You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1299 lines
48KB

  1. /*
  2. * Copyright (c) 2001-2003 The ffmpeg Project
  3. *
  4. * This file is part of Libav.
  5. *
  6. * Libav is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU Lesser General Public
  8. * License as published by the Free Software Foundation; either
  9. * version 2.1 of the License, or (at your option) any later version.
  10. *
  11. * Libav is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  14. * Lesser General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU Lesser General Public
  17. * License along with Libav; if not, write to the Free Software
  18. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  19. */
  20. #include "avcodec.h"
  21. #include "get_bits.h"
  22. #include "put_bits.h"
  23. #include "bytestream.h"
  24. #include "adpcm.h"
  25. #include "adpcm_data.h"
  26. /**
  27. * @file
  28. * ADPCM decoders
  29. * First version by Francois Revol (revol@free.fr)
  30. * Fringe ADPCM codecs (e.g., DK3, DK4, Westwood)
  31. * by Mike Melanson (melanson@pcisys.net)
  32. * CD-ROM XA ADPCM codec by BERO
  33. * EA ADPCM decoder by Robin Kay (komadori@myrealbox.com)
  34. * EA ADPCM R1/R2/R3 decoder by Peter Ross (pross@xvid.org)
  35. * EA IMA EACS decoder by Peter Ross (pross@xvid.org)
  36. * EA IMA SEAD decoder by Peter Ross (pross@xvid.org)
  37. * EA ADPCM XAS decoder by Peter Ross (pross@xvid.org)
  38. * MAXIS EA ADPCM decoder by Robert Marston (rmarston@gmail.com)
  39. * THP ADPCM decoder by Marco Gerards (mgerards@xs4all.nl)
  40. *
  41. * Features and limitations:
  42. *
  43. * Reference documents:
  44. * http://wiki.multimedia.cx/index.php?title=Category:ADPCM_Audio_Codecs
  45. * http://www.pcisys.net/~melanson/codecs/simpleaudio.html [dead]
  46. * http://www.geocities.com/SiliconValley/8682/aud3.txt [dead]
  47. * http://openquicktime.sourceforge.net/
  48. * XAnim sources (xa_codec.c) http://xanim.polter.net/
  49. * http://www.cs.ucla.edu/~leec/mediabench/applications.html [dead]
  50. * SoX source code http://sox.sourceforge.net/
  51. *
  52. * CD-ROM XA:
  53. * http://ku-www.ss.titech.ac.jp/~yatsushi/xaadpcm.html [dead]
  54. * vagpack & depack http://homepages.compuserve.de/bITmASTER32/psx-index.html [dead]
  55. * readstr http://www.geocities.co.jp/Playtown/2004/
  56. */
  57. /* These are for CD-ROM XA ADPCM */
  58. static const int xa_adpcm_table[5][2] = {
  59. { 0, 0 },
  60. { 60, 0 },
  61. { 115, -52 },
  62. { 98, -55 },
  63. { 122, -60 }
  64. };
  65. static const int ea_adpcm_table[] = {
  66. 0, 240, 460, 392,
  67. 0, 0, -208, -220,
  68. 0, 1, 3, 4,
  69. 7, 8, 10, 11,
  70. 0, -1, -3, -4
  71. };
  72. // padded to zero where table size is less then 16
  73. static const int swf_index_tables[4][16] = {
  74. /*2*/ { -1, 2 },
  75. /*3*/ { -1, -1, 2, 4 },
  76. /*4*/ { -1, -1, -1, -1, 2, 4, 6, 8 },
  77. /*5*/ { -1, -1, -1, -1, -1, -1, -1, -1, 1, 2, 4, 6, 8, 10, 13, 16 }
  78. };
  79. /* end of tables */
  80. typedef struct ADPCMDecodeContext {
  81. AVFrame frame;
  82. ADPCMChannelStatus status[6];
  83. int vqa_version; /**< VQA version. Used for ADPCM_IMA_WS */
  84. } ADPCMDecodeContext;
  85. static av_cold int adpcm_decode_init(AVCodecContext * avctx)
  86. {
  87. ADPCMDecodeContext *c = avctx->priv_data;
  88. unsigned int min_channels = 1;
  89. unsigned int max_channels = 2;
  90. switch(avctx->codec->id) {
  91. case CODEC_ID_ADPCM_EA:
  92. min_channels = 2;
  93. break;
  94. case CODEC_ID_ADPCM_EA_R1:
  95. case CODEC_ID_ADPCM_EA_R2:
  96. case CODEC_ID_ADPCM_EA_R3:
  97. case CODEC_ID_ADPCM_EA_XAS:
  98. max_channels = 6;
  99. break;
  100. }
  101. if (avctx->channels < min_channels || avctx->channels > max_channels) {
  102. av_log(avctx, AV_LOG_ERROR, "Invalid number of channels\n");
  103. return AVERROR(EINVAL);
  104. }
  105. switch(avctx->codec->id) {
  106. case CODEC_ID_ADPCM_CT:
  107. c->status[0].step = c->status[1].step = 511;
  108. break;
  109. case CODEC_ID_ADPCM_IMA_WAV:
  110. if (avctx->bits_per_coded_sample != 4) {
  111. av_log(avctx, AV_LOG_ERROR, "Only 4-bit ADPCM IMA WAV files are supported\n");
  112. return -1;
  113. }
  114. break;
  115. case CODEC_ID_ADPCM_IMA_APC:
  116. if (avctx->extradata && avctx->extradata_size >= 8) {
  117. c->status[0].predictor = AV_RL32(avctx->extradata);
  118. c->status[1].predictor = AV_RL32(avctx->extradata + 4);
  119. }
  120. break;
  121. case CODEC_ID_ADPCM_IMA_WS:
  122. if (avctx->extradata && avctx->extradata_size >= 42)
  123. c->vqa_version = AV_RL16(avctx->extradata);
  124. break;
  125. default:
  126. break;
  127. }
  128. avctx->sample_fmt = AV_SAMPLE_FMT_S16;
  129. avcodec_get_frame_defaults(&c->frame);
  130. avctx->coded_frame = &c->frame;
  131. return 0;
  132. }
  133. static inline short adpcm_ima_expand_nibble(ADPCMChannelStatus *c, char nibble, int shift)
  134. {
  135. int step_index;
  136. int predictor;
  137. int sign, delta, diff, step;
  138. step = ff_adpcm_step_table[c->step_index];
  139. step_index = c->step_index + ff_adpcm_index_table[(unsigned)nibble];
  140. step_index = av_clip(step_index, 0, 88);
  141. sign = nibble & 8;
  142. delta = nibble & 7;
  143. /* perform direct multiplication instead of series of jumps proposed by
  144. * the reference ADPCM implementation since modern CPUs can do the mults
  145. * quickly enough */
  146. diff = ((2 * delta + 1) * step) >> shift;
  147. predictor = c->predictor;
  148. if (sign) predictor -= diff;
  149. else predictor += diff;
  150. c->predictor = av_clip_int16(predictor);
  151. c->step_index = step_index;
  152. return (short)c->predictor;
  153. }
  154. static inline int adpcm_ima_qt_expand_nibble(ADPCMChannelStatus *c, int nibble, int shift)
  155. {
  156. int step_index;
  157. int predictor;
  158. int diff, step;
  159. step = ff_adpcm_step_table[c->step_index];
  160. step_index = c->step_index + ff_adpcm_index_table[nibble];
  161. step_index = av_clip(step_index, 0, 88);
  162. diff = step >> 3;
  163. if (nibble & 4) diff += step;
  164. if (nibble & 2) diff += step >> 1;
  165. if (nibble & 1) diff += step >> 2;
  166. if (nibble & 8)
  167. predictor = c->predictor - diff;
  168. else
  169. predictor = c->predictor + diff;
  170. c->predictor = av_clip_int16(predictor);
  171. c->step_index = step_index;
  172. return c->predictor;
  173. }
  174. static inline short adpcm_ms_expand_nibble(ADPCMChannelStatus *c, int nibble)
  175. {
  176. int predictor;
  177. predictor = (((c->sample1) * (c->coeff1)) + ((c->sample2) * (c->coeff2))) / 64;
  178. predictor += ((nibble & 0x08)?(nibble - 0x10):(nibble)) * c->idelta;
  179. c->sample2 = c->sample1;
  180. c->sample1 = av_clip_int16(predictor);
  181. c->idelta = (ff_adpcm_AdaptationTable[(int)nibble] * c->idelta) >> 8;
  182. if (c->idelta < 16) c->idelta = 16;
  183. return c->sample1;
  184. }
  185. static inline short adpcm_ct_expand_nibble(ADPCMChannelStatus *c, char nibble)
  186. {
  187. int sign, delta, diff;
  188. int new_step;
  189. sign = nibble & 8;
  190. delta = nibble & 7;
  191. /* perform direct multiplication instead of series of jumps proposed by
  192. * the reference ADPCM implementation since modern CPUs can do the mults
  193. * quickly enough */
  194. diff = ((2 * delta + 1) * c->step) >> 3;
  195. /* predictor update is not so trivial: predictor is multiplied on 254/256 before updating */
  196. c->predictor = ((c->predictor * 254) >> 8) + (sign ? -diff : diff);
  197. c->predictor = av_clip_int16(c->predictor);
  198. /* calculate new step and clamp it to range 511..32767 */
  199. new_step = (ff_adpcm_AdaptationTable[nibble & 7] * c->step) >> 8;
  200. c->step = av_clip(new_step, 511, 32767);
  201. return (short)c->predictor;
  202. }
  203. static inline short adpcm_sbpro_expand_nibble(ADPCMChannelStatus *c, char nibble, int size, int shift)
  204. {
  205. int sign, delta, diff;
  206. sign = nibble & (1<<(size-1));
  207. delta = nibble & ((1<<(size-1))-1);
  208. diff = delta << (7 + c->step + shift);
  209. /* clamp result */
  210. c->predictor = av_clip(c->predictor + (sign ? -diff : diff), -16384,16256);
  211. /* calculate new step */
  212. if (delta >= (2*size - 3) && c->step < 3)
  213. c->step++;
  214. else if (delta == 0 && c->step > 0)
  215. c->step--;
  216. return (short) c->predictor;
  217. }
  218. static inline short adpcm_yamaha_expand_nibble(ADPCMChannelStatus *c, unsigned char nibble)
  219. {
  220. if(!c->step) {
  221. c->predictor = 0;
  222. c->step = 127;
  223. }
  224. c->predictor += (c->step * ff_adpcm_yamaha_difflookup[nibble]) / 8;
  225. c->predictor = av_clip_int16(c->predictor);
  226. c->step = (c->step * ff_adpcm_yamaha_indexscale[nibble]) >> 8;
  227. c->step = av_clip(c->step, 127, 24567);
  228. return c->predictor;
  229. }
  230. static int xa_decode(AVCodecContext *avctx,
  231. short *out, const unsigned char *in,
  232. ADPCMChannelStatus *left, ADPCMChannelStatus *right, int inc)
  233. {
  234. int i, j;
  235. int shift,filter,f0,f1;
  236. int s_1,s_2;
  237. int d,s,t;
  238. for(i=0;i<4;i++) {
  239. shift = 12 - (in[4+i*2] & 15);
  240. filter = in[4+i*2] >> 4;
  241. if (filter > 4) {
  242. av_log(avctx, AV_LOG_ERROR,
  243. "Invalid XA-ADPCM filter %d (max. allowed is 4)\n",
  244. filter);
  245. return AVERROR_INVALIDDATA;
  246. }
  247. f0 = xa_adpcm_table[filter][0];
  248. f1 = xa_adpcm_table[filter][1];
  249. s_1 = left->sample1;
  250. s_2 = left->sample2;
  251. for(j=0;j<28;j++) {
  252. d = in[16+i+j*4];
  253. t = sign_extend(d, 4);
  254. s = ( t<<shift ) + ((s_1*f0 + s_2*f1+32)>>6);
  255. s_2 = s_1;
  256. s_1 = av_clip_int16(s);
  257. *out = s_1;
  258. out += inc;
  259. }
  260. if (inc==2) { /* stereo */
  261. left->sample1 = s_1;
  262. left->sample2 = s_2;
  263. s_1 = right->sample1;
  264. s_2 = right->sample2;
  265. out = out + 1 - 28*2;
  266. }
  267. shift = 12 - (in[5+i*2] & 15);
  268. filter = in[5+i*2] >> 4;
  269. if (filter > 4) {
  270. av_log(avctx, AV_LOG_ERROR,
  271. "Invalid XA-ADPCM filter %d (max. allowed is 4)\n",
  272. filter);
  273. return AVERROR_INVALIDDATA;
  274. }
  275. f0 = xa_adpcm_table[filter][0];
  276. f1 = xa_adpcm_table[filter][1];
  277. for(j=0;j<28;j++) {
  278. d = in[16+i+j*4];
  279. t = sign_extend(d >> 4, 4);
  280. s = ( t<<shift ) + ((s_1*f0 + s_2*f1+32)>>6);
  281. s_2 = s_1;
  282. s_1 = av_clip_int16(s);
  283. *out = s_1;
  284. out += inc;
  285. }
  286. if (inc==2) { /* stereo */
  287. right->sample1 = s_1;
  288. right->sample2 = s_2;
  289. out -= 1;
  290. } else {
  291. left->sample1 = s_1;
  292. left->sample2 = s_2;
  293. }
  294. }
  295. return 0;
  296. }
  297. /**
  298. * Get the number of samples that will be decoded from the packet.
  299. * In one case, this is actually the maximum number of samples possible to
  300. * decode with the given buf_size.
  301. *
  302. * @param[out] coded_samples set to the number of samples as coded in the
  303. * packet, or 0 if the codec does not encode the
  304. * number of samples in each frame.
  305. */
  306. static int get_nb_samples(AVCodecContext *avctx, const uint8_t *buf,
  307. GetByteContext *gb,
  308. int buf_size, int *coded_samples)
  309. {
  310. ADPCMDecodeContext *s = avctx->priv_data;
  311. int nb_samples = 0;
  312. int ch = avctx->channels;
  313. int has_coded_samples = 0;
  314. int header_size;
  315. *coded_samples = 0;
  316. switch (avctx->codec->id) {
  317. /* constant, only check buf_size */
  318. case CODEC_ID_ADPCM_EA_XAS:
  319. if (buf_size < 76 * ch)
  320. return 0;
  321. nb_samples = 128;
  322. break;
  323. case CODEC_ID_ADPCM_IMA_QT:
  324. if (buf_size < 34 * ch)
  325. return 0;
  326. nb_samples = 64;
  327. break;
  328. /* simple 4-bit adpcm */
  329. case CODEC_ID_ADPCM_CT:
  330. case CODEC_ID_ADPCM_IMA_APC:
  331. case CODEC_ID_ADPCM_IMA_EA_SEAD:
  332. case CODEC_ID_ADPCM_IMA_WS:
  333. case CODEC_ID_ADPCM_YAMAHA:
  334. nb_samples = buf_size * 2 / ch;
  335. break;
  336. }
  337. if (nb_samples)
  338. return nb_samples;
  339. /* simple 4-bit adpcm, with header */
  340. header_size = 0;
  341. switch (avctx->codec->id) {
  342. case CODEC_ID_ADPCM_4XM:
  343. case CODEC_ID_ADPCM_IMA_ISS: header_size = 4 * ch; break;
  344. case CODEC_ID_ADPCM_IMA_AMV: header_size = 8; break;
  345. case CODEC_ID_ADPCM_IMA_SMJPEG: header_size = 4; break;
  346. }
  347. if (header_size > 0)
  348. return (buf_size - header_size) * 2 / ch;
  349. /* more complex formats */
  350. switch (avctx->codec->id) {
  351. case CODEC_ID_ADPCM_EA:
  352. has_coded_samples = 1;
  353. if (buf_size < 4)
  354. return 0;
  355. *coded_samples = AV_RL32(buf);
  356. *coded_samples -= *coded_samples % 28;
  357. nb_samples = (buf_size - 12) / 30 * 28;
  358. break;
  359. case CODEC_ID_ADPCM_IMA_EA_EACS:
  360. has_coded_samples = 1;
  361. *coded_samples = bytestream2_get_le32(gb);
  362. nb_samples = (buf_size - (4 + 8 * ch)) * 2 / ch;
  363. break;
  364. case CODEC_ID_ADPCM_EA_MAXIS_XA:
  365. nb_samples = ((buf_size - ch) / (2 * ch)) * 2 * ch;
  366. break;
  367. case CODEC_ID_ADPCM_EA_R1:
  368. case CODEC_ID_ADPCM_EA_R2:
  369. case CODEC_ID_ADPCM_EA_R3:
  370. /* maximum number of samples */
  371. /* has internal offsets and a per-frame switch to signal raw 16-bit */
  372. has_coded_samples = 1;
  373. if (buf_size < 4)
  374. return 0;
  375. switch (avctx->codec->id) {
  376. case CODEC_ID_ADPCM_EA_R1:
  377. header_size = 4 + 9 * ch;
  378. *coded_samples = AV_RL32(buf);
  379. break;
  380. case CODEC_ID_ADPCM_EA_R2:
  381. header_size = 4 + 5 * ch;
  382. *coded_samples = AV_RL32(buf);
  383. break;
  384. case CODEC_ID_ADPCM_EA_R3:
  385. header_size = 4 + 5 * ch;
  386. *coded_samples = AV_RB32(buf);
  387. break;
  388. }
  389. *coded_samples -= *coded_samples % 28;
  390. nb_samples = (buf_size - header_size) * 2 / ch;
  391. nb_samples -= nb_samples % 28;
  392. break;
  393. case CODEC_ID_ADPCM_IMA_DK3:
  394. if (avctx->block_align > 0)
  395. buf_size = FFMIN(buf_size, avctx->block_align);
  396. nb_samples = ((buf_size - 16) * 2 / 3 * 4) / ch;
  397. break;
  398. case CODEC_ID_ADPCM_IMA_DK4:
  399. if (avctx->block_align > 0)
  400. buf_size = FFMIN(buf_size, avctx->block_align);
  401. nb_samples = 1 + (buf_size - 4 * ch) * 2 / ch;
  402. break;
  403. case CODEC_ID_ADPCM_IMA_WAV:
  404. if (avctx->block_align > 0)
  405. buf_size = FFMIN(buf_size, avctx->block_align);
  406. nb_samples = 1 + (buf_size - 4 * ch) / (4 * ch) * 8;
  407. break;
  408. case CODEC_ID_ADPCM_MS:
  409. if (avctx->block_align > 0)
  410. buf_size = FFMIN(buf_size, avctx->block_align);
  411. nb_samples = 2 + (buf_size - 7 * ch) * 2 / ch;
  412. break;
  413. case CODEC_ID_ADPCM_SBPRO_2:
  414. case CODEC_ID_ADPCM_SBPRO_3:
  415. case CODEC_ID_ADPCM_SBPRO_4:
  416. {
  417. int samples_per_byte;
  418. switch (avctx->codec->id) {
  419. case CODEC_ID_ADPCM_SBPRO_2: samples_per_byte = 4; break;
  420. case CODEC_ID_ADPCM_SBPRO_3: samples_per_byte = 3; break;
  421. case CODEC_ID_ADPCM_SBPRO_4: samples_per_byte = 2; break;
  422. }
  423. if (!s->status[0].step_index) {
  424. nb_samples++;
  425. buf_size -= ch;
  426. }
  427. nb_samples += buf_size * samples_per_byte / ch;
  428. break;
  429. }
  430. case CODEC_ID_ADPCM_SWF:
  431. {
  432. int buf_bits = buf_size * 8 - 2;
  433. int nbits = (buf[0] >> 6) + 2;
  434. int block_hdr_size = 22 * ch;
  435. int block_size = block_hdr_size + nbits * ch * 4095;
  436. int nblocks = buf_bits / block_size;
  437. int bits_left = buf_bits - nblocks * block_size;
  438. nb_samples = nblocks * 4096;
  439. if (bits_left >= block_hdr_size)
  440. nb_samples += 1 + (bits_left - block_hdr_size) / (nbits * ch);
  441. break;
  442. }
  443. case CODEC_ID_ADPCM_THP:
  444. has_coded_samples = 1;
  445. if (buf_size < 8)
  446. return 0;
  447. *coded_samples = AV_RB32(&buf[4]);
  448. *coded_samples -= *coded_samples % 14;
  449. nb_samples = (buf_size - 80) / (8 * ch) * 14;
  450. break;
  451. case CODEC_ID_ADPCM_XA:
  452. nb_samples = (buf_size / 128) * 224 / ch;
  453. break;
  454. }
  455. /* validate coded sample count */
  456. if (has_coded_samples && (*coded_samples <= 0 || *coded_samples > nb_samples))
  457. return AVERROR_INVALIDDATA;
  458. return nb_samples;
  459. }
  460. static int adpcm_decode_frame(AVCodecContext *avctx, void *data,
  461. int *got_frame_ptr, AVPacket *avpkt)
  462. {
  463. const uint8_t *buf = avpkt->data;
  464. int buf_size = avpkt->size;
  465. ADPCMDecodeContext *c = avctx->priv_data;
  466. ADPCMChannelStatus *cs;
  467. int n, m, channel, i;
  468. short *samples;
  469. const uint8_t *src;
  470. int st; /* stereo */
  471. int count1, count2;
  472. int nb_samples, coded_samples, ret;
  473. GetByteContext gb;
  474. bytestream2_init(&gb, buf, buf_size);
  475. nb_samples = get_nb_samples(avctx, buf, &gb, buf_size, &coded_samples);
  476. if (nb_samples <= 0) {
  477. av_log(avctx, AV_LOG_ERROR, "invalid number of samples in packet\n");
  478. return AVERROR_INVALIDDATA;
  479. }
  480. /* get output buffer */
  481. c->frame.nb_samples = nb_samples;
  482. if ((ret = avctx->get_buffer(avctx, &c->frame)) < 0) {
  483. av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
  484. return ret;
  485. }
  486. samples = (short *)c->frame.data[0];
  487. /* use coded_samples when applicable */
  488. /* it is always <= nb_samples, so the output buffer will be large enough */
  489. if (coded_samples) {
  490. if (coded_samples != nb_samples)
  491. av_log(avctx, AV_LOG_WARNING, "mismatch in coded sample count\n");
  492. c->frame.nb_samples = nb_samples = coded_samples;
  493. }
  494. src = buf;
  495. st = avctx->channels == 2 ? 1 : 0;
  496. switch(avctx->codec->id) {
  497. case CODEC_ID_ADPCM_IMA_QT:
  498. /* In QuickTime, IMA is encoded by chunks of 34 bytes (=64 samples).
  499. Channel data is interleaved per-chunk. */
  500. for (channel = 0; channel < avctx->channels; channel++) {
  501. int predictor;
  502. int step_index;
  503. cs = &(c->status[channel]);
  504. /* (pppppp) (piiiiiii) */
  505. /* Bits 15-7 are the _top_ 9 bits of the 16-bit initial predictor value */
  506. predictor = sign_extend(bytestream2_get_be16u(&gb), 16);
  507. step_index = predictor & 0x7F;
  508. predictor &= ~0x7F;
  509. if (cs->step_index == step_index) {
  510. int diff = predictor - cs->predictor;
  511. if (diff < 0)
  512. diff = - diff;
  513. if (diff > 0x7f)
  514. goto update;
  515. } else {
  516. update:
  517. cs->step_index = step_index;
  518. cs->predictor = predictor;
  519. }
  520. if (cs->step_index > 88u){
  521. av_log(avctx, AV_LOG_ERROR, "ERROR: step_index[%d] = %i\n",
  522. channel, cs->step_index);
  523. return AVERROR_INVALIDDATA;
  524. }
  525. samples = (short *)c->frame.data[0] + channel;
  526. for (m = 0; m < 32; m++) {
  527. int byte = bytestream2_get_byteu(&gb);
  528. *samples = adpcm_ima_qt_expand_nibble(cs, byte & 0x0F, 3);
  529. samples += avctx->channels;
  530. *samples = adpcm_ima_qt_expand_nibble(cs, byte >> 4 , 3);
  531. samples += avctx->channels;
  532. }
  533. }
  534. break;
  535. case CODEC_ID_ADPCM_IMA_WAV:
  536. for(i=0; i<avctx->channels; i++){
  537. cs = &(c->status[i]);
  538. cs->predictor = *samples++ = sign_extend(bytestream2_get_le16u(&gb), 16);
  539. cs->step_index = sign_extend(bytestream2_get_le16u(&gb), 16);
  540. if (cs->step_index > 88u){
  541. av_log(avctx, AV_LOG_ERROR, "ERROR: step_index[%d] = %i\n",
  542. i, cs->step_index);
  543. return AVERROR_INVALIDDATA;
  544. }
  545. }
  546. for (n = (nb_samples - 1) / 8; n > 0; n--) {
  547. for (i = 0; i < avctx->channels; i++) {
  548. cs = &c->status[i];
  549. for (m = 0; m < 4; m++) {
  550. int v = bytestream2_get_byteu(&gb);
  551. *samples = adpcm_ima_expand_nibble(cs, v & 0x0F, 3);
  552. samples += avctx->channels;
  553. *samples = adpcm_ima_expand_nibble(cs, v >> 4 , 3);
  554. samples += avctx->channels;
  555. }
  556. samples -= 8 * avctx->channels - 1;
  557. }
  558. samples += 7 * avctx->channels;
  559. }
  560. break;
  561. case CODEC_ID_ADPCM_4XM:
  562. for (i = 0; i < avctx->channels; i++)
  563. c->status[i].predictor = sign_extend(bytestream2_get_le16u(&gb), 16);
  564. for (i = 0; i < avctx->channels; i++) {
  565. c->status[i].step_index = sign_extend(bytestream2_get_le16u(&gb), 16);
  566. if (c->status[i].step_index > 88u) {
  567. av_log(avctx, AV_LOG_ERROR, "ERROR: step_index[%d] = %i\n",
  568. i, c->status[i].step_index);
  569. return AVERROR_INVALIDDATA;
  570. }
  571. }
  572. for (i = 0; i < avctx->channels; i++) {
  573. samples = (short *)c->frame.data[0] + i;
  574. cs = &c->status[i];
  575. for (n = nb_samples >> 1; n > 0; n--) {
  576. int v = bytestream2_get_byteu(&gb);
  577. *samples = adpcm_ima_expand_nibble(cs, v & 0x0F, 4);
  578. samples += avctx->channels;
  579. *samples = adpcm_ima_expand_nibble(cs, v >> 4 , 4);
  580. samples += avctx->channels;
  581. }
  582. }
  583. break;
  584. case CODEC_ID_ADPCM_MS:
  585. {
  586. int block_predictor;
  587. block_predictor = bytestream2_get_byteu(&gb);
  588. if (block_predictor > 6) {
  589. av_log(avctx, AV_LOG_ERROR, "ERROR: block_predictor[0] = %d\n",
  590. block_predictor);
  591. return AVERROR_INVALIDDATA;
  592. }
  593. c->status[0].coeff1 = ff_adpcm_AdaptCoeff1[block_predictor];
  594. c->status[0].coeff2 = ff_adpcm_AdaptCoeff2[block_predictor];
  595. if (st) {
  596. block_predictor = bytestream2_get_byteu(&gb);
  597. if (block_predictor > 6) {
  598. av_log(avctx, AV_LOG_ERROR, "ERROR: block_predictor[1] = %d\n",
  599. block_predictor);
  600. return AVERROR_INVALIDDATA;
  601. }
  602. c->status[1].coeff1 = ff_adpcm_AdaptCoeff1[block_predictor];
  603. c->status[1].coeff2 = ff_adpcm_AdaptCoeff2[block_predictor];
  604. }
  605. c->status[0].idelta = sign_extend(bytestream2_get_le16u(&gb), 16);
  606. if (st){
  607. c->status[1].idelta = sign_extend(bytestream2_get_le16u(&gb), 16);
  608. }
  609. c->status[0].sample1 = sign_extend(bytestream2_get_le16u(&gb), 16);
  610. if (st) c->status[1].sample1 = sign_extend(bytestream2_get_le16u(&gb), 16);
  611. c->status[0].sample2 = sign_extend(bytestream2_get_le16u(&gb), 16);
  612. if (st) c->status[1].sample2 = sign_extend(bytestream2_get_le16u(&gb), 16);
  613. *samples++ = c->status[0].sample2;
  614. if (st) *samples++ = c->status[1].sample2;
  615. *samples++ = c->status[0].sample1;
  616. if (st) *samples++ = c->status[1].sample1;
  617. for(n = (nb_samples - 2) >> (1 - st); n > 0; n--) {
  618. int byte = bytestream2_get_byteu(&gb);
  619. *samples++ = adpcm_ms_expand_nibble(&c->status[0 ], byte >> 4 );
  620. *samples++ = adpcm_ms_expand_nibble(&c->status[st], byte & 0x0F);
  621. }
  622. break;
  623. }
  624. case CODEC_ID_ADPCM_IMA_DK4:
  625. for (channel = 0; channel < avctx->channels; channel++) {
  626. cs = &c->status[channel];
  627. cs->predictor = *samples++ = sign_extend(bytestream2_get_le16u(&gb), 16);
  628. cs->step_index = sign_extend(bytestream2_get_le16u(&gb), 16);
  629. if (cs->step_index > 88u){
  630. av_log(avctx, AV_LOG_ERROR, "ERROR: step_index[%d] = %i\n",
  631. channel, cs->step_index);
  632. return AVERROR_INVALIDDATA;
  633. }
  634. }
  635. for (n = nb_samples >> (1 - st); n > 0; n--) {
  636. int v = bytestream2_get_byteu(&gb);
  637. *samples++ = adpcm_ima_expand_nibble(&c->status[0 ], v >> 4 , 3);
  638. *samples++ = adpcm_ima_expand_nibble(&c->status[st], v & 0x0F, 3);
  639. }
  640. break;
  641. case CODEC_ID_ADPCM_IMA_DK3:
  642. {
  643. int last_byte = 0;
  644. int nibble;
  645. int decode_top_nibble_next = 0;
  646. int diff_channel;
  647. const int16_t *samples_end = samples + avctx->channels * nb_samples;
  648. bytestream2_skipu(&gb, 10);
  649. c->status[0].predictor = sign_extend(bytestream2_get_le16u(&gb), 16);
  650. c->status[1].predictor = sign_extend(bytestream2_get_le16u(&gb), 16);
  651. c->status[0].step_index = bytestream2_get_byteu(&gb);
  652. c->status[1].step_index = bytestream2_get_byteu(&gb);
  653. if (c->status[0].step_index > 88u || c->status[1].step_index > 88u){
  654. av_log(avctx, AV_LOG_ERROR, "ERROR: step_index = %i/%i\n",
  655. c->status[0].step_index, c->status[1].step_index);
  656. return AVERROR_INVALIDDATA;
  657. }
  658. /* sign extend the predictors */
  659. diff_channel = c->status[1].predictor;
  660. /* DK3 ADPCM support macro */
  661. #define DK3_GET_NEXT_NIBBLE() \
  662. if (decode_top_nibble_next) { \
  663. nibble = last_byte >> 4; \
  664. decode_top_nibble_next = 0; \
  665. } else { \
  666. last_byte = bytestream2_get_byteu(&gb); \
  667. nibble = last_byte & 0x0F; \
  668. decode_top_nibble_next = 1; \
  669. }
  670. while (samples < samples_end) {
  671. /* for this algorithm, c->status[0] is the sum channel and
  672. * c->status[1] is the diff channel */
  673. /* process the first predictor of the sum channel */
  674. DK3_GET_NEXT_NIBBLE();
  675. adpcm_ima_expand_nibble(&c->status[0], nibble, 3);
  676. /* process the diff channel predictor */
  677. DK3_GET_NEXT_NIBBLE();
  678. adpcm_ima_expand_nibble(&c->status[1], nibble, 3);
  679. /* process the first pair of stereo PCM samples */
  680. diff_channel = (diff_channel + c->status[1].predictor) / 2;
  681. *samples++ = c->status[0].predictor + c->status[1].predictor;
  682. *samples++ = c->status[0].predictor - c->status[1].predictor;
  683. /* process the second predictor of the sum channel */
  684. DK3_GET_NEXT_NIBBLE();
  685. adpcm_ima_expand_nibble(&c->status[0], nibble, 3);
  686. /* process the second pair of stereo PCM samples */
  687. diff_channel = (diff_channel + c->status[1].predictor) / 2;
  688. *samples++ = c->status[0].predictor + c->status[1].predictor;
  689. *samples++ = c->status[0].predictor - c->status[1].predictor;
  690. }
  691. break;
  692. }
  693. case CODEC_ID_ADPCM_IMA_ISS:
  694. for (channel = 0; channel < avctx->channels; channel++) {
  695. cs = &c->status[channel];
  696. cs->predictor = sign_extend(bytestream2_get_le16u(&gb), 16);
  697. cs->step_index = sign_extend(bytestream2_get_le16u(&gb), 16);
  698. if (cs->step_index > 88u){
  699. av_log(avctx, AV_LOG_ERROR, "ERROR: step_index[%d] = %i\n",
  700. channel, cs->step_index);
  701. return AVERROR_INVALIDDATA;
  702. }
  703. }
  704. for (n = nb_samples >> (1 - st); n > 0; n--) {
  705. int v1, v2;
  706. int v = bytestream2_get_byteu(&gb);
  707. /* nibbles are swapped for mono */
  708. if (st) {
  709. v1 = v >> 4;
  710. v2 = v & 0x0F;
  711. } else {
  712. v2 = v >> 4;
  713. v1 = v & 0x0F;
  714. }
  715. *samples++ = adpcm_ima_expand_nibble(&c->status[0 ], v1, 3);
  716. *samples++ = adpcm_ima_expand_nibble(&c->status[st], v2, 3);
  717. }
  718. break;
  719. case CODEC_ID_ADPCM_IMA_APC:
  720. while (bytestream2_get_bytes_left(&gb) > 0) {
  721. int v = bytestream2_get_byteu(&gb);
  722. *samples++ = adpcm_ima_expand_nibble(&c->status[0], v >> 4 , 3);
  723. *samples++ = adpcm_ima_expand_nibble(&c->status[st], v & 0x0F, 3);
  724. }
  725. break;
  726. case CODEC_ID_ADPCM_IMA_WS:
  727. if (c->vqa_version == 3) {
  728. for (channel = 0; channel < avctx->channels; channel++) {
  729. int16_t *smp = samples + channel;
  730. for (n = nb_samples / 2; n > 0; n--) {
  731. int v = bytestream2_get_byteu(&gb);
  732. *smp = adpcm_ima_expand_nibble(&c->status[channel], v >> 4 , 3);
  733. smp += avctx->channels;
  734. *smp = adpcm_ima_expand_nibble(&c->status[channel], v & 0x0F, 3);
  735. smp += avctx->channels;
  736. }
  737. }
  738. } else {
  739. for (n = nb_samples / 2; n > 0; n--) {
  740. for (channel = 0; channel < avctx->channels; channel++) {
  741. int v = bytestream2_get_byteu(&gb);
  742. *samples++ = adpcm_ima_expand_nibble(&c->status[channel], v >> 4 , 3);
  743. samples[st] = adpcm_ima_expand_nibble(&c->status[channel], v & 0x0F, 3);
  744. }
  745. samples += avctx->channels;
  746. }
  747. }
  748. bytestream2_seek(&gb, 0, SEEK_END);
  749. break;
  750. case CODEC_ID_ADPCM_XA:
  751. while (bytestream2_get_bytes_left(&gb) >= 128) {
  752. if ((ret = xa_decode(avctx, samples, buf + bytestream2_tell(&gb), &c->status[0],
  753. &c->status[1], avctx->channels)) < 0)
  754. return ret;
  755. bytestream2_skipu(&gb, 128);
  756. samples += 28 * 8;
  757. }
  758. break;
  759. case CODEC_ID_ADPCM_IMA_EA_EACS:
  760. for (i=0; i<=st; i++) {
  761. c->status[i].step_index = bytestream2_get_le32u(&gb);
  762. if (c->status[i].step_index > 88u) {
  763. av_log(avctx, AV_LOG_ERROR, "ERROR: step_index[%d] = %i\n",
  764. i, c->status[i].step_index);
  765. return AVERROR_INVALIDDATA;
  766. }
  767. }
  768. for (i=0; i<=st; i++)
  769. c->status[i].predictor = bytestream2_get_le32u(&gb);
  770. for (n = nb_samples >> (1 - st); n > 0; n--) {
  771. int byte = bytestream2_get_byteu(&gb);
  772. *samples++ = adpcm_ima_expand_nibble(&c->status[0], byte >> 4, 3);
  773. *samples++ = adpcm_ima_expand_nibble(&c->status[st], byte & 0x0F, 3);
  774. }
  775. break;
  776. case CODEC_ID_ADPCM_IMA_EA_SEAD:
  777. for (n = nb_samples >> (1 - st); n > 0; n--) {
  778. int byte = bytestream2_get_byteu(&gb);
  779. *samples++ = adpcm_ima_expand_nibble(&c->status[0], byte >> 4, 6);
  780. *samples++ = adpcm_ima_expand_nibble(&c->status[st], byte & 0x0F, 6);
  781. }
  782. break;
  783. case CODEC_ID_ADPCM_EA:
  784. {
  785. int32_t previous_left_sample, previous_right_sample;
  786. int32_t current_left_sample, current_right_sample;
  787. int32_t next_left_sample, next_right_sample;
  788. int32_t coeff1l, coeff2l, coeff1r, coeff2r;
  789. uint8_t shift_left, shift_right;
  790. /* Each EA ADPCM frame has a 12-byte header followed by 30-byte pieces,
  791. each coding 28 stereo samples. */
  792. src += 4; // skip sample count (already read)
  793. current_left_sample = (int16_t)bytestream_get_le16(&src);
  794. previous_left_sample = (int16_t)bytestream_get_le16(&src);
  795. current_right_sample = (int16_t)bytestream_get_le16(&src);
  796. previous_right_sample = (int16_t)bytestream_get_le16(&src);
  797. for (count1 = 0; count1 < nb_samples / 28; count1++) {
  798. coeff1l = ea_adpcm_table[ *src >> 4 ];
  799. coeff2l = ea_adpcm_table[(*src >> 4 ) + 4];
  800. coeff1r = ea_adpcm_table[*src & 0x0F];
  801. coeff2r = ea_adpcm_table[(*src & 0x0F) + 4];
  802. src++;
  803. shift_left = 20 - (*src >> 4);
  804. shift_right = 20 - (*src & 0x0F);
  805. src++;
  806. for (count2 = 0; count2 < 28; count2++) {
  807. next_left_sample = sign_extend(*src >> 4, 4) << shift_left;
  808. next_right_sample = sign_extend(*src, 4) << shift_right;
  809. src++;
  810. next_left_sample = (next_left_sample +
  811. (current_left_sample * coeff1l) +
  812. (previous_left_sample * coeff2l) + 0x80) >> 8;
  813. next_right_sample = (next_right_sample +
  814. (current_right_sample * coeff1r) +
  815. (previous_right_sample * coeff2r) + 0x80) >> 8;
  816. previous_left_sample = current_left_sample;
  817. current_left_sample = av_clip_int16(next_left_sample);
  818. previous_right_sample = current_right_sample;
  819. current_right_sample = av_clip_int16(next_right_sample);
  820. *samples++ = (unsigned short)current_left_sample;
  821. *samples++ = (unsigned short)current_right_sample;
  822. }
  823. }
  824. if (src - buf == buf_size - 2)
  825. src += 2; // Skip terminating 0x0000
  826. break;
  827. }
  828. case CODEC_ID_ADPCM_EA_MAXIS_XA:
  829. {
  830. int coeff[2][2], shift[2];
  831. for(channel = 0; channel < avctx->channels; channel++) {
  832. for (i=0; i<2; i++)
  833. coeff[channel][i] = ea_adpcm_table[(*src >> 4) + 4*i];
  834. shift[channel] = 20 - (*src & 0x0F);
  835. src++;
  836. }
  837. for (count1 = 0; count1 < nb_samples / 2; count1++) {
  838. for(i = 4; i >= 0; i-=4) { /* Pairwise samples LL RR (st) or LL LL (mono) */
  839. for(channel = 0; channel < avctx->channels; channel++) {
  840. int32_t sample = sign_extend(src[channel] >> i, 4) << shift[channel];
  841. sample = (sample +
  842. c->status[channel].sample1 * coeff[channel][0] +
  843. c->status[channel].sample2 * coeff[channel][1] + 0x80) >> 8;
  844. c->status[channel].sample2 = c->status[channel].sample1;
  845. c->status[channel].sample1 = av_clip_int16(sample);
  846. *samples++ = c->status[channel].sample1;
  847. }
  848. }
  849. src+=avctx->channels;
  850. }
  851. /* consume whole packet */
  852. src = buf + buf_size;
  853. break;
  854. }
  855. case CODEC_ID_ADPCM_EA_R1:
  856. case CODEC_ID_ADPCM_EA_R2:
  857. case CODEC_ID_ADPCM_EA_R3: {
  858. /* channel numbering
  859. 2chan: 0=fl, 1=fr
  860. 4chan: 0=fl, 1=rl, 2=fr, 3=rr
  861. 6chan: 0=fl, 1=c, 2=fr, 3=rl, 4=rr, 5=sub */
  862. const int big_endian = avctx->codec->id == CODEC_ID_ADPCM_EA_R3;
  863. int32_t previous_sample, current_sample, next_sample;
  864. int32_t coeff1, coeff2;
  865. uint8_t shift;
  866. unsigned int channel;
  867. uint16_t *samplesC;
  868. const uint8_t *srcC;
  869. const uint8_t *src_end = buf + buf_size;
  870. int count = 0;
  871. src += 4; // skip sample count (already read)
  872. for (channel=0; channel<avctx->channels; channel++) {
  873. int32_t offset = (big_endian ? bytestream_get_be32(&src)
  874. : bytestream_get_le32(&src))
  875. + (avctx->channels-channel-1) * 4;
  876. if ((offset < 0) || (offset >= src_end - src - 4)) break;
  877. srcC = src + offset;
  878. samplesC = samples + channel;
  879. if (avctx->codec->id == CODEC_ID_ADPCM_EA_R1) {
  880. current_sample = (int16_t)bytestream_get_le16(&srcC);
  881. previous_sample = (int16_t)bytestream_get_le16(&srcC);
  882. } else {
  883. current_sample = c->status[channel].predictor;
  884. previous_sample = c->status[channel].prev_sample;
  885. }
  886. for (count1 = 0; count1 < nb_samples / 28; count1++) {
  887. if (*srcC == 0xEE) { /* only seen in R2 and R3 */
  888. srcC++;
  889. if (srcC > src_end - 30*2) break;
  890. current_sample = (int16_t)bytestream_get_be16(&srcC);
  891. previous_sample = (int16_t)bytestream_get_be16(&srcC);
  892. for (count2=0; count2<28; count2++) {
  893. *samplesC = (int16_t)bytestream_get_be16(&srcC);
  894. samplesC += avctx->channels;
  895. }
  896. } else {
  897. coeff1 = ea_adpcm_table[ *srcC>>4 ];
  898. coeff2 = ea_adpcm_table[(*srcC>>4) + 4];
  899. shift = 20 - (*srcC++ & 0x0F);
  900. if (srcC > src_end - 14) break;
  901. for (count2=0; count2<28; count2++) {
  902. if (count2 & 1)
  903. next_sample = sign_extend(*srcC++, 4) << shift;
  904. else
  905. next_sample = sign_extend(*srcC >> 4, 4) << shift;
  906. next_sample += (current_sample * coeff1) +
  907. (previous_sample * coeff2);
  908. next_sample = av_clip_int16(next_sample >> 8);
  909. previous_sample = current_sample;
  910. current_sample = next_sample;
  911. *samplesC = current_sample;
  912. samplesC += avctx->channels;
  913. }
  914. }
  915. }
  916. if (!count) {
  917. count = count1;
  918. } else if (count != count1) {
  919. av_log(avctx, AV_LOG_WARNING, "per-channel sample count mismatch\n");
  920. count = FFMAX(count, count1);
  921. }
  922. if (avctx->codec->id != CODEC_ID_ADPCM_EA_R1) {
  923. c->status[channel].predictor = current_sample;
  924. c->status[channel].prev_sample = previous_sample;
  925. }
  926. }
  927. c->frame.nb_samples = count * 28;
  928. src = src_end;
  929. break;
  930. }
  931. case CODEC_ID_ADPCM_EA_XAS:
  932. for (channel=0; channel<avctx->channels; channel++) {
  933. int coeff[2][4], shift[4];
  934. short *s2, *s = &samples[channel];
  935. for (n=0; n<4; n++, s+=32*avctx->channels) {
  936. for (i=0; i<2; i++)
  937. coeff[i][n] = ea_adpcm_table[(src[0]&0x0F)+4*i];
  938. shift[n] = 20 - (src[2] & 0x0F);
  939. for (s2=s, i=0; i<2; i++, src+=2, s2+=avctx->channels)
  940. s2[0] = (src[0]&0xF0) + (src[1]<<8);
  941. }
  942. for (m=2; m<32; m+=2) {
  943. s = &samples[m*avctx->channels + channel];
  944. for (n=0; n<4; n++, src++, s+=32*avctx->channels) {
  945. for (s2=s, i=0; i<8; i+=4, s2+=avctx->channels) {
  946. int level = sign_extend(*src >> (4 - i), 4) << shift[n];
  947. int pred = s2[-1*avctx->channels] * coeff[0][n]
  948. + s2[-2*avctx->channels] * coeff[1][n];
  949. s2[0] = av_clip_int16((level + pred + 0x80) >> 8);
  950. }
  951. }
  952. }
  953. }
  954. break;
  955. case CODEC_ID_ADPCM_IMA_AMV:
  956. case CODEC_ID_ADPCM_IMA_SMJPEG:
  957. if (avctx->codec->id == CODEC_ID_ADPCM_IMA_AMV) {
  958. c->status[0].predictor = sign_extend(bytestream_get_le16(&src), 16);
  959. c->status[0].step_index = av_clip(bytestream_get_le16(&src), 0, 88);
  960. src += 4;
  961. } else {
  962. c->status[0].predictor = sign_extend(bytestream_get_be16(&src), 16);
  963. c->status[0].step_index = av_clip(bytestream_get_byte(&src), 0, 88);
  964. src += 1;
  965. }
  966. for (n = nb_samples >> (1 - st); n > 0; n--, src++) {
  967. char hi, lo;
  968. lo = *src & 0x0F;
  969. hi = *src >> 4;
  970. if (avctx->codec->id == CODEC_ID_ADPCM_IMA_AMV)
  971. FFSWAP(char, hi, lo);
  972. *samples++ = adpcm_ima_expand_nibble(&c->status[0],
  973. lo, 3);
  974. *samples++ = adpcm_ima_expand_nibble(&c->status[0],
  975. hi, 3);
  976. }
  977. break;
  978. case CODEC_ID_ADPCM_CT:
  979. for (n = nb_samples >> (1 - st); n > 0; n--, src++) {
  980. uint8_t v = *src;
  981. *samples++ = adpcm_ct_expand_nibble(&c->status[0 ], v >> 4 );
  982. *samples++ = adpcm_ct_expand_nibble(&c->status[st], v & 0x0F);
  983. }
  984. break;
  985. case CODEC_ID_ADPCM_SBPRO_4:
  986. case CODEC_ID_ADPCM_SBPRO_3:
  987. case CODEC_ID_ADPCM_SBPRO_2:
  988. if (!c->status[0].step_index) {
  989. /* the first byte is a raw sample */
  990. *samples++ = 128 * (*src++ - 0x80);
  991. if (st)
  992. *samples++ = 128 * (*src++ - 0x80);
  993. c->status[0].step_index = 1;
  994. nb_samples--;
  995. }
  996. if (avctx->codec->id == CODEC_ID_ADPCM_SBPRO_4) {
  997. for (n = nb_samples >> (1 - st); n > 0; n--, src++) {
  998. *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
  999. src[0] >> 4, 4, 0);
  1000. *samples++ = adpcm_sbpro_expand_nibble(&c->status[st],
  1001. src[0] & 0x0F, 4, 0);
  1002. }
  1003. } else if (avctx->codec->id == CODEC_ID_ADPCM_SBPRO_3) {
  1004. for (n = nb_samples / 3; n > 0; n--, src++) {
  1005. *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
  1006. src[0] >> 5 , 3, 0);
  1007. *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
  1008. (src[0] >> 2) & 0x07, 3, 0);
  1009. *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
  1010. src[0] & 0x03, 2, 0);
  1011. }
  1012. } else {
  1013. for (n = nb_samples >> (2 - st); n > 0; n--, src++) {
  1014. *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
  1015. src[0] >> 6 , 2, 2);
  1016. *samples++ = adpcm_sbpro_expand_nibble(&c->status[st],
  1017. (src[0] >> 4) & 0x03, 2, 2);
  1018. *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
  1019. (src[0] >> 2) & 0x03, 2, 2);
  1020. *samples++ = adpcm_sbpro_expand_nibble(&c->status[st],
  1021. src[0] & 0x03, 2, 2);
  1022. }
  1023. }
  1024. break;
  1025. case CODEC_ID_ADPCM_SWF:
  1026. {
  1027. GetBitContext gb;
  1028. const int *table;
  1029. int k0, signmask, nb_bits, count;
  1030. int size = buf_size*8;
  1031. init_get_bits(&gb, buf, size);
  1032. //read bits & initial values
  1033. nb_bits = get_bits(&gb, 2)+2;
  1034. //av_log(NULL,AV_LOG_INFO,"nb_bits: %d\n", nb_bits);
  1035. table = swf_index_tables[nb_bits-2];
  1036. k0 = 1 << (nb_bits-2);
  1037. signmask = 1 << (nb_bits-1);
  1038. while (get_bits_count(&gb) <= size - 22*avctx->channels) {
  1039. for (i = 0; i < avctx->channels; i++) {
  1040. *samples++ = c->status[i].predictor = get_sbits(&gb, 16);
  1041. c->status[i].step_index = get_bits(&gb, 6);
  1042. }
  1043. for (count = 0; get_bits_count(&gb) <= size - nb_bits*avctx->channels && count < 4095; count++) {
  1044. int i;
  1045. for (i = 0; i < avctx->channels; i++) {
  1046. // similar to IMA adpcm
  1047. int delta = get_bits(&gb, nb_bits);
  1048. int step = ff_adpcm_step_table[c->status[i].step_index];
  1049. long vpdiff = 0; // vpdiff = (delta+0.5)*step/4
  1050. int k = k0;
  1051. do {
  1052. if (delta & k)
  1053. vpdiff += step;
  1054. step >>= 1;
  1055. k >>= 1;
  1056. } while(k);
  1057. vpdiff += step;
  1058. if (delta & signmask)
  1059. c->status[i].predictor -= vpdiff;
  1060. else
  1061. c->status[i].predictor += vpdiff;
  1062. c->status[i].step_index += table[delta & (~signmask)];
  1063. c->status[i].step_index = av_clip(c->status[i].step_index, 0, 88);
  1064. c->status[i].predictor = av_clip_int16(c->status[i].predictor);
  1065. *samples++ = c->status[i].predictor;
  1066. }
  1067. }
  1068. }
  1069. src += buf_size;
  1070. break;
  1071. }
  1072. case CODEC_ID_ADPCM_YAMAHA:
  1073. for (n = nb_samples >> (1 - st); n > 0; n--, src++) {
  1074. uint8_t v = *src;
  1075. *samples++ = adpcm_yamaha_expand_nibble(&c->status[0 ], v & 0x0F);
  1076. *samples++ = adpcm_yamaha_expand_nibble(&c->status[st], v >> 4 );
  1077. }
  1078. break;
  1079. case CODEC_ID_ADPCM_THP:
  1080. {
  1081. int table[2][16];
  1082. int prev[2][2];
  1083. int ch;
  1084. src += 4; // skip channel size
  1085. src += 4; // skip number of samples (already read)
  1086. for (i = 0; i < 32; i++)
  1087. table[0][i] = (int16_t)bytestream_get_be16(&src);
  1088. /* Initialize the previous sample. */
  1089. for (i = 0; i < 4; i++)
  1090. prev[0][i] = (int16_t)bytestream_get_be16(&src);
  1091. for (ch = 0; ch <= st; ch++) {
  1092. samples = (short *)c->frame.data[0] + ch;
  1093. /* Read in every sample for this channel. */
  1094. for (i = 0; i < nb_samples / 14; i++) {
  1095. int index = (*src >> 4) & 7;
  1096. unsigned int exp = *src++ & 15;
  1097. int factor1 = table[ch][index * 2];
  1098. int factor2 = table[ch][index * 2 + 1];
  1099. /* Decode 14 samples. */
  1100. for (n = 0; n < 14; n++) {
  1101. int32_t sampledat;
  1102. if(n&1) sampledat = sign_extend(*src++, 4);
  1103. else sampledat = sign_extend(*src >> 4, 4);
  1104. sampledat = ((prev[ch][0]*factor1
  1105. + prev[ch][1]*factor2) >> 11) + (sampledat << exp);
  1106. *samples = av_clip_int16(sampledat);
  1107. prev[ch][1] = prev[ch][0];
  1108. prev[ch][0] = *samples++;
  1109. /* In case of stereo, skip one sample, this sample
  1110. is for the other channel. */
  1111. samples += st;
  1112. }
  1113. }
  1114. }
  1115. break;
  1116. }
  1117. default:
  1118. return -1;
  1119. }
  1120. *got_frame_ptr = 1;
  1121. *(AVFrame *)data = c->frame;
  1122. return src == buf ? bytestream2_tell(&gb) : src - buf;
  1123. }
  1124. #define ADPCM_DECODER(id_, name_, long_name_) \
  1125. AVCodec ff_ ## name_ ## _decoder = { \
  1126. .name = #name_, \
  1127. .type = AVMEDIA_TYPE_AUDIO, \
  1128. .id = id_, \
  1129. .priv_data_size = sizeof(ADPCMDecodeContext), \
  1130. .init = adpcm_decode_init, \
  1131. .decode = adpcm_decode_frame, \
  1132. .capabilities = CODEC_CAP_DR1, \
  1133. .long_name = NULL_IF_CONFIG_SMALL(long_name_), \
  1134. }
  1135. /* Note: Do not forget to add new entries to the Makefile as well. */
  1136. ADPCM_DECODER(CODEC_ID_ADPCM_4XM, adpcm_4xm, "ADPCM 4X Movie");
  1137. ADPCM_DECODER(CODEC_ID_ADPCM_CT, adpcm_ct, "ADPCM Creative Technology");
  1138. ADPCM_DECODER(CODEC_ID_ADPCM_EA, adpcm_ea, "ADPCM Electronic Arts");
  1139. ADPCM_DECODER(CODEC_ID_ADPCM_EA_MAXIS_XA, adpcm_ea_maxis_xa, "ADPCM Electronic Arts Maxis CDROM XA");
  1140. ADPCM_DECODER(CODEC_ID_ADPCM_EA_R1, adpcm_ea_r1, "ADPCM Electronic Arts R1");
  1141. ADPCM_DECODER(CODEC_ID_ADPCM_EA_R2, adpcm_ea_r2, "ADPCM Electronic Arts R2");
  1142. ADPCM_DECODER(CODEC_ID_ADPCM_EA_R3, adpcm_ea_r3, "ADPCM Electronic Arts R3");
  1143. ADPCM_DECODER(CODEC_ID_ADPCM_EA_XAS, adpcm_ea_xas, "ADPCM Electronic Arts XAS");
  1144. ADPCM_DECODER(CODEC_ID_ADPCM_IMA_AMV, adpcm_ima_amv, "ADPCM IMA AMV");
  1145. ADPCM_DECODER(CODEC_ID_ADPCM_IMA_APC, adpcm_ima_apc, "ADPCM IMA CRYO APC");
  1146. ADPCM_DECODER(CODEC_ID_ADPCM_IMA_DK3, adpcm_ima_dk3, "ADPCM IMA Duck DK3");
  1147. ADPCM_DECODER(CODEC_ID_ADPCM_IMA_DK4, adpcm_ima_dk4, "ADPCM IMA Duck DK4");
  1148. ADPCM_DECODER(CODEC_ID_ADPCM_IMA_EA_EACS, adpcm_ima_ea_eacs, "ADPCM IMA Electronic Arts EACS");
  1149. ADPCM_DECODER(CODEC_ID_ADPCM_IMA_EA_SEAD, adpcm_ima_ea_sead, "ADPCM IMA Electronic Arts SEAD");
  1150. ADPCM_DECODER(CODEC_ID_ADPCM_IMA_ISS, adpcm_ima_iss, "ADPCM IMA Funcom ISS");
  1151. ADPCM_DECODER(CODEC_ID_ADPCM_IMA_QT, adpcm_ima_qt, "ADPCM IMA QuickTime");
  1152. ADPCM_DECODER(CODEC_ID_ADPCM_IMA_SMJPEG, adpcm_ima_smjpeg, "ADPCM IMA Loki SDL MJPEG");
  1153. ADPCM_DECODER(CODEC_ID_ADPCM_IMA_WAV, adpcm_ima_wav, "ADPCM IMA WAV");
  1154. ADPCM_DECODER(CODEC_ID_ADPCM_IMA_WS, adpcm_ima_ws, "ADPCM IMA Westwood");
  1155. ADPCM_DECODER(CODEC_ID_ADPCM_MS, adpcm_ms, "ADPCM Microsoft");
  1156. ADPCM_DECODER(CODEC_ID_ADPCM_SBPRO_2, adpcm_sbpro_2, "ADPCM Sound Blaster Pro 2-bit");
  1157. ADPCM_DECODER(CODEC_ID_ADPCM_SBPRO_3, adpcm_sbpro_3, "ADPCM Sound Blaster Pro 2.6-bit");
  1158. ADPCM_DECODER(CODEC_ID_ADPCM_SBPRO_4, adpcm_sbpro_4, "ADPCM Sound Blaster Pro 4-bit");
  1159. ADPCM_DECODER(CODEC_ID_ADPCM_SWF, adpcm_swf, "ADPCM Shockwave Flash");
  1160. ADPCM_DECODER(CODEC_ID_ADPCM_THP, adpcm_thp, "ADPCM Nintendo Gamecube THP");
  1161. ADPCM_DECODER(CODEC_ID_ADPCM_XA, adpcm_xa, "ADPCM CDROM XA");
  1162. ADPCM_DECODER(CODEC_ID_ADPCM_YAMAHA, adpcm_yamaha, "ADPCM Yamaha");