 2, 1);
  346. }
  347. for(i=0;i<2;i++) {
  348. init_vlc(&huff_quad_vlc[i], i == 0 ? 7 : 4, 16,
  349. mpa_quad_bits[i], 1, 1, mpa_quad_codes[i], 1, 1, 1);
  350. }
  351. for(i=0;i<9;i++) {
  352. k = 0;
  353. for(j=0;j<22;j++) {
  354. band_index_long[i][j] = k;
  355. k += band_size_long[i][j];
  356. }
  357. band_index_long[i][22] = k;
  358. }
  359. /* compute n ^ (4/3) and store it in mantissa/exp format */
  360. table_4_3_exp= av_mallocz_static(TABLE_4_3_SIZE * sizeof(table_4_3_exp[0]));
  361. if(!table_4_3_exp)
  362. return -1;
  363. table_4_3_value= av_mallocz_static(TABLE_4_3_SIZE * sizeof(table_4_3_value[0]));
  364. if(!table_4_3_value)
  365. return -1;
  366. int_pow_init();
  367. for(i=1;i<TABLE_4_3_SIZE;i++) {
  368. double f, fm;
  369. int e, m;
  370. f = pow((double)(i/4), 4.0 / 3.0) * pow(2, (i&3)*0.25);
  371. fm = frexp(f, &e);
  372. m = (uint32_t)(fm*(1LL<<31) + 0.5);
  373. e+= FRAC_BITS - 31 + 5;
  374. /* normalized to FRAC_BITS */
  375. table_4_3_value[i] = m;
  376. // av_log(NULL, AV_LOG_DEBUG, "%d %d %f\n", i, m, pow((double)i, 4.0 / 3.0));
  377. table_4_3_exp[i] = -e;
  378. }
  379. for(i=0; i<512*16; i++){
  380. int exponent= (i>>4)-400;
  381. double f= pow(i&15, 4.0 / 3.0) * pow(2, exponent*0.25 + FRAC_BITS + 5);
  382. expval_table[exponent+400][i&15]= lrintf(f);
  383. if((i&15)==1)
  384. exp_table[exponent+400]= lrintf(f);
  385. }
  386. for(i=0;i<7;i++) {
  387. float f;
  388. int v;
  389. if (i != 6) {
  390. f = tan((double)i * M_PI / 12.0);
  391. v = FIXR(f / (1.0 + f));
  392. } else {
  393. v = FIXR(1.0);
  394. }
  395. is_table[0][i] = v;
  396. is_table[1][6 - i] = v;
  397. }
  398. /* invalid values */
  399. for(i=7;i<16;i++)
  400. is_table[0][i] = is_table[1][i] = 0.0;
  401. for(i=0;i<16;i++) {
  402. double f;
  403. int e, k;
  404. for(j=0;j<2;j++) {
  405. e = -(j + 1) * ((i + 1) >> 1);
  406. f = pow(2.0, e / 4.0);
  407. k = i & 1;
  408. is_table_lsf[j][k ^ 1][i] = FIXR(f);
  409. is_table_lsf[j][k][i] = FIXR(1.0);
  410. dprintf("is_table_lsf %d %d: %x %x\n",
  411. i, j, is_table_lsf[j][0][i], is_table_lsf[j][1][i]);
  412. }
  413. }
  414. for(i=0;i<8;i++) {
  415. float ci, cs, ca;
  416. ci = ci_table[i];
  417. cs = 1.0 / sqrt(1.0 + ci * ci);
  418. ca = cs * ci;
  419. csa_table[i][0] = FIXHR(cs/4);
  420. csa_table[i][1] = FIXHR(ca/4);
  421. csa_table[i][2] = FIXHR(ca/4) + FIXHR(cs/4);
  422. csa_table[i][3] = FIXHR(ca/4) - FIXHR(cs/4);
  423. csa_table_float[i][0] = cs;
  424. csa_table_float[i][1] = ca;
  425. csa_table_float[i][2] = ca + cs;
  426. csa_table_float[i][3] = ca - cs;
  427. // printf("%d %d %d %d\n", FIX(cs), FIX(cs-1), FIX(ca), FIX(cs)-FIX(ca));
  428. // av_log(NULL, AV_LOG_DEBUG,"%f %f %f %f\n", cs, ca, ca+cs, ca-cs);
  429. }
  430. /* compute mdct windows */
  431. for(i=0;i<36;i++) {
  432. for(j=0; j<4; j++){
  433. double d;
  434. if(j==2 && i%3 != 1)
  435. continue;
  436. d= sin(M_PI * (i + 0.5) / 36.0);
  437. if(j==1){
  438. if (i>=30) d= 0;
  439. else if(i>=24) d= sin(M_PI * (i - 18 + 0.5) / 12.0);
  440. else if(i>=18) d= 1;
  441. }else if(j==3){
  442. if (i< 6) d= 0;
  443. else if(i< 12) d= sin(M_PI * (i - 6 + 0.5) / 12.0);
  444. else if(i< 18) d= 1;
  445. }
  446. //merge last stage of imdct into the window coefficients
  447. d*= 0.5 / cos(M_PI*(2*i + 19)/72);
  448. if(j==2)
  449. mdct_win[j][i/3] = FIXHR((d / (1<<5)));
  450. else
  451. mdct_win[j][i ] = FIXHR((d / (1<<5)));
  452. // av_log(NULL, AV_LOG_DEBUG, "%2d %d %f\n", i,j,d / (1<<5));
  453. }
  454. }
  455. /* NOTE: we do frequency inversion adter the MDCT by changing
  456. the sign of the right window coefs */
  457. for(j=0;j<4;j++) {
  458. for(i=0;i<36;i+=2) {
  459. mdct_win[j + 4][i] = mdct_win[j][i];
  460. mdct_win[j + 4][i + 1] = -mdct_win[j][i + 1];
  461. }
  462. }
  463. #if defined(DEBUG)
  464. for(j=0;j<8;j++) {
  465. av_log(avctx, AV_LOG_DEBUG, "win%d=\n", j);
  466. for(i=0;i<36;i++)
  467. av_log(avctx, AV_LOG_DEBUG, "%f, ", (double)mdct_win[j][i] / FRAC_ONE);
  468. av_log(avctx, AV_LOG_DEBUG, "\n");
  469. }
  470. #endif
  471. init = 1;
  472. }
  473. s->inbuf_index = 0;
  474. s->inbuf = &s->inbuf1[s->inbuf_index][BACKSTEP_SIZE];
  475. s->inbuf_ptr = s->inbuf;
  476. #ifdef DEBUG
  477. s->frame_count = 0;
  478. #endif
  479. if (avctx->codec_id == CODEC_ID_MP3ADU)
  480. s->adu_mode = 1;
  481. return 0;
  482. }
  483. /* tab[i][j] = 1.0 / (2.0 * cos(pi*(2*k+1) / 2^(6 - j))) */
  484. /* cos(i*pi/64) */
  485. #define COS0_0 FIXHR(0.50060299823519630134/2)
  486. #define COS0_1 FIXHR(0.50547095989754365998/2)
  487. #define COS0_2 FIXHR(0.51544730992262454697/2)
  488. #define COS0_3 FIXHR(0.53104259108978417447/2)
  489. #define COS0_4 FIXHR(0.55310389603444452782/2)
  490. #define COS0_5 FIXHR(0.58293496820613387367/2)
  491. #define COS0_6 FIXHR(0.62250412303566481615/2)
  492. #define COS0_7 FIXHR(0.67480834145500574602/2)
  493. #define COS0_8 FIXHR(0.74453627100229844977/2)
  494. #define COS0_9 FIXHR(0.83934964541552703873/2)
  495. #define COS0_10 FIXHR(0.97256823786196069369/2)
  496. #define COS0_11 FIXHR(1.16943993343288495515/4)
  497. #define COS0_12 FIXHR(1.48416461631416627724/4)
  498. #define COS0_13 FIXHR(2.05778100995341155085/8)
  499. #define COS0_14 FIXHR(3.40760841846871878570/8)
  500. #define COS0_15 FIXHR(10.19000812354805681150/32)
  501. #define COS1_0 FIXHR(0.50241928618815570551/2)
  502. #define COS1_1 FIXHR(0.52249861493968888062/2)
  503. #define COS1_2 FIXHR(0.56694403481635770368/2)
  504. #define COS1_3 FIXHR(0.64682178335999012954/2)
  505. #define COS1_4 FIXHR(0.78815462345125022473/2)
  506. #define COS1_5 FIXHR(1.06067768599034747134/4)
  507. #define COS1_6 FIXHR(1.72244709823833392782/4)
  508. #define COS1_7 FIXHR(5.10114861868916385802/16)
  509. #define COS2_0 FIXHR(0.50979557910415916894/2)
  510. #define COS2_1 FIXHR(0.60134488693504528054/2)
  511. #define COS2_2 FIXHR(0.89997622313641570463/2)
  512. #define COS2_3 FIXHR(2.56291544774150617881/8)
  513. #define COS3_0 FIXHR(0.54119610014619698439/2)
  514. #define COS3_1 FIXHR(1.30656296487637652785/4)
  515. #define COS4_0 FIXHR(0.70710678118654752439/2)
  516. /* butterfly operator */
  517. #define BF(a, b, c, s)\
  518. {\
  519. tmp0 = tab[a] + tab[b];\
  520. tmp1 = tab[a] - tab[b];\
  521. tab[a] = tmp0;\
  522. tab[b] = MULH(tmp1<<(s), c);\
  523. }
  524. #define BF1(a, b, c, d)\
  525. {\
  526. BF(a, b, COS4_0, 1);\
  527. BF(c, d,-COS4_0, 1);\
  528. tab[c] += tab[d];\
  529. }
  530. #define BF2(a, b, c, d)\
  531. {\
  532. BF(a, b, COS4_0, 1);\
  533. BF(c, d,-COS4_0, 1);\
  534. tab[c] += tab[d];\
  535. tab[a] += tab[c];\
  536. tab[c] += tab[b];\
  537. tab[b] += tab[d];\
  538. }
  539. #define ADD(a, b) tab[a] += tab[b]
  540. /* DCT32 without 1/sqrt(2) coef zero scaling. */
  541. static void dct32(int32_t *out, int32_t *tab)
  542. {
  543. int tmp0, tmp1;
  544. /* pass 1 */
  545. BF( 0, 31, COS0_0 , 1);
  546. BF(15, 16, COS0_15, 5);
  547. /* pass 2 */
  548. BF( 0, 15, COS1_0 , 1);
  549. BF(16, 31,-COS1_0 , 1);
  550. /* pass 1 */
  551. BF( 7, 24, COS0_7 , 1);
  552. BF( 8, 23, COS0_8 , 1);
  553. /* pass 2 */
  554. BF( 7, 8, COS1_7 , 4);
  555. BF(23, 24,-COS1_7 , 4);
  556. /* pass 3 */
  557. BF( 0, 7, COS2_0 , 1);
  558. BF( 8, 15,-COS2_0 , 1);
  559. BF(16, 23, COS2_0 , 1);
  560. BF(24, 31,-COS2_0 , 1);
  561. /* pass 1 */
  562. BF( 3, 28, COS0_3 , 1);
  563. BF(12, 19, COS0_12, 2);
  564. /* pass 2 */
  565. BF( 3, 12, COS1_3 , 1);
  566. BF(19, 28,-COS1_3 , 1);
  567. /* pass 1 */
  568. BF( 4, 27, COS0_4 , 1);
  569. BF(11, 20, COS0_11, 2);
  570. /* pass 2 */
  571. BF( 4, 11, COS1_4 , 1);
  572. BF(20, 27,-COS1_4 , 1);
  573. /* pass 3 */
  574. BF( 3, 4, COS2_3 , 3);
  575. BF(11, 12,-COS2_3 , 3);
  576. BF(19, 20, COS2_3 , 3);
  577. BF(27, 28,-COS2_3 , 3);
  578. /* pass 4 */
  579. BF( 0, 3, COS3_0 , 1);
  580. BF( 4, 7,-COS3_0 , 1);
  581. BF( 8, 11, COS3_0 , 1);
  582. BF(12, 15,-COS3_0 , 1);
  583. BF(16, 19, COS3_0 , 1);
  584. BF(20, 23,-COS3_0 , 1);
  585. BF(24, 27, COS3_0 , 1);
  586. BF(28, 31,-COS3_0 , 1);
  587. /* pass 1 */
  588. BF( 1, 30, COS0_1 , 1);
  589. BF(14, 17, COS0_14, 3);
  590. /* pass 2 */
  591. BF( 1, 14, COS1_1 , 1);
  592. BF(17, 30,-COS1_1 , 1);
  593. /* pass 1 */
  594. BF( 6, 25, COS0_6 , 1);
  595. BF( 9, 22, COS0_9 , 1);
  596. /* pass 2 */
  597. BF( 6, 9, COS1_6 , 2);
  598. BF(22, 25,-COS1_6 , 2);
  599. /* pass 3 */
  600. BF( 1, 6, COS2_1 , 1);
  601. BF( 9, 14,-COS2_1 , 1);
  602. BF(17, 22, COS2_1 , 1);
  603. BF(25, 30,-COS2_1 , 1);
  604. /* pass 1 */
  605. BF( 2, 29, COS0_2 , 1);
  606. BF(13, 18, COS0_13, 3);
  607. /* pass 2 */
  608. BF( 2, 13, COS1_2 , 1);
  609. BF(18, 29,-COS1_2 , 1);
  610. /* pass 1 */
  611. BF( 5, 26, COS0_5 , 1);
  612. BF(10, 21, COS0_10, 1);
  613. /* pass 2 */
  614. BF( 5, 10, COS1_5 , 2);
  615. BF(21, 26,-COS1_5 , 2);
  616. /* pass 3 */
  617. BF( 2, 5, COS2_2 , 1);
  618. BF(10, 13,-COS2_2 , 1);
  619. BF(18, 21, COS2_2 , 1);
  620. BF(26, 29,-COS2_2 , 1);
  621. /* pass 4 */
  622. BF( 1, 2, COS3_1 , 2);
  623. BF( 5, 6,-COS3_1 , 2);
  624. BF( 9, 10, COS3_1 , 2);
  625. BF(13, 14,-COS3_1 , 2);
  626. BF(17, 18, COS3_1 , 2);
  627. BF(21, 22,-COS3_1 , 2);
  628. BF(25, 26, COS3_1 , 2);
  629. BF(29, 30,-COS3_1 , 2);
  630. /* pass 5 */
  631. BF1( 0, 1, 2, 3);
  632. BF2( 4, 5, 6, 7);
  633. BF1( 8, 9, 10, 11);
  634. BF2(12, 13, 14, 15);
  635. BF1(16, 17, 18, 19);
  636. BF2(20, 21, 22, 23);
  637. BF1(24, 25, 26, 27);
  638. BF2(28, 29, 30, 31);
  639. /* pass 6 */
  640. ADD( 8, 12);
  641. ADD(12, 10);
  642. ADD(10, 14);
  643. ADD(14, 9);
  644. ADD( 9, 13);
  645. ADD(13, 11);
  646. ADD(11, 15);
  647. out[ 0] = tab[0];
  648. out[16] = tab[1];
  649. out[ 8] = tab[2];
  650. out[24] = tab[3];
  651. out[ 4] = tab[4];
  652. out[20] = tab[5];
  653. out[12] = tab[6];
  654. out[28] = tab[7];
  655. out[ 2] = tab[8];
  656. out[18] = tab[9];
  657. out[10] = tab[10];
  658. out[26] = tab[11];
  659. out[ 6] = tab[12];
  660. out[22] = tab[13];
  661. out[14] = tab[14];
  662. out[30] = tab[15];
  663. ADD(24, 28);
  664. ADD(28, 26);
  665. ADD(26, 30);
  666. ADD(30, 25);
  667. ADD(25, 29);
  668. ADD(29, 27);
  669. ADD(27, 31);
  670. out[ 1] = tab[16] + tab[24];
  671. out[17] = tab[17] + tab[25];
  672. out[ 9] = tab[18] + tab[26];
  673. out[25] = tab[19] + tab[27];
  674. out[ 5] = tab[20] + tab[28];
  675. out[21] = tab[21] + tab[29];
  676. out[13] = tab[22] + tab[30];
  677. out[29] = tab[23] + tab[31];
  678. out[ 3] = tab[24] + tab[20];
  679. out[19] = tab[25] + tab[21];
  680. out[11] = tab[26] + tab[22];
  681. out[27] = tab[27] + tab[23];
  682. out[ 7] = tab[28] + tab[18];
  683. out[23] = tab[29] + tab[19];
  684. out[15] = tab[30] + tab[17];
  685. out[31] = tab[31];
  686. }
  687. #if FRAC_BITS <= 15
  688. static inline int round_sample(int *sum)
  689. {
  690. int sum1;
  691. sum1 = (*sum) >> OUT_SHIFT;
  692. *sum &= (1<<OUT_SHIFT)-1;
  693. if (sum1 < OUT_MIN)
  694. sum1 = OUT_MIN;
  695. else if (sum1 > OUT_MAX)
  696. sum1 = OUT_MAX;
  697. return sum1;
  698. }
  699. # if defined(ARCH_POWERPC_405)
  700. /* signed 16x16 -> 32 multiply add accumulate */
  701. # define MACS(rt, ra, rb) \
  702. asm ("maclhw %0, %2, %3" : "=r" (rt) : "0" (rt), "r" (ra), "r" (rb));
  703. /* signed 16x16 -> 32 multiply */
  704. # define MULS(ra, rb) \
  705. ({ int __rt; asm ("mullhw %0, %1, %2" : "=r" (__rt) : "r" (ra), "r" (rb)); __rt; })
  706. # else
  707. /* signed 16x16 -> 32 multiply add accumulate */
  708. # define MACS(rt, ra, rb) rt += (ra) * (rb)
  709. /* signed 16x16 -> 32 multiply */
  710. # define MULS(ra, rb) ((ra) * (rb))
  711. # endif
  712. #else
  713. static inline int round_sample(int64_t *sum)
  714. {
  715. int sum1;
  716. sum1 = (int)((*sum) >> OUT_SHIFT);
  717. *sum &= (1<<OUT_SHIFT)-1;
  718. if (sum1 < OUT_MIN)
  719. sum1 = OUT_MIN;
  720. else if (sum1 > OUT_MAX)
  721. sum1 = OUT_MAX;
  722. return sum1;
  723. }
  724. # define MULS(ra, rb) MUL64(ra, rb)
  725. #endif
  726. #define SUM8(sum, op, w, p) \
  727. { \
  728. sum op MULS((w)[0 * 64], p[0 * 64]);\
  729. sum op MULS((w)[1 * 64], p[1 * 64]);\
  730. sum op MULS((w)[2 * 64], p[2 * 64]);\
  731. sum op MULS((w)[3 * 64], p[3 * 64]);\
  732. sum op MULS((w)[4 * 64], p[4 * 64]);\
  733. sum op MULS((w)[5 * 64], p[5 * 64]);\
  734. sum op MULS((w)[6 * 64], p[6 * 64]);\
  735. sum op MULS((w)[7 * 64], p[7 * 64]);\
  736. }
  737. #define SUM8P2(sum1, op1, sum2, op2, w1, w2, p) \
  738. { \
  739. int tmp;\
  740. tmp = p[0 * 64];\
  741. sum1 op1 MULS((w1)[0 * 64], tmp);\
  742. sum2 op2 MULS((w2)[0 * 64], tmp);\
  743. tmp = p[1 * 64];\
  744. sum1 op1 MULS((w1)[1 * 64], tmp);\
  745. sum2 op2 MULS((w2)[1 * 64], tmp);\
  746. tmp = p[2 * 64];\
  747. sum1 op1 MULS((w1)[2 * 64], tmp);\
  748. sum2 op2 MULS((w2)[2 * 64], tmp);\
  749. tmp = p[3 * 64];\
  750. sum1 op1 MULS((w1)[3 * 64], tmp);\
  751. sum2 op2 MULS((w2)[3 * 64], tmp);\
  752. tmp = p[4 * 64];\
  753. sum1 op1 MULS((w1)[4 * 64], tmp);\
  754. sum2 op2 MULS((w2)[4 * 64], tmp);\
  755. tmp = p[5 * 64];\
  756. sum1 op1 MULS((w1)[5 * 64], tmp);\
  757. sum2 op2 MULS((w2)[5 * 64], tmp);\
  758. tmp = p[6 * 64];\
  759. sum1 op1 MULS((w1)[6 * 64], tmp);\
  760. sum2 op2 MULS((w2)[6 * 64], tmp);\
  761. tmp = p[7 * 64];\
  762. sum1 op1 MULS((w1)[7 * 64], tmp);\
  763. sum2 op2 MULS((w2)[7 * 64], tmp);\
  764. }
  765. void ff_mpa_synth_init(MPA_INT *window)
  766. {
  767. int i;
  768. /* max = 18760, max sum over all 16 coefs : 44736 */
  769. for(i=0;i<257;i++) {
  770. int v;
  771. v = mpa_enwindow[i];
  772. #if WFRAC_BITS < 16
  773. v = (v + (1 << (16 - WFRAC_BITS - 1))) >> (16 - WFRAC_BITS);
  774. #endif
  775. window[i] = v;
  776. if ((i & 63) != 0)
  777. v = -v;
  778. if (i != 0)
  779. window[512 - i] = v;
  780. }
  781. }
  782. /* 32 sub band synthesis filter. Input: 32 sub band samples, Output:
  783. 32 samples. */
  784. /* XXX: optimize by avoiding ring buffer usage */
  785. void ff_mpa_synth_filter(MPA_INT *synth_buf_ptr, int *synth_buf_offset,
  786. MPA_INT *window, int *dither_state,
  787. OUT_INT *samples, int incr,
  788. int32_t sb_samples[SBLIMIT])
  789. {
  790. int32_t tmp[32];
  791. register MPA_INT *synth_buf;
  792. register const MPA_INT *w, *w2, *p;
  793. int j, offset, v;
  794. OUT_INT *samples2;
  795. #if FRAC_BITS <= 15
  796. int sum, sum2;
  797. #else
  798. int64_t sum, sum2;
  799. #endif
  800. dct32(tmp, sb_samples);
  801. offset = *synth_buf_offset;
  802. synth_buf = synth_buf_ptr + offset;
  803. for(j=0;j<32;j++) {
  804. v = tmp[j];
  805. #if FRAC_BITS <= 15
  806. /* NOTE: can cause a loss in precision if very high amplitude
  807. sound */
  808. if (v > 32767)
  809. v = 32767;
  810. else if (v < -32768)
  811. v = -32768;
  812. #endif
  813. synth_buf[j] = v;
  814. }
  815. /* copy to avoid wrap */
  816. memcpy(synth_buf + 512, synth_buf, 32 * sizeof(MPA_INT));
  817. samples2 = samples + 31 * incr;
  818. w = window;
  819. w2 = window + 31;
  820. sum = *dither_state;
  821. p = synth_buf + 16;
  822. SUM8(sum, +=, w, p);
  823. p = synth_buf + 48;
  824. SUM8(sum, -=, w + 32, p);
  825. *samples = round_sample(&sum);
  826. samples += incr;
  827. w++;
  828. /* we calculate two samples at the same time to avoid one memory
  829. access per two sample */
  830. for(j=1;j<16;j++) {
  831. sum2 = 0;
  832. p = synth_buf + 16 + j;
  833. SUM8P2(sum, +=, sum2, -=, w, w2, p);
  834. p = synth_buf + 48 - j;
  835. SUM8P2(sum, -=, sum2, -=, w + 32, w2 + 32, p);
  836. *samples = round_sample(&sum);
  837. samples += incr;
  838. sum += sum2;
  839. *samples2 = round_sample(&sum);
  840. samples2 -= incr;
  841. w++;
  842. w2--;
  843. }
  844. p = synth_buf + 32;
  845. SUM8(sum, -=, w + 32, p);
  846. *samples = round_sample(&sum);
  847. *dither_state= sum;
  848. offset = (offset - 32) & 511;
  849. *synth_buf_offset = offset;
  850. }
  851. #define C3 FIXHR(0.86602540378443864676/2)
  852. /* 0.5 / cos(pi*(2*i+1)/36) */
  853. static const int icos36[9] = {
  854. FIXR(0.50190991877167369479),
  855. FIXR(0.51763809020504152469), //0
  856. FIXR(0.55168895948124587824),
  857. FIXR(0.61038729438072803416),
  858. FIXR(0.70710678118654752439), //1
  859. FIXR(0.87172339781054900991),
  860. FIXR(1.18310079157624925896),
  861. FIXR(1.93185165257813657349), //2
  862. FIXR(5.73685662283492756461),
  863. };
  864. /* 0.5 / cos(pi*(2*i+1)/36) */
  865. static const int icos36h[9] = {
  866. FIXHR(0.50190991877167369479/2),
  867. FIXHR(0.51763809020504152469/2), //0
  868. FIXHR(0.55168895948124587824/2),
  869. FIXHR(0.61038729438072803416/2),
  870. FIXHR(0.70710678118654752439/2), //1
  871. FIXHR(0.87172339781054900991/2),
  872. FIXHR(1.18310079157624925896/4),
  873. FIXHR(1.93185165257813657349/4), //2
  874. // FIXHR(5.73685662283492756461),
  875. };
  876. /* 12 points IMDCT. We compute it "by hand" by factorizing obvious
  877. cases. */
  878. static void imdct12(int *out, int *in)
  879. {
  880. int in0, in1, in2, in3, in4, in5, t1, t2;
  881. in0= in[0*3];
  882. in1= in[1*3] + in[0*3];
  883. in2= in[2*3] + in[1*3];
  884. in3= in[3*3] + in[2*3];
  885. in4= in[4*3] + in[3*3];
  886. in5= in[5*3] + in[4*3];
  887. in5 += in3;
  888. in3 += in1;
  889. in2= MULH(2*in2, C3);
  890. in3= MULH(4*in3, C3);
  891. t1 = in0 - in4;
  892. t2 = MULH(2*(in1 - in5), icos36h[4]);
  893. out[ 7]=
  894. out[10]= t1 + t2;
  895. out[ 1]=
  896. out[ 4]= t1 - t2;
  897. in0 += in4>>1;
  898. in4 = in0 + in2;
  899. in5 += 2*in1;
  900. in1 = MULH(in5 + in3, icos36h[1]);
  901. out[ 8]=
  902. out[ 9]= in4 + in1;
  903. out[ 2]=
  904. out[ 3]= in4 - in1;
  905. in0 -= in2;
  906. in5 = MULH(2*(in5 - in3), icos36h[7]);
  907. out[ 0]=
  908. out[ 5]= in0 - in5;
  909. out[ 6]=
  910. out[11]= in0 + in5;
  911. }
  912. /* cos(pi*i/18) */
  913. #define C1 FIXHR(0.98480775301220805936/2)
  914. #define C2 FIXHR(0.93969262078590838405/2)
  915. #define C3 FIXHR(0.86602540378443864676/2)
  916. #define C4 FIXHR(0.76604444311897803520/2)
  917. #define C5 FIXHR(0.64278760968653932632/2)
  918. #define C6 FIXHR(0.5/2)
  919. #define C7 FIXHR(0.34202014332566873304/2)
  920. #define C8 FIXHR(0.17364817766693034885/2)
  921. /* using Lee like decomposition followed by hand coded 9 points DCT */
  922. static void imdct36(int *out, int *buf, int *in, int *win)
  923. {
  924. int i, j, t0, t1, t2, t3, s0, s1, s2, s3;
  925. int tmp[18], *tmp1, *in1;
  926. for(i=17;i>=1;i--)
  927. in[i] += in[i-1];
  928. for(i=17;i>=3;i-=2)
  929. in[i] += in[i-2];
  930. for(j=0;j<2;j++) {
  931. tmp1 = tmp + j;
  932. in1 = in + j;
  933. #if 0
  934. //more accurate but slower
  935. int64_t t0, t1, t2, t3;
  936. t2 = in1[2*4] + in1[2*8] - in1[2*2];
  937. t3 = (in1[2*0] + (int64_t)(in1[2*6]>>1))<<32;
  938. t1 = in1[2*0] - in1[2*6];
  939. tmp1[ 6] = t1 - (t2>>1);
  940. tmp1[16] = t1 + t2;
  941. t0 = MUL64(2*(in1[2*2] + in1[2*4]), C2);
  942. t1 = MUL64( in1[2*4] - in1[2*8] , -2*C8);
  943. t2 = MUL64(2*(in1[2*2] + in1[2*8]), -C4);
  944. tmp1[10] = (t3 - t0 - t2) >> 32;
  945. tmp1[ 2] = (t3 + t0 + t1) >> 32;
  946. tmp1[14] = (t3 + t2 - t1) >> 32;
  947. tmp1[ 4] = MULH(2*(in1[2*5] + in1[2*7] - in1[2*1]), -C3);
  948. t2 = MUL64(2*(in1[2*1] + in1[2*5]), C1);
  949. t3 = MUL64( in1[2*5] - in1[2*7] , -2*C7);
  950. t0 = MUL64(2*in1[2*3], C3);
  951. t1 = MUL64(2*(in1[2*1] + in1[2*7]), -C5);
  952. tmp1[ 0] = (t2 + t3 + t0) >> 32;
  953. tmp1[12] = (t2 + t1 - t0) >> 32;
  954. tmp1[ 8] = (t3 - t1 - t0) >> 32;
  955. #else
  956. t2 = in1[2*4] + in1[2*8] - in1[2*2];
  957. t3 = in1[2*0] + (in1[2*6]>>1);
  958. t1 = in1[2*0] - in1[2*6];
  959. tmp1[ 6] = t1 - (t2>>1);
  960. tmp1[16] = t1 + t2;
  961. t0 = MULH(2*(in1[2*2] + in1[2*4]), C2);
  962. t1 = MULH( in1[2*4] - in1[2*8] , -2*C8);
  963. t2 = MULH(2*(in1[2*2] + in1[2*8]), -C4);
  964. tmp1[10] = t3 - t0 - t2;
  965. tmp1[ 2] = t3 + t0 + t1;
  966. tmp1[14] = t3 + t2 - t1;
  967. tmp1[ 4] = MULH(2*(in1[2*5] + in1[2*7] - in1[2*1]), -C3);
  968. t2 = MULH(2*(in1[2*1] + in1[2*5]), C1);
  969. t3 = MULH( in1[2*5] - in1[2*7] , -2*C7);
  970. t0 = MULH(2*in1[2*3], C3);
  971. t1 = MULH(2*(in1[2*1] + in1[2*7]), -C5);
  972. tmp1[ 0] = t2 + t3 + t0;
  973. tmp1[12] = t2 + t1 - t0;
  974. tmp1[ 8] = t3 - t1 - t0;
  975. #endif
  976. }
  977. i = 0;
  978. for(j=0;j<4;j++) {
  979. t0 = tmp[i];
  980. t1 = tmp[i + 2];
  981. s0 = t1 + t0;
  982. s2 = t1 - t0;
  983. t2 = tmp[i + 1];
  984. t3 = tmp[i + 3];
  985. s1 = MULH(2*(t3 + t2), icos36h[j]);
  986. s3 = MULL(t3 - t2, icos36[8 - j]);
  987. t0 = s0 + s1;
  988. t1 = s0 - s1;
  989. out[(9 + j)*SBLIMIT] = MULH(t1, win[9 + j]) + buf[9 + j];
  990. out[(8 - j)*SBLIMIT] = MULH(t1, win[8 - j]) + buf[8 - j];
  991. buf[9 + j] = MULH(t0, win[18 + 9 + j]);
  992. buf[8 - j] = MULH(t0, win[18 + 8 - j]);
  993. t0 = s2 + s3;
  994. t1 = s2 - s3;
  995. out[(9 + 8 - j)*SBLIMIT] = MULH(t1, win[9 + 8 - j]) + buf[9 + 8 - j];
  996. out[( j)*SBLIMIT] = MULH(t1, win[ j]) + buf[ j];
  997. buf[9 + 8 - j] = MULH(t0, win[18 + 9 + 8 - j]);
  998. buf[ + j] = MULH(t0, win[18 + j]);
  999. i += 4;
  1000. }
  1001. s0 = tmp[16];
  1002. s1 = MULH(2*tmp[17], icos36h[4]);
  1003. t0 = s0 + s1;
  1004. t1 = s0 - s1;
  1005. out[(9 + 4)*SBLIMIT] = MULH(t1, win[9 + 4]) + buf[9 + 4];
  1006. out[(8 - 4)*SBLIMIT] = MULH(t1, win[8 - 4]) + buf[8 - 4];
  1007. buf[9 + 4] = MULH(t0, win[18 + 9 + 4]);
  1008. buf[8 - 4] = MULH(t0, win[18 + 8 - 4]);
  1009. }
  1010. /* header decoding. MUST check the header before because no
  1011. consistency check is done there. Return 1 if free format found and
  1012. that the frame size must be computed externally */
  1013. static int decode_header(MPADecodeContext *s, uint32_t header)
  1014. {
  1015. int sample_rate, frame_size, mpeg25, padding;
  1016. int sample_rate_index, bitrate_index;
  1017. if (header & (1<<20)) {
  1018. s->lsf = (header & (1<<19)) ? 0 : 1;
  1019. mpeg25 = 0;
  1020. } else {
  1021. s->lsf = 1;
  1022. mpeg25 = 1;
  1023. }
  1024. s->layer = 4 - ((header >> 17) & 3);
  1025. /* extract frequency */
  1026. sample_rate_index = (header >> 10) & 3;
  1027. sample_rate = mpa_freq_tab[sample_rate_index] >> (s->lsf + mpeg25);
  1028. sample_rate_index += 3 * (s->lsf + mpeg25);
  1029. s->sample_rate_index = sample_rate_index;
  1030. s->error_protection = ((header >> 16) & 1) ^ 1;
  1031. s->sample_rate = sample_rate;
  1032. bitrate_index = (header >> 12) & 0xf;
  1033. padding = (header >> 9) & 1;
  1034. //extension = (header >> 8) & 1;
  1035. s->mode = (header >> 6) & 3;
  1036. s->mode_ext = (header >> 4) & 3;
  1037. //copyright = (header >> 3) & 1;
  1038. //original = (header >> 2) & 1;
  1039. //emphasis = header & 3;
  1040. if (s->mode == MPA_MONO)
  1041. s->nb_channels = 1;
  1042. else
  1043. s->nb_channels = 2;
  1044. if (bitrate_index != 0) {
  1045. frame_size = mpa_bitrate_tab[s->lsf][s->layer - 1][bitrate_index];
  1046. s->bit_rate = frame_size * 1000;
  1047. switch(s->layer) {
  1048. case 1:
  1049. frame_size = (frame_size * 12000) / sample_rate;
  1050. frame_size = (frame_size + padding) * 4;
  1051. break;
  1052. case 2:
  1053. frame_size = (frame_size * 144000) / sample_rate;
  1054. frame_size += padding;
  1055. break;
  1056. default:
  1057. case 3:
  1058. frame_size = (frame_size * 144000) / (sample_rate << s->lsf);
  1059. frame_size += padding;
  1060. break;
  1061. }
  1062. s->frame_size = frame_size;
  1063. } else {
  1064. /* if no frame size computed, signal it */
  1065. if (!s->free_format_frame_size)
  1066. return 1;
  1067. /* free format: compute bitrate and real frame size from the
  1068. frame size we extracted by reading the bitstream */
  1069. s->frame_size = s->free_format_frame_size;
  1070. switch(s->layer) {
  1071. case 1:
  1072. s->frame_size += padding * 4;
  1073. s->bit_rate = (s->frame_size * sample_rate) / 48000;
  1074. break;
  1075. case 2:
  1076. s->frame_size += padding;
  1077. s->bit_rate = (s->frame_size * sample_rate) / 144000;
  1078. break;
  1079. default:
  1080. case 3:
  1081. s->frame_size += padding;
  1082. s->bit_rate = (s->frame_size * (sample_rate << s->lsf)) / 144000;
  1083. break;
  1084. }
  1085. }
  1086. #if defined(DEBUG)
  1087. dprintf("layer%d, %d Hz, %d kbits/s, ",
  1088. s->layer, s->sample_rate, s->bit_rate);
  1089. if (s->nb_channels == 2) {
  1090. if (s->layer == 3) {
  1091. if (s->mode_ext & MODE_EXT_MS_STEREO)
  1092. dprintf("ms-");
  1093. if (s->mode_ext & MODE_EXT_I_STEREO)
  1094. dprintf("i-");
  1095. }
  1096. dprintf("stereo");
  1097. } else {
  1098. dprintf("mono");
  1099. }
  1100. dprintf("\n");
  1101. #endif
  1102. return 0;
  1103. }
  1104. /* useful helper to get mpeg audio stream infos. Return -1 if error in
  1105. header, otherwise the coded frame size in bytes */
  1106. int mpa_decode_header(AVCodecContext *avctx, uint32_t head)
  1107. {
  1108. MPADecodeContext s1, *s = &s1;
  1109. memset( s, 0, sizeof(MPADecodeContext) );
  1110. if (ff_mpa_check_header(head) != 0)
  1111. return -1;
  1112. if (decode_header(s, head) != 0) {
  1113. return -1;
  1114. }
  1115. switch(s->layer) {
  1116. case 1:
  1117. avctx->frame_size = 384;
  1118. break;
  1119. case 2:
  1120. avctx->frame_size = 1152;
  1121. break;
  1122. default:
  1123. case 3:
  1124. if (s->lsf)
  1125. avctx->frame_size = 576;
  1126. else
  1127. avctx->frame_size = 1152;
  1128. break;
  1129. }
  1130. avctx->sample_rate = s->sample_rate;
  1131. avctx->channels = s->nb_channels;
  1132. avctx->bit_rate = s->bit_rate;
  1133. avctx->sub_id = s->layer;
  1134. return s->frame_size;
  1135. }
  1136. /* return the number of decoded frames */
  1137. static int mp_decode_layer1(MPADecodeContext *s)
  1138. {
  1139. int bound, i, v, n, ch, j, mant;
  1140. uint8_t allocation[MPA_MAX_CHANNELS][SBLIMIT];
  1141. uint8_t scale_factors[MPA_MAX_CHANNELS][SBLIMIT];
  1142. if (s->mode == MPA_JSTEREO)
  1143. bound = (s->mode_ext + 1) * 4;
  1144. else
  1145. bound = SBLIMIT;
  1146. /* allocation bits */
  1147. for(i=0;i<bound;i++) {
  1148. for(ch=0;ch<s->nb_channels;ch++) {
  1149. allocation[ch][i] = get_bits(&s->gb, 4);
  1150. }
  1151. }
  1152. for(i=bound;i<SBLIMIT;i++) {
  1153. allocation[0][i] = get_bits(&s->gb, 4);
  1154. }
  1155. /* scale factors */
  1156. for(i=0;i<bound;i++) {
  1157. for(ch=0;ch<s->nb_channels;ch++) {
  1158. if (allocation[ch][i])
  1159. scale_factors[ch][i] = get_bits(&s->gb, 6);
  1160. }
  1161. }
  1162. for(i=bound;i<SBLIMIT;i++) {
  1163. if (allocation[0][i]) {
  1164. scale_factors[0][i] = get_bits(&s->gb, 6);
  1165. scale_factors[1][i] = get_bits(&s->gb, 6);
  1166. }
  1167. }
  1168. /* compute samples */
  1169. for(j=0;j<12;j++) {
  1170. for(i=0;i<bound;i++) {
  1171. for(ch=0;ch<s->nb_channels;ch++) {
  1172. n = allocation[ch][i];
  1173. if (n) {
  1174. mant = get_bits(&s->gb, n + 1);
  1175. v = l1_unscale(n, mant, scale_factors[ch][i]);
  1176. } else {
  1177. v = 0;
  1178. }
  1179. s->sb_samples[ch][j][i] = v;
  1180. }
  1181. }
  1182. for(i=bound;i<SBLIMIT;i++) {
  1183. n = allocation[0][i];
  1184. if (n) {
  1185. mant = get_bits(&s->gb, n + 1);
  1186. v = l1_unscale(n, mant, scale_factors[0][i]);
  1187. s->sb_samples[0][j][i] = v;
  1188. v = l1_unscale(n, mant, scale_factors[1][i]);
  1189. s->sb_samples[1][j][i] = v;
  1190. } else {
  1191. s->sb_samples[0][j][i] = 0;
  1192. s->sb_samples[1][j][i] = 0;
  1193. }
  1194. }
  1195. }
  1196. return 12;
  1197. }
  1198. /* bitrate is in kb/s */
  1199. int l2_select_table(int bitrate, int nb_channels, int freq, int lsf)
  1200. {
  1201. int ch_bitrate, table;
  1202. ch_bitrate = bitrate / nb_channels;
  1203. if (!lsf) {
  1204. if ((freq == 48000 && ch_bitrate >= 56) ||
  1205. (ch_bitrate >= 56 && ch_bitrate <= 80))
  1206. table = 0;
  1207. else if (freq != 48000 && ch_bitrate >= 96)
  1208. table = 1;
  1209. else if (freq != 32000 && ch_bitrate <= 48)
  1210. table = 2;
  1211. else
  1212. table = 3;
  1213. } else {
  1214. table = 4;
  1215. }
  1216. return table;
  1217. }
  1218. static int mp_decode_layer2(MPADecodeContext *s)
  1219. {
  1220. int sblimit; /* number of used subbands */
  1221. const unsigned char *alloc_table;
  1222. int table, bit_alloc_bits, i, j, ch, bound, v;
  1223. unsigned char bit_alloc[MPA_MAX_CHANNELS][SBLIMIT];
  1224. unsigned char scale_code[MPA_MAX_CHANNELS][SBLIMIT];
  1225. unsigned char scale_factors[MPA_MAX_CHANNELS][SBLIMIT][3], *sf;
  1226. int scale, qindex, bits, steps, k, l, m, b;
  1227. /* select decoding table */
  1228. table = l2_select_table(s->bit_rate / 1000, s->nb_channels,
  1229. s->sample_rate, s->lsf);
  1230. sblimit = sblimit_table[table];
  1231. alloc_table = alloc_tables[table];
  1232. if (s->mode == MPA_JSTEREO)
  1233. bound = (s->mode_ext + 1) * 4;
  1234. else
  1235. bound = sblimit;
  1236. dprintf("bound=%d sblimit=%d\n", bound, sblimit);
  1237. /* sanity check */
  1238. if( bound > sblimit ) bound = sblimit;
  1239. /* parse bit allocation */
  1240. j = 0;
  1241. for(i=0;i<bound;i++) {
  1242. bit_alloc_bits = alloc_table[j];
  1243. for(ch=0;ch<s->nb_channels;ch++) {
  1244. bit_alloc[ch][i] = get_bits(&s->gb, bit_alloc_bits);
  1245. }
  1246. j += 1 << bit_alloc_bits;
  1247. }
  1248. for(i=bound;i<sblimit;i++) {
  1249. bit_alloc_bits = alloc_table[j];
  1250. v = get_bits(&s->gb, bit_alloc_bits);
  1251. bit_alloc[0][i] = v;
  1252. bit_alloc[1][i] = v;
  1253. j += 1 << bit_alloc_bits;
  1254. }
  1255. #ifdef DEBUG
  1256. {
  1257. for(ch=0;ch<s->nb_channels;ch++) {
  1258. for(i=0;i<sblimit;i++)
  1259. dprintf(" %d", bit_alloc[ch][i]);
  1260. dprintf("\n");
  1261. }
  1262. }
  1263. #endif
  1264. /* scale codes */
  1265. for(i=0;i<sblimit;i++) {
  1266. for(ch=0;ch<s->nb_channels;ch++) {
  1267. if (bit_alloc[ch][i])
  1268. scale_code[ch][i] = get_bits(&s->gb, 2);
  1269. }
  1270. }
  1271. /* scale factors */
  1272. for(i=0;i<sblimit;i++) {
  1273. for(ch=0;ch<s->nb_channels;ch++) {
  1274. if (bit_alloc[ch][i]) {
  1275. sf = scale_factors[ch][i];
  1276. switch(scale_code[ch][i]) {
  1277. default:
  1278. case 0:
  1279. sf[0] = get_bits(&s->gb, 6);
  1280. sf[1] = get_bits(&s->gb, 6);
  1281. sf[2] = get_bits(&s->gb, 6);
  1282. break;
  1283. case 2:
  1284. sf[0] = get_bits(&s->gb, 6);
  1285. sf[1] = sf[0];
  1286. sf[2] = sf[0];
  1287. break;
  1288. case 1:
  1289. sf[0] = get_bits(&s->gb, 6);
  1290. sf[2] = get_bits(&s->gb, 6);
  1291. sf[1] = sf[0];
  1292. break;
  1293. case 3:
  1294. sf[0] = get_bits(&s->gb, 6);
  1295. sf[2] = get_bits(&s->gb, 6);
  1296. sf[1] = sf[2];
  1297. break;
  1298. }
  1299. }
  1300. }
  1301. }
  1302. #ifdef DEBUG
  1303. for(ch=0;ch<s->nb_channels;ch++) {
  1304. for(i=0;i<sblimit;i++) {
  1305. if (bit_alloc[ch][i]) {
  1306. sf = scale_factors[ch][i];
  1307. dprintf(" %d %d %d", sf[0], sf[1], sf[2]);
  1308. } else {
  1309. dprintf(" -");
  1310. }
  1311. }
  1312. dprintf("\n");
  1313. }
  1314. #endif
  1315. /* samples */
  1316. for(k=0;k<3;k++) {
  1317. for(l=0;l<12;l+=3) {
  1318. j = 0;
  1319. for(i=0;i<bound;i++) {
  1320. bit_alloc_bits = alloc_table[j];
  1321. for(ch=0;ch<s->nb_channels;ch++) {
  1322. b = bit_alloc[ch][i];
  1323. if (b) {
  1324. scale = scale_factors[ch][i][k];
  1325. qindex = alloc_table[j+b];
  1326. bits = quant_bits[qindex];
  1327. if (bits < 0) {
  1328. /* 3 values at the same time */
  1329. v = get_bits(&s->gb, -bits);
  1330. steps = quant_steps[qindex];
  1331. s->sb_samples[ch][k * 12 + l + 0][i] =
  1332. l2_unscale_group(steps, v % steps, scale);
  1333. v = v / steps;
  1334. s->sb_samples[ch][k * 12 + l + 1][i] =
  1335. l2_unscale_group(steps, v % steps, scale);
  1336. v = v / steps;
  1337. s->sb_samples[ch][k * 12 + l + 2][i] =
  1338. l2_unscale_group(steps, v, scale);
  1339. } else {
  1340. for(m=0;m<3;m++) {
  1341. v = get_bits(&s->gb, bits);
  1342. v = l1_unscale(bits - 1, v, scale);
  1343. s->sb_samples[ch][k * 12 + l + m][i] = v;
  1344. }
  1345. }
  1346. } else {
  1347. s->sb_samples[ch][k * 12 + l + 0][i] = 0;
  1348. s->sb_samples[ch][k * 12 + l + 1][i] = 0;
  1349. s->sb_samples[ch][k * 12 + l + 2][i] = 0;
  1350. }
  1351. }
  1352. /* next subband in alloc table */
  1353. j += 1 << bit_alloc_bits;
  1354. }
  1355. /* XXX: find a way to avoid this duplication of code */
  1356. for(i=bound;i<sblimit;i++) {
  1357. bit_alloc_bits = alloc_table[j];
  1358. b = bit_alloc[0][i];
  1359. if (b) {
  1360. int mant, scale0, scale1;
  1361. scale0 = scale_factors[0][i][k];
  1362. scale1 = scale_factors[1][i][k];
  1363. qindex = alloc_table[j+b];
  1364. bits = quant_bits[qindex];
  1365. if (bits < 0) {
  1366. /* 3 values at the same time */
  1367. v = get_bits(&s->gb, -bits);
  1368. steps = quant_steps[qindex];
  1369. mant = v % steps;
  1370. v = v / steps;
  1371. s->sb_samples[0][k * 12 + l + 0][i] =
  1372. l2_unscale_group(steps, mant, scale0);
  1373. s->sb_samples[1][k * 12 + l + 0][i] =
  1374. l2_unscale_group(steps, mant, scale1);
  1375. mant = v % steps;
  1376. v = v / steps;
  1377. s->sb_samples[0][k * 12 + l + 1][i] =
  1378. l2_unscale_group(steps, mant, scale0);
  1379. s->sb_samples[1][k * 12 + l + 1][i] =
  1380. l2_unscale_group(steps, mant, scale1);
  1381. s->sb_samples[0][k * 12 + l + 2][i] =
  1382. l2_unscale_group(steps, v, scale0);
  1383. s->sb_samples[1][k * 12 + l + 2][i] =
  1384. l2_unscale_group(steps, v, scale1);
  1385. } else {
  1386. for(m=0;m<3;m++) {
  1387. mant = get_bits(&s->gb, bits);
  1388. s->sb_samples[0][k * 12 + l + m][i] =
  1389. l1_unscale(bits - 1, mant, scale0);
  1390. s->sb_samples[1][k * 12 + l + m][i] =
  1391. l1_unscale(bits - 1, mant, scale1);
  1392. }
  1393. }
  1394. } else {
  1395. s->sb_samples[0][k * 12 + l + 0][i] = 0;
  1396. s->sb_samples[0][k * 12 + l + 1][i] = 0;
  1397. s->sb_samples[0][k * 12 + l + 2][i] = 0;
  1398. s->sb_samples[1][k * 12 + l + 0][i] = 0;
  1399. s->sb_samples[1][k * 12 + l + 1][i] = 0;
  1400. s->sb_samples[1][k * 12 + l + 2][i] = 0;
  1401. }
  1402. /* next subband in alloc table */
  1403. j += 1 << bit_alloc_bits;
  1404. }
  1405. /* fill remaining samples to zero */
  1406. for(i=sblimit;i<SBLIMIT;i++) {
  1407. for(ch=0;ch<s->nb_channels;ch++) {
  1408. s->sb_samples[ch][k * 12 + l + 0][i] = 0;
  1409. s->sb_samples[ch][k * 12 + l + 1][i] = 0;
  1410. s->sb_samples[ch][k * 12 + l + 2][i] = 0;
  1411. }
  1412. }
  1413. }
  1414. }
  1415. return 3 * 12;
  1416. }
  1417. /*
  1418. * Seek back in the stream for backstep bytes (at most 511 bytes)
  1419. */
  1420. static void seek_to_maindata(MPADecodeContext *s, unsigned int backstep)
  1421. {
  1422. uint8_t *ptr;
  1423. /* compute current position in stream */
  1424. ptr = (uint8_t *)(s->gb.buffer + (get_bits_count(&s->gb)>>3));
  1425. /* copy old data before current one */
  1426. ptr -= backstep;
  1427. memcpy(ptr, s->inbuf1[s->inbuf_index ^ 1] +
  1428. BACKSTEP_SIZE + s->old_frame_size - backstep, backstep);
  1429. /* init get bits again */
  1430. init_get_bits(&s->gb, ptr, (s->frame_size + backstep)*8);
  1431. /* prepare next buffer */
  1432. s->inbuf_index ^= 1;
  1433. s->inbuf = &s->inbuf1[s->inbuf_index][BACKSTEP_SIZE];
  1434. s->old_frame_size = s->frame_size;
  1435. }
  1436. static inline void lsf_sf_expand(int *slen,
  1437. int sf, int n1, int n2, int n3)
  1438. {
  1439. if (n3) {
  1440. slen[3] = sf % n3;
  1441. sf /= n3;
  1442. } else {
  1443. slen[3] = 0;
  1444. }
  1445. if (n2) {
  1446. slen[2] = sf % n2;
  1447. sf /= n2;
  1448. } else {
  1449. slen[2] = 0;
  1450. }
  1451. slen[1] = sf % n1;
  1452. sf /= n1;
  1453. slen[0] = sf;
  1454. }
  1455. static void exponents_from_scale_factors(MPADecodeContext *s,
  1456. GranuleDef *g,
  1457. int16_t *exponents)
  1458. {
  1459. const uint8_t *bstab, *pretab;
  1460. int len, i, j, k, l, v0, shift, gain, gains[3];
  1461. int16_t *exp_ptr;
  1462. exp_ptr = exponents;
  1463. gain = g->global_gain - 210;
  1464. shift = g->scalefac_scale + 1;
  1465. bstab = band_size_long[s->sample_rate_index];
  1466. pretab = mpa_pretab[g->preflag];
  1467. for(i=0;i<g->long_end;i++) {
  1468. v0 = gain - ((g->scale_factors[i] + pretab[i]) << shift);
  1469. len = bstab[i];
  1470. for(j=len;j>0;j--)
  1471. *exp_ptr++ = v0;
  1472. }
  1473. if (g->short_start < 13) {
  1474. bstab = band_size_short[s->sample_rate_index];
  1475. gains[0] = gain - (g->subblock_gain[0] << 3);
  1476. gains[1] = gain - (g->subblock_gain[1] << 3);
  1477. gains[2] = gain - (g->subblock_gain[2] << 3);
  1478. k = g->long_end;
  1479. for(i=g->short_start;i<13;i++) {
  1480. len = bstab[i];
  1481. for(l=0;l<3;l++) {
  1482. v0 = gains[l] - (g->scale_factors[k++] << shift);
  1483. for(j=len;j>0;j--)
  1484. *exp_ptr++ = v0;
  1485. }
  1486. }
  1487. }
  1488. }
  1489. /* handle n = 0 too */
  1490. static inline int get_bitsz(GetBitContext *s, int n)
  1491. {
  1492. if (n == 0)
  1493. return 0;
  1494. else
  1495. return get_bits(s, n);
  1496. }
  1497. static int huffman_decode(MPADecodeContext *s, GranuleDef *g,
  1498. int16_t *exponents, int end_pos)
  1499. {
  1500. int s_index;
  1501. int linbits, code, x, y, l, v, i, j, k, pos;
  1502. int last_pos;
  1503. VLC *vlc;
  1504. /* low frequencies (called big values) */
  1505. s_index = 0;
  1506. for(i=0;i<3;i++) {
  1507. j = g->region_size[i];
  1508. if (j == 0)
  1509. continue;
  1510. /* select vlc table */
  1511. k = g->table_select[i];
  1512. l = mpa_huff_data[k][0];
  1513. linbits = mpa_huff_data[k][1];
  1514. vlc = &huff_vlc[l];
  1515. if(!l){
  1516. memset(&g->sb_hybrid[s_index], 0, sizeof(*g->sb_hybrid)*j);
  1517. s_index += 2*j;
  1518. continue;
  1519. }
  1520. /* read huffcode and compute each couple */
  1521. for(;j>0;j--) {
  1522. if (get_bits_count(&s->gb) >= end_pos)
  1523. break;
  1524. y = get_vlc2(&s->gb, vlc->table, 8, 3);
  1525. if(!y){
  1526. g->sb_hybrid[s_index ] =
  1527. g->sb_hybrid[s_index+1] = 0;
  1528. s_index += 2;
  1529. continue;
  1530. }
  1531. x = y >> 4;
  1532. y = y & 0x0f;
  1533. dprintf("region=%d n=%d x=%d y=%d exp=%d\n",
  1534. i, g->region_size[i] - j, x, y, exponents[s_index]);
  1535. if (x) {
  1536. #if 0
  1537. if (x == 15)
  1538. x += get_bitsz(&s->gb, linbits);
  1539. v = l3_unscale(x, exponents[s_index]);
  1540. #else
  1541. if (x < 15){
  1542. v = expval_table[ exponents[s_index] + 400 ][ x ];
  1543. }else{
  1544. x += get_bitsz(&s->gb, linbits);
  1545. v = l3_unscale(x, exponents[s_index]);
  1546. }
  1547. #endif
  1548. if (get_bits1(&s->gb))
  1549. v = -v;
  1550. } else {
  1551. v = 0;
  1552. }
  1553. g->sb_hybrid[s_index++] = v;
  1554. if (y) {
  1555. #if 0
  1556. if (y == 15)
  1557. y += get_bitsz(&s->gb, linbits);
  1558. v = l3_unscale(y, exponents[s_index]);
  1559. #else
  1560. if (y < 15){
  1561. v = expval_table[ exponents[s_index] + 400 ][ y ];
  1562. }else{
  1563. y += get_bitsz(&s->gb, linbits);
  1564. v = l3_unscale(y, exponents[s_index]);
  1565. }
  1566. #endif
  1567. if (get_bits1(&s->gb))
  1568. v = -v;
  1569. } else {
  1570. v = 0;
  1571. }
  1572. g->sb_hybrid[s_index++] = v;
  1573. }
  1574. }
  1575. /* high frequencies */
  1576. vlc = &huff_quad_vlc[g->count1table_select];
  1577. last_pos=0;
  1578. while (s_index <= 572) {
  1579. pos = get_bits_count(&s->gb);
  1580. if (pos >= end_pos) {
  1581. if (pos > end_pos && last_pos){
  1582. /* some encoders generate an incorrect size for this
  1583. part. We must go back into the data */
  1584. s_index -= 4;
  1585. init_get_bits(&s->gb, s->gb.buffer + 4*(last_pos>>5), s->gb.size_in_bits - (last_pos&(~31)));
  1586. skip_bits(&s->gb, last_pos&31);
  1587. }
  1588. break;
  1589. }
  1590. last_pos= pos;
  1591. code = get_vlc2(&s->gb, vlc->table, vlc->bits, 1);
  1592. dprintf("t=%d code=%d\n", g->count1table_select, code);
  1593. g->sb_hybrid[s_index+0]=
  1594. g->sb_hybrid[s_index+1]=
  1595. g->sb_hybrid[s_index+2]=
  1596. g->sb_hybrid[s_index+3]= 0;
  1597. while(code){
  1598. const static int idxtab[16]={3,3,2,2,1,1,1,1,0,0,0,0,0,0,0,0};
  1599. int pos= s_index+idxtab[code];
  1600. code ^= 8>>idxtab[code];
  1601. v = exp_table[ exponents[pos] + 400];
  1602. if(get_bits1(&s->gb))
  1603. v = -v;
  1604. g->sb_hybrid[pos] = v;
  1605. }
  1606. s_index+=4;
  1607. }
  1608. memset(&g->sb_hybrid[s_index], 0, sizeof(*g->sb_hybrid)*(576 - s_index));
  1609. return 0;
  1610. }
  1611. /* Reorder short blocks from bitstream order to interleaved order. It
  1612. would be faster to do it in parsing, but the code would be far more
  1613. complicated */
  1614. static void reorder_block(MPADecodeContext *s, GranuleDef *g)
  1615. {
  1616. int i, j, len;
  1617. int32_t *ptr, *dst, *ptr1;
  1618. int32_t tmp[576];
  1619. if (g->block_type != 2)
  1620. return;
  1621. if (g->switch_point) {
  1622. if (s->sample_rate_index != 8) {
  1623. ptr = g->sb_hybrid + 36;
  1624. } else {
  1625. ptr = g->sb_hybrid + 48;
  1626. }
  1627. } else {
  1628. ptr = g->sb_hybrid;
  1629. }
  1630. for(i=g->short_start;i<13;i++) {
  1631. len = band_size_short[s->sample_rate_index][i];
  1632. ptr1 = ptr;
  1633. dst = tmp;
  1634. for(j=len;j>0;j--) {
  1635. *dst++ = ptr[0*len];
  1636. *dst++ = ptr[1*len];
  1637. *dst++ = ptr[2*len];
  1638. ptr++;
  1639. }
  1640. ptr+=2*len;
  1641. memcpy(ptr1, tmp, len * 3 * sizeof(*ptr1));
  1642. }
  1643. }
  1644. #define ISQRT2 FIXR(0.70710678118654752440)
  1645. static void compute_stereo(MPADecodeContext *s,
  1646. GranuleDef *g0, GranuleDef *g1)
  1647. {
  1648. int i, j, k, l;
  1649. int32_t v1, v2;
  1650. int sf_max, tmp0, tmp1, sf, len, non_zero_found;
  1651. int32_t (*is_tab)[16];
  1652. int32_t *tab0, *tab1;
  1653. int non_zero_found_short[3];
  1654. /* intensity stereo */
  1655. if (s->mode_ext & MODE_EXT_I_STEREO) {
  1656. if (!s->lsf) {
  1657. is_tab = is_table;
  1658. sf_max = 7;
  1659. } else {
  1660. is_tab = is_table_lsf[g1->scalefac_compress & 1];
  1661. sf_max = 16;
  1662. }
  1663. tab0 = g0->sb_hybrid + 576;
  1664. tab1 = g1->sb_hybrid + 576;
  1665. non_zero_found_short[0] = 0;
  1666. non_zero_found_short[1] = 0;
  1667. non_zero_found_short[2] = 0;
  1668. k = (13 - g1->short_start) * 3 + g1->long_end - 3;
  1669. for(i = 12;i >= g1->short_start;i--) {
  1670. /* for last band, use previous scale factor */
  1671. if (i != 11)
  1672. k -= 3;
  1673. len = band_size_short[s->sample_rate_index][i];
  1674. for(l=2;l>=0;l--) {
  1675. tab0 -= len;
  1676. tab1 -= len;
  1677. if (!non_zero_found_short[l]) {
  1678. /* test if non zero band. if so, stop doing i-stereo */
  1679. for(j=0;j<len;j++) {
  1680. if (tab1[j] != 0) {
  1681. non_zero_found_short[l] = 1;
  1682. goto found1;
  1683. }
  1684. }
  1685. sf = g1->scale_factors[k + l];
  1686. if (sf >= sf_max)
  1687. goto found1;
  1688. v1 = is_tab[0][sf];
  1689. v2 = is_tab[1][sf];
  1690. for(j=0;j<len;j++) {
  1691. tmp0 = tab0[j];
  1692. tab0[j] = MULL(tmp0, v1);
  1693. tab1[j] = MULL(tmp0, v2);
  1694. }
  1695. } else {
  1696. found1:
  1697. if (s->mode_ext & MODE_EXT_MS_STEREO) {
  1698. /* lower part of the spectrum : do ms stereo
  1699. if enabled */
  1700. for(j=0;j<len;j++) {
  1701. tmp0 = tab0[j];
  1702. tmp1 = tab1[j];
  1703. tab0[j] = MULL(tmp0 + tmp1, ISQRT2);
  1704. tab1[j] = MULL(tmp0 - tmp1, ISQRT2);
  1705. }
  1706. }
  1707. }
  1708. }
  1709. }
  1710. non_zero_found = non_zero_found_short[0] |
  1711. non_zero_found_short[1] |
  1712. non_zero_found_short[2];
  1713. for(i = g1->long_end - 1;i >= 0;i--) {
  1714. len = band_size_long[s->sample_rate_index][i];
  1715. tab0 -= len;
  1716. tab1 -= len;
  1717. /* test if non zero band. if so, stop doing i-stereo */
  1718. if (!non_zero_found) {
  1719. for(j=0;j<len;j++) {
  1720. if (tab1[j] != 0) {
  1721. non_zero_found = 1;
  1722. goto found2;
  1723. }
  1724. }
  1725. /* for last band, use previous scale factor */
  1726. k = (i == 21) ? 20 : i;
  1727. sf = g1->scale_factors[k];
  1728. if (sf >= sf_max)
  1729. goto found2;
  1730. v1 = is_tab[0][sf];
  1731. v2 = is_tab[1][sf];
  1732. for(j=0;j<len;j++) {
  1733. tmp0 = tab0[j];
  1734. tab0[j] = MULL(tmp0, v1);
  1735. tab1[j] = MULL(tmp0, v2);
  1736. }
  1737. } else {
  1738. found2:
  1739. if (s->mode_ext & MODE_EXT_MS_STEREO) {
  1740. /* lower part of the spectrum : do ms stereo
  1741. if enabled */
  1742. for(j=0;j<len;j++) {
  1743. tmp0 = tab0[j];
  1744. tmp1 = tab1[j];
  1745. tab0[j] = MULL(tmp0 + tmp1, ISQRT2);
  1746. tab1[j] = MULL(tmp0 - tmp1, ISQRT2);
  1747. }
  1748. }
  1749. }
  1750. }
  1751. } else if (s->mode_ext & MODE_EXT_MS_STEREO) {
  1752. /* ms stereo ONLY */
  1753. /* NOTE: the 1/sqrt(2) normalization factor is included in the
  1754. global gain */
  1755. tab0 = g0->sb_hybrid;
  1756. tab1 = g1->sb_hybrid;
  1757. for(i=0;i<576;i++) {
  1758. tmp0 = tab0[i];
  1759. tmp1 = tab1[i];
  1760. tab0[i] = tmp0 + tmp1;
  1761. tab1[i] = tmp0 - tmp1;
  1762. }
  1763. }
  1764. }
  1765. static void compute_antialias_integer(MPADecodeContext *s,
  1766. GranuleDef *g)
  1767. {
  1768. int32_t *ptr, *csa;
  1769. int n, i;
  1770. /* we antialias only "long" bands */
  1771. if (g->block_type == 2) {
  1772. if (!g->switch_point)
  1773. return;
  1774. /* XXX: check this for 8000Hz case */
  1775. n = 1;
  1776. } else {
  1777. n = SBLIMIT - 1;
  1778. }
  1779. ptr = g->sb_hybrid + 18;
  1780. for(i = n;i > 0;i--) {
  1781. int tmp0, tmp1, tmp2;
  1782. csa = &csa_table[0][0];
  1783. #define INT_AA(j) \
  1784. tmp0 = ptr[-1-j];\
  1785. tmp1 = ptr[ j];\
  1786. tmp2= MULH(tmp0 + tmp1, csa[0+4*j]);\
  1787. ptr[-1-j] = 4*(tmp2 - MULH(tmp1, csa[2+4*j]));\
  1788. ptr[ j] = 4*(tmp2 + MULH(tmp0, csa[3+4*j]));
  1789. INT_AA(0)
  1790. INT_AA(1)
  1791. INT_AA(2)
  1792. INT_AA(3)
  1793. INT_AA(4)
  1794. INT_AA(5)
  1795. INT_AA(6)
  1796. INT_AA(7)
  1797. ptr += 18;
  1798. }
  1799. }
  1800. static void compute_antialias_float(MPADecodeContext *s,
  1801. GranuleDef *g)
  1802. {
  1803. int32_t *ptr;
  1804. int n, i;
  1805. /* we antialias only "long" bands */
  1806. if (g->block_type == 2) {
  1807. if (!g->switch_point)
  1808. return;
  1809. /* XXX: check this for 8000Hz case */
  1810. n = 1;
  1811. } else {
  1812. n = SBLIMIT - 1;
  1813. }
  1814. ptr = g->sb_hybrid + 18;
  1815. for(i = n;i > 0;i--) {
  1816. float tmp0, tmp1;
  1817. float *csa = &csa_table_float[0][0];
  1818. #define FLOAT_AA(j)\
  1819. tmp0= ptr[-1-j];\
  1820. tmp1= ptr[ j];\
  1821. ptr[-1-j] = lrintf(tmp0 * csa[0+4*j] - tmp1 * csa[1+4*j]);\
  1822. ptr[ j] = lrintf(tmp0 * csa[1+4*j] + tmp1 * csa[0+4*j]);
  1823. FLOAT_AA(0)
  1824. FLOAT_AA(1)
  1825. FLOAT_AA(2)
  1826. FLOAT_AA(3)
  1827. FLOAT_AA(4)
  1828. FLOAT_AA(5)
  1829. FLOAT_AA(6)
  1830. FLOAT_AA(7)
  1831. ptr += 18;
  1832. }
  1833. }
  1834. static void compute_imdct(MPADecodeContext *s,
  1835. GranuleDef *g,
  1836. int32_t *sb_samples,
  1837. int32_t *mdct_buf)
  1838. {
  1839. int32_t *ptr, *win, *win1, *buf, *out_ptr, *ptr1;
  1840. int32_t out2[12];
  1841. int i, j, mdct_long_end, v, sblimit;
  1842. /* find last non zero block */
  1843. ptr = g->sb_hybrid + 576;
  1844. ptr1 = g->sb_hybrid + 2 * 18;
  1845. while (ptr >= ptr1) {
  1846. ptr -= 6;
  1847. v = ptr[0] | ptr[1] | ptr[2] | ptr[3] | ptr[4] | ptr[5];
  1848. if (v != 0)
  1849. break;
  1850. }
  1851. sblimit = ((ptr - g->sb_hybrid) / 18) + 1;
  1852. if (g->block_type == 2) {
  1853. /* XXX: check for 8000 Hz */
  1854. if (g->switch_point)
  1855. mdct_long_end = 2;
  1856. else
  1857. mdct_long_end = 0;
  1858. } else {
  1859. mdct_long_end = sblimit;
  1860. }
  1861. buf = mdct_buf;
  1862. ptr = g->sb_hybrid;
  1863. for(j=0;j<mdct_long_end;j++) {
  1864. /* apply window & overlap with previous buffer */
  1865. out_ptr = sb_samples + j;
  1866. /* select window */
  1867. if (g->switch_point && j < 2)
  1868. win1 = mdct_win[0];
  1869. else
  1870. win1 = mdct_win[g->block_type];
  1871. /* select frequency inversion */
  1872. win = win1 + ((4 * 36) & -(j & 1));
  1873. imdct36(out_ptr, buf, ptr, win);
  1874. out_ptr += 18*SBLIMIT;
  1875. ptr += 18;
  1876. buf += 18;
  1877. }
  1878. for(j=mdct_long_end;j<sblimit;j++) {
  1879. /* select frequency inversion */
  1880. win = mdct_win[2] + ((4 * 36) & -(j & 1));
  1881. out_ptr = sb_samples + j;
  1882. for(i=0; i<6; i++){
  1883. *out_ptr = buf[i];
  1884. out_ptr += SBLIMIT;
  1885. }
  1886. imdct12(out2, ptr + 0);
  1887. for(i=0;i<6;i++) {
  1888. *out_ptr = MULH(out2[i], win[i]) + buf[i + 6*1];
  1889. buf[i + 6*2] = MULH(out2[i + 6], win[i + 6]);
  1890. out_ptr += SBLIMIT;
  1891. }
  1892. imdct12(out2, ptr + 1);
  1893. for(i=0;i<6;i++) {
  1894. *out_ptr = MULH(out2[i], win[i]) + buf[i + 6*2];
  1895. buf[i + 6*0] = MULH(out2[i + 6], win[i + 6]);
  1896. out_ptr += SBLIMIT;
  1897. }
  1898. imdct12(out2, ptr + 2);
  1899. for(i=0;i<6;i++) {
  1900. buf[i + 6*0] = MULH(out2[i], win[i]) + buf[i + 6*0];
  1901. buf[i + 6*1] = MULH(out2[i + 6], win[i + 6]);
  1902. buf[i + 6*2] = 0;
  1903. }
  1904. ptr += 18;
  1905. buf += 18;
  1906. }
  1907. /* zero bands */
  1908. for(j=sblimit;j<SBLIMIT;j++) {
  1909. /* overlap */
  1910. out_ptr = sb_samples + j;
  1911. for(i=0;i<18;i++) {
  1912. *out_ptr = buf[i];
  1913. buf[i] = 0;
  1914. out_ptr += SBLIMIT;
  1915. }
  1916. buf += 18;
  1917. }
  1918. }
  1919. #if defined(DEBUG)
  1920. void sample_dump(int fnum, int32_t *tab, int n)
  1921. {
  1922. static FILE *files[16], *f;
  1923. char buf[512];
  1924. int i;
  1925. int32_t v;
  1926. f = files[fnum];
  1927. if (!f) {
  1928. snprintf(buf, sizeof(buf), "/tmp/out%d.%s.pcm",
  1929. fnum,
  1930. #ifdef USE_HIGHPRECISION
  1931. "hp"
  1932. #else
  1933. "lp"
  1934. #endif
  1935. );
  1936. f = fopen(buf, "w");
  1937. if (!f)
  1938. return;
  1939. files[fnum] = f;
  1940. }
  1941. if (fnum == 0) {
  1942. static int pos = 0;
  1943. av_log(NULL, AV_LOG_DEBUG, "pos=%d\n", pos);
  1944. for(i=0;i<n;i++) {
  1945. av_log(NULL, AV_LOG_DEBUG, " %0.4f", (double)tab[i] / FRAC_ONE);
  1946. if ((i % 18) == 17)
  1947. av_log(NULL, AV_LOG_DEBUG, "\n");
  1948. }
  1949. pos += n;
  1950. }
  1951. for(i=0;i<n;i++) {
  1952. /* normalize to 23 frac bits */
  1953. v = tab[i] << (23 - FRAC_BITS);
  1954. fwrite(&v, 1, sizeof(int32_t), f);
  1955. }
  1956. }
  1957. #endif
  1958. /* main layer3 decoding function */
  1959. static int mp_decode_layer3(MPADecodeContext *s)
  1960. {
  1961. int nb_granules, main_data_begin, private_bits;
  1962. int gr, ch, blocksplit_flag, i, j, k, n, bits_pos, bits_left;
  1963. GranuleDef granules[2][2], *g;
  1964. int16_t exponents[576];
  1965. /* read side info */
  1966. if (s->lsf) {
  1967. main_data_begin = get_bits(&s->gb, 8);
  1968. private_bits = get_bits(&s->gb, s->nb_channels);
  1969. nb_granules = 1;
  1970. } else {
  1971. main_data_begin = get_bits(&s->gb, 9);
  1972. if (s->nb_channels == 2)
  1973. private_bits = get_bits(&s->gb, 3);
  1974. else
  1975. private_bits = get_bits(&s->gb, 5);
  1976. nb_granules = 2;
  1977. for(ch=0;ch<s->nb_channels;ch++) {
  1978. granules[ch][0].scfsi = 0; /* all scale factors are transmitted */
  1979. granules[ch][1].scfsi = get_bits(&s->gb, 4);
  1980. }
  1981. }
  1982. for(gr=0;gr<nb_granules;gr++) {
  1983. for(ch=0;ch<s->nb_channels;ch++) {
  1984. dprintf("gr=%d ch=%d: side_info\n", gr, ch);
  1985. g = &granules[ch][gr];
  1986. g->part2_3_length = get_bits(&s->gb, 12);
  1987. g->big_values = get_bits(&s->gb, 9);
  1988. g->global_gain = get_bits(&s->gb, 8);
  1989. /* if MS stereo only is selected, we precompute the
  1990. 1/sqrt(2) renormalization factor */
  1991. if ((s->mode_ext & (MODE_EXT_MS_STEREO | MODE_EXT_I_STEREO)) ==
  1992. MODE_EXT_MS_STEREO)
  1993. g->global_gain -= 2;
  1994. if (s->lsf)
  1995. g->scalefac_compress = get_bits(&s->gb, 9);
  1996. else
  1997. g->scalefac_compress = get_bits(&s->gb, 4);
  1998. blocksplit_flag = get_bits(&s->gb, 1);
  1999. if (blocksplit_flag) {
  2000. g->block_type = get_bits(&s->gb, 2);
  2001. if (g->block_type == 0)
  2002. return -1;
  2003. g->switch_point = get_bits(&s->gb, 1);
  2004. for(i=0;i<2;i++)
  2005. g->table_select[i] = get_bits(&s->gb, 5);
  2006. for(i=0;i<3;i++)
  2007. g->subblock_gain[i] = get_bits(&s->gb, 3);
  2008. /* compute huffman coded region sizes */
  2009. if (g->block_type == 2)
  2010. g->region_size[0] = (36 / 2);
  2011. else {
  2012. if (s->sample_rate_index <= 2)
  2013. g->region_size[0] = (36 / 2);
  2014. else if (s->sample_rate_index != 8)
  2015. g->region_size[0] = (54 / 2);
  2016. else
  2017. g->region_size[0] = (108 / 2);
  2018. }
  2019. g->region_size[1] = (576 / 2);
  2020. } else {
  2021. int region_address1, region_address2, l;
  2022. g->block_type = 0;
  2023. g->switch_point = 0;
  2024. for(i=0;i<3;i++)
  2025. g->table_select[i] = get_bits(&s->gb, 5);
  2026. /* compute huffman coded region sizes */
  2027. region_address1 = get_bits(&s->gb, 4);
  2028. region_address2 = get_bits(&s->gb, 3);
  2029. dprintf("region1=%d region2=%d\n",
  2030. region_address1, region_address2);
  2031. g->region_size[0] =
  2032. band_index_long[s->sample_rate_index][region_address1 + 1] >> 1;
  2033. l = region_address1 + region_address2 + 2;
  2034. /* should not overflow */
  2035. if (l > 22)
  2036. l = 22;
  2037. g->region_size[1] =
  2038. band_index_long[s->sample_rate_index][l] >> 1;
  2039. }
  2040. /* convert region offsets to region sizes and truncate
  2041. size to big_values */
  2042. g->region_size[2] = (576 / 2);
  2043. j = 0;
  2044. for(i=0;i<3;i++) {
  2045. k = FFMIN(g->region_size[i], g->big_values);
  2046. g->region_size[i] = k - j;
  2047. j = k;
  2048. }
  2049. /* compute band indexes */
  2050. if (g->block_type == 2) {
  2051. if (g->switch_point) {
  2052. /* if switched mode, we handle the 36 first samples as
  2053. long blocks. For 8000Hz, we handle the 48 first
  2054. exponents as long blocks (XXX: check this!) */
  2055. if (s->sample_rate_index <= 2)
  2056. g->long_end = 8;
  2057. else if (s->sample_rate_index != 8)
  2058. g->long_end = 6;
  2059. else
  2060. g->long_end = 4; /* 8000 Hz */
  2061. g->short_start = 2 + (s->sample_rate_index != 8);
  2062. } else {
  2063. g->long_end = 0;
  2064. g->short_start = 0;
  2065. }
  2066. } else {
  2067. g->short_start = 13;
  2068. g->long_end = 22;
  2069. }
  2070. g->preflag = 0;
  2071. if (!s->lsf)
  2072. g->preflag = get_bits(&s->gb, 1);
  2073. g->scalefac_scale = get_bits(&s->gb, 1);
  2074. g->count1table_select = get_bits(&s->gb, 1);
  2075. dprintf("block_type=%d switch_point=%d\n",
  2076. g->block_type, g->switch_point);
  2077. }
  2078. }
  2079. if (!s->adu_mode) {
  2080. /* now we get bits from the main_data_begin offset */
  2081. dprintf("seekback: %d\n", main_data_begin);
  2082. seek_to_maindata(s, main_data_begin);
  2083. }
  2084. for(gr=0;gr<nb_granules;gr++) {
  2085. for(ch=0;ch<s->nb_channels;ch++) {
  2086. g = &granules[ch][gr];
  2087. bits_pos = get_bits_count(&s->gb);
  2088. if (!s->lsf) {
  2089. uint8_t *sc;
  2090. int slen, slen1, slen2;
  2091. /* MPEG1 scale factors */
  2092. slen1 = slen_table[0][g->scalefac_compress];
  2093. slen2 = slen_table[1][g->scalefac_compress];
  2094. dprintf("slen1=%d slen2=%d\n", slen1, slen2);
  2095. if (g->block_type == 2) {
  2096. n = g->switch_point ? 17 : 18;
  2097. j = 0;
  2098. if(slen1){
  2099. for(i=0;i<n;i++)
  2100. g->scale_factors[j++] = get_bits(&s->gb, slen1);
  2101. }else{
  2102. for(i=0;i<n;i++)
  2103. g->scale_factors[j++] = 0;
  2104. }
  2105. if(slen2){
  2106. for(i=0;i<18;i++)
  2107. g->scale_factors[j++] = get_bits(&s->gb, slen2);
  2108. for(i=0;i<3;i++)
  2109. g->scale_factors[j++] = 0;
  2110. }else{
  2111. for(i=0;i<21;i++)
  2112. g->scale_factors[j++] = 0;
  2113. }
  2114. } else {
  2115. sc = granules[ch][0].scale_factors;
  2116. j = 0;
  2117. for(k=0;k<4;k++) {
  2118. n = (k == 0 ? 6 : 5);
  2119. if ((g->scfsi & (0x8 >> k)) == 0) {
  2120. slen = (k < 2) ? slen1 : slen2;
  2121. if(slen){
  2122. for(i=0;i<n;i++)
  2123. g->scale_factors[j++] = get_bits(&s->gb, slen);
  2124. }else{
  2125. for(i=0;i<n;i++)
  2126. g->scale_factors[j++] = 0;
  2127. }
  2128. } else {
  2129. /* simply copy from last granule */
  2130. for(i=0;i<n;i++) {
  2131. g->scale_factors[j] = sc[j];
  2132. j++;
  2133. }
  2134. }
  2135. }
  2136. g->scale_factors[j++] = 0;
  2137. }
  2138. #if defined(DEBUG)
  2139. {
  2140. dprintf("scfsi=%x gr=%d ch=%d scale_factors:\n",
  2141. g->scfsi, gr, ch);
  2142. for(i=0;i<j;i++)
  2143. dprintf(" %d", g->scale_factors[i]);
  2144. dprintf("\n");
  2145. }
  2146. #endif
  2147. } else {
  2148. int tindex, tindex2, slen[4], sl, sf;
  2149. /* LSF scale factors */
  2150. if (g->block_type == 2) {
  2151. tindex = g->switch_point ? 2 : 1;
  2152. } else {
  2153. tindex = 0;
  2154. }
  2155. sf = g->scalefac_compress;
  2156. if ((s->mode_ext & MODE_EXT_I_STEREO) && ch == 1) {
  2157. /* intensity stereo case */
  2158. sf >>= 1;
  2159. if (sf < 180) {
  2160. lsf_sf_expand(slen, sf, 6, 6, 0);
  2161. tindex2 = 3;
  2162. } else if (sf < 244) {
  2163. lsf_sf_expand(slen, sf - 180, 4, 4, 0);
  2164. tindex2 = 4;
  2165. } else {
  2166. lsf_sf_expand(slen, sf - 244, 3, 0, 0);
  2167. tindex2 = 5;
  2168. }
  2169. } else {
  2170. /* normal case */
  2171. if (sf < 400) {
  2172. lsf_sf_expand(slen, sf, 5, 4, 4);
  2173. tindex2 = 0;
  2174. } else if (sf < 500) {
  2175. lsf_sf_expand(slen, sf - 400, 5, 4, 0);
  2176. tindex2 = 1;
  2177. } else {
  2178. lsf_sf_expand(slen, sf - 500, 3, 0, 0);
  2179. tindex2 = 2;
  2180. g->preflag = 1;
  2181. }
  2182. }
  2183. j = 0;
  2184. for(k=0;k<4;k++) {
  2185. n = lsf_nsf_table[tindex2][tindex][k];
  2186. sl = slen[k];
  2187. if(sl){
  2188. for(i=0;i<n;i++)
  2189. g->scale_factors[j++] = get_bits(&s->gb, sl);
  2190. }else{
  2191. for(i=0;i<n;i++)
  2192. g->scale_factors[j++] = 0;
  2193. }
  2194. }
  2195. /* XXX: should compute exact size */
  2196. for(;j<40;j++)
  2197. g->scale_factors[j] = 0;
  2198. #if defined(DEBUG)
  2199. {
  2200. dprintf("gr=%d ch=%d scale_factors:\n",
  2201. gr, ch);
  2202. for(i=0;i<40;i++)
  2203. dprintf(" %d", g->scale_factors[i]);
  2204. dprintf("\n");
  2205. }
  2206. #endif
  2207. }
  2208. exponents_from_scale_factors(s, g, exponents);
  2209. /* read Huffman coded residue */
  2210. if (huffman_decode(s, g, exponents,
  2211. bits_pos + g->part2_3_length) < 0)
  2212. return -1;
  2213. #if defined(DEBUG)
  2214. sample_dump(0, g->sb_hybrid, 576);
  2215. #endif
  2216. /* skip extension bits */
  2217. bits_left = g->part2_3_length - (get_bits_count(&s->gb) - bits_pos);
  2218. if (bits_left < 0) {
  2219. dprintf("bits_left=%d\n", bits_left);
  2220. return -1;
  2221. }
  2222. while (bits_left >= 16) {
  2223. skip_bits(&s->gb, 16);
  2224. bits_left -= 16;
  2225. }
  2226. if (bits_left > 0)
  2227. skip_bits(&s->gb, bits_left);
  2228. } /* ch */
  2229. if (s->nb_channels == 2)
  2230. compute_stereo(s, &granules[0][gr], &granules[1][gr]);
  2231. for(ch=0;ch<s->nb_channels;ch++) {
  2232. g = &granules[ch][gr];
  2233. reorder_block(s, g);
  2234. #if defined(DEBUG)
  2235. sample_dump(0, g->sb_hybrid, 576);
  2236. #endif
  2237. s->compute_antialias(s, g);
  2238. #if defined(DEBUG)
  2239. sample_dump(1, g->sb_hybrid, 576);
  2240. #endif
  2241. compute_imdct(s, g, &s->sb_samples[ch][18 * gr][0], s->mdct_buf[ch]);
  2242. #if defined(DEBUG)
  2243. sample_dump(2, &s->sb_samples[ch][18 * gr][0], 576);
  2244. #endif
  2245. }
  2246. } /* gr */
  2247. return nb_granules * 18;
  2248. }
  2249. static int mp_decode_frame(MPADecodeContext *s,
  2250. OUT_INT *samples)
  2251. {
  2252. int i, nb_frames, ch;
  2253. OUT_INT *samples_ptr;
  2254. init_get_bits(&s->gb, s->inbuf + HEADER_SIZE,
  2255. (s->inbuf_ptr - s->inbuf - HEADER_SIZE)*8);
  2256. /* skip error protection field */
  2257. if (s->error_protection)
  2258. get_bits(&s->gb, 16);
  2259. dprintf("frame %d:\n", s->frame_count);
  2260. switch(s->layer) {
  2261. case 1:
  2262. nb_frames = mp_decode_layer1(s);
  2263. break;
  2264. case 2:
  2265. nb_frames = mp_decode_layer2(s);
  2266. break;
  2267. case 3:
  2268. default:
  2269. nb_frames = mp_decode_layer3(s);
  2270. break;
  2271. }
  2272. #if defined(DEBUG)
  2273. for(i=0;i<nb_frames;i++) {
  2274. for(ch=0;ch<s->nb_channels;ch++) {
  2275. int j;
  2276. dprintf("%d-%d:", i, ch);
  2277. for(j=0;j<SBLIMIT;j++)
  2278. dprintf(" %0.6f", (double)s->sb_samples[ch][i][j] / FRAC_ONE);
  2279. dprintf("\n");
  2280. }
  2281. }
  2282. #endif
  2283. /* apply the synthesis filter */
  2284. for(ch=0;ch<s->nb_channels;ch++) {
  2285. samples_ptr = samples + ch;
  2286. for(i=0;i<nb_frames;i++) {
  2287. ff_mpa_synth_filter(s->synth_buf[ch], &(s->synth_buf_offset[ch]),
  2288. window, &s->dither_state,
  2289. samples_ptr, s->nb_channels,
  2290. s->sb_samples[ch][i]);
  2291. samples_ptr += 32 * s->nb_channels;
  2292. }
  2293. }
  2294. #ifdef DEBUG
  2295. s->frame_count++;
  2296. #endif
  2297. return nb_frames * 32 * sizeof(OUT_INT) * s->nb_channels;
  2298. }
  2299. static int decode_frame(AVCodecContext * avctx,
  2300. void *data, int *data_size,
  2301. uint8_t * buf, int buf_size)
  2302. {
  2303. MPADecodeContext *s = avctx->priv_data;
  2304. uint32_t header;
  2305. uint8_t *buf_ptr;
  2306. int len, out_size;
  2307. OUT_INT *out_samples = data;
  2308. buf_ptr = buf;
  2309. while (buf_size > 0) {
  2310. len = s->inbuf_ptr - s->inbuf;
  2311. if (s->frame_size == 0) {
  2312. /* special case for next header for first frame in free
  2313. format case (XXX: find a simpler method) */
  2314. if (s->free_format_next_header != 0) {
  2315. s->inbuf[0] = s->free_format_next_header >> 24;
  2316. s->inbuf[1] = s->free_format_next_header >> 16;
  2317. s->inbuf[2] = s->free_format_next_header >> 8;
  2318. s->inbuf[3] = s->free_format_next_header;
  2319. s->inbuf_ptr = s->inbuf + 4;
  2320. s->free_format_next_header = 0;
  2321. goto got_header;
  2322. }
  2323. /* no header seen : find one. We need at least HEADER_SIZE
  2324. bytes to parse it */
  2325. len = HEADER_SIZE - len;
  2326. if (len > buf_size)
  2327. len = buf_size;
  2328. if (len > 0) {
  2329. memcpy(s->inbuf_ptr, buf_ptr, len);
  2330. buf_ptr += len;
  2331. buf_size -= len;
  2332. s->inbuf_ptr += len;
  2333. }
  2334. if ((s->inbuf_ptr - s->inbuf) >= HEADER_SIZE) {
  2335. got_header:
  2336. header = (s->inbuf[0] << 24) | (s->inbuf[1] << 16) |
  2337. (s->inbuf[2] << 8) | s->inbuf[3];
  2338. if (ff_mpa_check_header(header) < 0) {
  2339. /* no sync found : move by one byte (inefficient, but simple!) */
  2340. memmove(s->inbuf, s->inbuf + 1, s->inbuf_ptr - s->inbuf - 1);
  2341. s->inbuf_ptr--;
  2342. dprintf("skip %x\n", header);
  2343. /* reset free format frame size to give a chance
  2344. to get a new bitrate */
  2345. s->free_format_frame_size = 0;
  2346. } else {
  2347. if (decode_header(s, header) == 1) {
  2348. /* free format: prepare to compute frame size */
  2349. s->frame_size = -1;
  2350. }
  2351. /* update codec info */
  2352. avctx->sample_rate = s->sample_rate;
  2353. avctx->channels = s->nb_channels;
  2354. avctx->bit_rate = s->bit_rate;
  2355. avctx->sub_id = s->layer;
  2356. switch(s->layer) {
  2357. case 1:
  2358. avctx->frame_size = 384;
  2359. break;
  2360. case 2:
  2361. avctx->frame_size = 1152;
  2362. break;
  2363. case 3:
  2364. if (s->lsf)
  2365. avctx->frame_size = 576;
  2366. else
  2367. avctx->frame_size = 1152;
  2368. break;
  2369. }
  2370. }
  2371. }
  2372. } else if (s->frame_size == -1) {
  2373. /* free format : find next sync to compute frame size */
  2374. len = MPA_MAX_CODED_FRAME_SIZE - len;
  2375. if (len > buf_size)
  2376. len = buf_size;
  2377. if (len == 0) {
  2378. /* frame too long: resync */
  2379. s->frame_size = 0;
  2380. memmove(s->inbuf, s->inbuf + 1, s->inbuf_ptr - s->inbuf - 1);
  2381. s->inbuf_ptr--;
  2382. } else {
  2383. uint8_t *p, *pend;
  2384. uint32_t header1;
  2385. int padding;
  2386. memcpy(s->inbuf_ptr, buf_ptr, len);
  2387. /* check for header */
  2388. p = s->inbuf_ptr - 3;
  2389. pend = s->inbuf_ptr + len - 4;
  2390. while (p <= pend) {
  2391. header = (p[0] << 24) | (p[1] << 16) |
  2392. (p[2] << 8) | p[3];
  2393. header1 = (s->inbuf[0] << 24) | (s->inbuf[1] << 16) |
  2394. (s->inbuf[2] << 8) | s->inbuf[3];
  2395. /* check with high probability that we have a
  2396. valid header */
  2397. if ((header & SAME_HEADER_MASK) ==
  2398. (header1 & SAME_HEADER_MASK)) {
  2399. /* header found: update pointers */
  2400. len = (p + 4) - s->inbuf_ptr;
  2401. buf_ptr += len;
  2402. buf_size -= len;
  2403. s->inbuf_ptr = p;
  2404. /* compute frame size */
  2405. s->free_format_next_header = header;
  2406. s->free_format_frame_size = s->inbuf_ptr - s->inbuf;
  2407. padding = (header1 >> 9) & 1;
  2408. if (s->layer == 1)
  2409. s->free_format_frame_size -= padding * 4;
  2410. else
  2411. s->free_format_frame_size -= padding;
  2412. dprintf("free frame size=%d padding=%d\n",
  2413. s->free_format_frame_size, padding);
  2414. decode_header(s, header1);
  2415. goto next_data;
  2416. }
  2417. p++;
  2418. }
  2419. /* not found: simply increase pointers */
  2420. buf_ptr += len;
  2421. s->inbuf_ptr += len;
  2422. buf_size -= len;
  2423. }
  2424. } else if (len < s->frame_size) {
  2425. if (s->frame_size > MPA_MAX_CODED_FRAME_SIZE)
  2426. s->frame_size = MPA_MAX_CODED_FRAME_SIZE;
  2427. len = s->frame_size - len;
  2428. if (len > buf_size)
  2429. len = buf_size;
  2430. memcpy(s->inbuf_ptr, buf_ptr, len);
  2431. buf_ptr += len;
  2432. s->inbuf_ptr += len;
  2433. buf_size -= len;
  2434. }
  2435. next_data:
  2436. if (s->frame_size > 0 &&
  2437. (s->inbuf_ptr - s->inbuf) >= s->frame_size) {
  2438. if (avctx->parse_only) {
  2439. /* simply return the frame data */
  2440. *(uint8_t **)data = s->inbuf;
  2441. out_size = s->inbuf_ptr - s->inbuf;
  2442. } else {
  2443. out_size = mp_decode_frame(s, out_samples);
  2444. }
  2445. s->inbuf_ptr = s->inbuf;
  2446. s->frame_size = 0;
  2447. if(out_size>=0)
  2448. *data_size = out_size;
  2449. else
  2450. av_log(avctx, AV_LOG_DEBUG, "Error while decoding mpeg audio frame\n"); //FIXME return -1 / but also return the number of bytes consumed
  2451. break;
  2452. }
  2453. }
  2454. return buf_ptr - buf;
  2455. }
  2456. static int decode_frame_adu(AVCodecContext * avctx,
  2457. void *data, int *data_size,
  2458. uint8_t * buf, int buf_size)
  2459. {
  2460. MPADecodeContext *s = avctx->priv_data;
  2461. uint32_t header;
  2462. int len, out_size;
  2463. OUT_INT *out_samples = data;
  2464. len = buf_size;
  2465. // Discard too short frames
  2466. if (buf_size < HEADER_SIZE) {
  2467. *data_size = 0;
  2468. return buf_size;
  2469. }
  2470. if (len > MPA_MAX_CODED_FRAME_SIZE)
  2471. len = MPA_MAX_CODED_FRAME_SIZE;
  2472. memcpy(s->inbuf, buf, len);
  2473. s->inbuf_ptr = s->inbuf + len;
  2474. // Get header and restore sync word
  2475. header = (s->inbuf[0] << 24) | (s->inbuf[1] << 16) |
  2476. (s->inbuf[2] << 8) | s->inbuf[3] | 0xffe00000;
  2477. if (ff_mpa_check_header(header) < 0) { // Bad header, discard frame
  2478. *data_size = 0;
  2479. return buf_size;
  2480. }
  2481. decode_header(s, header);
  2482. /* update codec info */
  2483. avctx->sample_rate = s->sample_rate;
  2484. avctx->channels = s->nb_channels;
  2485. avctx->bit_rate = s->bit_rate;
  2486. avctx->sub_id = s->layer;
  2487. avctx->frame_size=s->frame_size = len;
  2488. if (avctx->parse_only) {
  2489. /* simply return the frame data */
  2490. *(uint8_t **)data = s->inbuf;
  2491. out_size = s->inbuf_ptr - s->inbuf;
  2492. } else {
  2493. out_size = mp_decode_frame(s, out_samples);
  2494. }
  2495. *data_size = out_size;
  2496. return buf_size;
  2497. }
  2498. /* Next 3 arrays are indexed by channel config number (passed via codecdata) */
  2499. static int mp3Frames[16] = {0,1,1,2,3,3,4,5,2}; /* number of mp3 decoder instances */
  2500. static int mp3Channels[16] = {0,1,2,3,4,5,6,8,4}; /* total output channels */
  2501. /* offsets into output buffer, assume output order is FL FR BL BR C LFE */
  2502. static int chan_offset[9][5] = {
  2503. {0},
  2504. {0}, // C
  2505. {0}, // FLR
  2506. {2,0}, // C FLR
  2507. {2,0,3}, // C FLR BS
  2508. {4,0,2}, // C FLR BLRS
  2509. {4,0,2,5}, // C FLR BLRS LFE
  2510. {4,0,2,6,5}, // C FLR BLRS BLR LFE
  2511. {0,2} // FLR BLRS
  2512. };
  2513. static int decode_init_mp3on4(AVCodecContext * avctx)
  2514. {
  2515. MP3On4DecodeContext *s = avctx->priv_data;
  2516. int i;
  2517. if ((avctx->extradata_size < 2) || (avctx->extradata == NULL)) {
  2518. av_log(avctx, AV_LOG_ERROR, "Codec extradata missing or too short.\n");
  2519. return -1;
  2520. }
  2521. s->chan_cfg = (((unsigned char *)avctx->extradata)[1] >> 3) & 0x0f;
  2522. s->frames = mp3Frames[s->chan_cfg];
  2523. if(!s->frames) {
  2524. av_log(avctx, AV_LOG_ERROR, "Invalid channel config number.\n");
  2525. return -1;
  2526. }
  2527. avctx->channels = mp3Channels[s->chan_cfg];
  2528. /* Init the first mp3 decoder in standard way, so that all tables get builded
  2529. * We replace avctx->priv_data with the context of the first decoder so that
  2530. * decode_init() does not have to be changed.
  2531. * Other decoders will be inited here copying data from the first context
  2532. */
  2533. // Allocate zeroed memory for the first decoder context
  2534. s->mp3decctx[0] = av_mallocz(sizeof(MPADecodeContext));
  2535. // Put decoder context in place to make init_decode() happy
  2536. avctx->priv_data = s->mp3decctx[0];
  2537. decode_init(avctx);
  2538. // Restore mp3on4 context pointer
  2539. avctx->priv_data = s;
  2540. s->mp3decctx[0]->adu_mode = 1; // Set adu mode
  2541. /* Create a separate codec/context for each frame (first is already ok).
  2542. * Each frame is 1 or 2 channels - up to 5 frames allowed
  2543. */
  2544. for (i = 1; i < s->frames; i++) {
  2545. s->mp3decctx[i] = av_mallocz(sizeof(MPADecodeContext));
  2546. s->mp3decctx[i]->compute_antialias = s->mp3decctx[0]->compute_antialias;
  2547. s->mp3decctx[i]->inbuf = &s->mp3decctx[i]->inbuf1[0][BACKSTEP_SIZE];
  2548. s->mp3decctx[i]->inbuf_ptr = s->mp3decctx[i]->inbuf;
  2549. s->mp3decctx[i]->adu_mode = 1;
  2550. }
  2551. return 0;
  2552. }
  2553. static int decode_close_mp3on4(AVCodecContext * avctx)
  2554. {
  2555. MP3On4DecodeContext *s = avctx->priv_data;
  2556. int i;
  2557. for (i = 0; i < s->frames; i++)
  2558. if (s->mp3decctx[i])
  2559. av_free(s->mp3decctx[i]);
  2560. return 0;
  2561. }
  2562. static int decode_frame_mp3on4(AVCodecContext * avctx,
  2563. void *data, int *data_size,
  2564. uint8_t * buf, int buf_size)
  2565. {
  2566. MP3On4DecodeContext *s = avctx->priv_data;
  2567. MPADecodeContext *m;
  2568. int len, out_size = 0;
  2569. uint32_t header;
  2570. OUT_INT *out_samples = data;
  2571. OUT_INT decoded_buf[MPA_FRAME_SIZE * MPA_MAX_CHANNELS];
  2572. OUT_INT *outptr, *bp;
  2573. int fsize;
  2574. unsigned char *start2 = buf, *start;
  2575. int fr, i, j, n;
  2576. int off = avctx->channels;
  2577. int *coff = chan_offset[s->chan_cfg];
  2578. len = buf_size;
  2579. // Discard too short frames
  2580. if (buf_size < HEADER_SIZE) {
  2581. *data_size = 0;
  2582. return buf_size;
  2583. }
  2584. // If only one decoder interleave is not needed
  2585. outptr = s->frames == 1 ? out_samples : decoded_buf;
  2586. for (fr = 0; fr < s->frames; fr++) {
  2587. start = start2;
  2588. fsize = (start[0] << 4) | (start[1] >> 4);
  2589. start2 += fsize;
  2590. if (fsize > len)
  2591. fsize = len;
  2592. len -= fsize;
  2593. if (fsize > MPA_MAX_CODED_FRAME_SIZE)
  2594. fsize = MPA_MAX_CODED_FRAME_SIZE;
  2595. m = s->mp3decctx[fr];
  2596. assert (m != NULL);
  2597. /* copy original to new */
  2598. m->inbuf_ptr = m->inbuf + fsize;
  2599. memcpy(m->inbuf, start, fsize);
  2600. // Get header
  2601. header = (m->inbuf[0] << 24) | (m->inbuf[1] << 16) |
  2602. (m->inbuf[2] << 8) | m->inbuf[3] | 0xfff00000;
  2603. if (ff_mpa_check_header(header) < 0) { // Bad header, discard block
  2604. *data_size = 0;
  2605. return buf_size;
  2606. }
  2607. decode_header(m, header);
  2608. mp_decode_frame(m, decoded_buf);
  2609. n = MPA_FRAME_SIZE * m->nb_channels;
  2610. out_size += n * sizeof(OUT_INT);
  2611. if(s->frames > 1) {
  2612. /* interleave output data */
  2613. bp = out_samples + coff[fr];
  2614. if(m->nb_channels == 1) {
  2615. for(j = 0; j < n; j++) {
  2616. *bp = decoded_buf[j];
  2617. bp += off;
  2618. }
  2619. } else {
  2620. for(j = 0; j < n; j++) {
  2621. bp[0] = decoded_buf[j++];
  2622. bp[1] = decoded_buf[j];
  2623. bp += off;
  2624. }
  2625. }
  2626. }
  2627. }
  2628. /* update codec info */
  2629. avctx->sample_rate = s->mp3decctx[0]->sample_rate;
  2630. avctx->frame_size= buf_size;
  2631. avctx->bit_rate = 0;
  2632. for (i = 0; i < s->frames; i++)
  2633. avctx->bit_rate += s->mp3decctx[i]->bit_rate;
  2634. *data_size = out_size;
  2635. return buf_size;
  2636. }
  2637. AVCodec mp2_decoder =
  2638. {
  2639. "mp2",
  2640. CODEC_TYPE_AUDIO,
  2641. CODEC_ID_MP2,
  2642. sizeof(MPADecodeContext),
  2643. decode_init,
  2644. NULL,
  2645. NULL,
  2646. decode_frame,
  2647. CODEC_CAP_PARSE_ONLY,
  2648. };
  2649. AVCodec mp3_decoder =
  2650. {
  2651. "mp3",
  2652. CODEC_TYPE_AUDIO,
  2653. CODEC_ID_MP3,
  2654. sizeof(MPADecodeContext),
  2655. decode_init,
  2656. NULL,
  2657. NULL,
  2658. decode_frame,
  2659. CODEC_CAP_PARSE_ONLY,
  2660. };
  2661. AVCodec mp3adu_decoder =
  2662. {
  2663. "mp3adu",
  2664. CODEC_TYPE_AUDIO,
  2665. CODEC_ID_MP3ADU,
  2666. sizeof(MPADecodeContext),
  2667. decode_init,
  2668. NULL,
  2669. NULL,
  2670. decode_frame_adu,
  2671. CODEC_CAP_PARSE_ONLY,
  2672. };
  2673. AVCodec mp3on4_decoder =
  2674. {
  2675. "mp3on4",
  2676. CODEC_TYPE_AUDIO,
  2677. CODEC_ID_MP3ON4,
  2678. sizeof(MP3On4DecodeContext),
  2679. decode_init_mp3on4,
  2680. NULL,
  2681. decode_close_mp3on4,
  2682. decode_frame_mp3on4,
  2683. 0
  2684. };