| 
							- /*
 -  * MDCT/IMDCT transforms
 -  * Copyright (c) 2002 Fabrice Bellard
 -  *
 -  * This file is part of FFmpeg.
 -  *
 -  * FFmpeg is free software; you can redistribute it and/or
 -  * modify it under the terms of the GNU Lesser General Public
 -  * License as published by the Free Software Foundation; either
 -  * version 2.1 of the License, or (at your option) any later version.
 -  *
 -  * FFmpeg is distributed in the hope that it will be useful,
 -  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 -  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 -  * Lesser General Public License for more details.
 -  *
 -  * You should have received a copy of the GNU Lesser General Public
 -  * License along with FFmpeg; if not, write to the Free Software
 -  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 -  */
 - 
 - #include <stdlib.h>
 - #include <string.h>
 - #include "libavutil/common.h"
 - #include "libavutil/mathematics.h"
 - #include "fft.h"
 - #include "fft-internal.h"
 - 
 - /**
 -  * @file
 -  * MDCT/IMDCT transforms.
 -  */
 - 
 - #if CONFIG_FFT_FLOAT
 - #   define RSCALE(x) (x)
 - #else
 - #   define RSCALE(x) ((x) >> 1)
 - #endif
 - 
 - /**
 -  * init MDCT or IMDCT computation.
 -  */
 - av_cold int ff_mdct_init(FFTContext *s, int nbits, int inverse, double scale)
 - {
 -     int n, n4, i;
 -     double alpha, theta;
 -     int tstep;
 - 
 -     memset(s, 0, sizeof(*s));
 -     n = 1 << nbits;
 -     s->mdct_bits = nbits;
 -     s->mdct_size = n;
 -     n4 = n >> 2;
 -     s->mdct_permutation = FF_MDCT_PERM_NONE;
 - 
 -     if (ff_fft_init(s, s->mdct_bits - 2, inverse) < 0)
 -         goto fail;
 - 
 -     s->tcos = av_malloc(n/2 * sizeof(FFTSample));
 -     if (!s->tcos)
 -         goto fail;
 - 
 -     switch (s->mdct_permutation) {
 -     case FF_MDCT_PERM_NONE:
 -         s->tsin = s->tcos + n4;
 -         tstep = 1;
 -         break;
 -     case FF_MDCT_PERM_INTERLEAVE:
 -         s->tsin = s->tcos + 1;
 -         tstep = 2;
 -         break;
 -     default:
 -         goto fail;
 -     }
 - 
 -     theta = 1.0 / 8.0 + (scale < 0 ? n4 : 0);
 -     scale = sqrt(fabs(scale));
 -     for(i=0;i<n4;i++) {
 -         alpha = 2 * M_PI * (i + theta) / n;
 -         s->tcos[i*tstep] = FIX15(-cos(alpha) * scale);
 -         s->tsin[i*tstep] = FIX15(-sin(alpha) * scale);
 -     }
 -     return 0;
 -  fail:
 -     ff_mdct_end(s);
 -     return -1;
 - }
 - 
 - /**
 -  * Compute the middle half of the inverse MDCT of size N = 2^nbits,
 -  * thus excluding the parts that can be derived by symmetry
 -  * @param output N/2 samples
 -  * @param input N/2 samples
 -  */
 - void ff_imdct_half_c(FFTContext *s, FFTSample *output, const FFTSample *input)
 - {
 -     int k, n8, n4, n2, n, j;
 -     const uint16_t *revtab = s->revtab;
 -     const FFTSample *tcos = s->tcos;
 -     const FFTSample *tsin = s->tsin;
 -     const FFTSample *in1, *in2;
 -     FFTComplex *z = (FFTComplex *)output;
 - 
 -     n = 1 << s->mdct_bits;
 -     n2 = n >> 1;
 -     n4 = n >> 2;
 -     n8 = n >> 3;
 - 
 -     /* pre rotation */
 -     in1 = input;
 -     in2 = input + n2 - 1;
 -     for(k = 0; k < n4; k++) {
 -         j=revtab[k];
 -         CMUL(z[j].re, z[j].im, *in2, *in1, tcos[k], tsin[k]);
 -         in1 += 2;
 -         in2 -= 2;
 -     }
 -     s->fft_calc(s, z);
 - 
 -     /* post rotation + reordering */
 -     for(k = 0; k < n8; k++) {
 -         FFTSample r0, i0, r1, i1;
 -         CMUL(r0, i1, z[n8-k-1].im, z[n8-k-1].re, tsin[n8-k-1], tcos[n8-k-1]);
 -         CMUL(r1, i0, z[n8+k  ].im, z[n8+k  ].re, tsin[n8+k  ], tcos[n8+k  ]);
 -         z[n8-k-1].re = r0;
 -         z[n8-k-1].im = i0;
 -         z[n8+k  ].re = r1;
 -         z[n8+k  ].im = i1;
 -     }
 - }
 - 
 - /**
 -  * Compute inverse MDCT of size N = 2^nbits
 -  * @param output N samples
 -  * @param input N/2 samples
 -  */
 - void ff_imdct_calc_c(FFTContext *s, FFTSample *output, const FFTSample *input)
 - {
 -     int k;
 -     int n = 1 << s->mdct_bits;
 -     int n2 = n >> 1;
 -     int n4 = n >> 2;
 - 
 -     ff_imdct_half_c(s, output+n4, input);
 - 
 -     for(k = 0; k < n4; k++) {
 -         output[k] = -output[n2-k-1];
 -         output[n-k-1] = output[n2+k];
 -     }
 - }
 - 
 - /**
 -  * Compute MDCT of size N = 2^nbits
 -  * @param input N samples
 -  * @param out N/2 samples
 -  */
 - void ff_mdct_calc_c(FFTContext *s, FFTSample *out, const FFTSample *input)
 - {
 -     int i, j, n, n8, n4, n2, n3;
 -     FFTDouble re, im;
 -     const uint16_t *revtab = s->revtab;
 -     const FFTSample *tcos = s->tcos;
 -     const FFTSample *tsin = s->tsin;
 -     FFTComplex *x = (FFTComplex *)out;
 - 
 -     n = 1 << s->mdct_bits;
 -     n2 = n >> 1;
 -     n4 = n >> 2;
 -     n8 = n >> 3;
 -     n3 = 3 * n4;
 - 
 -     /* pre rotation */
 -     for(i=0;i<n8;i++) {
 -         re = RSCALE(-input[2*i+n3] - input[n3-1-2*i]);
 -         im = RSCALE(-input[n4+2*i] + input[n4-1-2*i]);
 -         j = revtab[i];
 -         CMUL(x[j].re, x[j].im, re, im, -tcos[i], tsin[i]);
 - 
 -         re = RSCALE( input[2*i]    - input[n2-1-2*i]);
 -         im = RSCALE(-input[n2+2*i] - input[ n-1-2*i]);
 -         j = revtab[n8 + i];
 -         CMUL(x[j].re, x[j].im, re, im, -tcos[n8 + i], tsin[n8 + i]);
 -     }
 - 
 -     s->fft_calc(s, x);
 - 
 -     /* post rotation */
 -     for(i=0;i<n8;i++) {
 -         FFTSample r0, i0, r1, i1;
 -         CMUL(i1, r0, x[n8-i-1].re, x[n8-i-1].im, -tsin[n8-i-1], -tcos[n8-i-1]);
 -         CMUL(i0, r1, x[n8+i  ].re, x[n8+i  ].im, -tsin[n8+i  ], -tcos[n8+i  ]);
 -         x[n8-i-1].re = r0;
 -         x[n8-i-1].im = i0;
 -         x[n8+i  ].re = r1;
 -         x[n8+i  ].im = i1;
 -     }
 - }
 - 
 - av_cold void ff_mdct_end(FFTContext *s)
 - {
 -     av_freep(&s->tcos);
 -     ff_fft_end(s);
 - }
 
 
  |