You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

970 lines
32KB

  1. /*
  2. * ATRAC9 decoder
  3. * Copyright (c) 2018 Rostislav Pehlivanov <atomnuker@gmail.com>
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. #include "internal.h"
  22. #include "get_bits.h"
  23. #include "fft.h"
  24. #include "atrac9tab.h"
  25. #include "libavutil/lfg.h"
  26. #include "libavutil/float_dsp.h"
  27. typedef struct ATRAC9ChannelData {
  28. int band_ext;
  29. int q_unit_cnt;
  30. int band_ext_data[4];
  31. int32_t scalefactors[31];
  32. int32_t scalefactors_prev[31];
  33. int precision_coarse[30];
  34. int precision_fine[30];
  35. int precision_mask[30];
  36. int codebookset[30];
  37. int32_t q_coeffs_coarse[256];
  38. int32_t q_coeffs_fine[256];
  39. DECLARE_ALIGNED(32, float, coeffs )[256];
  40. DECLARE_ALIGNED(32, float, prev_win)[128];
  41. } ATRAC9ChannelData;
  42. typedef struct ATRAC9BlockData {
  43. ATRAC9ChannelData channel[2];
  44. /* Base */
  45. int band_count;
  46. int q_unit_cnt;
  47. int q_unit_cnt_prev;
  48. /* Stereo block only */
  49. int stereo_q_unit;
  50. /* Band extension only */
  51. int has_band_ext;
  52. int has_band_ext_data;
  53. int band_ext_q_unit;
  54. /* Gradient */
  55. int grad_mode;
  56. int grad_boundary;
  57. int gradient[31];
  58. /* Stereo */
  59. int cpe_base_channel;
  60. int is_signs[30];
  61. int reuseable;
  62. } ATRAC9BlockData;
  63. typedef struct ATRAC9Context {
  64. AVCodecContext *avctx;
  65. AVFloatDSPContext *fdsp;
  66. FFTContext imdct;
  67. ATRAC9BlockData block[5];
  68. AVLFG lfg;
  69. /* Set on init */
  70. int frame_log2;
  71. int avg_frame_size;
  72. int frame_count;
  73. int samplerate_idx;
  74. const ATRAC9BlockConfig *block_config;
  75. /* Generated on init */
  76. VLC sf_vlc[2][8]; /* Signed/unsigned, length */
  77. VLC coeff_vlc[2][8][4]; /* Cookbook, precision, cookbook index */
  78. uint8_t alloc_curve[48][48];
  79. DECLARE_ALIGNED(32, float, imdct_win)[256];
  80. DECLARE_ALIGNED(32, float, temp)[256];
  81. } ATRAC9Context;
  82. static inline int parse_gradient(ATRAC9Context *s, ATRAC9BlockData *b,
  83. GetBitContext *gb)
  84. {
  85. int grad_range[2];
  86. int grad_value[2];
  87. int values, sign, base;
  88. uint8_t *curve;
  89. float scale;
  90. b->grad_mode = get_bits(gb, 2);
  91. if (b->grad_mode) {
  92. grad_range[0] = get_bits(gb, 5);
  93. grad_range[1] = 31;
  94. grad_value[0] = get_bits(gb, 5);
  95. grad_value[1] = 31;
  96. } else {
  97. grad_range[0] = get_bits(gb, 6);
  98. grad_range[1] = get_bits(gb, 6) + 1;
  99. grad_value[0] = get_bits(gb, 5);
  100. grad_value[1] = get_bits(gb, 5);
  101. }
  102. b->grad_boundary = get_bits(gb, 4);
  103. if (grad_range[0] >= grad_range[1] || grad_range[1] > 31)
  104. return AVERROR_INVALIDDATA;
  105. if (grad_value[0] > 31 || grad_value[1] > 31)
  106. return AVERROR_INVALIDDATA;
  107. if (b->grad_boundary > b->q_unit_cnt)
  108. return AVERROR_INVALIDDATA;
  109. values = grad_value[1] - grad_value[0];
  110. sign = 1 - 2*(values < 0);
  111. base = grad_value[0] + sign;
  112. scale = (FFABS(values) - 1) / 31.0f;
  113. curve = s->alloc_curve[grad_range[1] - grad_range[0] - 1];
  114. for (int i = 0; i <= b->q_unit_cnt; i++)
  115. b->gradient[i] = grad_value[i >= grad_range[0]];
  116. for (int i = grad_range[0]; i < grad_range[1]; i++)
  117. b->gradient[i] = base + sign*((int)(scale*curve[i - grad_range[0]]));
  118. return 0;
  119. }
  120. static inline void calc_precision(ATRAC9Context *s, ATRAC9BlockData *b,
  121. ATRAC9ChannelData *c)
  122. {
  123. memset(c->precision_mask, 0, sizeof(c->precision_mask));
  124. for (int i = 1; i < b->q_unit_cnt; i++) {
  125. const int delta = FFABS(c->scalefactors[i] - c->scalefactors[i - 1]) - 1;
  126. if (delta > 0) {
  127. const int neg = c->scalefactors[i - 1] > c->scalefactors[i];
  128. c->precision_mask[i - neg] += FFMIN(delta, 5);
  129. }
  130. }
  131. if (b->grad_mode) {
  132. for (int i = 0; i < b->q_unit_cnt; i++) {
  133. c->precision_coarse[i] = c->scalefactors[i];
  134. c->precision_coarse[i] += c->precision_mask[i] - b->gradient[i];
  135. if (c->precision_coarse[i] < 0)
  136. continue;
  137. switch (b->grad_mode) {
  138. case 1:
  139. c->precision_coarse[i] >>= 1;
  140. break;
  141. case 2:
  142. c->precision_coarse[i] = (3 * c->precision_coarse[i]) >> 3;
  143. break;
  144. case 3:
  145. c->precision_coarse[i] >>= 2;
  146. break;
  147. }
  148. }
  149. } else {
  150. for (int i = 0; i < b->q_unit_cnt; i++)
  151. c->precision_coarse[i] = c->scalefactors[i] - b->gradient[i];
  152. }
  153. for (int i = 0; i < b->q_unit_cnt; i++)
  154. c->precision_coarse[i] = FFMAX(c->precision_coarse[i], 1);
  155. for (int i = 0; i < b->grad_boundary; i++)
  156. c->precision_coarse[i]++;
  157. for (int i = 0; i < b->q_unit_cnt; i++) {
  158. c->precision_fine[i] = 0;
  159. if (c->precision_coarse[i] > 15) {
  160. c->precision_fine[i] = FFMIN(c->precision_coarse[i], 30) - 15;
  161. c->precision_coarse[i] = 15;
  162. }
  163. }
  164. }
  165. static inline int parse_band_ext(ATRAC9Context *s, ATRAC9BlockData *b,
  166. GetBitContext *gb, int stereo)
  167. {
  168. int ext_band = 0;
  169. if (b->has_band_ext) {
  170. if (b->q_unit_cnt < 13 || b->q_unit_cnt > 20)
  171. return AVERROR_INVALIDDATA;
  172. ext_band = at9_tab_band_ext_group[b->q_unit_cnt - 13][2];
  173. if (stereo) {
  174. b->channel[1].band_ext = get_bits(gb, 2);
  175. b->channel[1].band_ext = ext_band > 2 ? b->channel[1].band_ext : 4;
  176. } else {
  177. skip_bits1(gb);
  178. }
  179. }
  180. b->has_band_ext_data = get_bits1(gb);
  181. if (!b->has_band_ext_data)
  182. return 0;
  183. if (!b->has_band_ext) {
  184. skip_bits(gb, 2);
  185. skip_bits_long(gb, get_bits(gb, 5));
  186. return 0;
  187. }
  188. b->channel[0].band_ext = get_bits(gb, 2);
  189. b->channel[0].band_ext = ext_band > 2 ? b->channel[0].band_ext : 4;
  190. if (!get_bits(gb, 5))
  191. return 0;
  192. for (int i = 0; i <= stereo; i++) {
  193. ATRAC9ChannelData *c = &b->channel[i];
  194. const int count = at9_tab_band_ext_cnt[c->band_ext][ext_band];
  195. for (int j = 0; j < count; j++) {
  196. int len = at9_tab_band_ext_lengths[c->band_ext][ext_band][j];
  197. c->band_ext_data[j] = get_bits(gb, len);
  198. }
  199. }
  200. return 0;
  201. }
  202. static inline int read_scalefactors(ATRAC9Context *s, ATRAC9BlockData *b,
  203. ATRAC9ChannelData *c, GetBitContext *gb,
  204. int channel_idx, int first_in_pkt)
  205. {
  206. static const int mode_map[2][4] = { { 0, 1, 2, 3 }, { 0, 2, 3, 4 } };
  207. const int mode = mode_map[channel_idx][get_bits(gb, 2)];
  208. memset(c->scalefactors, 0, sizeof(c->scalefactors));
  209. if (first_in_pkt && (mode == 4 || ((mode == 3) && !channel_idx))) {
  210. av_log(s->avctx, AV_LOG_ERROR, "Invalid scalefactor coding mode!\n");
  211. return AVERROR_INVALIDDATA;
  212. }
  213. switch (mode) {
  214. case 0: { /* VLC delta offset */
  215. const uint8_t *sf_weights = at9_tab_sf_weights[get_bits(gb, 3)];
  216. const int base = get_bits(gb, 5);
  217. const int len = get_bits(gb, 2) + 3;
  218. const VLC *tab = &s->sf_vlc[0][len];
  219. c->scalefactors[0] = get_bits(gb, len);
  220. for (int i = 1; i < b->band_ext_q_unit; i++) {
  221. int val = c->scalefactors[i - 1] + get_vlc2(gb, tab->table, 9, 2);
  222. c->scalefactors[i] = val & ((1 << len) - 1);
  223. }
  224. for (int i = 0; i < b->band_ext_q_unit; i++)
  225. c->scalefactors[i] += base - sf_weights[i];
  226. break;
  227. }
  228. case 1: { /* CLC offset */
  229. const int len = get_bits(gb, 2) + 2;
  230. const int base = len < 5 ? get_bits(gb, 5) : 0;
  231. for (int i = 0; i < b->band_ext_q_unit; i++)
  232. c->scalefactors[i] = base + get_bits(gb, len);
  233. break;
  234. }
  235. case 2:
  236. case 4: { /* VLC dist to baseline */
  237. const int *baseline = mode == 4 ? c->scalefactors_prev :
  238. channel_idx ? b->channel[0].scalefactors :
  239. c->scalefactors_prev;
  240. const int baseline_len = mode == 4 ? b->q_unit_cnt_prev :
  241. channel_idx ? b->band_ext_q_unit :
  242. b->q_unit_cnt_prev;
  243. const int len = get_bits(gb, 2) + 2;
  244. const int unit_cnt = FFMIN(b->band_ext_q_unit, baseline_len);
  245. const VLC *tab = &s->sf_vlc[1][len];
  246. for (int i = 0; i < unit_cnt; i++) {
  247. int dist = get_vlc2(gb, tab->table, 9, 2);
  248. c->scalefactors[i] = baseline[i] + dist;
  249. }
  250. for (int i = unit_cnt; i < b->band_ext_q_unit; i++)
  251. c->scalefactors[i] = get_bits(gb, 5);
  252. break;
  253. }
  254. case 3: { /* VLC offset with baseline */
  255. const int *baseline = channel_idx ? b->channel[0].scalefactors :
  256. c->scalefactors_prev;
  257. const int baseline_len = channel_idx ? b->band_ext_q_unit :
  258. b->q_unit_cnt_prev;
  259. const int base = get_bits(gb, 5) - (1 << (5 - 1));
  260. const int len = get_bits(gb, 2) + 1;
  261. const int unit_cnt = FFMIN(b->band_ext_q_unit, baseline_len);
  262. const VLC *tab = &s->sf_vlc[0][len];
  263. c->scalefactors[0] = get_bits(gb, len);
  264. for (int i = 1; i < unit_cnt; i++) {
  265. int val = c->scalefactors[i - 1] + get_vlc2(gb, tab->table, 9, 2);
  266. c->scalefactors[i] = val & ((1 << len) - 1);
  267. }
  268. for (int i = 0; i < unit_cnt; i++)
  269. c->scalefactors[i] += base + baseline[i];
  270. for (int i = unit_cnt; i < b->band_ext_q_unit; i++)
  271. c->scalefactors[i] = get_bits(gb, 5);
  272. break;
  273. }
  274. }
  275. for (int i = 0; i < b->band_ext_q_unit; i++)
  276. if (c->scalefactors[i] < 0 || c->scalefactors[i] > 31)
  277. return AVERROR_INVALIDDATA;
  278. memcpy(c->scalefactors_prev, c->scalefactors, sizeof(c->scalefactors));
  279. return 0;
  280. }
  281. static inline void calc_codebook_idx(ATRAC9Context *s, ATRAC9BlockData *b,
  282. ATRAC9ChannelData *c)
  283. {
  284. int avg = 0;
  285. const int last_sf = c->scalefactors[c->q_unit_cnt];
  286. memset(c->codebookset, 0, sizeof(c->codebookset));
  287. if (c->q_unit_cnt <= 1)
  288. return;
  289. if (s->samplerate_idx > 7)
  290. return;
  291. c->scalefactors[c->q_unit_cnt] = c->scalefactors[c->q_unit_cnt - 1];
  292. if (c->q_unit_cnt > 12) {
  293. for (int i = 0; i < 12; i++)
  294. avg += c->scalefactors[i];
  295. avg = (avg + 6) / 12;
  296. }
  297. for (int i = 8; i < c->q_unit_cnt; i++) {
  298. const int prev = c->scalefactors[i - 1];
  299. const int cur = c->scalefactors[i ];
  300. const int next = c->scalefactors[i + 1];
  301. const int min = FFMIN(prev, next);
  302. if ((cur - min >= 3 || 2*cur - prev - next >= 3))
  303. c->codebookset[i] = 1;
  304. }
  305. for (int i = 12; i < c->q_unit_cnt; i++) {
  306. const int cur = c->scalefactors[i];
  307. const int cnd = at9_q_unit_to_coeff_cnt[i] == 16;
  308. const int min = FFMIN(c->scalefactors[i + 1], c->scalefactors[i - 1]);
  309. if (c->codebookset[i])
  310. continue;
  311. c->codebookset[i] = (((cur - min) >= 2) && (cur >= (avg - cnd)));
  312. }
  313. c->scalefactors[c->q_unit_cnt] = last_sf;
  314. }
  315. static inline void read_coeffs_coarse(ATRAC9Context *s, ATRAC9BlockData *b,
  316. ATRAC9ChannelData *c, GetBitContext *gb)
  317. {
  318. const int max_prec = s->samplerate_idx > 7 ? 1 : 7;
  319. memset(c->q_coeffs_coarse, 0, sizeof(c->q_coeffs_coarse));
  320. for (int i = 0; i < c->q_unit_cnt; i++) {
  321. int *coeffs = &c->q_coeffs_coarse[at9_q_unit_to_coeff_idx[i]];
  322. const int bands = at9_q_unit_to_coeff_cnt[i];
  323. const int prec = c->precision_coarse[i] + 1;
  324. if (prec <= max_prec) {
  325. const int cb = c->codebookset[i];
  326. const int cbi = at9_q_unit_to_codebookidx[i];
  327. const VLC *tab = &s->coeff_vlc[cb][prec][cbi];
  328. const HuffmanCodebook *huff = &at9_huffman_coeffs[cb][prec][cbi];
  329. const int groups = bands >> huff->value_cnt_pow;
  330. for (int j = 0; j < groups; j++) {
  331. uint16_t val = get_vlc2(gb, tab->table, 9, huff->max_bit_size);
  332. for (int k = 0; k < huff->value_cnt; k++) {
  333. coeffs[k] = sign_extend(val, huff->value_bits);
  334. val >>= huff->value_bits;
  335. }
  336. coeffs += huff->value_cnt;
  337. }
  338. } else {
  339. for (int j = 0; j < bands; j++)
  340. coeffs[j] = sign_extend(get_bits(gb, prec), prec);
  341. }
  342. }
  343. }
  344. static inline void read_coeffs_fine(ATRAC9Context *s, ATRAC9BlockData *b,
  345. ATRAC9ChannelData *c, GetBitContext *gb)
  346. {
  347. memset(c->q_coeffs_fine, 0, sizeof(c->q_coeffs_fine));
  348. for (int i = 0; i < c->q_unit_cnt; i++) {
  349. const int start = at9_q_unit_to_coeff_idx[i + 0];
  350. const int end = at9_q_unit_to_coeff_idx[i + 1];
  351. const int len = c->precision_fine[i] + 1;
  352. if (c->precision_fine[i] <= 0)
  353. continue;
  354. for (int j = start; j < end; j++)
  355. c->q_coeffs_fine[j] = sign_extend(get_bits(gb, len), len);
  356. }
  357. }
  358. static inline void dequantize(ATRAC9Context *s, ATRAC9BlockData *b,
  359. ATRAC9ChannelData *c)
  360. {
  361. memset(c->coeffs, 0, sizeof(c->coeffs));
  362. for (int i = 0; i < c->q_unit_cnt; i++) {
  363. const int start = at9_q_unit_to_coeff_idx[i + 0];
  364. const int end = at9_q_unit_to_coeff_idx[i + 1];
  365. const float coarse_c = at9_quant_step_coarse[c->precision_coarse[i]];
  366. const float fine_c = at9_quant_step_fine[c->precision_fine[i]];
  367. for (int j = start; j < end; j++) {
  368. const float vc = c->q_coeffs_coarse[j] * coarse_c;
  369. const float vf = c->q_coeffs_fine[j] * fine_c;
  370. c->coeffs[j] = vc + vf;
  371. }
  372. }
  373. }
  374. static inline void apply_intensity_stereo(ATRAC9Context *s, ATRAC9BlockData *b,
  375. const int stereo)
  376. {
  377. float *src = b->channel[ b->cpe_base_channel].coeffs;
  378. float *dst = b->channel[!b->cpe_base_channel].coeffs;
  379. if (!stereo)
  380. return;
  381. if (b->q_unit_cnt <= b->stereo_q_unit)
  382. return;
  383. for (int i = b->stereo_q_unit; i < b->q_unit_cnt; i++) {
  384. const int sign = b->is_signs[i];
  385. const int start = at9_q_unit_to_coeff_idx[i + 0];
  386. const int end = at9_q_unit_to_coeff_idx[i + 1];
  387. for (int j = start; j < end; j++)
  388. dst[j] = sign*src[j];
  389. }
  390. }
  391. static inline void apply_scalefactors(ATRAC9Context *s, ATRAC9BlockData *b,
  392. const int stereo)
  393. {
  394. for (int i = 0; i <= stereo; i++) {
  395. float *coeffs = b->channel[i].coeffs;
  396. for (int j = 0; j < b->q_unit_cnt; j++) {
  397. const int start = at9_q_unit_to_coeff_idx[j + 0];
  398. const int end = at9_q_unit_to_coeff_idx[j + 1];
  399. const int scalefactor = b->channel[i].scalefactors[j];
  400. const float scale = at9_scalefactor_c[scalefactor];
  401. for (int k = start; k < end; k++)
  402. coeffs[k] *= scale;
  403. }
  404. }
  405. }
  406. static inline void fill_with_noise(ATRAC9Context *s, ATRAC9ChannelData *c,
  407. int start, int count)
  408. {
  409. float maxval = 0.0f;
  410. for (int i = 0; i < count; i += 2) {
  411. double tmp[2];
  412. av_bmg_get(&s->lfg, tmp);
  413. c->coeffs[start + i + 0] = tmp[0];
  414. c->coeffs[start + i + 1] = tmp[1];
  415. maxval = FFMAX(FFMAX(FFABS(tmp[0]), FFABS(tmp[1])), maxval);
  416. }
  417. /* Normalize */
  418. for (int i = 0; i < count; i++)
  419. c->coeffs[start + i] /= maxval;
  420. }
  421. static inline void scale_band_ext_coeffs(ATRAC9ChannelData *c, float sf[6],
  422. const int s_unit, const int e_unit)
  423. {
  424. for (int i = s_unit; i < e_unit; i++) {
  425. const int start = at9_q_unit_to_coeff_idx[i + 0];
  426. const int end = at9_q_unit_to_coeff_idx[i + 1];
  427. for (int j = start; j < end; j++)
  428. c->coeffs[j] *= sf[i - s_unit];
  429. }
  430. }
  431. static inline void apply_band_extension(ATRAC9Context *s, ATRAC9BlockData *b,
  432. const int stereo)
  433. {
  434. const int g_units[4] = { /* A, B, C, total units */
  435. b->q_unit_cnt,
  436. at9_tab_band_ext_group[b->q_unit_cnt - 13][0],
  437. at9_tab_band_ext_group[b->q_unit_cnt - 13][1],
  438. FFMAX(g_units[2], 22),
  439. };
  440. const int g_bins[4] = { /* A, B, C, total bins */
  441. at9_q_unit_to_coeff_idx[g_units[0]],
  442. at9_q_unit_to_coeff_idx[g_units[1]],
  443. at9_q_unit_to_coeff_idx[g_units[2]],
  444. at9_q_unit_to_coeff_idx[g_units[3]],
  445. };
  446. for (int ch = 0; ch <= stereo; ch++) {
  447. ATRAC9ChannelData *c = &b->channel[ch];
  448. /* Mirror the spectrum */
  449. for (int i = 0; i < 3; i++)
  450. for (int j = 0; j < (g_bins[i + 1] - g_bins[i + 0]); j++)
  451. c->coeffs[g_bins[i] + j] = c->coeffs[g_bins[i] - j - 1];
  452. switch (c->band_ext) {
  453. case 0: {
  454. float sf[6] = { 0.0f };
  455. const int l = g_units[3] - g_units[0] - 1;
  456. const int n_start = at9_q_unit_to_coeff_idx[g_units[3] - 1];
  457. const int n_cnt = at9_q_unit_to_coeff_cnt[g_units[3] - 1];
  458. switch (at9_tab_band_ext_group[b->q_unit_cnt - 13][2]) {
  459. case 3:
  460. sf[0] = at9_band_ext_scales_m0[0][0][c->band_ext_data[0]];
  461. sf[1] = at9_band_ext_scales_m0[0][1][c->band_ext_data[0]];
  462. sf[2] = at9_band_ext_scales_m0[0][2][c->band_ext_data[1]];
  463. sf[3] = at9_band_ext_scales_m0[0][3][c->band_ext_data[2]];
  464. sf[4] = at9_band_ext_scales_m0[0][4][c->band_ext_data[3]];
  465. break;
  466. case 4:
  467. sf[0] = at9_band_ext_scales_m0[1][0][c->band_ext_data[0]];
  468. sf[1] = at9_band_ext_scales_m0[1][1][c->band_ext_data[0]];
  469. sf[2] = at9_band_ext_scales_m0[1][2][c->band_ext_data[1]];
  470. sf[3] = at9_band_ext_scales_m0[1][3][c->band_ext_data[2]];
  471. sf[4] = at9_band_ext_scales_m0[1][4][c->band_ext_data[3]];
  472. break;
  473. case 5:
  474. sf[0] = at9_band_ext_scales_m0[2][0][c->band_ext_data[0]];
  475. sf[1] = at9_band_ext_scales_m0[2][1][c->band_ext_data[1]];
  476. sf[2] = at9_band_ext_scales_m0[2][2][c->band_ext_data[1]];
  477. break;
  478. }
  479. sf[l] = at9_scalefactor_c[c->scalefactors[g_units[0]]];
  480. fill_with_noise(s, c, n_start, n_cnt);
  481. scale_band_ext_coeffs(c, sf, g_units[0], g_units[3]);
  482. break;
  483. }
  484. case 1: {
  485. float sf[6];
  486. for (int i = g_units[0]; i < g_units[3]; i++)
  487. sf[i - g_units[0]] = at9_scalefactor_c[c->scalefactors[i]];
  488. fill_with_noise(s, c, g_bins[0], g_bins[3] - g_bins[0]);
  489. scale_band_ext_coeffs(c, sf, g_units[0], g_units[3]);
  490. break;
  491. }
  492. case 2: {
  493. const float g_sf[2] = {
  494. at9_band_ext_scales_m2[c->band_ext_data[0]],
  495. at9_band_ext_scales_m2[c->band_ext_data[1]],
  496. };
  497. for (int i = 0; i < 2; i++)
  498. for (int j = g_bins[i + 0]; j < g_bins[i + 1]; j++)
  499. c->coeffs[j] *= g_sf[i];
  500. break;
  501. }
  502. case 3: {
  503. float scale = at9_band_ext_scales_m3[c->band_ext_data[0]][0];
  504. float rate = at9_band_ext_scales_m3[c->band_ext_data[1]][1];
  505. rate = pow(2, rate);
  506. for (int i = g_bins[0]; i < g_bins[3]; i++) {
  507. scale *= rate;
  508. c->coeffs[i] *= scale;
  509. }
  510. break;
  511. }
  512. case 4: {
  513. const float m = at9_band_ext_scales_m4[c->band_ext_data[0]];
  514. const float g_sf[3] = { 0.7079468f*m, 0.5011902f*m, 0.3548279f*m };
  515. for (int i = 0; i < 3; i++)
  516. for (int j = g_bins[i + 0]; j < g_bins[i + 1]; j++)
  517. c->coeffs[j] *= g_sf[i];
  518. break;
  519. }
  520. }
  521. }
  522. }
  523. static int atrac9_decode_block(ATRAC9Context *s, GetBitContext *gb,
  524. ATRAC9BlockData *b, AVFrame *frame,
  525. int frame_idx, int block_idx)
  526. {
  527. const int first_in_pkt = !get_bits1(gb);
  528. const int reuse_params = get_bits1(gb);
  529. const int stereo = s->block_config->type[block_idx] == ATRAC9_BLOCK_TYPE_CPE;
  530. if (s->block_config->type[block_idx] == ATRAC9_BLOCK_TYPE_LFE) {
  531. ATRAC9ChannelData *c = &b->channel[0];
  532. const int precision = reuse_params ? 8 : 4;
  533. c->q_unit_cnt = b->q_unit_cnt = 2;
  534. memset(c->scalefactors, 0, sizeof(c->scalefactors));
  535. memset(c->q_coeffs_fine, 0, sizeof(c->q_coeffs_fine));
  536. memset(c->q_coeffs_coarse, 0, sizeof(c->q_coeffs_coarse));
  537. for (int i = 0; i < b->q_unit_cnt; i++) {
  538. c->scalefactors[i] = get_bits(gb, 5);
  539. c->precision_coarse[i] = precision;
  540. c->precision_fine[i] = 0;
  541. }
  542. for (int i = 0; i < c->q_unit_cnt; i++) {
  543. const int start = at9_q_unit_to_coeff_idx[i + 0];
  544. const int end = at9_q_unit_to_coeff_idx[i + 1];
  545. for (int j = start; j < end; j++)
  546. c->q_coeffs_coarse[j] = get_bits(gb, c->precision_coarse[i] + 1);
  547. }
  548. dequantize (s, b, c);
  549. apply_scalefactors(s, b, 0);
  550. goto imdct;
  551. }
  552. if (first_in_pkt && reuse_params) {
  553. av_log(s->avctx, AV_LOG_ERROR, "Invalid block flags!\n");
  554. return AVERROR_INVALIDDATA;
  555. }
  556. /* Band parameters */
  557. if (!reuse_params) {
  558. int stereo_band, ext_band;
  559. const int min_band_count = s->samplerate_idx > 7 ? 1 : 3;
  560. b->reuseable = 0;
  561. b->band_count = get_bits(gb, 4) + min_band_count;
  562. b->q_unit_cnt = at9_tab_band_q_unit_map[b->band_count];
  563. b->band_ext_q_unit = b->stereo_q_unit = b->q_unit_cnt;
  564. if (b->band_count > at9_tab_sri_max_bands[s->samplerate_idx]) {
  565. av_log(s->avctx, AV_LOG_ERROR, "Invalid band count %i!\n",
  566. b->band_count);
  567. return AVERROR_INVALIDDATA;
  568. }
  569. if (stereo) {
  570. stereo_band = get_bits(gb, 4) + min_band_count;
  571. if (stereo_band > b->band_count) {
  572. av_log(s->avctx, AV_LOG_ERROR, "Invalid stereo band %i!\n",
  573. stereo_band);
  574. return AVERROR_INVALIDDATA;
  575. }
  576. b->stereo_q_unit = at9_tab_band_q_unit_map[stereo_band];
  577. }
  578. b->has_band_ext = get_bits1(gb);
  579. if (b->has_band_ext) {
  580. ext_band = get_bits(gb, 4) + min_band_count;
  581. if (ext_band < b->band_count) {
  582. av_log(s->avctx, AV_LOG_ERROR, "Invalid extension band %i!\n",
  583. ext_band);
  584. return AVERROR_INVALIDDATA;
  585. }
  586. b->band_ext_q_unit = at9_tab_band_q_unit_map[ext_band];
  587. }
  588. b->reuseable = 1;
  589. }
  590. if (!b->reuseable) {
  591. av_log(s->avctx, AV_LOG_ERROR, "invalid block reused!\n");
  592. return AVERROR_INVALIDDATA;
  593. }
  594. /* Calculate bit alloc gradient */
  595. if (parse_gradient(s, b, gb))
  596. return AVERROR_INVALIDDATA;
  597. /* IS data */
  598. b->cpe_base_channel = 0;
  599. if (stereo) {
  600. b->cpe_base_channel = get_bits1(gb);
  601. if (get_bits1(gb)) {
  602. for (int i = b->stereo_q_unit; i < b->q_unit_cnt; i++)
  603. b->is_signs[i] = 1 - 2*get_bits1(gb);
  604. } else {
  605. for (int i = 0; i < FF_ARRAY_ELEMS(b->is_signs); i++)
  606. b->is_signs[i] = 1;
  607. }
  608. }
  609. /* Band extension */
  610. if (parse_band_ext(s, b, gb, stereo))
  611. return AVERROR_INVALIDDATA;
  612. /* Scalefactors */
  613. for (int i = 0; i <= stereo; i++) {
  614. ATRAC9ChannelData *c = &b->channel[i];
  615. c->q_unit_cnt = i == b->cpe_base_channel ? b->q_unit_cnt :
  616. b->stereo_q_unit;
  617. if (read_scalefactors(s, b, c, gb, i, first_in_pkt))
  618. return AVERROR_INVALIDDATA;
  619. calc_precision (s, b, c);
  620. calc_codebook_idx (s, b, c);
  621. read_coeffs_coarse(s, b, c, gb);
  622. read_coeffs_fine (s, b, c, gb);
  623. dequantize (s, b, c);
  624. }
  625. b->q_unit_cnt_prev = b->has_band_ext ? b->band_ext_q_unit : b->q_unit_cnt;
  626. apply_intensity_stereo(s, b, stereo);
  627. apply_scalefactors (s, b, stereo);
  628. if (b->has_band_ext && b->has_band_ext_data)
  629. apply_band_extension (s, b, stereo);
  630. imdct:
  631. for (int i = 0; i <= stereo; i++) {
  632. ATRAC9ChannelData *c = &b->channel[i];
  633. const int dst_idx = s->block_config->plane_map[block_idx][i];
  634. const int wsize = 1 << s->frame_log2;
  635. const ptrdiff_t offset = wsize*frame_idx*sizeof(float);
  636. float *dst = (float *)(frame->extended_data[dst_idx] + offset);
  637. s->imdct.imdct_half(&s->imdct, s->temp, c->coeffs);
  638. s->fdsp->vector_fmul_window(dst, c->prev_win, s->temp,
  639. s->imdct_win, wsize >> 1);
  640. memcpy(c->prev_win, s->temp + (wsize >> 1), sizeof(float)*wsize >> 1);
  641. }
  642. return 0;
  643. }
  644. static int atrac9_decode_frame(AVCodecContext *avctx, void *data,
  645. int *got_frame_ptr, AVPacket *avpkt)
  646. {
  647. int ret;
  648. GetBitContext gb;
  649. AVFrame *frame = data;
  650. ATRAC9Context *s = avctx->priv_data;
  651. const int frames = FFMIN(avpkt->size / s->avg_frame_size, s->frame_count);
  652. frame->nb_samples = (1 << s->frame_log2) * frames;
  653. ret = ff_get_buffer(avctx, frame, 0);
  654. if (ret < 0)
  655. return ret;
  656. init_get_bits8(&gb, avpkt->data, avpkt->size);
  657. for (int i = 0; i < frames; i++) {
  658. for (int j = 0; j < s->block_config->count; j++) {
  659. ret = atrac9_decode_block(s, &gb, &s->block[j], frame, i, j);
  660. if (ret)
  661. return ret;
  662. align_get_bits(&gb);
  663. }
  664. }
  665. *got_frame_ptr = 1;
  666. return avctx->block_align;
  667. }
  668. static void atrac9_decode_flush(AVCodecContext *avctx)
  669. {
  670. ATRAC9Context *s = avctx->priv_data;
  671. for (int j = 0; j < s->block_config->count; j++) {
  672. ATRAC9BlockData *b = &s->block[j];
  673. const int stereo = s->block_config->type[j] == ATRAC9_BLOCK_TYPE_CPE;
  674. for (int i = 0; i <= stereo; i++) {
  675. ATRAC9ChannelData *c = &b->channel[i];
  676. memset(c->prev_win, 0, sizeof(c->prev_win));
  677. }
  678. }
  679. }
  680. static av_cold int atrac9_decode_close(AVCodecContext *avctx)
  681. {
  682. ATRAC9Context *s = avctx->priv_data;
  683. for (int i = 1; i < 7; i++)
  684. ff_free_vlc(&s->sf_vlc[0][i]);
  685. for (int i = 2; i < 6; i++)
  686. ff_free_vlc(&s->sf_vlc[1][i]);
  687. for (int i = 0; i < 2; i++)
  688. for (int j = 0; j < 8; j++)
  689. for (int k = 0; k < 4; k++)
  690. ff_free_vlc(&s->coeff_vlc[i][j][k]);
  691. ff_mdct_end(&s->imdct);
  692. av_free(s->fdsp);
  693. return 0;
  694. }
  695. static av_cold int atrac9_decode_init(AVCodecContext *avctx)
  696. {
  697. GetBitContext gb;
  698. ATRAC9Context *s = avctx->priv_data;
  699. int version, block_config_idx, superframe_idx, alloc_c_len;
  700. s->avctx = avctx;
  701. av_lfg_init(&s->lfg, 0xFBADF00D);
  702. if (avctx->block_align <= 0) {
  703. av_log(avctx, AV_LOG_ERROR, "Invalid block align\n");
  704. return AVERROR_INVALIDDATA;
  705. }
  706. if (avctx->extradata_size != 12) {
  707. av_log(avctx, AV_LOG_ERROR, "Invalid extradata length!\n");
  708. return AVERROR_INVALIDDATA;
  709. }
  710. version = AV_RL32(avctx->extradata);
  711. if (version > 2) {
  712. av_log(avctx, AV_LOG_ERROR, "Unsupported version (%i)!\n", version);
  713. return AVERROR_INVALIDDATA;
  714. }
  715. init_get_bits8(&gb, avctx->extradata + 4, avctx->extradata_size);
  716. if (get_bits(&gb, 8) != 0xFE) {
  717. av_log(avctx, AV_LOG_ERROR, "Incorrect magic byte!\n");
  718. return AVERROR_INVALIDDATA;
  719. }
  720. s->samplerate_idx = get_bits(&gb, 4);
  721. avctx->sample_rate = at9_tab_samplerates[s->samplerate_idx];
  722. block_config_idx = get_bits(&gb, 3);
  723. if (block_config_idx > 5) {
  724. av_log(avctx, AV_LOG_ERROR, "Incorrect block config!\n");
  725. return AVERROR_INVALIDDATA;
  726. }
  727. s->block_config = &at9_block_layout[block_config_idx];
  728. avctx->channel_layout = s->block_config->channel_layout;
  729. avctx->channels = av_get_channel_layout_nb_channels(avctx->channel_layout);
  730. avctx->sample_fmt = AV_SAMPLE_FMT_FLTP;
  731. if (get_bits1(&gb)) {
  732. av_log(avctx, AV_LOG_ERROR, "Incorrect verification bit!\n");
  733. return AVERROR_INVALIDDATA;
  734. }
  735. /* Average frame size in bytes */
  736. s->avg_frame_size = get_bits(&gb, 11) + 1;
  737. superframe_idx = get_bits(&gb, 2);
  738. if (superframe_idx & 1) {
  739. av_log(avctx, AV_LOG_ERROR, "Invalid superframe index!\n");
  740. return AVERROR_INVALIDDATA;
  741. }
  742. s->frame_count = 1 << superframe_idx;
  743. s->frame_log2 = at9_tab_sri_frame_log2[s->samplerate_idx];
  744. if (ff_mdct_init(&s->imdct, s->frame_log2 + 1, 1, 1.0f / 32768.0f))
  745. return AVERROR(ENOMEM);
  746. s->fdsp = avpriv_float_dsp_alloc(avctx->flags & AV_CODEC_FLAG_BITEXACT);
  747. if (!s->fdsp)
  748. return AVERROR(ENOMEM);
  749. /* iMDCT window */
  750. for (int i = 0; i < (1 << s->frame_log2); i++) {
  751. const int len = 1 << s->frame_log2;
  752. const float sidx = ( i + 0.5f) / len;
  753. const float eidx = (len - i - 0.5f) / len;
  754. const float s_c = sinf(sidx*M_PI - M_PI_2)*0.5f + 0.5f;
  755. const float e_c = sinf(eidx*M_PI - M_PI_2)*0.5f + 0.5f;
  756. s->imdct_win[i] = s_c / ((s_c * s_c) + (e_c * e_c));
  757. }
  758. /* Allocation curve */
  759. alloc_c_len = FF_ARRAY_ELEMS(at9_tab_b_dist);
  760. for (int i = 1; i <= alloc_c_len; i++)
  761. for (int j = 0; j < i; j++)
  762. s->alloc_curve[i - 1][j] = at9_tab_b_dist[(j * alloc_c_len) / i];
  763. /* Unsigned scalefactor VLCs */
  764. for (int i = 1; i < 7; i++) {
  765. const HuffmanCodebook *hf = &at9_huffman_sf_unsigned[i];
  766. init_vlc(&s->sf_vlc[0][i], 9, hf->size, hf->bits, 1, 1, hf->codes,
  767. 2, 2, 0);
  768. }
  769. /* Signed scalefactor VLCs */
  770. for (int i = 2; i < 6; i++) {
  771. const HuffmanCodebook *hf = &at9_huffman_sf_signed[i];
  772. int nums = hf->size;
  773. int16_t sym[32];
  774. for (int j = 0; j < nums; j++)
  775. sym[j] = sign_extend(j, hf->value_bits);
  776. ff_init_vlc_sparse(&s->sf_vlc[1][i], 9, hf->size, hf->bits, 1, 1,
  777. hf->codes, 2, 2, sym, sizeof(*sym), sizeof(*sym), 0);
  778. }
  779. /* Coefficient VLCs */
  780. for (int i = 0; i < 2; i++) {
  781. for (int j = 0; j < 8; j++) {
  782. for (int k = 0; k < 4; k++) {
  783. const HuffmanCodebook *hf = &at9_huffman_coeffs[i][j][k];
  784. init_vlc(&s->coeff_vlc[i][j][k], 9, hf->size, hf->bits, 1, 1,
  785. hf->codes, 2, 2, 0);
  786. }
  787. }
  788. }
  789. return 0;
  790. }
  791. AVCodec ff_atrac9_decoder = {
  792. .name = "atrac9",
  793. .long_name = NULL_IF_CONFIG_SMALL("ATRAC9 (Adaptive TRansform Acoustic Coding 9)"),
  794. .type = AVMEDIA_TYPE_AUDIO,
  795. .id = AV_CODEC_ID_ATRAC9,
  796. .priv_data_size = sizeof(ATRAC9Context),
  797. .init = atrac9_decode_init,
  798. .close = atrac9_decode_close,
  799. .decode = atrac9_decode_frame,
  800. .flush = atrac9_decode_flush,
  801. .caps_internal = FF_CODEC_CAP_INIT_THREADSAFE | FF_CODEC_CAP_INIT_CLEANUP,
  802. .capabilities = AV_CODEC_CAP_SUBFRAMES | AV_CODEC_CAP_DR1,
  803. };