You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1551 lines
50KB

  1. /*
  2. * WebP (.webp) image decoder
  3. * Copyright (c) 2013 Aneesh Dogra <aneesh@sugarlabs.org>
  4. * Copyright (c) 2013 Justin Ruggles <justin.ruggles@gmail.com>
  5. *
  6. * This file is part of FFmpeg.
  7. *
  8. * FFmpeg is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU Lesser General Public
  10. * License as published by the Free Software Foundation; either
  11. * version 2.1 of the License, or (at your option) any later version.
  12. *
  13. * FFmpeg is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * Lesser General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU Lesser General Public
  19. * License along with FFmpeg; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  21. */
  22. /**
  23. * @file
  24. * WebP image decoder
  25. *
  26. * @author Aneesh Dogra <aneesh@sugarlabs.org>
  27. * Container and Lossy decoding
  28. *
  29. * @author Justin Ruggles <justin.ruggles@gmail.com>
  30. * Lossless decoder
  31. * Compressed alpha for lossy
  32. *
  33. * @author James Almer <jamrial@gmail.com>
  34. * Exif metadata
  35. * ICC profile
  36. *
  37. * Unimplemented:
  38. * - Animation
  39. * - XMP metadata
  40. */
  41. #include "libavutil/imgutils.h"
  42. #define BITSTREAM_READER_LE
  43. #include "avcodec.h"
  44. #include "bytestream.h"
  45. #include "exif.h"
  46. #include "get_bits.h"
  47. #include "internal.h"
  48. #include "thread.h"
  49. #include "vp8.h"
  50. #define VP8X_FLAG_ANIMATION 0x02
  51. #define VP8X_FLAG_XMP_METADATA 0x04
  52. #define VP8X_FLAG_EXIF_METADATA 0x08
  53. #define VP8X_FLAG_ALPHA 0x10
  54. #define VP8X_FLAG_ICC 0x20
  55. #define MAX_PALETTE_SIZE 256
  56. #define MAX_CACHE_BITS 11
  57. #define NUM_CODE_LENGTH_CODES 19
  58. #define HUFFMAN_CODES_PER_META_CODE 5
  59. #define NUM_LITERAL_CODES 256
  60. #define NUM_LENGTH_CODES 24
  61. #define NUM_DISTANCE_CODES 40
  62. #define NUM_SHORT_DISTANCES 120
  63. #define MAX_HUFFMAN_CODE_LENGTH 15
  64. static const uint16_t alphabet_sizes[HUFFMAN_CODES_PER_META_CODE] = {
  65. NUM_LITERAL_CODES + NUM_LENGTH_CODES,
  66. NUM_LITERAL_CODES, NUM_LITERAL_CODES, NUM_LITERAL_CODES,
  67. NUM_DISTANCE_CODES
  68. };
  69. static const uint8_t code_length_code_order[NUM_CODE_LENGTH_CODES] = {
  70. 17, 18, 0, 1, 2, 3, 4, 5, 16, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
  71. };
  72. static const int8_t lz77_distance_offsets[NUM_SHORT_DISTANCES][2] = {
  73. { 0, 1 }, { 1, 0 }, { 1, 1 }, { -1, 1 }, { 0, 2 }, { 2, 0 }, { 1, 2 }, { -1, 2 },
  74. { 2, 1 }, { -2, 1 }, { 2, 2 }, { -2, 2 }, { 0, 3 }, { 3, 0 }, { 1, 3 }, { -1, 3 },
  75. { 3, 1 }, { -3, 1 }, { 2, 3 }, { -2, 3 }, { 3, 2 }, { -3, 2 }, { 0, 4 }, { 4, 0 },
  76. { 1, 4 }, { -1, 4 }, { 4, 1 }, { -4, 1 }, { 3, 3 }, { -3, 3 }, { 2, 4 }, { -2, 4 },
  77. { 4, 2 }, { -4, 2 }, { 0, 5 }, { 3, 4 }, { -3, 4 }, { 4, 3 }, { -4, 3 }, { 5, 0 },
  78. { 1, 5 }, { -1, 5 }, { 5, 1 }, { -5, 1 }, { 2, 5 }, { -2, 5 }, { 5, 2 }, { -5, 2 },
  79. { 4, 4 }, { -4, 4 }, { 3, 5 }, { -3, 5 }, { 5, 3 }, { -5, 3 }, { 0, 6 }, { 6, 0 },
  80. { 1, 6 }, { -1, 6 }, { 6, 1 }, { -6, 1 }, { 2, 6 }, { -2, 6 }, { 6, 2 }, { -6, 2 },
  81. { 4, 5 }, { -4, 5 }, { 5, 4 }, { -5, 4 }, { 3, 6 }, { -3, 6 }, { 6, 3 }, { -6, 3 },
  82. { 0, 7 }, { 7, 0 }, { 1, 7 }, { -1, 7 }, { 5, 5 }, { -5, 5 }, { 7, 1 }, { -7, 1 },
  83. { 4, 6 }, { -4, 6 }, { 6, 4 }, { -6, 4 }, { 2, 7 }, { -2, 7 }, { 7, 2 }, { -7, 2 },
  84. { 3, 7 }, { -3, 7 }, { 7, 3 }, { -7, 3 }, { 5, 6 }, { -5, 6 }, { 6, 5 }, { -6, 5 },
  85. { 8, 0 }, { 4, 7 }, { -4, 7 }, { 7, 4 }, { -7, 4 }, { 8, 1 }, { 8, 2 }, { 6, 6 },
  86. { -6, 6 }, { 8, 3 }, { 5, 7 }, { -5, 7 }, { 7, 5 }, { -7, 5 }, { 8, 4 }, { 6, 7 },
  87. { -6, 7 }, { 7, 6 }, { -7, 6 }, { 8, 5 }, { 7, 7 }, { -7, 7 }, { 8, 6 }, { 8, 7 }
  88. };
  89. enum AlphaCompression {
  90. ALPHA_COMPRESSION_NONE,
  91. ALPHA_COMPRESSION_VP8L,
  92. };
  93. enum AlphaFilter {
  94. ALPHA_FILTER_NONE,
  95. ALPHA_FILTER_HORIZONTAL,
  96. ALPHA_FILTER_VERTICAL,
  97. ALPHA_FILTER_GRADIENT,
  98. };
  99. enum TransformType {
  100. PREDICTOR_TRANSFORM = 0,
  101. COLOR_TRANSFORM = 1,
  102. SUBTRACT_GREEN = 2,
  103. COLOR_INDEXING_TRANSFORM = 3,
  104. };
  105. enum PredictionMode {
  106. PRED_MODE_BLACK,
  107. PRED_MODE_L,
  108. PRED_MODE_T,
  109. PRED_MODE_TR,
  110. PRED_MODE_TL,
  111. PRED_MODE_AVG_T_AVG_L_TR,
  112. PRED_MODE_AVG_L_TL,
  113. PRED_MODE_AVG_L_T,
  114. PRED_MODE_AVG_TL_T,
  115. PRED_MODE_AVG_T_TR,
  116. PRED_MODE_AVG_AVG_L_TL_AVG_T_TR,
  117. PRED_MODE_SELECT,
  118. PRED_MODE_ADD_SUBTRACT_FULL,
  119. PRED_MODE_ADD_SUBTRACT_HALF,
  120. };
  121. enum HuffmanIndex {
  122. HUFF_IDX_GREEN = 0,
  123. HUFF_IDX_RED = 1,
  124. HUFF_IDX_BLUE = 2,
  125. HUFF_IDX_ALPHA = 3,
  126. HUFF_IDX_DIST = 4
  127. };
  128. /* The structure of WebP lossless is an optional series of transformation data,
  129. * followed by the primary image. The primary image also optionally contains
  130. * an entropy group mapping if there are multiple entropy groups. There is a
  131. * basic image type called an "entropy coded image" that is used for all of
  132. * these. The type of each entropy coded image is referred to by the
  133. * specification as its role. */
  134. enum ImageRole {
  135. /* Primary Image: Stores the actual pixels of the image. */
  136. IMAGE_ROLE_ARGB,
  137. /* Entropy Image: Defines which Huffman group to use for different areas of
  138. * the primary image. */
  139. IMAGE_ROLE_ENTROPY,
  140. /* Predictors: Defines which predictor type to use for different areas of
  141. * the primary image. */
  142. IMAGE_ROLE_PREDICTOR,
  143. /* Color Transform Data: Defines the color transformation for different
  144. * areas of the primary image. */
  145. IMAGE_ROLE_COLOR_TRANSFORM,
  146. /* Color Index: Stored as an image of height == 1. */
  147. IMAGE_ROLE_COLOR_INDEXING,
  148. IMAGE_ROLE_NB,
  149. };
  150. typedef struct HuffReader {
  151. VLC vlc; /* Huffman decoder context */
  152. int simple; /* whether to use simple mode */
  153. int nb_symbols; /* number of coded symbols */
  154. uint16_t simple_symbols[2]; /* symbols for simple mode */
  155. } HuffReader;
  156. typedef struct ImageContext {
  157. enum ImageRole role; /* role of this image */
  158. AVFrame *frame; /* AVFrame for data */
  159. int color_cache_bits; /* color cache size, log2 */
  160. uint32_t *color_cache; /* color cache data */
  161. int nb_huffman_groups; /* number of huffman groups */
  162. HuffReader *huffman_groups; /* reader for each huffman group */
  163. int size_reduction; /* relative size compared to primary image, log2 */
  164. int is_alpha_primary;
  165. } ImageContext;
  166. typedef struct WebPContext {
  167. VP8Context v; /* VP8 Context used for lossy decoding */
  168. GetBitContext gb; /* bitstream reader for main image chunk */
  169. AVFrame *alpha_frame; /* AVFrame for alpha data decompressed from VP8L */
  170. AVCodecContext *avctx; /* parent AVCodecContext */
  171. int initialized; /* set once the VP8 context is initialized */
  172. int has_alpha; /* has a separate alpha chunk */
  173. enum AlphaCompression alpha_compression; /* compression type for alpha chunk */
  174. enum AlphaFilter alpha_filter; /* filtering method for alpha chunk */
  175. uint8_t *alpha_data; /* alpha chunk data */
  176. int alpha_data_size; /* alpha chunk data size */
  177. int has_exif; /* set after an EXIF chunk has been processed */
  178. int has_iccp; /* set after an ICCP chunk has been processed */
  179. int width; /* image width */
  180. int height; /* image height */
  181. int lossless; /* indicates lossless or lossy */
  182. int nb_transforms; /* number of transforms */
  183. enum TransformType transforms[4]; /* transformations used in the image, in order */
  184. int reduced_width; /* reduced width for index image, if applicable */
  185. int nb_huffman_groups; /* number of huffman groups in the primary image */
  186. ImageContext image[IMAGE_ROLE_NB]; /* image context for each role */
  187. } WebPContext;
  188. #define GET_PIXEL(frame, x, y) \
  189. ((frame)->data[0] + (y) * frame->linesize[0] + 4 * (x))
  190. #define GET_PIXEL_COMP(frame, x, y, c) \
  191. (*((frame)->data[0] + (y) * frame->linesize[0] + 4 * (x) + c))
  192. static void image_ctx_free(ImageContext *img)
  193. {
  194. int i, j;
  195. av_free(img->color_cache);
  196. if (img->role != IMAGE_ROLE_ARGB && !img->is_alpha_primary)
  197. av_frame_free(&img->frame);
  198. if (img->huffman_groups) {
  199. for (i = 0; i < img->nb_huffman_groups; i++) {
  200. for (j = 0; j < HUFFMAN_CODES_PER_META_CODE; j++)
  201. ff_free_vlc(&img->huffman_groups[i * HUFFMAN_CODES_PER_META_CODE + j].vlc);
  202. }
  203. av_free(img->huffman_groups);
  204. }
  205. memset(img, 0, sizeof(*img));
  206. }
  207. static int huff_reader_get_symbol(HuffReader *r, GetBitContext *gb)
  208. {
  209. if (r->simple) {
  210. if (r->nb_symbols == 1)
  211. return r->simple_symbols[0];
  212. else
  213. return r->simple_symbols[get_bits1(gb)];
  214. } else
  215. return get_vlc2(gb, r->vlc.table, 8, 2);
  216. }
  217. static int huff_reader_build_canonical(HuffReader *r, const uint8_t *code_lengths,
  218. int alphabet_size)
  219. {
  220. int len = 0, sym, code = 0, ret;
  221. int max_code_length = 0;
  222. uint16_t *codes;
  223. /* special-case 1 symbol since the vlc reader cannot handle it */
  224. for (sym = 0; sym < alphabet_size; sym++) {
  225. if (code_lengths[sym] > 0) {
  226. len++;
  227. code = sym;
  228. if (len > 1)
  229. break;
  230. }
  231. }
  232. if (len == 1) {
  233. r->nb_symbols = 1;
  234. r->simple_symbols[0] = code;
  235. r->simple = 1;
  236. return 0;
  237. }
  238. for (sym = 0; sym < alphabet_size; sym++)
  239. max_code_length = FFMAX(max_code_length, code_lengths[sym]);
  240. if (max_code_length == 0 || max_code_length > MAX_HUFFMAN_CODE_LENGTH)
  241. return AVERROR(EINVAL);
  242. codes = av_malloc_array(alphabet_size, sizeof(*codes));
  243. if (!codes)
  244. return AVERROR(ENOMEM);
  245. code = 0;
  246. r->nb_symbols = 0;
  247. for (len = 1; len <= max_code_length; len++) {
  248. for (sym = 0; sym < alphabet_size; sym++) {
  249. if (code_lengths[sym] != len)
  250. continue;
  251. codes[sym] = code++;
  252. r->nb_symbols++;
  253. }
  254. code <<= 1;
  255. }
  256. if (!r->nb_symbols) {
  257. av_free(codes);
  258. return AVERROR_INVALIDDATA;
  259. }
  260. ret = init_vlc(&r->vlc, 8, alphabet_size,
  261. code_lengths, sizeof(*code_lengths), sizeof(*code_lengths),
  262. codes, sizeof(*codes), sizeof(*codes), INIT_VLC_OUTPUT_LE);
  263. if (ret < 0) {
  264. av_free(codes);
  265. return ret;
  266. }
  267. r->simple = 0;
  268. av_free(codes);
  269. return 0;
  270. }
  271. static void read_huffman_code_simple(WebPContext *s, HuffReader *hc)
  272. {
  273. hc->nb_symbols = get_bits1(&s->gb) + 1;
  274. if (get_bits1(&s->gb))
  275. hc->simple_symbols[0] = get_bits(&s->gb, 8);
  276. else
  277. hc->simple_symbols[0] = get_bits1(&s->gb);
  278. if (hc->nb_symbols == 2)
  279. hc->simple_symbols[1] = get_bits(&s->gb, 8);
  280. hc->simple = 1;
  281. }
  282. static int read_huffman_code_normal(WebPContext *s, HuffReader *hc,
  283. int alphabet_size)
  284. {
  285. HuffReader code_len_hc = { { 0 }, 0, 0, { 0 } };
  286. uint8_t *code_lengths;
  287. uint8_t code_length_code_lengths[NUM_CODE_LENGTH_CODES] = { 0 };
  288. int i, symbol, max_symbol, prev_code_len, ret;
  289. int num_codes = 4 + get_bits(&s->gb, 4);
  290. if (num_codes > NUM_CODE_LENGTH_CODES)
  291. return AVERROR_INVALIDDATA;
  292. for (i = 0; i < num_codes; i++)
  293. code_length_code_lengths[code_length_code_order[i]] = get_bits(&s->gb, 3);
  294. ret = huff_reader_build_canonical(&code_len_hc, code_length_code_lengths,
  295. NUM_CODE_LENGTH_CODES);
  296. if (ret < 0)
  297. return ret;
  298. code_lengths = av_mallocz(alphabet_size);
  299. if (!code_lengths) {
  300. ret = AVERROR(ENOMEM);
  301. goto finish;
  302. }
  303. if (get_bits1(&s->gb)) {
  304. int bits = 2 + 2 * get_bits(&s->gb, 3);
  305. max_symbol = 2 + get_bits(&s->gb, bits);
  306. if (max_symbol > alphabet_size) {
  307. av_log(s->avctx, AV_LOG_ERROR, "max symbol %d > alphabet size %d\n",
  308. max_symbol, alphabet_size);
  309. ret = AVERROR_INVALIDDATA;
  310. goto finish;
  311. }
  312. } else {
  313. max_symbol = alphabet_size;
  314. }
  315. prev_code_len = 8;
  316. symbol = 0;
  317. while (symbol < alphabet_size) {
  318. int code_len;
  319. if (!max_symbol--)
  320. break;
  321. code_len = huff_reader_get_symbol(&code_len_hc, &s->gb);
  322. if (code_len < 16) {
  323. /* Code length code [0..15] indicates literal code lengths. */
  324. code_lengths[symbol++] = code_len;
  325. if (code_len)
  326. prev_code_len = code_len;
  327. } else {
  328. int repeat = 0, length = 0;
  329. switch (code_len) {
  330. case 16:
  331. /* Code 16 repeats the previous non-zero value [3..6] times,
  332. * i.e., 3 + ReadBits(2) times. If code 16 is used before a
  333. * non-zero value has been emitted, a value of 8 is repeated. */
  334. repeat = 3 + get_bits(&s->gb, 2);
  335. length = prev_code_len;
  336. break;
  337. case 17:
  338. /* Code 17 emits a streak of zeros [3..10], i.e.,
  339. * 3 + ReadBits(3) times. */
  340. repeat = 3 + get_bits(&s->gb, 3);
  341. break;
  342. case 18:
  343. /* Code 18 emits a streak of zeros of length [11..138], i.e.,
  344. * 11 + ReadBits(7) times. */
  345. repeat = 11 + get_bits(&s->gb, 7);
  346. break;
  347. }
  348. if (symbol + repeat > alphabet_size) {
  349. av_log(s->avctx, AV_LOG_ERROR,
  350. "invalid symbol %d + repeat %d > alphabet size %d\n",
  351. symbol, repeat, alphabet_size);
  352. ret = AVERROR_INVALIDDATA;
  353. goto finish;
  354. }
  355. while (repeat-- > 0)
  356. code_lengths[symbol++] = length;
  357. }
  358. }
  359. ret = huff_reader_build_canonical(hc, code_lengths, alphabet_size);
  360. finish:
  361. ff_free_vlc(&code_len_hc.vlc);
  362. av_free(code_lengths);
  363. return ret;
  364. }
  365. static int decode_entropy_coded_image(WebPContext *s, enum ImageRole role,
  366. int w, int h);
  367. #define PARSE_BLOCK_SIZE(w, h) do { \
  368. block_bits = get_bits(&s->gb, 3) + 2; \
  369. blocks_w = FFALIGN((w), 1 << block_bits) >> block_bits; \
  370. blocks_h = FFALIGN((h), 1 << block_bits) >> block_bits; \
  371. } while (0)
  372. static int decode_entropy_image(WebPContext *s)
  373. {
  374. ImageContext *img;
  375. int ret, block_bits, width, blocks_w, blocks_h, x, y, max;
  376. width = s->width;
  377. if (s->reduced_width > 0)
  378. width = s->reduced_width;
  379. PARSE_BLOCK_SIZE(width, s->height);
  380. ret = decode_entropy_coded_image(s, IMAGE_ROLE_ENTROPY, blocks_w, blocks_h);
  381. if (ret < 0)
  382. return ret;
  383. img = &s->image[IMAGE_ROLE_ENTROPY];
  384. img->size_reduction = block_bits;
  385. /* the number of huffman groups is determined by the maximum group number
  386. * coded in the entropy image */
  387. max = 0;
  388. for (y = 0; y < img->frame->height; y++) {
  389. for (x = 0; x < img->frame->width; x++) {
  390. int p0 = GET_PIXEL_COMP(img->frame, x, y, 1);
  391. int p1 = GET_PIXEL_COMP(img->frame, x, y, 2);
  392. int p = p0 << 8 | p1;
  393. max = FFMAX(max, p);
  394. }
  395. }
  396. s->nb_huffman_groups = max + 1;
  397. return 0;
  398. }
  399. static int parse_transform_predictor(WebPContext *s)
  400. {
  401. int block_bits, blocks_w, blocks_h, ret;
  402. PARSE_BLOCK_SIZE(s->width, s->height);
  403. ret = decode_entropy_coded_image(s, IMAGE_ROLE_PREDICTOR, blocks_w,
  404. blocks_h);
  405. if (ret < 0)
  406. return ret;
  407. s->image[IMAGE_ROLE_PREDICTOR].size_reduction = block_bits;
  408. return 0;
  409. }
  410. static int parse_transform_color(WebPContext *s)
  411. {
  412. int block_bits, blocks_w, blocks_h, ret;
  413. PARSE_BLOCK_SIZE(s->width, s->height);
  414. ret = decode_entropy_coded_image(s, IMAGE_ROLE_COLOR_TRANSFORM, blocks_w,
  415. blocks_h);
  416. if (ret < 0)
  417. return ret;
  418. s->image[IMAGE_ROLE_COLOR_TRANSFORM].size_reduction = block_bits;
  419. return 0;
  420. }
  421. static int parse_transform_color_indexing(WebPContext *s)
  422. {
  423. ImageContext *img;
  424. int width_bits, index_size, ret, x;
  425. uint8_t *ct;
  426. index_size = get_bits(&s->gb, 8) + 1;
  427. if (index_size <= 2)
  428. width_bits = 3;
  429. else if (index_size <= 4)
  430. width_bits = 2;
  431. else if (index_size <= 16)
  432. width_bits = 1;
  433. else
  434. width_bits = 0;
  435. ret = decode_entropy_coded_image(s, IMAGE_ROLE_COLOR_INDEXING,
  436. index_size, 1);
  437. if (ret < 0)
  438. return ret;
  439. img = &s->image[IMAGE_ROLE_COLOR_INDEXING];
  440. img->size_reduction = width_bits;
  441. if (width_bits > 0)
  442. s->reduced_width = (s->width + ((1 << width_bits) - 1)) >> width_bits;
  443. /* color index values are delta-coded */
  444. ct = img->frame->data[0] + 4;
  445. for (x = 4; x < img->frame->width * 4; x++, ct++)
  446. ct[0] += ct[-4];
  447. return 0;
  448. }
  449. static HuffReader *get_huffman_group(WebPContext *s, ImageContext *img,
  450. int x, int y)
  451. {
  452. ImageContext *gimg = &s->image[IMAGE_ROLE_ENTROPY];
  453. int group = 0;
  454. if (gimg->size_reduction > 0) {
  455. int group_x = x >> gimg->size_reduction;
  456. int group_y = y >> gimg->size_reduction;
  457. int g0 = GET_PIXEL_COMP(gimg->frame, group_x, group_y, 1);
  458. int g1 = GET_PIXEL_COMP(gimg->frame, group_x, group_y, 2);
  459. group = g0 << 8 | g1;
  460. }
  461. return &img->huffman_groups[group * HUFFMAN_CODES_PER_META_CODE];
  462. }
  463. static av_always_inline void color_cache_put(ImageContext *img, uint32_t c)
  464. {
  465. uint32_t cache_idx = (0x1E35A7BD * c) >> (32 - img->color_cache_bits);
  466. img->color_cache[cache_idx] = c;
  467. }
  468. static int decode_entropy_coded_image(WebPContext *s, enum ImageRole role,
  469. int w, int h)
  470. {
  471. ImageContext *img;
  472. HuffReader *hg;
  473. int i, j, ret, x, y, width;
  474. img = &s->image[role];
  475. img->role = role;
  476. if (!img->frame) {
  477. img->frame = av_frame_alloc();
  478. if (!img->frame)
  479. return AVERROR(ENOMEM);
  480. }
  481. img->frame->format = AV_PIX_FMT_ARGB;
  482. img->frame->width = w;
  483. img->frame->height = h;
  484. if (role == IMAGE_ROLE_ARGB && !img->is_alpha_primary) {
  485. ThreadFrame pt = { .f = img->frame };
  486. ret = ff_thread_get_buffer(s->avctx, &pt, 0);
  487. } else
  488. ret = av_frame_get_buffer(img->frame, 1);
  489. if (ret < 0)
  490. return ret;
  491. if (get_bits1(&s->gb)) {
  492. img->color_cache_bits = get_bits(&s->gb, 4);
  493. if (img->color_cache_bits < 1 || img->color_cache_bits > 11) {
  494. av_log(s->avctx, AV_LOG_ERROR, "invalid color cache bits: %d\n",
  495. img->color_cache_bits);
  496. return AVERROR_INVALIDDATA;
  497. }
  498. img->color_cache = av_mallocz_array(1 << img->color_cache_bits,
  499. sizeof(*img->color_cache));
  500. if (!img->color_cache)
  501. return AVERROR(ENOMEM);
  502. } else {
  503. img->color_cache_bits = 0;
  504. }
  505. img->nb_huffman_groups = 1;
  506. if (role == IMAGE_ROLE_ARGB && get_bits1(&s->gb)) {
  507. ret = decode_entropy_image(s);
  508. if (ret < 0)
  509. return ret;
  510. img->nb_huffman_groups = s->nb_huffman_groups;
  511. }
  512. img->huffman_groups = av_mallocz_array(img->nb_huffman_groups *
  513. HUFFMAN_CODES_PER_META_CODE,
  514. sizeof(*img->huffman_groups));
  515. if (!img->huffman_groups)
  516. return AVERROR(ENOMEM);
  517. for (i = 0; i < img->nb_huffman_groups; i++) {
  518. hg = &img->huffman_groups[i * HUFFMAN_CODES_PER_META_CODE];
  519. for (j = 0; j < HUFFMAN_CODES_PER_META_CODE; j++) {
  520. int alphabet_size = alphabet_sizes[j];
  521. if (!j && img->color_cache_bits > 0)
  522. alphabet_size += 1 << img->color_cache_bits;
  523. if (get_bits1(&s->gb)) {
  524. read_huffman_code_simple(s, &hg[j]);
  525. } else {
  526. ret = read_huffman_code_normal(s, &hg[j], alphabet_size);
  527. if (ret < 0)
  528. return ret;
  529. }
  530. }
  531. }
  532. width = img->frame->width;
  533. if (role == IMAGE_ROLE_ARGB && s->reduced_width > 0)
  534. width = s->reduced_width;
  535. x = 0; y = 0;
  536. while (y < img->frame->height) {
  537. int v;
  538. hg = get_huffman_group(s, img, x, y);
  539. v = huff_reader_get_symbol(&hg[HUFF_IDX_GREEN], &s->gb);
  540. if (v < NUM_LITERAL_CODES) {
  541. /* literal pixel values */
  542. uint8_t *p = GET_PIXEL(img->frame, x, y);
  543. p[2] = v;
  544. p[1] = huff_reader_get_symbol(&hg[HUFF_IDX_RED], &s->gb);
  545. p[3] = huff_reader_get_symbol(&hg[HUFF_IDX_BLUE], &s->gb);
  546. p[0] = huff_reader_get_symbol(&hg[HUFF_IDX_ALPHA], &s->gb);
  547. if (img->color_cache_bits)
  548. color_cache_put(img, AV_RB32(p));
  549. x++;
  550. if (x == width) {
  551. x = 0;
  552. y++;
  553. }
  554. } else if (v < NUM_LITERAL_CODES + NUM_LENGTH_CODES) {
  555. /* LZ77 backwards mapping */
  556. int prefix_code, length, distance, ref_x, ref_y;
  557. /* parse length and distance */
  558. prefix_code = v - NUM_LITERAL_CODES;
  559. if (prefix_code < 4) {
  560. length = prefix_code + 1;
  561. } else {
  562. int extra_bits = (prefix_code - 2) >> 1;
  563. int offset = 2 + (prefix_code & 1) << extra_bits;
  564. length = offset + get_bits(&s->gb, extra_bits) + 1;
  565. }
  566. prefix_code = huff_reader_get_symbol(&hg[HUFF_IDX_DIST], &s->gb);
  567. if (prefix_code > 39U) {
  568. av_log(s->avctx, AV_LOG_ERROR,
  569. "distance prefix code too large: %d\n", prefix_code);
  570. return AVERROR_INVALIDDATA;
  571. }
  572. if (prefix_code < 4) {
  573. distance = prefix_code + 1;
  574. } else {
  575. int extra_bits = prefix_code - 2 >> 1;
  576. int offset = 2 + (prefix_code & 1) << extra_bits;
  577. distance = offset + get_bits(&s->gb, extra_bits) + 1;
  578. }
  579. /* find reference location */
  580. if (distance <= NUM_SHORT_DISTANCES) {
  581. int xi = lz77_distance_offsets[distance - 1][0];
  582. int yi = lz77_distance_offsets[distance - 1][1];
  583. distance = FFMAX(1, xi + yi * width);
  584. } else {
  585. distance -= NUM_SHORT_DISTANCES;
  586. }
  587. ref_x = x;
  588. ref_y = y;
  589. if (distance <= x) {
  590. ref_x -= distance;
  591. distance = 0;
  592. } else {
  593. ref_x = 0;
  594. distance -= x;
  595. }
  596. while (distance >= width) {
  597. ref_y--;
  598. distance -= width;
  599. }
  600. if (distance > 0) {
  601. ref_x = width - distance;
  602. ref_y--;
  603. }
  604. ref_x = FFMAX(0, ref_x);
  605. ref_y = FFMAX(0, ref_y);
  606. /* copy pixels
  607. * source and dest regions can overlap and wrap lines, so just
  608. * copy per-pixel */
  609. for (i = 0; i < length; i++) {
  610. uint8_t *p_ref = GET_PIXEL(img->frame, ref_x, ref_y);
  611. uint8_t *p = GET_PIXEL(img->frame, x, y);
  612. AV_COPY32(p, p_ref);
  613. if (img->color_cache_bits)
  614. color_cache_put(img, AV_RB32(p));
  615. x++;
  616. ref_x++;
  617. if (x == width) {
  618. x = 0;
  619. y++;
  620. }
  621. if (ref_x == width) {
  622. ref_x = 0;
  623. ref_y++;
  624. }
  625. if (y == img->frame->height || ref_y == img->frame->height)
  626. break;
  627. }
  628. } else {
  629. /* read from color cache */
  630. uint8_t *p = GET_PIXEL(img->frame, x, y);
  631. int cache_idx = v - (NUM_LITERAL_CODES + NUM_LENGTH_CODES);
  632. if (!img->color_cache_bits) {
  633. av_log(s->avctx, AV_LOG_ERROR, "color cache not found\n");
  634. return AVERROR_INVALIDDATA;
  635. }
  636. if (cache_idx >= 1 << img->color_cache_bits) {
  637. av_log(s->avctx, AV_LOG_ERROR,
  638. "color cache index out-of-bounds\n");
  639. return AVERROR_INVALIDDATA;
  640. }
  641. AV_WB32(p, img->color_cache[cache_idx]);
  642. x++;
  643. if (x == width) {
  644. x = 0;
  645. y++;
  646. }
  647. }
  648. }
  649. return 0;
  650. }
  651. /* PRED_MODE_BLACK */
  652. static void inv_predict_0(uint8_t *p, const uint8_t *p_l, const uint8_t *p_tl,
  653. const uint8_t *p_t, const uint8_t *p_tr)
  654. {
  655. AV_WB32(p, 0xFF000000);
  656. }
  657. /* PRED_MODE_L */
  658. static void inv_predict_1(uint8_t *p, const uint8_t *p_l, const uint8_t *p_tl,
  659. const uint8_t *p_t, const uint8_t *p_tr)
  660. {
  661. AV_COPY32(p, p_l);
  662. }
  663. /* PRED_MODE_T */
  664. static void inv_predict_2(uint8_t *p, const uint8_t *p_l, const uint8_t *p_tl,
  665. const uint8_t *p_t, const uint8_t *p_tr)
  666. {
  667. AV_COPY32(p, p_t);
  668. }
  669. /* PRED_MODE_TR */
  670. static void inv_predict_3(uint8_t *p, const uint8_t *p_l, const uint8_t *p_tl,
  671. const uint8_t *p_t, const uint8_t *p_tr)
  672. {
  673. AV_COPY32(p, p_tr);
  674. }
  675. /* PRED_MODE_TL */
  676. static void inv_predict_4(uint8_t *p, const uint8_t *p_l, const uint8_t *p_tl,
  677. const uint8_t *p_t, const uint8_t *p_tr)
  678. {
  679. AV_COPY32(p, p_tl);
  680. }
  681. /* PRED_MODE_AVG_T_AVG_L_TR */
  682. static void inv_predict_5(uint8_t *p, const uint8_t *p_l, const uint8_t *p_tl,
  683. const uint8_t *p_t, const uint8_t *p_tr)
  684. {
  685. p[0] = p_t[0] + (p_l[0] + p_tr[0] >> 1) >> 1;
  686. p[1] = p_t[1] + (p_l[1] + p_tr[1] >> 1) >> 1;
  687. p[2] = p_t[2] + (p_l[2] + p_tr[2] >> 1) >> 1;
  688. p[3] = p_t[3] + (p_l[3] + p_tr[3] >> 1) >> 1;
  689. }
  690. /* PRED_MODE_AVG_L_TL */
  691. static void inv_predict_6(uint8_t *p, const uint8_t *p_l, const uint8_t *p_tl,
  692. const uint8_t *p_t, const uint8_t *p_tr)
  693. {
  694. p[0] = p_l[0] + p_tl[0] >> 1;
  695. p[1] = p_l[1] + p_tl[1] >> 1;
  696. p[2] = p_l[2] + p_tl[2] >> 1;
  697. p[3] = p_l[3] + p_tl[3] >> 1;
  698. }
  699. /* PRED_MODE_AVG_L_T */
  700. static void inv_predict_7(uint8_t *p, const uint8_t *p_l, const uint8_t *p_tl,
  701. const uint8_t *p_t, const uint8_t *p_tr)
  702. {
  703. p[0] = p_l[0] + p_t[0] >> 1;
  704. p[1] = p_l[1] + p_t[1] >> 1;
  705. p[2] = p_l[2] + p_t[2] >> 1;
  706. p[3] = p_l[3] + p_t[3] >> 1;
  707. }
  708. /* PRED_MODE_AVG_TL_T */
  709. static void inv_predict_8(uint8_t *p, const uint8_t *p_l, const uint8_t *p_tl,
  710. const uint8_t *p_t, const uint8_t *p_tr)
  711. {
  712. p[0] = p_tl[0] + p_t[0] >> 1;
  713. p[1] = p_tl[1] + p_t[1] >> 1;
  714. p[2] = p_tl[2] + p_t[2] >> 1;
  715. p[3] = p_tl[3] + p_t[3] >> 1;
  716. }
  717. /* PRED_MODE_AVG_T_TR */
  718. static void inv_predict_9(uint8_t *p, const uint8_t *p_l, const uint8_t *p_tl,
  719. const uint8_t *p_t, const uint8_t *p_tr)
  720. {
  721. p[0] = p_t[0] + p_tr[0] >> 1;
  722. p[1] = p_t[1] + p_tr[1] >> 1;
  723. p[2] = p_t[2] + p_tr[2] >> 1;
  724. p[3] = p_t[3] + p_tr[3] >> 1;
  725. }
  726. /* PRED_MODE_AVG_AVG_L_TL_AVG_T_TR */
  727. static void inv_predict_10(uint8_t *p, const uint8_t *p_l, const uint8_t *p_tl,
  728. const uint8_t *p_t, const uint8_t *p_tr)
  729. {
  730. p[0] = (p_l[0] + p_tl[0] >> 1) + (p_t[0] + p_tr[0] >> 1) >> 1;
  731. p[1] = (p_l[1] + p_tl[1] >> 1) + (p_t[1] + p_tr[1] >> 1) >> 1;
  732. p[2] = (p_l[2] + p_tl[2] >> 1) + (p_t[2] + p_tr[2] >> 1) >> 1;
  733. p[3] = (p_l[3] + p_tl[3] >> 1) + (p_t[3] + p_tr[3] >> 1) >> 1;
  734. }
  735. /* PRED_MODE_SELECT */
  736. static void inv_predict_11(uint8_t *p, const uint8_t *p_l, const uint8_t *p_tl,
  737. const uint8_t *p_t, const uint8_t *p_tr)
  738. {
  739. int diff = (FFABS(p_l[0] - p_tl[0]) - FFABS(p_t[0] - p_tl[0])) +
  740. (FFABS(p_l[1] - p_tl[1]) - FFABS(p_t[1] - p_tl[1])) +
  741. (FFABS(p_l[2] - p_tl[2]) - FFABS(p_t[2] - p_tl[2])) +
  742. (FFABS(p_l[3] - p_tl[3]) - FFABS(p_t[3] - p_tl[3]));
  743. if (diff <= 0)
  744. AV_COPY32(p, p_t);
  745. else
  746. AV_COPY32(p, p_l);
  747. }
  748. /* PRED_MODE_ADD_SUBTRACT_FULL */
  749. static void inv_predict_12(uint8_t *p, const uint8_t *p_l, const uint8_t *p_tl,
  750. const uint8_t *p_t, const uint8_t *p_tr)
  751. {
  752. p[0] = av_clip_uint8(p_l[0] + p_t[0] - p_tl[0]);
  753. p[1] = av_clip_uint8(p_l[1] + p_t[1] - p_tl[1]);
  754. p[2] = av_clip_uint8(p_l[2] + p_t[2] - p_tl[2]);
  755. p[3] = av_clip_uint8(p_l[3] + p_t[3] - p_tl[3]);
  756. }
  757. static av_always_inline uint8_t clamp_add_subtract_half(int a, int b, int c)
  758. {
  759. int d = a + b >> 1;
  760. return av_clip_uint8(d + (d - c) / 2);
  761. }
  762. /* PRED_MODE_ADD_SUBTRACT_HALF */
  763. static void inv_predict_13(uint8_t *p, const uint8_t *p_l, const uint8_t *p_tl,
  764. const uint8_t *p_t, const uint8_t *p_tr)
  765. {
  766. p[0] = clamp_add_subtract_half(p_l[0], p_t[0], p_tl[0]);
  767. p[1] = clamp_add_subtract_half(p_l[1], p_t[1], p_tl[1]);
  768. p[2] = clamp_add_subtract_half(p_l[2], p_t[2], p_tl[2]);
  769. p[3] = clamp_add_subtract_half(p_l[3], p_t[3], p_tl[3]);
  770. }
  771. typedef void (*inv_predict_func)(uint8_t *p, const uint8_t *p_l,
  772. const uint8_t *p_tl, const uint8_t *p_t,
  773. const uint8_t *p_tr);
  774. static const inv_predict_func inverse_predict[14] = {
  775. inv_predict_0, inv_predict_1, inv_predict_2, inv_predict_3,
  776. inv_predict_4, inv_predict_5, inv_predict_6, inv_predict_7,
  777. inv_predict_8, inv_predict_9, inv_predict_10, inv_predict_11,
  778. inv_predict_12, inv_predict_13,
  779. };
  780. static void inverse_prediction(AVFrame *frame, enum PredictionMode m, int x, int y)
  781. {
  782. uint8_t *dec, *p_l, *p_tl, *p_t, *p_tr;
  783. uint8_t p[4];
  784. dec = GET_PIXEL(frame, x, y);
  785. p_l = GET_PIXEL(frame, x - 1, y);
  786. p_tl = GET_PIXEL(frame, x - 1, y - 1);
  787. p_t = GET_PIXEL(frame, x, y - 1);
  788. if (x == frame->width - 1)
  789. p_tr = GET_PIXEL(frame, 0, y);
  790. else
  791. p_tr = GET_PIXEL(frame, x + 1, y - 1);
  792. inverse_predict[m](p, p_l, p_tl, p_t, p_tr);
  793. dec[0] += p[0];
  794. dec[1] += p[1];
  795. dec[2] += p[2];
  796. dec[3] += p[3];
  797. }
  798. static int apply_predictor_transform(WebPContext *s)
  799. {
  800. ImageContext *img = &s->image[IMAGE_ROLE_ARGB];
  801. ImageContext *pimg = &s->image[IMAGE_ROLE_PREDICTOR];
  802. int x, y;
  803. for (y = 0; y < img->frame->height; y++) {
  804. for (x = 0; x < img->frame->width; x++) {
  805. int tx = x >> pimg->size_reduction;
  806. int ty = y >> pimg->size_reduction;
  807. enum PredictionMode m = GET_PIXEL_COMP(pimg->frame, tx, ty, 2);
  808. if (x == 0) {
  809. if (y == 0)
  810. m = PRED_MODE_BLACK;
  811. else
  812. m = PRED_MODE_T;
  813. } else if (y == 0)
  814. m = PRED_MODE_L;
  815. if (m > 13) {
  816. av_log(s->avctx, AV_LOG_ERROR,
  817. "invalid predictor mode: %d\n", m);
  818. return AVERROR_INVALIDDATA;
  819. }
  820. inverse_prediction(img->frame, m, x, y);
  821. }
  822. }
  823. return 0;
  824. }
  825. static av_always_inline uint8_t color_transform_delta(uint8_t color_pred,
  826. uint8_t color)
  827. {
  828. return (int)ff_u8_to_s8(color_pred) * ff_u8_to_s8(color) >> 5;
  829. }
  830. static int apply_color_transform(WebPContext *s)
  831. {
  832. ImageContext *img, *cimg;
  833. int x, y, cx, cy;
  834. uint8_t *p, *cp;
  835. img = &s->image[IMAGE_ROLE_ARGB];
  836. cimg = &s->image[IMAGE_ROLE_COLOR_TRANSFORM];
  837. for (y = 0; y < img->frame->height; y++) {
  838. for (x = 0; x < img->frame->width; x++) {
  839. cx = x >> cimg->size_reduction;
  840. cy = y >> cimg->size_reduction;
  841. cp = GET_PIXEL(cimg->frame, cx, cy);
  842. p = GET_PIXEL(img->frame, x, y);
  843. p[1] += color_transform_delta(cp[3], p[2]);
  844. p[3] += color_transform_delta(cp[2], p[2]) +
  845. color_transform_delta(cp[1], p[1]);
  846. }
  847. }
  848. return 0;
  849. }
  850. static int apply_subtract_green_transform(WebPContext *s)
  851. {
  852. int x, y;
  853. ImageContext *img = &s->image[IMAGE_ROLE_ARGB];
  854. for (y = 0; y < img->frame->height; y++) {
  855. for (x = 0; x < img->frame->width; x++) {
  856. uint8_t *p = GET_PIXEL(img->frame, x, y);
  857. p[1] += p[2];
  858. p[3] += p[2];
  859. }
  860. }
  861. return 0;
  862. }
  863. static int apply_color_indexing_transform(WebPContext *s)
  864. {
  865. ImageContext *img;
  866. ImageContext *pal;
  867. int i, x, y;
  868. uint8_t *p;
  869. img = &s->image[IMAGE_ROLE_ARGB];
  870. pal = &s->image[IMAGE_ROLE_COLOR_INDEXING];
  871. if (pal->size_reduction > 0) {
  872. GetBitContext gb_g;
  873. uint8_t *line;
  874. int pixel_bits = 8 >> pal->size_reduction;
  875. line = av_malloc(img->frame->linesize[0] + AV_INPUT_BUFFER_PADDING_SIZE);
  876. if (!line)
  877. return AVERROR(ENOMEM);
  878. for (y = 0; y < img->frame->height; y++) {
  879. p = GET_PIXEL(img->frame, 0, y);
  880. memcpy(line, p, img->frame->linesize[0]);
  881. init_get_bits(&gb_g, line, img->frame->linesize[0] * 8);
  882. skip_bits(&gb_g, 16);
  883. i = 0;
  884. for (x = 0; x < img->frame->width; x++) {
  885. p = GET_PIXEL(img->frame, x, y);
  886. p[2] = get_bits(&gb_g, pixel_bits);
  887. i++;
  888. if (i == 1 << pal->size_reduction) {
  889. skip_bits(&gb_g, 24);
  890. i = 0;
  891. }
  892. }
  893. }
  894. av_free(line);
  895. }
  896. // switch to local palette if it's worth initializing it
  897. if (img->frame->height * img->frame->width > 300) {
  898. uint8_t palette[256 * 4];
  899. const int size = pal->frame->width * 4;
  900. av_assert0(size <= 1024U);
  901. memcpy(palette, GET_PIXEL(pal->frame, 0, 0), size); // copy palette
  902. // set extra entries to transparent black
  903. memset(palette + size, 0, 256 * 4 - size);
  904. for (y = 0; y < img->frame->height; y++) {
  905. for (x = 0; x < img->frame->width; x++) {
  906. p = GET_PIXEL(img->frame, x, y);
  907. i = p[2];
  908. AV_COPY32(p, &palette[i * 4]);
  909. }
  910. }
  911. } else {
  912. for (y = 0; y < img->frame->height; y++) {
  913. for (x = 0; x < img->frame->width; x++) {
  914. p = GET_PIXEL(img->frame, x, y);
  915. i = p[2];
  916. if (i >= pal->frame->width) {
  917. AV_WB32(p, 0x00000000);
  918. } else {
  919. const uint8_t *pi = GET_PIXEL(pal->frame, i, 0);
  920. AV_COPY32(p, pi);
  921. }
  922. }
  923. }
  924. }
  925. return 0;
  926. }
  927. static void update_canvas_size(AVCodecContext *avctx, int w, int h)
  928. {
  929. WebPContext *s = avctx->priv_data;
  930. if (s->width && s->width != w) {
  931. av_log(avctx, AV_LOG_WARNING, "Width mismatch. %d != %d\n",
  932. s->width, w);
  933. }
  934. s->width = w;
  935. if (s->height && s->height != h) {
  936. av_log(avctx, AV_LOG_WARNING, "Height mismatch. %d != %d\n",
  937. s->height, h);
  938. }
  939. s->height = h;
  940. }
  941. static int vp8_lossless_decode_frame(AVCodecContext *avctx, AVFrame *p,
  942. int *got_frame, uint8_t *data_start,
  943. unsigned int data_size, int is_alpha_chunk)
  944. {
  945. WebPContext *s = avctx->priv_data;
  946. int w, h, ret, i, used;
  947. if (!is_alpha_chunk) {
  948. s->lossless = 1;
  949. avctx->pix_fmt = AV_PIX_FMT_ARGB;
  950. }
  951. ret = init_get_bits8(&s->gb, data_start, data_size);
  952. if (ret < 0)
  953. return ret;
  954. if (!is_alpha_chunk) {
  955. if (get_bits(&s->gb, 8) != 0x2F) {
  956. av_log(avctx, AV_LOG_ERROR, "Invalid WebP Lossless signature\n");
  957. return AVERROR_INVALIDDATA;
  958. }
  959. w = get_bits(&s->gb, 14) + 1;
  960. h = get_bits(&s->gb, 14) + 1;
  961. update_canvas_size(avctx, w, h);
  962. ret = ff_set_dimensions(avctx, s->width, s->height);
  963. if (ret < 0)
  964. return ret;
  965. s->has_alpha = get_bits1(&s->gb);
  966. if (get_bits(&s->gb, 3) != 0x0) {
  967. av_log(avctx, AV_LOG_ERROR, "Invalid WebP Lossless version\n");
  968. return AVERROR_INVALIDDATA;
  969. }
  970. } else {
  971. if (!s->width || !s->height)
  972. return AVERROR_BUG;
  973. w = s->width;
  974. h = s->height;
  975. }
  976. /* parse transformations */
  977. s->nb_transforms = 0;
  978. s->reduced_width = 0;
  979. used = 0;
  980. while (get_bits1(&s->gb)) {
  981. enum TransformType transform = get_bits(&s->gb, 2);
  982. if (used & (1 << transform)) {
  983. av_log(avctx, AV_LOG_ERROR, "Transform %d used more than once\n",
  984. transform);
  985. ret = AVERROR_INVALIDDATA;
  986. goto free_and_return;
  987. }
  988. used |= (1 << transform);
  989. s->transforms[s->nb_transforms++] = transform;
  990. switch (transform) {
  991. case PREDICTOR_TRANSFORM:
  992. ret = parse_transform_predictor(s);
  993. break;
  994. case COLOR_TRANSFORM:
  995. ret = parse_transform_color(s);
  996. break;
  997. case COLOR_INDEXING_TRANSFORM:
  998. ret = parse_transform_color_indexing(s);
  999. break;
  1000. }
  1001. if (ret < 0)
  1002. goto free_and_return;
  1003. }
  1004. /* decode primary image */
  1005. s->image[IMAGE_ROLE_ARGB].frame = p;
  1006. if (is_alpha_chunk)
  1007. s->image[IMAGE_ROLE_ARGB].is_alpha_primary = 1;
  1008. ret = decode_entropy_coded_image(s, IMAGE_ROLE_ARGB, w, h);
  1009. if (ret < 0)
  1010. goto free_and_return;
  1011. /* apply transformations */
  1012. for (i = s->nb_transforms - 1; i >= 0; i--) {
  1013. switch (s->transforms[i]) {
  1014. case PREDICTOR_TRANSFORM:
  1015. ret = apply_predictor_transform(s);
  1016. break;
  1017. case COLOR_TRANSFORM:
  1018. ret = apply_color_transform(s);
  1019. break;
  1020. case SUBTRACT_GREEN:
  1021. ret = apply_subtract_green_transform(s);
  1022. break;
  1023. case COLOR_INDEXING_TRANSFORM:
  1024. ret = apply_color_indexing_transform(s);
  1025. break;
  1026. }
  1027. if (ret < 0)
  1028. goto free_and_return;
  1029. }
  1030. *got_frame = 1;
  1031. p->pict_type = AV_PICTURE_TYPE_I;
  1032. p->key_frame = 1;
  1033. ret = data_size;
  1034. free_and_return:
  1035. for (i = 0; i < IMAGE_ROLE_NB; i++)
  1036. image_ctx_free(&s->image[i]);
  1037. return ret;
  1038. }
  1039. static void alpha_inverse_prediction(AVFrame *frame, enum AlphaFilter m)
  1040. {
  1041. int x, y, ls;
  1042. uint8_t *dec;
  1043. ls = frame->linesize[3];
  1044. /* filter first row using horizontal filter */
  1045. dec = frame->data[3] + 1;
  1046. for (x = 1; x < frame->width; x++, dec++)
  1047. *dec += *(dec - 1);
  1048. /* filter first column using vertical filter */
  1049. dec = frame->data[3] + ls;
  1050. for (y = 1; y < frame->height; y++, dec += ls)
  1051. *dec += *(dec - ls);
  1052. /* filter the rest using the specified filter */
  1053. switch (m) {
  1054. case ALPHA_FILTER_HORIZONTAL:
  1055. for (y = 1; y < frame->height; y++) {
  1056. dec = frame->data[3] + y * ls + 1;
  1057. for (x = 1; x < frame->width; x++, dec++)
  1058. *dec += *(dec - 1);
  1059. }
  1060. break;
  1061. case ALPHA_FILTER_VERTICAL:
  1062. for (y = 1; y < frame->height; y++) {
  1063. dec = frame->data[3] + y * ls + 1;
  1064. for (x = 1; x < frame->width; x++, dec++)
  1065. *dec += *(dec - ls);
  1066. }
  1067. break;
  1068. case ALPHA_FILTER_GRADIENT:
  1069. for (y = 1; y < frame->height; y++) {
  1070. dec = frame->data[3] + y * ls + 1;
  1071. for (x = 1; x < frame->width; x++, dec++)
  1072. dec[0] += av_clip_uint8(*(dec - 1) + *(dec - ls) - *(dec - ls - 1));
  1073. }
  1074. break;
  1075. }
  1076. }
  1077. static int vp8_lossy_decode_alpha(AVCodecContext *avctx, AVFrame *p,
  1078. uint8_t *data_start,
  1079. unsigned int data_size)
  1080. {
  1081. WebPContext *s = avctx->priv_data;
  1082. int x, y, ret;
  1083. if (s->alpha_compression == ALPHA_COMPRESSION_NONE) {
  1084. GetByteContext gb;
  1085. bytestream2_init(&gb, data_start, data_size);
  1086. for (y = 0; y < s->height; y++)
  1087. bytestream2_get_buffer(&gb, p->data[3] + p->linesize[3] * y,
  1088. s->width);
  1089. } else if (s->alpha_compression == ALPHA_COMPRESSION_VP8L) {
  1090. uint8_t *ap, *pp;
  1091. int alpha_got_frame = 0;
  1092. s->alpha_frame = av_frame_alloc();
  1093. if (!s->alpha_frame)
  1094. return AVERROR(ENOMEM);
  1095. ret = vp8_lossless_decode_frame(avctx, s->alpha_frame, &alpha_got_frame,
  1096. data_start, data_size, 1);
  1097. if (ret < 0) {
  1098. av_frame_free(&s->alpha_frame);
  1099. return ret;
  1100. }
  1101. if (!alpha_got_frame) {
  1102. av_frame_free(&s->alpha_frame);
  1103. return AVERROR_INVALIDDATA;
  1104. }
  1105. /* copy green component of alpha image to alpha plane of primary image */
  1106. for (y = 0; y < s->height; y++) {
  1107. ap = GET_PIXEL(s->alpha_frame, 0, y) + 2;
  1108. pp = p->data[3] + p->linesize[3] * y;
  1109. for (x = 0; x < s->width; x++) {
  1110. *pp = *ap;
  1111. pp++;
  1112. ap += 4;
  1113. }
  1114. }
  1115. av_frame_free(&s->alpha_frame);
  1116. }
  1117. /* apply alpha filtering */
  1118. if (s->alpha_filter)
  1119. alpha_inverse_prediction(p, s->alpha_filter);
  1120. return 0;
  1121. }
  1122. static int vp8_lossy_decode_frame(AVCodecContext *avctx, AVFrame *p,
  1123. int *got_frame, uint8_t *data_start,
  1124. unsigned int data_size)
  1125. {
  1126. WebPContext *s = avctx->priv_data;
  1127. AVPacket pkt;
  1128. int ret;
  1129. if (!s->initialized) {
  1130. ff_vp8_decode_init(avctx);
  1131. s->initialized = 1;
  1132. s->v.actually_webp = 1;
  1133. }
  1134. avctx->pix_fmt = s->has_alpha ? AV_PIX_FMT_YUVA420P : AV_PIX_FMT_YUV420P;
  1135. s->lossless = 0;
  1136. if (data_size > INT_MAX) {
  1137. av_log(avctx, AV_LOG_ERROR, "unsupported chunk size\n");
  1138. return AVERROR_PATCHWELCOME;
  1139. }
  1140. av_init_packet(&pkt);
  1141. pkt.data = data_start;
  1142. pkt.size = data_size;
  1143. ret = ff_vp8_decode_frame(avctx, p, got_frame, &pkt);
  1144. if (ret < 0)
  1145. return ret;
  1146. if (!*got_frame)
  1147. return AVERROR_INVALIDDATA;
  1148. update_canvas_size(avctx, avctx->width, avctx->height);
  1149. if (s->has_alpha) {
  1150. ret = vp8_lossy_decode_alpha(avctx, p, s->alpha_data,
  1151. s->alpha_data_size);
  1152. if (ret < 0)
  1153. return ret;
  1154. }
  1155. return ret;
  1156. }
  1157. static int webp_decode_frame(AVCodecContext *avctx, void *data, int *got_frame,
  1158. AVPacket *avpkt)
  1159. {
  1160. AVFrame * const p = data;
  1161. WebPContext *s = avctx->priv_data;
  1162. GetByteContext gb;
  1163. int ret;
  1164. uint32_t chunk_type, chunk_size;
  1165. int vp8x_flags = 0;
  1166. s->avctx = avctx;
  1167. s->width = 0;
  1168. s->height = 0;
  1169. *got_frame = 0;
  1170. s->has_alpha = 0;
  1171. s->has_exif = 0;
  1172. s->has_iccp = 0;
  1173. bytestream2_init(&gb, avpkt->data, avpkt->size);
  1174. if (bytestream2_get_bytes_left(&gb) < 12)
  1175. return AVERROR_INVALIDDATA;
  1176. if (bytestream2_get_le32(&gb) != MKTAG('R', 'I', 'F', 'F')) {
  1177. av_log(avctx, AV_LOG_ERROR, "missing RIFF tag\n");
  1178. return AVERROR_INVALIDDATA;
  1179. }
  1180. chunk_size = bytestream2_get_le32(&gb);
  1181. if (bytestream2_get_bytes_left(&gb) < chunk_size)
  1182. return AVERROR_INVALIDDATA;
  1183. if (bytestream2_get_le32(&gb) != MKTAG('W', 'E', 'B', 'P')) {
  1184. av_log(avctx, AV_LOG_ERROR, "missing WEBP tag\n");
  1185. return AVERROR_INVALIDDATA;
  1186. }
  1187. while (bytestream2_get_bytes_left(&gb) > 8) {
  1188. char chunk_str[5] = { 0 };
  1189. chunk_type = bytestream2_get_le32(&gb);
  1190. chunk_size = bytestream2_get_le32(&gb);
  1191. if (chunk_size == UINT32_MAX)
  1192. return AVERROR_INVALIDDATA;
  1193. chunk_size += chunk_size & 1;
  1194. if (bytestream2_get_bytes_left(&gb) < chunk_size) {
  1195. /* we seem to be running out of data, but it could also be that the
  1196. bitstream has trailing junk leading to bogus chunk_size. */
  1197. break;
  1198. }
  1199. switch (chunk_type) {
  1200. case MKTAG('V', 'P', '8', ' '):
  1201. if (!*got_frame) {
  1202. ret = vp8_lossy_decode_frame(avctx, p, got_frame,
  1203. avpkt->data + bytestream2_tell(&gb),
  1204. chunk_size);
  1205. if (ret < 0)
  1206. return ret;
  1207. }
  1208. bytestream2_skip(&gb, chunk_size);
  1209. break;
  1210. case MKTAG('V', 'P', '8', 'L'):
  1211. if (!*got_frame) {
  1212. ret = vp8_lossless_decode_frame(avctx, p, got_frame,
  1213. avpkt->data + bytestream2_tell(&gb),
  1214. chunk_size, 0);
  1215. if (ret < 0)
  1216. return ret;
  1217. avctx->properties |= FF_CODEC_PROPERTY_LOSSLESS;
  1218. }
  1219. bytestream2_skip(&gb, chunk_size);
  1220. break;
  1221. case MKTAG('V', 'P', '8', 'X'):
  1222. if (s->width || s->height || *got_frame) {
  1223. av_log(avctx, AV_LOG_ERROR, "Canvas dimensions are already set\n");
  1224. return AVERROR_INVALIDDATA;
  1225. }
  1226. vp8x_flags = bytestream2_get_byte(&gb);
  1227. bytestream2_skip(&gb, 3);
  1228. s->width = bytestream2_get_le24(&gb) + 1;
  1229. s->height = bytestream2_get_le24(&gb) + 1;
  1230. ret = av_image_check_size(s->width, s->height, 0, avctx);
  1231. if (ret < 0)
  1232. return ret;
  1233. break;
  1234. case MKTAG('A', 'L', 'P', 'H'): {
  1235. int alpha_header, filter_m, compression;
  1236. if (!(vp8x_flags & VP8X_FLAG_ALPHA)) {
  1237. av_log(avctx, AV_LOG_WARNING,
  1238. "ALPHA chunk present, but alpha bit not set in the "
  1239. "VP8X header\n");
  1240. }
  1241. if (chunk_size == 0) {
  1242. av_log(avctx, AV_LOG_ERROR, "invalid ALPHA chunk size\n");
  1243. return AVERROR_INVALIDDATA;
  1244. }
  1245. alpha_header = bytestream2_get_byte(&gb);
  1246. s->alpha_data = avpkt->data + bytestream2_tell(&gb);
  1247. s->alpha_data_size = chunk_size - 1;
  1248. bytestream2_skip(&gb, s->alpha_data_size);
  1249. filter_m = (alpha_header >> 2) & 0x03;
  1250. compression = alpha_header & 0x03;
  1251. if (compression > ALPHA_COMPRESSION_VP8L) {
  1252. av_log(avctx, AV_LOG_VERBOSE,
  1253. "skipping unsupported ALPHA chunk\n");
  1254. } else {
  1255. s->has_alpha = 1;
  1256. s->alpha_compression = compression;
  1257. s->alpha_filter = filter_m;
  1258. }
  1259. break;
  1260. }
  1261. case MKTAG('E', 'X', 'I', 'F'): {
  1262. int le, ifd_offset, exif_offset = bytestream2_tell(&gb);
  1263. AVDictionary *exif_metadata = NULL;
  1264. GetByteContext exif_gb;
  1265. if (s->has_exif) {
  1266. av_log(avctx, AV_LOG_VERBOSE, "Ignoring extra EXIF chunk\n");
  1267. goto exif_end;
  1268. }
  1269. if (!(vp8x_flags & VP8X_FLAG_EXIF_METADATA))
  1270. av_log(avctx, AV_LOG_WARNING,
  1271. "EXIF chunk present, but Exif bit not set in the "
  1272. "VP8X header\n");
  1273. s->has_exif = 1;
  1274. bytestream2_init(&exif_gb, avpkt->data + exif_offset,
  1275. avpkt->size - exif_offset);
  1276. if (ff_tdecode_header(&exif_gb, &le, &ifd_offset) < 0) {
  1277. av_log(avctx, AV_LOG_ERROR, "invalid TIFF header "
  1278. "in Exif data\n");
  1279. goto exif_end;
  1280. }
  1281. bytestream2_seek(&exif_gb, ifd_offset, SEEK_SET);
  1282. if (ff_exif_decode_ifd(avctx, &exif_gb, le, 0, &exif_metadata) < 0) {
  1283. av_log(avctx, AV_LOG_ERROR, "error decoding Exif data\n");
  1284. goto exif_end;
  1285. }
  1286. av_dict_copy(&((AVFrame *) data)->metadata, exif_metadata, 0);
  1287. exif_end:
  1288. av_dict_free(&exif_metadata);
  1289. bytestream2_skip(&gb, chunk_size);
  1290. break;
  1291. }
  1292. case MKTAG('I', 'C', 'C', 'P'): {
  1293. AVFrameSideData *sd;
  1294. if (s->has_iccp) {
  1295. av_log(avctx, AV_LOG_VERBOSE, "Ignoring extra ICCP chunk\n");
  1296. bytestream2_skip(&gb, chunk_size);
  1297. break;
  1298. }
  1299. if (!(vp8x_flags & VP8X_FLAG_ICC))
  1300. av_log(avctx, AV_LOG_WARNING,
  1301. "ICCP chunk present, but ICC Profile bit not set in the "
  1302. "VP8X header\n");
  1303. s->has_iccp = 1;
  1304. sd = av_frame_new_side_data(p, AV_FRAME_DATA_ICC_PROFILE, chunk_size);
  1305. if (!sd)
  1306. return AVERROR(ENOMEM);
  1307. bytestream2_get_buffer(&gb, sd->data, chunk_size);
  1308. break;
  1309. }
  1310. case MKTAG('A', 'N', 'I', 'M'):
  1311. case MKTAG('A', 'N', 'M', 'F'):
  1312. case MKTAG('X', 'M', 'P', ' '):
  1313. AV_WL32(chunk_str, chunk_type);
  1314. av_log(avctx, AV_LOG_WARNING, "skipping unsupported chunk: %s\n",
  1315. chunk_str);
  1316. bytestream2_skip(&gb, chunk_size);
  1317. break;
  1318. default:
  1319. AV_WL32(chunk_str, chunk_type);
  1320. av_log(avctx, AV_LOG_VERBOSE, "skipping unknown chunk: %s\n",
  1321. chunk_str);
  1322. bytestream2_skip(&gb, chunk_size);
  1323. break;
  1324. }
  1325. }
  1326. if (!*got_frame) {
  1327. av_log(avctx, AV_LOG_ERROR, "image data not found\n");
  1328. return AVERROR_INVALIDDATA;
  1329. }
  1330. return avpkt->size;
  1331. }
  1332. static av_cold int webp_decode_close(AVCodecContext *avctx)
  1333. {
  1334. WebPContext *s = avctx->priv_data;
  1335. if (s->initialized)
  1336. return ff_vp8_decode_free(avctx);
  1337. return 0;
  1338. }
  1339. AVCodec ff_webp_decoder = {
  1340. .name = "webp",
  1341. .long_name = NULL_IF_CONFIG_SMALL("WebP image"),
  1342. .type = AVMEDIA_TYPE_VIDEO,
  1343. .id = AV_CODEC_ID_WEBP,
  1344. .priv_data_size = sizeof(WebPContext),
  1345. .decode = webp_decode_frame,
  1346. .close = webp_decode_close,
  1347. .capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_FRAME_THREADS,
  1348. };