You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1345 lines
44KB

  1. /*
  2. * Bink video decoder
  3. * Copyright (c) 2009 Konstantin Shishkov
  4. * Copyright (C) 2011 Peter Ross <pross@xvid.org>
  5. *
  6. * This file is part of FFmpeg.
  7. *
  8. * FFmpeg is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU Lesser General Public
  10. * License as published by the Free Software Foundation; either
  11. * version 2.1 of the License, or (at your option) any later version.
  12. *
  13. * FFmpeg is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * Lesser General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU Lesser General Public
  19. * License along with FFmpeg; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  21. */
  22. #include "libavutil/imgutils.h"
  23. #include "avcodec.h"
  24. #include "dsputil.h"
  25. #include "binkdata.h"
  26. #include "mathops.h"
  27. #define ALT_BITSTREAM_READER_LE
  28. #include "get_bits.h"
  29. #define BINK_FLAG_ALPHA 0x00100000
  30. #define BINK_FLAG_GRAY 0x00020000
  31. static VLC bink_trees[16];
  32. /**
  33. * IDs for different data types used in old version of Bink video codec
  34. */
  35. enum OldSources {
  36. BINKB_SRC_BLOCK_TYPES = 0, ///< 8x8 block types
  37. BINKB_SRC_COLORS, ///< pixel values used for different block types
  38. BINKB_SRC_PATTERN, ///< 8-bit values for 2-colour pattern fill
  39. BINKB_SRC_X_OFF, ///< X components of motion value
  40. BINKB_SRC_Y_OFF, ///< Y components of motion value
  41. BINKB_SRC_INTRA_DC, ///< DC values for intrablocks with DCT
  42. BINKB_SRC_INTER_DC, ///< DC values for interblocks with DCT
  43. BINKB_SRC_INTRA_Q, ///< quantizer values for intrablocks with DCT
  44. BINKB_SRC_INTER_Q, ///< quantizer values for interblocks with DCT
  45. BINKB_SRC_INTER_COEFS, ///< number of coefficients for residue blocks
  46. BINKB_NB_SRC
  47. };
  48. static const int binkb_bundle_sizes[BINKB_NB_SRC] = {
  49. 4, 8, 8, 5, 5, 11, 11, 4, 4, 7
  50. };
  51. static const int binkb_bundle_signed[BINKB_NB_SRC] = {
  52. 0, 0, 0, 1, 1, 0, 1, 0, 0, 0
  53. };
  54. static uint32_t binkb_intra_quant[16][64];
  55. static uint32_t binkb_inter_quant[16][64];
  56. /**
  57. * IDs for different data types used in Bink video codec
  58. */
  59. enum Sources {
  60. BINK_SRC_BLOCK_TYPES = 0, ///< 8x8 block types
  61. BINK_SRC_SUB_BLOCK_TYPES, ///< 16x16 block types (a subset of 8x8 block types)
  62. BINK_SRC_COLORS, ///< pixel values used for different block types
  63. BINK_SRC_PATTERN, ///< 8-bit values for 2-colour pattern fill
  64. BINK_SRC_X_OFF, ///< X components of motion value
  65. BINK_SRC_Y_OFF, ///< Y components of motion value
  66. BINK_SRC_INTRA_DC, ///< DC values for intrablocks with DCT
  67. BINK_SRC_INTER_DC, ///< DC values for interblocks with DCT
  68. BINK_SRC_RUN, ///< run lengths for special fill block
  69. BINK_NB_SRC
  70. };
  71. /**
  72. * data needed to decode 4-bit Huffman-coded value
  73. */
  74. typedef struct Tree {
  75. int vlc_num; ///< tree number (in bink_trees[])
  76. uint8_t syms[16]; ///< leaf value to symbol mapping
  77. } Tree;
  78. #define GET_HUFF(gb, tree) (tree).syms[get_vlc2(gb, bink_trees[(tree).vlc_num].table,\
  79. bink_trees[(tree).vlc_num].bits, 1)]
  80. /**
  81. * data structure used for decoding single Bink data type
  82. */
  83. typedef struct Bundle {
  84. int len; ///< length of number of entries to decode (in bits)
  85. Tree tree; ///< Huffman tree-related data
  86. uint8_t *data; ///< buffer for decoded symbols
  87. uint8_t *data_end; ///< buffer end
  88. uint8_t *cur_dec; ///< pointer to the not yet decoded part of the buffer
  89. uint8_t *cur_ptr; ///< pointer to the data that is not read from buffer yet
  90. } Bundle;
  91. /*
  92. * Decoder context
  93. */
  94. typedef struct BinkContext {
  95. AVCodecContext *avctx;
  96. DSPContext dsp;
  97. AVFrame pic, last;
  98. int version; ///< internal Bink file version
  99. int has_alpha;
  100. int swap_planes;
  101. ScanTable scantable; ///< permutated scantable for DCT coeffs decoding
  102. Bundle bundle[BINKB_NB_SRC]; ///< bundles for decoding all data types
  103. Tree col_high[16]; ///< trees for decoding high nibble in "colours" data type
  104. int col_lastval; ///< value of last decoded high nibble in "colours" data type
  105. } BinkContext;
  106. /**
  107. * Bink video block types
  108. */
  109. enum BlockTypes {
  110. SKIP_BLOCK = 0, ///< skipped block
  111. SCALED_BLOCK, ///< block has size 16x16
  112. MOTION_BLOCK, ///< block is copied from previous frame with some offset
  113. RUN_BLOCK, ///< block is composed from runs of colours with custom scan order
  114. RESIDUE_BLOCK, ///< motion block with some difference added
  115. INTRA_BLOCK, ///< intra DCT block
  116. FILL_BLOCK, ///< block is filled with single colour
  117. INTER_BLOCK, ///< motion block with DCT applied to the difference
  118. PATTERN_BLOCK, ///< block is filled with two colours following custom pattern
  119. RAW_BLOCK, ///< uncoded 8x8 block
  120. };
  121. /**
  122. * Initialize length length in all bundles.
  123. *
  124. * @param c decoder context
  125. * @param width plane width
  126. * @param bw plane width in 8x8 blocks
  127. */
  128. static void init_lengths(BinkContext *c, int width, int bw)
  129. {
  130. c->bundle[BINK_SRC_BLOCK_TYPES].len = av_log2((width >> 3) + 511) + 1;
  131. c->bundle[BINK_SRC_SUB_BLOCK_TYPES].len = av_log2((width >> 4) + 511) + 1;
  132. c->bundle[BINK_SRC_COLORS].len = av_log2(bw*64 + 511) + 1;
  133. c->bundle[BINK_SRC_INTRA_DC].len =
  134. c->bundle[BINK_SRC_INTER_DC].len =
  135. c->bundle[BINK_SRC_X_OFF].len =
  136. c->bundle[BINK_SRC_Y_OFF].len = av_log2((width >> 3) + 511) + 1;
  137. c->bundle[BINK_SRC_PATTERN].len = av_log2((bw << 3) + 511) + 1;
  138. c->bundle[BINK_SRC_RUN].len = av_log2(bw*48 + 511) + 1;
  139. }
  140. /**
  141. * Allocate memory for bundles.
  142. *
  143. * @param c decoder context
  144. */
  145. static av_cold void init_bundles(BinkContext *c)
  146. {
  147. int bw, bh, blocks;
  148. int i;
  149. bw = (c->avctx->width + 7) >> 3;
  150. bh = (c->avctx->height + 7) >> 3;
  151. blocks = bw * bh;
  152. for (i = 0; i < BINKB_NB_SRC; i++) {
  153. c->bundle[i].data = av_malloc(blocks * 64);
  154. c->bundle[i].data_end = c->bundle[i].data + blocks * 64;
  155. }
  156. }
  157. /**
  158. * Free memory used by bundles.
  159. *
  160. * @param c decoder context
  161. */
  162. static av_cold void free_bundles(BinkContext *c)
  163. {
  164. int i;
  165. for (i = 0; i < BINKB_NB_SRC; i++)
  166. av_freep(&c->bundle[i].data);
  167. }
  168. /**
  169. * Merge two consequent lists of equal size depending on bits read.
  170. *
  171. * @param gb context for reading bits
  172. * @param dst buffer where merged list will be written to
  173. * @param src pointer to the head of the first list (the second lists starts at src+size)
  174. * @param size input lists size
  175. */
  176. static void merge(GetBitContext *gb, uint8_t *dst, uint8_t *src, int size)
  177. {
  178. uint8_t *src2 = src + size;
  179. int size2 = size;
  180. do {
  181. if (!get_bits1(gb)) {
  182. *dst++ = *src++;
  183. size--;
  184. } else {
  185. *dst++ = *src2++;
  186. size2--;
  187. }
  188. } while (size && size2);
  189. while (size--)
  190. *dst++ = *src++;
  191. while (size2--)
  192. *dst++ = *src2++;
  193. }
  194. /**
  195. * Read information about Huffman tree used to decode data.
  196. *
  197. * @param gb context for reading bits
  198. * @param tree pointer for storing tree data
  199. */
  200. static void read_tree(GetBitContext *gb, Tree *tree)
  201. {
  202. uint8_t tmp1[16], tmp2[16], *in = tmp1, *out = tmp2;
  203. int i, t, len;
  204. tree->vlc_num = get_bits(gb, 4);
  205. if (!tree->vlc_num) {
  206. for (i = 0; i < 16; i++)
  207. tree->syms[i] = i;
  208. return;
  209. }
  210. if (get_bits1(gb)) {
  211. len = get_bits(gb, 3);
  212. memset(tmp1, 0, sizeof(tmp1));
  213. for (i = 0; i <= len; i++) {
  214. tree->syms[i] = get_bits(gb, 4);
  215. tmp1[tree->syms[i]] = 1;
  216. }
  217. for (i = 0; i < 16; i++)
  218. if (!tmp1[i])
  219. tree->syms[++len] = i;
  220. } else {
  221. len = get_bits(gb, 2);
  222. for (i = 0; i < 16; i++)
  223. in[i] = i;
  224. for (i = 0; i <= len; i++) {
  225. int size = 1 << i;
  226. for (t = 0; t < 16; t += size << 1)
  227. merge(gb, out + t, in + t, size);
  228. FFSWAP(uint8_t*, in, out);
  229. }
  230. memcpy(tree->syms, in, 16);
  231. }
  232. }
  233. /**
  234. * Prepare bundle for decoding data.
  235. *
  236. * @param gb context for reading bits
  237. * @param c decoder context
  238. * @param bundle_num number of the bundle to initialize
  239. */
  240. static void read_bundle(GetBitContext *gb, BinkContext *c, int bundle_num)
  241. {
  242. int i;
  243. if (bundle_num == BINK_SRC_COLORS) {
  244. for (i = 0; i < 16; i++)
  245. read_tree(gb, &c->col_high[i]);
  246. c->col_lastval = 0;
  247. }
  248. if (bundle_num != BINK_SRC_INTRA_DC && bundle_num != BINK_SRC_INTER_DC)
  249. read_tree(gb, &c->bundle[bundle_num].tree);
  250. c->bundle[bundle_num].cur_dec =
  251. c->bundle[bundle_num].cur_ptr = c->bundle[bundle_num].data;
  252. }
  253. /**
  254. * common check before starting decoding bundle data
  255. *
  256. * @param gb context for reading bits
  257. * @param b bundle
  258. * @param t variable where number of elements to decode will be stored
  259. */
  260. #define CHECK_READ_VAL(gb, b, t) \
  261. if (!b->cur_dec || (b->cur_dec > b->cur_ptr)) \
  262. return 0; \
  263. t = get_bits(gb, b->len); \
  264. if (!t) { \
  265. b->cur_dec = NULL; \
  266. return 0; \
  267. } \
  268. static int read_runs(AVCodecContext *avctx, GetBitContext *gb, Bundle *b)
  269. {
  270. int t, v;
  271. const uint8_t *dec_end;
  272. CHECK_READ_VAL(gb, b, t);
  273. dec_end = b->cur_dec + t;
  274. if (dec_end > b->data_end) {
  275. av_log(avctx, AV_LOG_ERROR, "Run value went out of bounds\n");
  276. return -1;
  277. }
  278. if (get_bits1(gb)) {
  279. v = get_bits(gb, 4);
  280. memset(b->cur_dec, v, t);
  281. b->cur_dec += t;
  282. } else {
  283. while (b->cur_dec < dec_end)
  284. *b->cur_dec++ = GET_HUFF(gb, b->tree);
  285. }
  286. return 0;
  287. }
  288. static int read_motion_values(AVCodecContext *avctx, GetBitContext *gb, Bundle *b)
  289. {
  290. int t, sign, v;
  291. const uint8_t *dec_end;
  292. CHECK_READ_VAL(gb, b, t);
  293. dec_end = b->cur_dec + t;
  294. if (dec_end > b->data_end) {
  295. av_log(avctx, AV_LOG_ERROR, "Too many motion values\n");
  296. return -1;
  297. }
  298. if (get_bits1(gb)) {
  299. v = get_bits(gb, 4);
  300. if (v) {
  301. sign = -get_bits1(gb);
  302. v = (v ^ sign) - sign;
  303. }
  304. memset(b->cur_dec, v, t);
  305. b->cur_dec += t;
  306. } else {
  307. do {
  308. v = GET_HUFF(gb, b->tree);
  309. if (v) {
  310. sign = -get_bits1(gb);
  311. v = (v ^ sign) - sign;
  312. }
  313. *b->cur_dec++ = v;
  314. } while (b->cur_dec < dec_end);
  315. }
  316. return 0;
  317. }
  318. static const uint8_t bink_rlelens[4] = { 4, 8, 12, 32 };
  319. static int read_block_types(AVCodecContext *avctx, GetBitContext *gb, Bundle *b)
  320. {
  321. int t, v;
  322. int last = 0;
  323. const uint8_t *dec_end;
  324. CHECK_READ_VAL(gb, b, t);
  325. dec_end = b->cur_dec + t;
  326. if (dec_end > b->data_end) {
  327. av_log(avctx, AV_LOG_ERROR, "Too many block type values\n");
  328. return -1;
  329. }
  330. if (get_bits1(gb)) {
  331. v = get_bits(gb, 4);
  332. memset(b->cur_dec, v, t);
  333. b->cur_dec += t;
  334. } else {
  335. do {
  336. v = GET_HUFF(gb, b->tree);
  337. if (v < 12) {
  338. last = v;
  339. *b->cur_dec++ = v;
  340. } else {
  341. int run = bink_rlelens[v - 12];
  342. memset(b->cur_dec, last, run);
  343. b->cur_dec += run;
  344. }
  345. } while (b->cur_dec < dec_end);
  346. }
  347. return 0;
  348. }
  349. static int read_patterns(AVCodecContext *avctx, GetBitContext *gb, Bundle *b)
  350. {
  351. int t, v;
  352. const uint8_t *dec_end;
  353. CHECK_READ_VAL(gb, b, t);
  354. dec_end = b->cur_dec + t;
  355. if (dec_end > b->data_end) {
  356. av_log(avctx, AV_LOG_ERROR, "Too many pattern values\n");
  357. return -1;
  358. }
  359. while (b->cur_dec < dec_end) {
  360. v = GET_HUFF(gb, b->tree);
  361. v |= GET_HUFF(gb, b->tree) << 4;
  362. *b->cur_dec++ = v;
  363. }
  364. return 0;
  365. }
  366. static int read_colors(GetBitContext *gb, Bundle *b, BinkContext *c)
  367. {
  368. int t, sign, v;
  369. const uint8_t *dec_end;
  370. CHECK_READ_VAL(gb, b, t);
  371. dec_end = b->cur_dec + t;
  372. if (dec_end > b->data_end) {
  373. av_log(c->avctx, AV_LOG_ERROR, "Too many color values\n");
  374. return -1;
  375. }
  376. if (get_bits1(gb)) {
  377. c->col_lastval = GET_HUFF(gb, c->col_high[c->col_lastval]);
  378. v = GET_HUFF(gb, b->tree);
  379. v = (c->col_lastval << 4) | v;
  380. if (c->version < 'i') {
  381. sign = ((int8_t) v) >> 7;
  382. v = ((v & 0x7F) ^ sign) - sign;
  383. v += 0x80;
  384. }
  385. memset(b->cur_dec, v, t);
  386. b->cur_dec += t;
  387. } else {
  388. while (b->cur_dec < dec_end) {
  389. c->col_lastval = GET_HUFF(gb, c->col_high[c->col_lastval]);
  390. v = GET_HUFF(gb, b->tree);
  391. v = (c->col_lastval << 4) | v;
  392. if (c->version < 'i') {
  393. sign = ((int8_t) v) >> 7;
  394. v = ((v & 0x7F) ^ sign) - sign;
  395. v += 0x80;
  396. }
  397. *b->cur_dec++ = v;
  398. }
  399. }
  400. return 0;
  401. }
  402. /** number of bits used to store first DC value in bundle */
  403. #define DC_START_BITS 11
  404. static int read_dcs(AVCodecContext *avctx, GetBitContext *gb, Bundle *b,
  405. int start_bits, int has_sign)
  406. {
  407. int i, j, len, len2, bsize, sign, v, v2;
  408. int16_t *dst = (int16_t*)b->cur_dec;
  409. CHECK_READ_VAL(gb, b, len);
  410. v = get_bits(gb, start_bits - has_sign);
  411. if (v && has_sign) {
  412. sign = -get_bits1(gb);
  413. v = (v ^ sign) - sign;
  414. }
  415. *dst++ = v;
  416. len--;
  417. for (i = 0; i < len; i += 8) {
  418. len2 = FFMIN(len - i, 8);
  419. bsize = get_bits(gb, 4);
  420. if (bsize) {
  421. for (j = 0; j < len2; j++) {
  422. v2 = get_bits(gb, bsize);
  423. if (v2) {
  424. sign = -get_bits1(gb);
  425. v2 = (v2 ^ sign) - sign;
  426. }
  427. v += v2;
  428. *dst++ = v;
  429. if (v < -32768 || v > 32767) {
  430. av_log(avctx, AV_LOG_ERROR, "DC value went out of bounds: %d\n", v);
  431. return -1;
  432. }
  433. }
  434. } else {
  435. for (j = 0; j < len2; j++)
  436. *dst++ = v;
  437. }
  438. }
  439. b->cur_dec = (uint8_t*)dst;
  440. return 0;
  441. }
  442. /**
  443. * Retrieve next value from bundle.
  444. *
  445. * @param c decoder context
  446. * @param bundle bundle number
  447. */
  448. static inline int get_value(BinkContext *c, int bundle)
  449. {
  450. int ret;
  451. if (bundle < BINK_SRC_X_OFF || bundle == BINK_SRC_RUN)
  452. return *c->bundle[bundle].cur_ptr++;
  453. if (bundle == BINK_SRC_X_OFF || bundle == BINK_SRC_Y_OFF)
  454. return (int8_t)*c->bundle[bundle].cur_ptr++;
  455. ret = *(int16_t*)c->bundle[bundle].cur_ptr;
  456. c->bundle[bundle].cur_ptr += 2;
  457. return ret;
  458. }
  459. static void binkb_init_bundle(BinkContext *c, int bundle_num)
  460. {
  461. c->bundle[bundle_num].cur_dec =
  462. c->bundle[bundle_num].cur_ptr = c->bundle[bundle_num].data;
  463. c->bundle[bundle_num].len = 13;
  464. }
  465. static void binkb_init_bundles(BinkContext *c)
  466. {
  467. int i;
  468. for (i = 0; i < BINKB_NB_SRC; i++)
  469. binkb_init_bundle(c, i);
  470. }
  471. static int binkb_read_bundle(BinkContext *c, GetBitContext *gb, int bundle_num)
  472. {
  473. const int bits = binkb_bundle_sizes[bundle_num];
  474. const int mask = 1 << (bits - 1);
  475. const int issigned = binkb_bundle_signed[bundle_num];
  476. Bundle *b = &c->bundle[bundle_num];
  477. int i, len;
  478. CHECK_READ_VAL(gb, b, len);
  479. if (bits <= 8) {
  480. if (!issigned) {
  481. for (i = 0; i < len; i++)
  482. *b->cur_dec++ = get_bits(gb, bits);
  483. } else {
  484. for (i = 0; i < len; i++)
  485. *b->cur_dec++ = get_bits(gb, bits) - mask;
  486. }
  487. } else {
  488. int16_t *dst = (int16_t*)b->cur_dec;
  489. if (!issigned) {
  490. for (i = 0; i < len; i++)
  491. *dst++ = get_bits(gb, bits);
  492. } else {
  493. for (i = 0; i < len; i++)
  494. *dst++ = get_bits(gb, bits) - mask;
  495. }
  496. b->cur_dec = (uint8_t*)dst;
  497. }
  498. return 0;
  499. }
  500. static inline int binkb_get_value(BinkContext *c, int bundle_num)
  501. {
  502. int16_t ret;
  503. const int bits = binkb_bundle_sizes[bundle_num];
  504. if (bits <= 8) {
  505. int val = *c->bundle[bundle_num].cur_ptr++;
  506. return binkb_bundle_signed[bundle_num] ? (int8_t)val : val;
  507. }
  508. ret = *(int16_t*)c->bundle[bundle_num].cur_ptr;
  509. c->bundle[bundle_num].cur_ptr += 2;
  510. return ret;
  511. }
  512. static inline DCTELEM dequant(DCTELEM in, uint32_t quant, int dc)
  513. {
  514. /* Note: multiplication is unsigned but we want signed shift
  515. * otherwise clipping breaks.
  516. * TODO: The official decoder does not use clipping at all
  517. * but instead uses the full 32-bit result.
  518. * However clipping at least gets rid of the case that a
  519. * half-black half-white intra block gets black and white swapped
  520. * and should cause at most minor differences (except for DC). */
  521. int32_t res = in * quant;
  522. res >>= 11;
  523. if (!dc)
  524. res = av_clip_int16(res);
  525. return res;
  526. }
  527. /**
  528. * Read 8x8 block of DCT coefficients.
  529. *
  530. * @param gb context for reading bits
  531. * @param block place for storing coefficients
  532. * @param scan scan order table
  533. * @param quant_matrices quantization matrices
  534. * @return 0 for success, negative value in other cases
  535. */
  536. static int read_dct_coeffs(GetBitContext *gb, DCTELEM block[64], const uint8_t *scan,
  537. const uint32_t quant_matrices[16][64], int q)
  538. {
  539. int coef_list[128];
  540. int mode_list[128];
  541. int i, t, mask, bits, ccoef, mode, sign;
  542. int list_start = 64, list_end = 64, list_pos;
  543. int coef_count = 0;
  544. int coef_idx[64];
  545. int quant_idx;
  546. const uint32_t *quant;
  547. coef_list[list_end] = 4; mode_list[list_end++] = 0;
  548. coef_list[list_end] = 24; mode_list[list_end++] = 0;
  549. coef_list[list_end] = 44; mode_list[list_end++] = 0;
  550. coef_list[list_end] = 1; mode_list[list_end++] = 3;
  551. coef_list[list_end] = 2; mode_list[list_end++] = 3;
  552. coef_list[list_end] = 3; mode_list[list_end++] = 3;
  553. bits = get_bits(gb, 4) - 1;
  554. for (mask = 1 << bits; bits >= 0; mask >>= 1, bits--) {
  555. list_pos = list_start;
  556. while (list_pos < list_end) {
  557. if (!(mode_list[list_pos] | coef_list[list_pos]) || !get_bits1(gb)) {
  558. list_pos++;
  559. continue;
  560. }
  561. ccoef = coef_list[list_pos];
  562. mode = mode_list[list_pos];
  563. switch (mode) {
  564. case 0:
  565. coef_list[list_pos] = ccoef + 4;
  566. mode_list[list_pos] = 1;
  567. case 2:
  568. if (mode == 2) {
  569. coef_list[list_pos] = 0;
  570. mode_list[list_pos++] = 0;
  571. }
  572. for (i = 0; i < 4; i++, ccoef++) {
  573. if (get_bits1(gb)) {
  574. coef_list[--list_start] = ccoef;
  575. mode_list[ list_start] = 3;
  576. } else {
  577. int t;
  578. if (!bits) {
  579. t = 1 - (get_bits1(gb) << 1);
  580. } else {
  581. t = get_bits(gb, bits) | mask;
  582. sign = -get_bits1(gb);
  583. t = (t ^ sign) - sign;
  584. }
  585. block[scan[ccoef]] = t;
  586. coef_idx[coef_count++] = ccoef;
  587. }
  588. }
  589. break;
  590. case 1:
  591. mode_list[list_pos] = 2;
  592. for (i = 0; i < 3; i++) {
  593. ccoef += 4;
  594. coef_list[list_end] = ccoef;
  595. mode_list[list_end++] = 2;
  596. }
  597. break;
  598. case 3:
  599. if (!bits) {
  600. t = 1 - (get_bits1(gb) << 1);
  601. } else {
  602. t = get_bits(gb, bits) | mask;
  603. sign = -get_bits1(gb);
  604. t = (t ^ sign) - sign;
  605. }
  606. block[scan[ccoef]] = t;
  607. coef_idx[coef_count++] = ccoef;
  608. coef_list[list_pos] = 0;
  609. mode_list[list_pos++] = 0;
  610. break;
  611. }
  612. }
  613. }
  614. if (q == -1) {
  615. quant_idx = get_bits(gb, 4);
  616. } else {
  617. quant_idx = q;
  618. }
  619. quant = quant_matrices[quant_idx];
  620. block[0] = dequant(block[0], quant[0], 1);
  621. for (i = 0; i < coef_count; i++) {
  622. int idx = coef_idx[i];
  623. block[scan[idx]] = dequant(block[scan[idx]], quant[idx], 0);
  624. }
  625. return 0;
  626. }
  627. /**
  628. * Read 8x8 block with residue after motion compensation.
  629. *
  630. * @param gb context for reading bits
  631. * @param block place to store read data
  632. * @param masks_count number of masks to decode
  633. * @return 0 on success, negative value in other cases
  634. */
  635. static int read_residue(GetBitContext *gb, DCTELEM block[64], int masks_count)
  636. {
  637. int coef_list[128];
  638. int mode_list[128];
  639. int i, sign, mask, ccoef, mode;
  640. int list_start = 64, list_end = 64, list_pos;
  641. int nz_coeff[64];
  642. int nz_coeff_count = 0;
  643. coef_list[list_end] = 4; mode_list[list_end++] = 0;
  644. coef_list[list_end] = 24; mode_list[list_end++] = 0;
  645. coef_list[list_end] = 44; mode_list[list_end++] = 0;
  646. coef_list[list_end] = 0; mode_list[list_end++] = 2;
  647. for (mask = 1 << get_bits(gb, 3); mask; mask >>= 1) {
  648. for (i = 0; i < nz_coeff_count; i++) {
  649. if (!get_bits1(gb))
  650. continue;
  651. if (block[nz_coeff[i]] < 0)
  652. block[nz_coeff[i]] -= mask;
  653. else
  654. block[nz_coeff[i]] += mask;
  655. masks_count--;
  656. if (masks_count < 0)
  657. return 0;
  658. }
  659. list_pos = list_start;
  660. while (list_pos < list_end) {
  661. if (!(coef_list[list_pos] | mode_list[list_pos]) || !get_bits1(gb)) {
  662. list_pos++;
  663. continue;
  664. }
  665. ccoef = coef_list[list_pos];
  666. mode = mode_list[list_pos];
  667. switch (mode) {
  668. case 0:
  669. coef_list[list_pos] = ccoef + 4;
  670. mode_list[list_pos] = 1;
  671. case 2:
  672. if (mode == 2) {
  673. coef_list[list_pos] = 0;
  674. mode_list[list_pos++] = 0;
  675. }
  676. for (i = 0; i < 4; i++, ccoef++) {
  677. if (get_bits1(gb)) {
  678. coef_list[--list_start] = ccoef;
  679. mode_list[ list_start] = 3;
  680. } else {
  681. nz_coeff[nz_coeff_count++] = bink_scan[ccoef];
  682. sign = -get_bits1(gb);
  683. block[bink_scan[ccoef]] = (mask ^ sign) - sign;
  684. masks_count--;
  685. if (masks_count < 0)
  686. return 0;
  687. }
  688. }
  689. break;
  690. case 1:
  691. mode_list[list_pos] = 2;
  692. for (i = 0; i < 3; i++) {
  693. ccoef += 4;
  694. coef_list[list_end] = ccoef;
  695. mode_list[list_end++] = 2;
  696. }
  697. break;
  698. case 3:
  699. nz_coeff[nz_coeff_count++] = bink_scan[ccoef];
  700. sign = -get_bits1(gb);
  701. block[bink_scan[ccoef]] = (mask ^ sign) - sign;
  702. coef_list[list_pos] = 0;
  703. mode_list[list_pos++] = 0;
  704. masks_count--;
  705. if (masks_count < 0)
  706. return 0;
  707. break;
  708. }
  709. }
  710. }
  711. return 0;
  712. }
  713. /**
  714. * Copy 8x8 block from source to destination, where src and dst may be overlapped
  715. */
  716. static inline void put_pixels8x8_overlapped(uint8_t *dst, uint8_t *src, int stride)
  717. {
  718. uint8_t tmp[64];
  719. int i;
  720. for (i = 0; i < 8; i++)
  721. memcpy(tmp + i*8, src + i*stride, 8);
  722. for (i = 0; i < 8; i++)
  723. memcpy(dst + i*stride, tmp + i*8, 8);
  724. }
  725. static int binkb_decode_plane(BinkContext *c, GetBitContext *gb, int plane_idx,
  726. int is_key, int is_chroma)
  727. {
  728. int blk;
  729. int i, j, bx, by;
  730. uint8_t *dst, *ref, *ref_start, *ref_end;
  731. int v, col[2];
  732. const uint8_t *scan;
  733. int xoff, yoff;
  734. LOCAL_ALIGNED_16(DCTELEM, block, [64]);
  735. int coordmap[64];
  736. int ybias = is_key ? -15 : 0;
  737. int qp;
  738. const int stride = c->pic.linesize[plane_idx];
  739. int bw = is_chroma ? (c->avctx->width + 15) >> 4 : (c->avctx->width + 7) >> 3;
  740. int bh = is_chroma ? (c->avctx->height + 15) >> 4 : (c->avctx->height + 7) >> 3;
  741. binkb_init_bundles(c);
  742. ref_start = c->pic.data[plane_idx];
  743. ref_end = c->pic.data[plane_idx] + (bh * c->pic.linesize[plane_idx] + bw) * 8;
  744. for (i = 0; i < 64; i++)
  745. coordmap[i] = (i & 7) + (i >> 3) * stride;
  746. for (by = 0; by < bh; by++) {
  747. for (i = 0; i < BINKB_NB_SRC; i++) {
  748. if (binkb_read_bundle(c, gb, i) < 0)
  749. return -1;
  750. }
  751. dst = c->pic.data[plane_idx] + 8*by*stride;
  752. for (bx = 0; bx < bw; bx++, dst += 8) {
  753. blk = binkb_get_value(c, BINKB_SRC_BLOCK_TYPES);
  754. switch (blk) {
  755. case 0:
  756. break;
  757. case 1:
  758. scan = bink_patterns[get_bits(gb, 4)];
  759. i = 0;
  760. do {
  761. int mode, run;
  762. mode = get_bits1(gb);
  763. run = get_bits(gb, binkb_runbits[i]) + 1;
  764. i += run;
  765. if (i > 64) {
  766. av_log(c->avctx, AV_LOG_ERROR, "Run went out of bounds\n");
  767. return -1;
  768. }
  769. if (mode) {
  770. v = binkb_get_value(c, BINKB_SRC_COLORS);
  771. for (j = 0; j < run; j++)
  772. dst[coordmap[*scan++]] = v;
  773. } else {
  774. for (j = 0; j < run; j++)
  775. dst[coordmap[*scan++]] = binkb_get_value(c, BINKB_SRC_COLORS);
  776. }
  777. } while (i < 63);
  778. if (i == 63)
  779. dst[coordmap[*scan++]] = binkb_get_value(c, BINKB_SRC_COLORS);
  780. break;
  781. case 2:
  782. c->dsp.clear_block(block);
  783. block[0] = binkb_get_value(c, BINKB_SRC_INTRA_DC);
  784. qp = binkb_get_value(c, BINKB_SRC_INTRA_Q);
  785. read_dct_coeffs(gb, block, c->scantable.permutated, binkb_intra_quant, qp);
  786. c->dsp.idct_put(dst, stride, block);
  787. break;
  788. case 3:
  789. xoff = binkb_get_value(c, BINKB_SRC_X_OFF);
  790. yoff = binkb_get_value(c, BINKB_SRC_Y_OFF) + ybias;
  791. ref = dst + xoff + yoff * stride;
  792. if (ref < ref_start || ref + 8*stride > ref_end) {
  793. av_log(c->avctx, AV_LOG_WARNING, "Reference block is out of bounds\n");
  794. } else if (ref + 8*stride < dst || ref >= dst + 8*stride) {
  795. c->dsp.put_pixels_tab[1][0](dst, ref, stride, 8);
  796. } else {
  797. put_pixels8x8_overlapped(dst, ref, stride);
  798. }
  799. c->dsp.clear_block(block);
  800. v = binkb_get_value(c, BINKB_SRC_INTER_COEFS);
  801. read_residue(gb, block, v);
  802. c->dsp.add_pixels8(dst, block, stride);
  803. break;
  804. case 4:
  805. xoff = binkb_get_value(c, BINKB_SRC_X_OFF);
  806. yoff = binkb_get_value(c, BINKB_SRC_Y_OFF) + ybias;
  807. ref = dst + xoff + yoff * stride;
  808. if (ref < ref_start || ref + 8 * stride > ref_end) {
  809. av_log(c->avctx, AV_LOG_WARNING, "Reference block is out of bounds\n");
  810. } else if (ref + 8*stride < dst || ref >= dst + 8*stride) {
  811. c->dsp.put_pixels_tab[1][0](dst, ref, stride, 8);
  812. } else {
  813. put_pixels8x8_overlapped(dst, ref, stride);
  814. }
  815. c->dsp.clear_block(block);
  816. block[0] = binkb_get_value(c, BINKB_SRC_INTER_DC);
  817. qp = binkb_get_value(c, BINKB_SRC_INTER_Q);
  818. read_dct_coeffs(gb, block, c->scantable.permutated, binkb_inter_quant, qp);
  819. c->dsp.idct_add(dst, stride, block);
  820. break;
  821. case 5:
  822. v = binkb_get_value(c, BINKB_SRC_COLORS);
  823. c->dsp.fill_block_tab[1](dst, v, stride, 8);
  824. break;
  825. case 6:
  826. for (i = 0; i < 2; i++)
  827. col[i] = binkb_get_value(c, BINKB_SRC_COLORS);
  828. for (i = 0; i < 8; i++) {
  829. v = binkb_get_value(c, BINKB_SRC_PATTERN);
  830. for (j = 0; j < 8; j++, v >>= 1)
  831. dst[i*stride + j] = col[v & 1];
  832. }
  833. break;
  834. case 7:
  835. xoff = binkb_get_value(c, BINKB_SRC_X_OFF);
  836. yoff = binkb_get_value(c, BINKB_SRC_Y_OFF) + ybias;
  837. ref = dst + xoff + yoff * stride;
  838. if (ref < ref_start || ref + 8 * stride > ref_end) {
  839. av_log(c->avctx, AV_LOG_WARNING, "Reference block is out of bounds\n");
  840. } else if (ref + 8*stride < dst || ref >= dst + 8*stride) {
  841. c->dsp.put_pixels_tab[1][0](dst, ref, stride, 8);
  842. } else {
  843. put_pixels8x8_overlapped(dst, ref, stride);
  844. }
  845. break;
  846. case 8:
  847. for (i = 0; i < 8; i++)
  848. memcpy(dst + i*stride, c->bundle[BINKB_SRC_COLORS].cur_ptr + i*8, 8);
  849. c->bundle[BINKB_SRC_COLORS].cur_ptr += 64;
  850. break;
  851. default:
  852. av_log(c->avctx, AV_LOG_ERROR, "Unknown block type %d\n", blk);
  853. return -1;
  854. }
  855. }
  856. }
  857. if (get_bits_count(gb) & 0x1F) //next plane data starts at 32-bit boundary
  858. skip_bits_long(gb, 32 - (get_bits_count(gb) & 0x1F));
  859. return 0;
  860. }
  861. static int bink_decode_plane(BinkContext *c, GetBitContext *gb, int plane_idx,
  862. int is_chroma)
  863. {
  864. int blk;
  865. int i, j, bx, by;
  866. uint8_t *dst, *prev, *ref, *ref_start, *ref_end;
  867. int v, col[2];
  868. const uint8_t *scan;
  869. int xoff, yoff;
  870. LOCAL_ALIGNED_16(DCTELEM, block, [64]);
  871. LOCAL_ALIGNED_16(uint8_t, ublock, [64]);
  872. int coordmap[64];
  873. const int stride = c->pic.linesize[plane_idx];
  874. int bw = is_chroma ? (c->avctx->width + 15) >> 4 : (c->avctx->width + 7) >> 3;
  875. int bh = is_chroma ? (c->avctx->height + 15) >> 4 : (c->avctx->height + 7) >> 3;
  876. int width = c->avctx->width >> is_chroma;
  877. init_lengths(c, FFMAX(width, 8), bw);
  878. for (i = 0; i < BINK_NB_SRC; i++)
  879. read_bundle(gb, c, i);
  880. ref_start = c->last.data[plane_idx];
  881. ref_end = c->last.data[plane_idx]
  882. + (bw - 1 + c->last.linesize[plane_idx] * (bh - 1)) * 8;
  883. for (i = 0; i < 64; i++)
  884. coordmap[i] = (i & 7) + (i >> 3) * stride;
  885. for (by = 0; by < bh; by++) {
  886. if (read_block_types(c->avctx, gb, &c->bundle[BINK_SRC_BLOCK_TYPES]) < 0)
  887. return -1;
  888. if (read_block_types(c->avctx, gb, &c->bundle[BINK_SRC_SUB_BLOCK_TYPES]) < 0)
  889. return -1;
  890. if (read_colors(gb, &c->bundle[BINK_SRC_COLORS], c) < 0)
  891. return -1;
  892. if (read_patterns(c->avctx, gb, &c->bundle[BINK_SRC_PATTERN]) < 0)
  893. return -1;
  894. if (read_motion_values(c->avctx, gb, &c->bundle[BINK_SRC_X_OFF]) < 0)
  895. return -1;
  896. if (read_motion_values(c->avctx, gb, &c->bundle[BINK_SRC_Y_OFF]) < 0)
  897. return -1;
  898. if (read_dcs(c->avctx, gb, &c->bundle[BINK_SRC_INTRA_DC], DC_START_BITS, 0) < 0)
  899. return -1;
  900. if (read_dcs(c->avctx, gb, &c->bundle[BINK_SRC_INTER_DC], DC_START_BITS, 1) < 0)
  901. return -1;
  902. if (read_runs(c->avctx, gb, &c->bundle[BINK_SRC_RUN]) < 0)
  903. return -1;
  904. if (by == bh)
  905. break;
  906. dst = c->pic.data[plane_idx] + 8*by*stride;
  907. prev = c->last.data[plane_idx] + 8*by*stride;
  908. for (bx = 0; bx < bw; bx++, dst += 8, prev += 8) {
  909. blk = get_value(c, BINK_SRC_BLOCK_TYPES);
  910. // 16x16 block type on odd line means part of the already decoded block, so skip it
  911. if ((by & 1) && blk == SCALED_BLOCK) {
  912. bx++;
  913. dst += 8;
  914. prev += 8;
  915. continue;
  916. }
  917. switch (blk) {
  918. case SKIP_BLOCK:
  919. c->dsp.put_pixels_tab[1][0](dst, prev, stride, 8);
  920. break;
  921. case SCALED_BLOCK:
  922. blk = get_value(c, BINK_SRC_SUB_BLOCK_TYPES);
  923. switch (blk) {
  924. case RUN_BLOCK:
  925. scan = bink_patterns[get_bits(gb, 4)];
  926. i = 0;
  927. do {
  928. int run = get_value(c, BINK_SRC_RUN) + 1;
  929. i += run;
  930. if (i > 64) {
  931. av_log(c->avctx, AV_LOG_ERROR, "Run went out of bounds\n");
  932. return -1;
  933. }
  934. if (get_bits1(gb)) {
  935. v = get_value(c, BINK_SRC_COLORS);
  936. for (j = 0; j < run; j++)
  937. ublock[*scan++] = v;
  938. } else {
  939. for (j = 0; j < run; j++)
  940. ublock[*scan++] = get_value(c, BINK_SRC_COLORS);
  941. }
  942. } while (i < 63);
  943. if (i == 63)
  944. ublock[*scan++] = get_value(c, BINK_SRC_COLORS);
  945. break;
  946. case INTRA_BLOCK:
  947. c->dsp.clear_block(block);
  948. block[0] = get_value(c, BINK_SRC_INTRA_DC);
  949. read_dct_coeffs(gb, block, c->scantable.permutated, bink_intra_quant, -1);
  950. c->dsp.idct(block);
  951. c->dsp.put_pixels_nonclamped(block, ublock, 8);
  952. break;
  953. case FILL_BLOCK:
  954. v = get_value(c, BINK_SRC_COLORS);
  955. c->dsp.fill_block_tab[0](dst, v, stride, 16);
  956. break;
  957. case PATTERN_BLOCK:
  958. for (i = 0; i < 2; i++)
  959. col[i] = get_value(c, BINK_SRC_COLORS);
  960. for (j = 0; j < 8; j++) {
  961. v = get_value(c, BINK_SRC_PATTERN);
  962. for (i = 0; i < 8; i++, v >>= 1)
  963. ublock[i + j*8] = col[v & 1];
  964. }
  965. break;
  966. case RAW_BLOCK:
  967. for (j = 0; j < 8; j++)
  968. for (i = 0; i < 8; i++)
  969. ublock[i + j*8] = get_value(c, BINK_SRC_COLORS);
  970. break;
  971. default:
  972. av_log(c->avctx, AV_LOG_ERROR, "Incorrect 16x16 block type %d\n", blk);
  973. return -1;
  974. }
  975. if (blk != FILL_BLOCK)
  976. c->dsp.scale_block(ublock, dst, stride);
  977. bx++;
  978. dst += 8;
  979. prev += 8;
  980. break;
  981. case MOTION_BLOCK:
  982. xoff = get_value(c, BINK_SRC_X_OFF);
  983. yoff = get_value(c, BINK_SRC_Y_OFF);
  984. ref = prev + xoff + yoff * stride;
  985. if (ref < ref_start || ref > ref_end) {
  986. av_log(c->avctx, AV_LOG_ERROR, "Copy out of bounds @%d, %d\n",
  987. bx*8 + xoff, by*8 + yoff);
  988. return -1;
  989. }
  990. c->dsp.put_pixels_tab[1][0](dst, ref, stride, 8);
  991. break;
  992. case RUN_BLOCK:
  993. scan = bink_patterns[get_bits(gb, 4)];
  994. i = 0;
  995. do {
  996. int run = get_value(c, BINK_SRC_RUN) + 1;
  997. i += run;
  998. if (i > 64) {
  999. av_log(c->avctx, AV_LOG_ERROR, "Run went out of bounds\n");
  1000. return -1;
  1001. }
  1002. if (get_bits1(gb)) {
  1003. v = get_value(c, BINK_SRC_COLORS);
  1004. for (j = 0; j < run; j++)
  1005. dst[coordmap[*scan++]] = v;
  1006. } else {
  1007. for (j = 0; j < run; j++)
  1008. dst[coordmap[*scan++]] = get_value(c, BINK_SRC_COLORS);
  1009. }
  1010. } while (i < 63);
  1011. if (i == 63)
  1012. dst[coordmap[*scan++]] = get_value(c, BINK_SRC_COLORS);
  1013. break;
  1014. case RESIDUE_BLOCK:
  1015. xoff = get_value(c, BINK_SRC_X_OFF);
  1016. yoff = get_value(c, BINK_SRC_Y_OFF);
  1017. ref = prev + xoff + yoff * stride;
  1018. if (ref < ref_start || ref > ref_end) {
  1019. av_log(c->avctx, AV_LOG_ERROR, "Copy out of bounds @%d, %d\n",
  1020. bx*8 + xoff, by*8 + yoff);
  1021. return -1;
  1022. }
  1023. c->dsp.put_pixels_tab[1][0](dst, ref, stride, 8);
  1024. c->dsp.clear_block(block);
  1025. v = get_bits(gb, 7);
  1026. read_residue(gb, block, v);
  1027. c->dsp.add_pixels8(dst, block, stride);
  1028. break;
  1029. case INTRA_BLOCK:
  1030. c->dsp.clear_block(block);
  1031. block[0] = get_value(c, BINK_SRC_INTRA_DC);
  1032. read_dct_coeffs(gb, block, c->scantable.permutated, bink_intra_quant, -1);
  1033. c->dsp.idct_put(dst, stride, block);
  1034. break;
  1035. case FILL_BLOCK:
  1036. v = get_value(c, BINK_SRC_COLORS);
  1037. c->dsp.fill_block_tab[1](dst, v, stride, 8);
  1038. break;
  1039. case INTER_BLOCK:
  1040. xoff = get_value(c, BINK_SRC_X_OFF);
  1041. yoff = get_value(c, BINK_SRC_Y_OFF);
  1042. ref = prev + xoff + yoff * stride;
  1043. c->dsp.put_pixels_tab[1][0](dst, ref, stride, 8);
  1044. c->dsp.clear_block(block);
  1045. block[0] = get_value(c, BINK_SRC_INTER_DC);
  1046. read_dct_coeffs(gb, block, c->scantable.permutated, bink_inter_quant, -1);
  1047. c->dsp.idct_add(dst, stride, block);
  1048. break;
  1049. case PATTERN_BLOCK:
  1050. for (i = 0; i < 2; i++)
  1051. col[i] = get_value(c, BINK_SRC_COLORS);
  1052. for (i = 0; i < 8; i++) {
  1053. v = get_value(c, BINK_SRC_PATTERN);
  1054. for (j = 0; j < 8; j++, v >>= 1)
  1055. dst[i*stride + j] = col[v & 1];
  1056. }
  1057. break;
  1058. case RAW_BLOCK:
  1059. for (i = 0; i < 8; i++)
  1060. memcpy(dst + i*stride, c->bundle[BINK_SRC_COLORS].cur_ptr + i*8, 8);
  1061. c->bundle[BINK_SRC_COLORS].cur_ptr += 64;
  1062. break;
  1063. default:
  1064. av_log(c->avctx, AV_LOG_ERROR, "Unknown block type %d\n", blk);
  1065. return -1;
  1066. }
  1067. }
  1068. }
  1069. if (get_bits_count(gb) & 0x1F) //next plane data starts at 32-bit boundary
  1070. skip_bits_long(gb, 32 - (get_bits_count(gb) & 0x1F));
  1071. return 0;
  1072. }
  1073. static int decode_frame(AVCodecContext *avctx, void *data, int *data_size, AVPacket *pkt)
  1074. {
  1075. BinkContext * const c = avctx->priv_data;
  1076. GetBitContext gb;
  1077. int plane, plane_idx;
  1078. int bits_count = pkt->size << 3;
  1079. if (c->version > 'b') {
  1080. if(c->pic.data[0])
  1081. avctx->release_buffer(avctx, &c->pic);
  1082. if(avctx->get_buffer(avctx, &c->pic) < 0){
  1083. av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
  1084. return -1;
  1085. }
  1086. } else {
  1087. if(avctx->reget_buffer(avctx, &c->pic) < 0){
  1088. av_log(avctx, AV_LOG_ERROR, "reget_buffer() failed\n");
  1089. return -1;
  1090. }
  1091. }
  1092. init_get_bits(&gb, pkt->data, bits_count);
  1093. if (c->has_alpha) {
  1094. if (c->version >= 'i')
  1095. skip_bits_long(&gb, 32);
  1096. if (bink_decode_plane(c, &gb, 3, 0) < 0)
  1097. return -1;
  1098. }
  1099. if (c->version >= 'i')
  1100. skip_bits_long(&gb, 32);
  1101. for (plane = 0; plane < 3; plane++) {
  1102. plane_idx = (!plane || !c->swap_planes) ? plane : (plane ^ 3);
  1103. if (c->version > 'b') {
  1104. if (bink_decode_plane(c, &gb, plane_idx, !!plane) < 0)
  1105. return -1;
  1106. } else {
  1107. if (binkb_decode_plane(c, &gb, plane_idx, !pkt->pts, !!plane) < 0)
  1108. return -1;
  1109. }
  1110. if (get_bits_count(&gb) >= bits_count)
  1111. break;
  1112. }
  1113. emms_c();
  1114. *data_size = sizeof(AVFrame);
  1115. *(AVFrame*)data = c->pic;
  1116. if (c->version > 'b')
  1117. FFSWAP(AVFrame, c->pic, c->last);
  1118. /* always report that the buffer was completely consumed */
  1119. return pkt->size;
  1120. }
  1121. /**
  1122. * Caclulate quantization tables for version b
  1123. */
  1124. static av_cold void binkb_calc_quant(void)
  1125. {
  1126. uint8_t inv_bink_scan[64];
  1127. double s[64];
  1128. int i, j;
  1129. for (j = 0; j < 8; j++) {
  1130. for (i = 0; i < 8; i++) {
  1131. if (j && j != 4)
  1132. if (i && i != 4)
  1133. s[j*8 + i] = cos(j * M_PI/16.0) * cos(i * M_PI/16.0) * 2.0;
  1134. else
  1135. s[j*8 + i] = cos(j * M_PI/16.0) * sqrt(2.0);
  1136. else
  1137. if (i && i != 4)
  1138. s[j*8 + i] = cos(i * M_PI/16.0) * sqrt(2.0);
  1139. else
  1140. s[j*8 + i] = 1.0;
  1141. }
  1142. }
  1143. for (i = 0; i < 64; i++)
  1144. inv_bink_scan[bink_scan[i]] = i;
  1145. for (j = 0; j < 16; j++) {
  1146. for (i = 0; i < 64; i++) {
  1147. int k = inv_bink_scan[i];
  1148. if (s[i] == 1.0) {
  1149. binkb_intra_quant[j][k] = (1L << 12) * binkb_intra_seed[i] *
  1150. binkb_num[j]/binkb_den[j];
  1151. binkb_inter_quant[j][k] = (1L << 12) * binkb_inter_seed[i] *
  1152. binkb_num[j]/binkb_den[j];
  1153. } else {
  1154. binkb_intra_quant[j][k] = (1L << 12) * binkb_intra_seed[i] * s[i] *
  1155. binkb_num[j]/(double)binkb_den[j];
  1156. binkb_inter_quant[j][k] = (1L << 12) * binkb_inter_seed[i] * s[i] *
  1157. binkb_num[j]/(double)binkb_den[j];
  1158. }
  1159. }
  1160. }
  1161. }
  1162. static av_cold int decode_init(AVCodecContext *avctx)
  1163. {
  1164. BinkContext * const c = avctx->priv_data;
  1165. static VLC_TYPE table[16 * 128][2];
  1166. static int binkb_initialised = 0;
  1167. int i;
  1168. int flags;
  1169. c->version = avctx->codec_tag >> 24;
  1170. if (avctx->extradata_size < 4) {
  1171. av_log(avctx, AV_LOG_ERROR, "Extradata missing or too short\n");
  1172. return -1;
  1173. }
  1174. flags = AV_RL32(avctx->extradata);
  1175. c->has_alpha = flags & BINK_FLAG_ALPHA;
  1176. c->swap_planes = c->version >= 'h';
  1177. if (!bink_trees[15].table) {
  1178. for (i = 0; i < 16; i++) {
  1179. const int maxbits = bink_tree_lens[i][15];
  1180. bink_trees[i].table = table + i*128;
  1181. bink_trees[i].table_allocated = 1 << maxbits;
  1182. init_vlc(&bink_trees[i], maxbits, 16,
  1183. bink_tree_lens[i], 1, 1,
  1184. bink_tree_bits[i], 1, 1, INIT_VLC_USE_NEW_STATIC | INIT_VLC_LE);
  1185. }
  1186. }
  1187. c->avctx = avctx;
  1188. c->pic.data[0] = NULL;
  1189. if (av_image_check_size(avctx->width, avctx->height, 0, avctx) < 0) {
  1190. return 1;
  1191. }
  1192. avctx->pix_fmt = c->has_alpha ? PIX_FMT_YUVA420P : PIX_FMT_YUV420P;
  1193. avctx->idct_algo = FF_IDCT_BINK;
  1194. dsputil_init(&c->dsp, avctx);
  1195. ff_init_scantable(c->dsp.idct_permutation, &c->scantable, bink_scan);
  1196. init_bundles(c);
  1197. if (c->version == 'b') {
  1198. if (!binkb_initialised) {
  1199. binkb_calc_quant();
  1200. binkb_initialised = 1;
  1201. }
  1202. }
  1203. return 0;
  1204. }
  1205. static av_cold int decode_end(AVCodecContext *avctx)
  1206. {
  1207. BinkContext * const c = avctx->priv_data;
  1208. if (c->pic.data[0])
  1209. avctx->release_buffer(avctx, &c->pic);
  1210. if (c->last.data[0])
  1211. avctx->release_buffer(avctx, &c->last);
  1212. free_bundles(c);
  1213. return 0;
  1214. }
  1215. AVCodec ff_bink_decoder = {
  1216. "binkvideo",
  1217. AVMEDIA_TYPE_VIDEO,
  1218. CODEC_ID_BINKVIDEO,
  1219. sizeof(BinkContext),
  1220. decode_init,
  1221. NULL,
  1222. decode_end,
  1223. decode_frame,
  1224. .long_name = NULL_IF_CONFIG_SMALL("Bink video"),
  1225. };